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Abstract
1.	 High-throughput environmental sensing technologies are increasingly central to 
global monitoring of the ecological impacts of human activities. In particular, the 
recent boom in passive acoustic sensors has provided efficient, noninvasive, and 
taxonomically broad means to study wildlife populations and communities, and 
monitor their responses to environmental change. However, until recently, tech-
nological costs and constraints have largely confined research in passive acoustic 
monitoring (PAM) to a handful of taxonomic groups (e.g., bats, cetaceans, birds), 
often in relatively small-scale, proof-of-concept studies.

2.	 The arrival of low-cost, open-source sensors is now rapidly expanding access to 
PAM technologies, making it vital to evaluate where these tools can contribute to 
broader efforts in ecology and biodiversity research. Here, we synthesise and 
critically assess the current emerging opportunities and challenges for PAM for 
ecological assessment and monitoring of both species populations and 
communities.

3.	 We show that terrestrial and marine PAM applications are advancing rapidly, fa-
cilitated by emerging sensor hardware, the application of machine learning inno-
vations to automated wildlife call identification, and work towards developing 
acoustic biodiversity indicators. However, the broader scope of PAM research 
remains constrained by limited availability of reference sound libraries and open-
source audio processing tools, especially for the tropics, and lack of clarity around 
the accuracy, transferability and limitations of many analytical methods.

4.	 In order to improve possibilities for PAM globally, we emphasise the need for col-
laborative work to develop standardised survey and analysis protocols, publicly 
archived sound libraries, multiyear audio datasets, and a more robust theoretical 
and analytical framework for monitoring vocalising animal communities.
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1  | INTRODUC TION

There is a growing need for cost-effective, scalable ecological 
monitoring techniques, in light of global declines in biodiversity 
(Cardinale et al., 2012). Alongside addressing fundamental eco-
logical questions, survey and monitoring data are essential in 
evaluating trends and drivers of population change, informing 
conservation planning and efficacy assessment, and addressing 
biodiversity policy commitments (Honrado, Pereira, & Guisan, 
2016). Traditional survey methods (e.g., manual counts, trapping) 
are limited by being resource intensive and invasive, but are now 
complemented by a suite of high-throughput sensing technolo-
gies including satellite sensing, LIDAR, and camera traps. Passive 
acoustic sensors have become an increasingly important com-
ponent of this survey toolbox. Many animals emit acoustic sig-
nals that encode information about their presence and activities 
(Bradbury & Vehrencamp, 1998). Sound is also an important fea-
ture of the sensory environment, and anthropogenic acoustic phe-
nomena are a critical yet understudied dimension of global change 
(e.g., Buxton et al., 2017).

Opportunities to acoustically survey wildlife and environments 
have historically been limited by technological costs and constraints, 
but this situation is fast improving. For example, the recently released 
AudioMoth low-cost sensor has seen broad uptake for study objec-
tives ranging from population ecology to anthropogenic activity (Hill 
et al., 2018). Such initiatives now enable deployment of multisen-
sor networks at scale, involving both experts and volunteers (Jones 
et al., 2013; Newson, Evans, & Gillings, 2015). Passive acoustic mon-
itoring (PAM) is thus increasingly suited to objectives-driven survey 
and monitoring programmes, whose protocols must be standard-
isable, scalable, and financially sustainable (Honrado et al., 2016). 
However, the resulting massive audio datasets still present formida-
ble logistical and analytical difficulties, and it remains unclear how 
effectively current PAM methodologies, which have mostly been de-
veloped in small-scale, taxonomically focused contexts (mostly bats 

and cetaceans), can translate to the broader challenges of acoustic 
biodiversity monitoring. In this review, we synthesise current re-
search to highlight emerging opportunities and critical knowledge 
gaps. We discuss current applications of PAM technologies, identify 
challenges and research priorities at each stage of the PAM pipeline 
(Figure 1), and lastly discuss significant emerging trends for PAM in 
ecological research.

2  | PA SSIVE ACOUSTIC S APPLIC ATIONS 
IN ECOLOGY

Many animals actively produce sound for communication, and 
echolocating species also emit sounds for navigation and prey 
search (Bradbury & Vehrencamp, 1998). Vocalising animals thus 
leak information into their surroundings regarding their presence, 
behaviour, and interactions in space and time (Kershenbaum et al., 
2014). Long-established acoustic survey methods, for example, 
bird or amphibian point counts, typically involve experienced 
surveyors identifying species in the field (Gregory, Gibbons, & 
Donald, 2004). In contrast, PAM involves recording sound using 
passive acoustic sensors (recorders, ultrasound detectors, mi-
crophones and/or hydrophones; henceforth “acoustic sensors”) 
(Blumstein et al., 2011) and subsequently deriving relevant data 
from audio (e.g., species detections, environmental sound met-
rics) (Bittle & Duncan, 2013; Digby, Towsey, Bell, & Teal, 2013; 
Merchant et al., 2015) (Figure 1). Passive acoustics approaches 
have long been applied to studying visually cryptic animals such as 
cetaceans and echolocating bats (Nowacek, Christiansen, Bejder, 
Goldbogen, & Friedlaender, 2016; Walters et al., 2013), but in re-
cent years their scope has expanded with the arrival of purpose-
designed acoustic sensors. These are noninvasive, autonomous, 
usually omni-directional (sampling a three-dimensional sphere 
around the sensor), and offer the advantage of a larger detection 
area and fewer taxonomic restrictions than camera traps (which 

F IGURE  1 A typical passive acoustic monitoring workflow
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are usually limited to detecting larger birds and mammals at close 
range) (Lucas, Moorcroft, Freeman, Rowcliffe, & Jones, 2015). 
As such, they can simultaneously survey entire vocalising animal 
communities and their acoustic environments (Wrege, Rowland, 
Keen, & Shiu, 2017).

Species detections derived from PAM are analogous to 
other forms of survey data, with applications ranging from spe-
cies occupancy estimation to biodiversity assessment (detailed 
in Table 1). Their benefits over traditional surveys include 
continuous surveying for long periods with low manual effort, 
and the associated higher likelihood of detecting rarer or less 
vocally active species (Klingbeil & Willig, 2015). Standardised 
post hoc analysis also avoids the skill level biases in species 
identification that often impact citizen science data (Isaac, van 
Strien, August, de Zeeuw, & Roy, 2014). Conversely, current 
limitations of PAM data include their unsuitability for study-
ing nonacoustic species, and the inability to identify individual 
calling animals for most taxa (in contrast to visual recognition 
or mark-recapture).

Beyond supporting established survey approaches, PAM 
also offers unique possibilities, including study of vocalising be-
haviour, intraspecific variability in call repertoire, and the evo-
lution of acoustic communities (Blumstein et al., 2011; Linhart 
& Šálek, 2017; Prat, Taub, & Yovel, 2016; Tobias, Planqué, Cram, 
& Seddon, 2014); animal responses to the acoustic environment 
(Nowacek et al., 2016; Simpson, Meekan, Jeffs, Montgomery, & 
McCauley, 2008); and monitoring of anthropogenic phenomena 
such as sound pollution, blast fishing, and poaching (Astaras, 
Linder, Wrege, Orume, & Macdonald, 2017; Braulik et al., 2017) 
(Table 1). There is a rich literature on the effects of anthropo-
genic noise on cetacean and increasingly avian populations and 
behaviour (e.g., Pirotta, Merchant, Thompson, Barton, & Lusseau, 
2015; Proppe, Sturdy, & St. Clair, 2013). Sensor networks can 
monitor ecosystems over large geographical and temporal scales, 
facilitating the characterisation of acoustic communities across 
habitats and biomes and the development of putative acoustic 
biodiversity indices (Nedelec et al., 2015; Sueur, Farina, Gasc, 
Pieretti, & Pavoine, 2014; Sueur, Pavoine, Hamerlynck, & Duvail, 
2008) (Table 1). Researchers are also now starting to explore 
the opportunities afforded by archived audio datasets collected 
over years or decades, often by volunteers or multiple research 
groups (Jones et al., 2013; Van Parijs et al., 2015). For example, 
bat monitoring data have been repurposed to study orthoptera in 
the United Kingdom and France (Newson, Bas, Murray, & Gillings, 
2017; Penone et al., 2013) and predict impacts of urban plan-
ning on bats (Border, Newson, White, & Gillings, 2017). Long-
term datasets offer complex insights into population ecology, 
behaviour, and human impacts which, particularly for cryptic 
species, can otherwise be difficult to achieve (e.g., forest ele-
phants; Wrege et al., 2017). Such archives could also contribute 
much-needed species data to global repositories for biodiversity 
modelling and monitoring (e.g., Global Biodiversity Information 
Facility).

3  | PA SSIVE ACOUSTIC SENSOR 
TECHNOLOGIES AND SURVE Y 
APPROACHES

3.1 | Passive acoustic sensor hardware

In contrast to early PAM studies that repurposed field recorders 
(Riede, 1993) or naval or seismological equipment (Sousa-Lima, 
Fernandes, Norris, & Oswald, 2013), commercial acoustic sensors are 
now comparable to camera traps in durability and user-accessibility 
(Figure 1a). Improved battery life and storage, on-board metadata 
collection and programmable schedules allow for extended autono-
mous deployments with flexible sampling regimes (Aide et al., 2013; 
Baumgartner et al., 2013). However, hardware costs have limited 
scalability, with ubiquitous models such as Wildlife Acoustics Song 
Meters often substantially more expensive than equivalent-spec 
camera traps. When synchronous multisensor surveys are unneces-
sary, one common solution is repeated redeployment of a handful 
of sensors, for example, the Norfolk Bat Survey loan out ultrasonic 
detectors to hundreds of volunteers (Newson et al., 2015).

Looking forward, emerging open-source, microcomputer-based 
sensors are significantly cheaper than commercial alternatives 
(Sethi, Ewers, Jones, Orme, & Picinali, 2018; Whytock & Christie, 
2017). For instance, the AudioMoth can be mass-produced to re-
duce unit cost to around US$30 (Hill et al., 2018), thereby drastically 
lowering the initial financial barriers to large multisensor surveys, al-
though maintenance costs (e.g., regular replacement of batteries and 
SD cards) may substantially increase in larger projects. Furthermore, 
in some cases the use of inexpensive components (e.g., microelec-
tromechanical systems (MEMS) microphones) might involve trade-
offs between sensor cost and data quality, for example, if these 
show inconsistent frequency response, lower signal-to-noise ratios, 
or are vulnerable to environmental damage. A critical open question 
concerns how much data quality can be sacrificed without compro-
mising the ability to derive sufficient information from audio (i.e., 
accurate species identification) (e.g., Figure 2). Addressing this ques-
tion requires comparative analyses of data collected simultaneously 
with different sensor models (Adams, Jantzen, Hamilton, & Fenton, 
2012), and the answer may vary taxonomically since certain spe-
cies are intrinsically harder to distinguish acoustically than others 
(see below in “Automated sound identification”) (Kershenbaum et al., 
2014).

3.2 | Survey design and data standardisation

Understanding the comparability of audio data collected using dif-
ferent sensor models and sampling protocols, across different en-
vironments, is an ongoing challenge (Figure 1b) (Browning, Gibb, 
Glover-Kapfer, & Jones, 2017). As well as transect surveys (Jones 
et al., 2013), PAM studies now commonly deploy static sensors 
(analogous to camera traps) either standalone, in multisensor net-
works, or in linked arrays to allow for sound localisation (reviewed in 
Blumstein et al., 2011). The most appropriate combination of sensor 
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TABLE  1 Ecological applications of passive acoustic monitoring

Analysis Data type Example result Example applications Key challenges

Occupancy Presence/
absence, single 
species

Species inventories (MacSwiney 
G 2008). Spatial trends in 
species occupancy (e.g., 
endangered or data-deficient 
species) and relationship with 
environmental covariates 
(Campos-Cerqueira & Aide, 
2016; Kalan et al., 2015)

Minimising error rates in 
species call ID

Abundance/
density 
estimation

Spatially and 
temporally 
explicit 
detection 
counts, single 
species

Estimating density and 
abundance of monitored 
species, and relationship to 
environmental covariates (Lucas 
et al., 2015; Marques et al., 
2013)

Minimising error rates in 
species call ID. 
Individuals cannot be 
identified, so abundance 
estimates must account 
for nonindependence of 
detected calls

Temporal 
abundance 
trends

Detection counts, 
single species 
(per replicate 
survey)

Monitoring endangered or 
indicator species (Jones et al., 
2013). Estimating abundance 
trends from multiyear 
monitoring data (e.g., general-
ised additive models, Barlow 
et al. 2015)

Minimising error rates in 
species call ID. Difficult 
to estimate the true 
relationship between 
detection rate and 
animal abundance from 
acoustic data only

Spatial/temporal 
behaviour 
trends

Detection counts 
of different 
behaviours, 
single species

Modelling relationship between 
behaviour, habitat covariates 
and/or the acoustic environ-
ment (e.g., anthropogenic noise) 
(Wrege et al.,2017)

Minimising error rates in 
species and behavioural 
call ID. Poor availability 
of automated tools for 
differentiating acoustic 
behaviours

Phenology/
activity 
patterns 
(species)

Temporally 
explicit 
detection record, 
single species

Monitoring circadian and 
seasonal trends in behaviour, 
e.g., migration timing 
(Petrusková et al., 2016)

Minimising error rates in 
species call ID

(Continues)
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type and survey design will depend on a study’s taxonomic focus, 
environmental realm (terrestrial or marine), spatial scale, and objec-
tives (Figure 1; Table 1) (Van Parijs et al., 2009), but the advantages 

and disadvantages of different acoustic survey designs are often 
poorly understood. For example, it is mostly unknown whether cer-
tain subsets of species are systematically over- or underrepresented 

TABLE  1  (Continued)

Analysis Data type Example result Example applications Key challenges

Species richness Presence/
absence, 
multiple species

Relationships between species 
richness and habitat covariates

Automated call ID tools 
and reference call 
libraries are currently 
unavailable for most taxa 
and regions

Acoustic 
community 
diversity

Acoustic indices 
(e.g., complexity, 
entropy, 
diversity, NDSI)

Measuring spatiotemporal trends 
in acoustic indices as proxies for 
community diversity, e.g., 
relationship between indices 
and habitat, or community 
vocalising phenology (Nedelec 
et al., 2015; Sueur et al., 2014)

Relationships between 
index values and 
community diversity 
poorly understood. 
Indices are strongly 
sensitive to variation in 
nonbiotic sound (e.g., 
from anthropogenic 
sources)

Environmental 
sound

Metrics of sound 
pressure and 
spectral density; 
also acoustic 
indices (e.g., 
NDSI)

Measuring the acoustic 
environment (e.g., anthropo-
genic sound) and relationships 
with wildlife abundance and 
behaviour (Merchant et al., 
2015; Pirotta et al., 2015)

More complex metrics 
(i.e., acoustic indices) 
may be sensitive to 
variation in different 
sound types (e.g., 
weather)

Intraspecific 
individual 
identification

Detection counts, 
identified to 
individual by 
differences in 
call structures or 
repertoire

Study of individual call reper-
toires, social behaviour, or 
facilitating density estimation, 
e.g., in birds and cetaceans 
(King et al., 2013; Petrusková 
et al., 2016)

Currently not possible for 
most species, due to 
limited reference data 
and/or poor knowledge 
of individual variation in 
calls/repertoire

Large or 
real-time 
sensor network

Detection counts, 
collated or 
transmitted from 
multiple sensors

Seasonal and spatial distributions 
of species or behaviour (Davis 
et al., 2017). Real-time 
monitoring of species occur-
rence or anthropogenic activity 
(Astaras et al., 2017)

Costs of data storage and 
transmission infrastruc-
ture. For real-time 
monitoring, patchy 
availability of automated 
analysis tools and data 
transmission capacity
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by different survey techniques, as recently shown for rare bat spe-
cies when using mobile transects (Braun de Torrez, Wallrichs, Ober, 
& McCleery, 2017). Equally, while transects or sparsely deployed 
static sensors may suffice for occupancy or activity estimation, 
modelling abundance, activity or space-use at finer scales may re-
quire denser networks of calibrated static sensors, often combined 
with additional parameters such as species call detection distances 
(Jaramillo-Legorreta et al., 2016; Lucas et al., 2015).

Sound waves attenuate as they travel through the environment, 
until at a certain distance from the caller they are no longer detect-
able above ambient background noise. This distance varies depend-
ing on the sound’s amplitude and frequency (higher frequencies 
attenuate more rapidly), the environmental medium (sound velocity 
in seawater is over four times greater than in air), the caller’s position 
relative to the sensor (e.g., differences in depth underwater) and en-
vironmental features such as vegetation, topography, bathymetry, 
temperature, and pressure (Farcas, Thompson, & Merchant, 2016) 
(Supporting Information Appendix S1). Sounds can also be masked 
by nontarget sound, from anthropogenic sources as well as other vo-
calising animals. The effective sampling area around an acoustic sen-
sor therefore varies among species and call types, and across space 
and time (Figure 3). If unaccounted for, any resulting detection biases 
(e.g., towards animals that call at higher amplitudes and/or lower fre-
quencies) may cause biased population or diversity estimates.

Although previously often overlooked in the PAM literature, 
there are now increasing efforts to systematically quantify sources 
of bias and improve survey standardisation. These include sensor 
calibration guidelines (Merchant et al., 2015), metadata standards 
(Roch et al., 2016), assessing the efficacy of sampling designs 
(Braun de Torrez et al., 2017; Froidevaux, Zellweger, Bollmann, 
& Obrist, 2014; Van Parijs et al., 2009), quantifying sensitivity 

differences between sensor models and over time due to environ-
mental degradation (Adams et al., 2012; Merchant et al., 2015), and 
quantifying effects of sensor proximity to habitat features (e.g., 
vegetation, water surface, topography) on sound detection (Darras, 
Pütz, Fahrurrozi, Rembold, & Tscharntke, 2016; Farcas et al., 2016). 
Ultimately, these efforts should facilitate more robust, data-driven 
approaches to analysing large, multisensor acoustic datasets, which 
currently tend to assume constant species detectability over space 
and time (e.g., Davis et al., 2017; Newson et al., 2015).

3.3 | Trade-offs in audio recording and data storage

During digital sound recording, incoming sound waves are transduced 
into an electrical signal that is recorded at a specified sampling rate 
(in Hz) and bit-depth (number of bits per sample). These parameters 
determine a recording’s frequency (pitch) and amplitude (volume) 
resolution, with much higher sampling rates required to revolve ul-
trasonic frequencies (those above human hearing range; >20,000 Hz) 
compared to audible range frequencies (20–20,000 Hz) (Supporting 
Information Appendix S1). The conventional sampling rate for audible 
sound (44.1 kHz) produces relatively manageable file sizes (c. 5 MB 
per minute in 16bit mono), but recording full-spectrum ultrasound in 
bat and cetacean surveys (sampling rates often >200 kHz) produces 
very large files, resulting in a trade-off between data quality and 
storage capacity. Some ultrasound detectors use less data-intensive 
recording methods based on frequency division, which divide the 
incoming signal frequency by a specified factor; their lower storage 
requirements may suit extended or remote deployments, provided 
sufficient information can be derived from the data (e.g., Jaramillo-
Legorreta et al., 2016). However, resulting losses of frequency and 
amplitude information can impact the discrimination of species and 

F IGURE  2 Example comparison of recordings between sensor models. Spectrograms show simultaneous ultrasonic recordings from 
two co-deployed sensors: a commercial device with electret microphone (Batlogger M, Elekon AG) (a), and a low-cost model with MEMS 
microphone (AudioMoth) (b). Spectrograms show time (x-axis), frequency (y-axis), and amplitude on a linear colour scale (amplitude 
normalised with peak at 0 dB, values below −30 dB shown in black for visualisation). Bat echolocation calls are bright patches between 20 
and 60 kHz. The comparison highlights differences in frequency sensitivity, with higher frequencies more consistently resolved in (a), and 
larger amounts of low- to midrange background noise in (b)

(a)

(b)
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behaviours (Adams et al., 2012; Walters et al., 2013). In future, these 
analytical tools may become less sensitive to recording method, but 
currently ensuring minimal information loss during recording and stor-
age (Supporting Information Appendix S1) both facilitates species 
identification (Walters et al., 2012) and futureproofs the data by al-
lowing for later reanalysis with improved tools.

Crucially, recording and storing audio at sufficient quality 
(Figure 1c), alongside detailed metadata on surveys, sensor type 
and recording parameters, also provides opportunities to address 
additional questions. For example, a recent study collated multi-
year hydrophone data to estimate the distribution of the critically 
endangered North Atlantic right whale Eubalaena glacialis (Davis 
et al., 2017). Leveraging decades of PAM survey data will require 
collaborative development and maintenance of web infrastructure 
for the collation and public archiving of massive (multi-gigabyte to 
petabyte) environmental audio datasets (e.g., https://ngdc.noaa.
gov/mgg/pad/). Another possible solution to data capacity issues 
could be to reduce the amount of audio that is stored, for example, 
by applying on-board thresholds or algorithms that only trigger re-
cording when potential sounds of interest are present (Baumgartner 
et al., 2013; Hill et al., 2018). Discarding audio data is scientifically 
undesirable, but some degree of prior filtering can prevent datasets 
becoming unmanageably large, and combined with wireless data 
transmission (Aide et al., 2013) could facilitate real-time ecological  
monitoring and reporting.

4  | DETEC TING AND CL A SSIF YING 
ACOUSTIC SIGNAL S WITHIN AUDIO 
DATA SETS

For studies focusing on specific species or taxonomic groups, 
target sounds must be identified from recordings (Aide et al., 
2013; Salamon & Bello, 2015), which requires pipelines to pro-
cess sound files and metadata and output useful annotations (e.g., 

calling animal species, location, precise date/time) (Figure 1d,e). 
Conducted manually, this process is time-consuming and subjective, 
and it is difficult to quantify biases related to analyst knowledge 
level, which may be particularly problematic in resource-limited 
conservation settings (Heinicke et al., 2015; Kalan et al., 2015). 
Efficient automated systems are therefore prerequisites for scaling 
up PAM studies, with innovations in machine learning increasingly 
applied to bioacoustic signal recognition (Aide et al., 2013; Bittle 
& Duncan, 2013; Heinicke et al., 2015; Walters et al., 2012). The 
complexity of environmental audio offers a useful real-world test 
for new methods, and the involvement of the machine learning 
and computer vision communities in PAM is driving analytical ad-
vances that benefit ecologists (Goeau, Glotin, Vellinga, Planque, & 
Joly, 2016; Marinexplore, 2013; Stowell & Plumbley, 2014; Stowell, 
Wood, Stylianou, & Glotin, 2016).

4.1 | Developing a pipeline for automated sound 
identification

A pipeline for automatically identifying target sounds within 
audio recordings (hereafter referred to as “automated sound iden-
tification” or “auto-ID”) involves several stages (Figure 4). Audio 
waveforms are commonly preprocessed to recover frequency 
information and produce a time-frequency-amplitude repre-
sentation (spectrogram) (Figure 4a,b), usually via Fourier analy-
sis or similar techniques (Supporting Information Appendix S1). 
Relevant sounds must first be detected, that is, located in time 
within the recording (a task sometimes alternatively termed “seg-
mentation”) (Figure 4c), using methods ranging in complexity from 
simple thresholding to complex statistical models (Table 2). Next, 
detected sounds are typically classified to a relevant category 
(e.g., species, call type) (Figure 4d,e) based on a combination of 
spectro-temporal features extracted from the sound. These fea-
tures may be generic (e.g., Mel-frequency cepstral coefficients) 
(Muda, Begam, & Elamvazuthi, 2010), but are often hand-crafted 

F IGURE  3 The effects of distance from sensor, call amplitude, and habitat clutter on vocalising animal detectability. Sound emitted 
within the detection space (yellow radius) of a sensor (black circle) are successfully recorded (a), whereas sounds outside this radius are 
missed (b). Habitat clutter causes acoustic interference, particularly for higher-frequency sounds (e.g., ultrasonic echolocation), and may 
decrease detection probability (b). Figure modified with permission from Browning et al., (2017)

https://ngdc.noaa.gov/mgg/pad/
https://ngdc.noaa.gov/mgg/pad/
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to facilitate species discrimination (e.g., peak frequency, call dura-
tion, peak amplitude) (Baumgartner & Mussoline, 2011; Walters 
et al., 2012) (Figure 4d). Sounds are classified using either super-
vised (previously trained on expert-labelled sound libraries) or un-
supervised (based on the structure within the data) algorithms, 
which return the estimated likelihood that a sound belongs to its 
assigned category (Table 2).

Although methods are fast improving, poor or variable accuracy 
of auto-ID tools remains a major issue. In particular, the detection 
stage presents formidable difficulties (Stowell et al., 2016). In real-
world PAM audio this process frequently involves distinguishing 
large numbers of spectrally and temporally overlapping calls, emit-
ted by multiple vocalising species in acoustically heterogeneous 
settings (e.g., birds in the dawn chorus, swarming bats), which is an 

F IGURE  4 An automated sound 
detection and classification pipeline. 
Frequency information is recovered 
from the sound waveform (a), generating 
a time-frequency representation 
(spectrogram, with amplitude shown as 
colour intensity) (b). Sounds of interest 
are detected (c), features are extracted 
(d), then calls are classified to a category 
(species and call type, here either bat 
echolocation or social calls) (e). Figure 
modified with permission from (Browning 
et al., 2017).  
Photo © Hugh Clark/www.bats.org.uk, 
reproduced with permission



     |  9Methods in Ecology and Evolu
onGIBB et al.

extremely challenging task for most extant algorithms. Nontarget 
environmental, biotic, and anthropogenic sounds can mask target 
sounds or generate false positives (Heinicke et al., 2015; Salamon 
& Bello, 2015; Stowell, Stylianou, Wood, Pamuła, & Glotin, 2018), 
although there is evidence that prior noise reduction filtering can im-
prove accuracy (reviewed in Stowell et al., 2016). Even when detec-
tion precision is high (few false positives), state-of-the-art methods 
regularly fail to distinguish faint, transient or partially masked calls, 
leading to high false-negative rates (low recall) (Digby et al., 2013; 
Goeau et al., 2016). At the classification stage, robust feature ex-
traction is crucial to classification accuracy, but is similarly sensitive 
to factors including caller distance, background noise, and temporal 
overlap between calls (Stowell & Plumbley, 2014). Species classifica-
tion may be intrinsically more difficult for taxa with highly variable 
vocal repertoires (e.g., birds, cetaceans) relative to those with more 
intraspecifically consistent call structures (e.g., bat echolocation 
calls) (Kershenbaum et al., 2014; Walters et al., 2012). Classification 

may be further complicated by ecological context, for example, dif-
ferences in vocalising behaviour in response to environment or con-
specifics, or the co-occurrence of species with similar call structures, 
such as bats of the genus Myotis or sympatric right and humpback 
whales (Van Parijs et al., 2009; Walters et al., 2012).

The often substantially poorer performance of detection 
and classification algorithms on target audio recorded in novel 
contexts (e.g., difficult sensor models or more background noise 
than the training data), is a critical emerging problem as data 
collection capacities continue to grow (Stowell et al., 2018). 
In ecology, auto-ID tools are commonly developed for study-
specific objectives and trained on data representative of the 
actual survey dataset, thereby avoiding this issue of transfer-
ability (e.g., Campos-Cerqueira & Aide, 2016; Heinicke et al., 
2015). However, algorithm development is time-consuming 
and prohibitively complex for nonexpert users. Both propri-
etary (e.g., Raven Pro, Avisoft, Kaleidoscope, ARBIMON) and 

TABLE  2 Signal detection and classification techniques commonly used in bioacoustic analysis

Method Application Summary Advantages Disadvantages Example references

Thresholding Detection Detection occurs when 
energy within specified 
frequency band(s) exceeds 
a specified threshold

Computationally 
inexpensive; does 
not require large 
training datasets

Often sensitive to 
nontarget back-
ground noise and 
signal overlap

Digby et al., 2013

Spectrogram 
cross-correlation

Detection, 
classification

Detection occurs when 
correlation coefficient 
against a template 
spectrogram exceeds a 
specified value (e.g., 0.9)

Computationally 
inexpensive; does 
not require large 
training datasets

Relies on sufficiently 
representative 
template data

Aide et al., 2013

Hidden Markov 
models

Detection, 
classification

Probabilistically infers 
whether a signal of interest 
is present, based on an 
underlying multistate 
model

Incorporates temporal 
detail on signal/
sequence

Complex for 
nonexperts to 
develop. Requires 
sufficient training/
reference data

Zilli, Parson, Merrett, 
& Rogers, 2014

Supervised learning 
with prior feature 
extraction (e.g., 
support vector 
machines, random 
forest)

Classification Supervised algorithms 
classify unknown signals 
based on their similarity to 
previously learned training 
data (expert-verified call 
libraries)

Can be trained on 
large and varied 
reference datasets

Poor availability of 
verified call libraries 
for many taxa. 
Feature extraction 
methods are often 
noise-sensitive

Bittle & Duncan, 
2013; Walters et al., 
2012

Unsupervised 
learning (e.g., 
clustering 
algorithms)

Classification Groups signals based on the 
similarity of their features, 
using unsupervised 
(clustering) algorithms

Does not require 
training data, as 
clustering is based on 
variation within the 
survey dataset

Does not leverage 
prior knowledge, 
and clusters must 
subsequently be 
identified to a useful 
category (e.g., 
species)

Pirotta et al., 2015

Supervised learning 
without prior 
feature extraction 
(e.g., convolutional 
neural networks)

Detection, 
classification

Signals detected and 
classified based on 
similarity to a learned 
training dataset

Distinguishing 
features learned 
directly from 
spectrogram data, so 
bypasses noise-
sensitive feature 
extraction stage

Sensitive to 
overfitting to 
training data, so 
requires very large 
training datasets to 
account for 
within-class 
variability and 
variable background 
sound

Goeau et al., 2016; 
Mac Aodha et al., 
2018
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open-source software or freeware (e.g., PAMGUARD, LFDCS, 
iBatsID, Tadarida) (Aide et al., 2013; Bas, Bas, & Julien, 2017; 
Baumgartner & Mussoline, 2011; Gillespie et al., 2009; Walters 
et al., 2012) offer a growing range of inbuilt auto-ID tools for 
large taxonomic groups and geographical regions. Although 
user-friendly, their transferability to novel datasets remains un-
clear, and there are clear risks of relying on costly, closed-source 
tools whose underlying methods are poorly reported. Looking 
forward, an achievable priority is the community development 
and adoption of gold standard, publicly archived bioacoustic 
sound libraries, to use as benchmarks for comparative testing of 
new and closed-source algorithms.

PAM workflows therefore involve a time-accuracy trade-off: 
manual processing is often most accurate but can be subjective and 
slow, whereas fully automated processing is much faster but error-
prone (Digby et al., 2013). Currently, large PAM analyses are usually 
semi-automated at best, involving regular manual cross-checking 
(Campos-Cerqueira & Aide, 2016; Kalan et al., 2015) and resolving 
ambiguous classifications using expert opinion or rules of thumb 
(e.g., selecting the most likely species based on other calls in close 
temporal proximity). Newer machine learning techniques that ac-
count for other surrounding calls (e.g., recursive neural networks) 
could facilitate the automation of this process. Current auto-ID sys-
tems are nonetheless improving processing efficiency, for example, 
by filtering out detections below a minimum probability threshold 
(adjustable depending on study objectives) to reduce the volume of 
data for manual inspection.

4.2 | Emerging innovations in sound identification

Looking forward, several emerging methods are substantially 
improving detection and classification accuracies by learning 
representations from spectrogram data, such as unsupervised 
feature extraction (Salamon & Bello, 2015; Stowell & Plumbley, 
2014) and dynamic time warping based feature representations 
(Stathopoulos, Zamora-Gutierrez, Jones, & Girolami, 2017). Deep 
convolutional neural networks (CNNs) are particularly promising, 
since these can learn discriminating spectro-temporal information 
directly from annotated spectrograms (bypassing a separate fea-
ture extraction stage), improving their robustness to sound over-
lap and caller distance (Goeau et al., 2016) (Figure 4d). In recent 
tests, CNNs have markedly outperformed alternative methods on 
detection and classification of biotic and anthropogenic sounds in 
urban recordings (Fairbrass et al., 2018; Salamon & Bello, 2016) and 
animal calls in noisy monitoring datasets (Goeau et al., 2016; Mac 
Aodha et al., 2018; Marinexplore, 2013). Their performance in more 
complex tasks that involve distinguishing multiple overlapping vo-
calisations (e.g., songs in the dawn chorus) has not yet been tested, 
although their success in similarly challenging computer vision 
and individual human voice recognition tasks is a promising sign 
(e.g., Lukic, Vogt, Dürr, & Stadelmann, 2016). However, currently 
such applications in ecology are constrained by CNN sensitivity 
to overfitting to training data, and the consequent requirement 

for very large training datasets that represent natural variability 
in species call repertoires, background sound, and caller distance 
(Krause et al., 2016; Russakovsky et al., 2015). Although more ac-
cessible for image or voice classification (e.g., using online images 
or audio) (Krause et al., 2016), very few such datasets exist for en-
vironmental sound, since the practical difficulty of reference data 
collection means that verified wildlife call libraries, when available, 
are typically small in size and lack variability in call type, record-
ing quality, and acoustic environment. Some studies have partially 
addressed this issue by augmenting training data with background 
noise to simulate different distances and acoustic environments 
(Salamon & Bello, 2016). Online data labelling projects such as  
Bat Detective (www.batdetective.org) and Snapshot Serengeti 
(www.snapshotserengeti.org) have also involved citizen scien-
tists in annotation of CNN training data (Mac Aodha et al., 2018; 
Norouzzadeh et al., 2017).

Further research to improve the situation could include the de-
velopment of noise-robust auto-ID methods that perform well even 
with small and variable quality training datasets (e.g., Kaewtip, Alwan, 
O’Reilly, & Taylor, 2016), and generalised detection algorithms for en-
tire taxonomic groups (Baumgartner & Mussoline, 2011; Mac Aodha 
et al., 2018) that could subsequently be coupled to regional species 
classifiers. Additionally, emerging low-shot and zero-shot visual learn-
ing approaches aim to learn classification models from very few exam-
ples of a class of interest, reducing the need for large training datasets 
(e.g., Hariharan & Girshick, 2016). More broadly, the limited under-
standing of the transferability of extant auto-ID systems emphasises 
that, irrespective of the underlying algorithms, a critical focus must be 
on lowering the technical barriers to ecologists developing and testing 
bespoke tools, for example, via interactive machine learning software 
(Mac Aodha et al., 2014). Such functionality is beginning to emerge 
in bioacoustic analysis packages (e.g., Kaleidoscope, ARBIMON, 
Tadarida) (Aide et al., 2013; Bas et al., 2017).

4.3 | Sound libraries and training data: 
identifying and filling the gaps

Perhaps the most fundamental knowledge gap for PAM is the lim-
ited availability of comprehensive, expert-verified species call da-
tabases for reference and training data. Much remains unknown 
about the intra- and interspecific call diversity of even well-studied 
taxa (Kershenbaum et al., 2014), and ground-truthed call databases 
are difficult and laborious to assemble, requiring the collection of 
high-quality audio recordings of animals identified to species either 
visually or through capture (e.g., Zamora-Gutierrez et al., 2016). 
Where such verified datasets exist they are biased towards verte-
brates (particularly cetaceans, bats, and birds), with especially scarce 
resources for anurans and invertebrates (Lehmann, Frommolt, 
Lehmann, & Riede, 2014; Penone et al., 2013) and regions outside 
Europe and North America, despite the urgent need for tools to 
facilitate monitoring of subtropical and tropical habitats (Zamora-
Gutierrez et al., 2016). These gaps translate into equivalent biases in 
classifier availability, and to our knowledge no widely available tools 

http://www.batdetective.org
http://www.snapshotserengeti.org


     |  11Methods in Ecology and Evolu
onGIBB et al.

exist for distinguishing intraspecific acoustic behaviours (e.g., social 
from echolocation calls in cetaceans and bats) (Figure 4e), although 
machine learning methods have successfully been applied to analysis 
of bat acoustic social behaviour (Prat et al., 2016).

Filling these data gaps is a priority for the entire PAM community, 
which would strongly benefit from collaborative efforts to collect ver-
ified call data for neglected taxa and regions (e.g., tropical terrestrial 
biomes). Additionally, the establishment of centralised sound libraries 
with consensus data and metadata standards (e.g., date/time of record-
ing, geographic location, recording parameters, sensor position) (Roch 
et al., 2016), would improve the accessibility and comparability of ref-
erence sound libraries. Online databases such as MobySound (www.
mobysound.org) and Watkins Marine Mammal Sound Database (www.
whoi.edu/watkinssounds) for marine mammals, and Xeno-Canto for 
birds (www.xeno-canto.org) highlight the benefits of adopting open-
data approaches in this area, offering rich (albeit not necessarily stan-
dardised) training data (Mellinger & Clark, 2006; Sayigh et al., 2016).

5  | ACOUSTIC ECOLOGIC AL INFERENCE 
FROM POPUL ATIONS TO COMMUNITIES

5.1 | Inferring population information from acoustic 
data

Following processing, a typical sound identification pipeline outputs 
a spatially and temporally explicit record of species call detections 
(Figure 1e). Population inference from PAM-derived species occur-
rence or count data presents its own difficulties, since acoustic sur-
veys involve multiple sources of detection uncertainty. The first is 
imperfect detectability: the probability of successfully detecting a 
vocalising animal depends on its distance from the sensor, vocalising 
behaviour, call parameters, and site-specific environmental factors 
(Darras et al., 2016; Kéry & Schmidt, 2008). The second issue is that 
species vocalisations recorded in close spatial or temporal proxim-
ity are statistically nonindependent since they may come from the 
same individual (Lucas et al., 2015); for example, detection rates may 
be artificially inflated by individual animals vocalising close to a sen-
sor for long periods. However, acoustic identification of individuals 
is currently not possible for most taxa, and where possible (e.g., for 
some birds, primates, cetaceans, and wolves) usually requires exten-
sive manual analysis (e.g., Clink, Bernard, Crofoot, & Marshall, 2017; 
Petrusková, Pišvejcová, Kinštová, Brinke, & Petrusek, 2016; Root-
Gutteridge et al., 2014). Furthermore, many vocalising animals pro-
duce multicall sequences (e.g., birdsong phrases, echolocation passes) 
which must be merged into discrete detections (Jaramillo-Legorreta 
et al., 2016; Newson et al., 2015). The third major source of uncer-
tainty relates to errors in automated sound identification (Figure 4) 
(Digby et al., 2013). Predicted detections and classifications below 
a suitable confidence threshold can be removed prior to modelling, 
however, site-specific differences in false-positive and -negative rates 
(e.g., due to environmental noise) may still impact model estimates.

Statistical analyses (Figure 1f) must account for these uncer-
tainties. For example, patch occupancy models are useful tools for 

spatially explicit distribution modelling with PAM-derived data, since 
these incorporate detection probability parameters that can be es-
timated from repeat surveys (e.g., Campos-Cerqueira & Aide, 2016; 
Kalan et al., 2015). Also, the emergence of more accessible and less 
computationally expensive Bayesian inference methods for complex 
hierarchical and occupancy models is increasingly enabling multi-
ple sources of uncertainty to be incorporated into spatiotemporal 
models (e.g., Isaac et al., 2014; Ruiz-Gutierrez, Hooten, & Campbell 
Grant, 2016). Such frameworks can be extended to include, for ex-
ample, the confidence associated with automated call detections 
and classifications (Banner et al., 2018).

A core application of ecological survey data is abundance and 
population trend estimation. Abundance estimation from PAM 
count data is difficult due to the lack of a simple relationship be-
tween call counts and animal density; the last decade has seen a 
growing toolbox of methods to address this issue (reviewed in 
Marques et al., 2013). Spatially explicit capture recapture models 
(across multisensor arrays and networks) (Stevenson et al., 2015) 
and other methods that adjust detected call density by the average 
calling rate of the target species (Thompson, Schwager, & Payne, 
2010; Ward et al., 2012) have been shown to provide accurate 
density estimates when validated against nonacoustic methods. 
Another recent study developed a generalised extension of a ran-
dom encounter model (REM) originally designed for camera trap 
data (Lucas et al., 2015). However, these methods are often data-
intensive, requiring the deployment and retrieval of multisensor 
networks and the estimation of species-specific parameters such 
as detection distances and average call rates (Lucas et al., 2015). In 
cetacean studies, call rates are often estimated by tagging animals 
with acoustic loggers (Johnson & Tyack, 2003), but in terrestrial 
realms these remain too large to ethically deploy on many species. 
Estimation of true abundance may be best suited to well-resourced 
projects with clear, species-focused objectives, rather than broader 
scope ecological monitoring.

Informed indices of abundance may suffice where these more 
complex analytical methods are unfeasible. Detection counts within 
specified sampling periods are often used as proxies for relative den-
sity or activity, such as nightly bat detections (Newson et al., 2015) 
or temporally aggregated click rates in cetacean surveys (Jaramillo-
Legorreta et al., 2016). Such approaches generally assume consistent 
detection between individuals and over time, even though the relation-
ship between detection rates and relative abundance may vary widely 
between species and habitats (Marques et al., 2013). However, with 
careful survey design and replication, these issues may be less prob-
lematic for estimation of broad-scale activity or occupancy trends.

5.2 | Acoustic ecological community and 
biodiversity assessment

Moving beyond a species focus and towards deriving community 
information (e.g., species diversity) from PAM data presents the 
challenge of classifying calls from multiple, or ideally all, vocalising 
species. For most taxa and geographical regions this is currently 

http://www.mobysound.org
http://www.mobysound.org
http://www.whoi.edu/watkinssounds
http://www.whoi.edu/watkinssounds
http://www.xeno-canto.org
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either impossible or extremely time-consuming due to the lack of 
reference data and auto-ID tools, which emphasises the need for 
acoustic biodiversity indicators (Figure 1g) to facilitate surveys of 
data-deficient (often highly biodiverse) regions (Harris, Shears, & 
Radford, 2016). Monitoring proposed indicator taxa such as bats or 
orthoptera offers one potential solution (Fischer, Schulz, Schubert, 
Knapp, & Schmoger, 1997; Jones et al., 2013) but their usefulness 
as ecological indicators is not clearly established. Recent years have 
therefore seen the development of soundscape-based methods that 
seek to infer community information from a habitat’s global sound 
dynamics (Pijanowski, Farina, Gage, Dumyahn, & Krause, 2011) 
(Figure 5). Under the theme of ecoacoustics, various summary in-
dices have been designed to facilitate comparison of biotic sound 
between sites and over time (reviewed in Sueur et al., 2014). Most 
involve calculation of power ratios between multiple frequency and/
or time bins across a recording, and thus are essentially more com-
plex extensions of conventional sound pressure and spectral den-
sity metrics (Kasten, Gage, Fox, & Joo, 2012; Merchant et al., 2015; 
Pieretti, Farina, & Morri, 2011; Sueur et al., 2008) (Figure 5). Acoustic 
indices are derived from the theory that competition for acoustic 
space between sympatric signalling animals drives the evolution of 
signal divergence (acoustic niche partitioning), and therefore that 
the spectro-temporal diversity of biotic sound in a habitat correlates 
with vocalising species diversity (Pijanowski et al., 2011; Sueur et al., 
2008). For example, acoustic entropy and dissimilarity indices are 
designed as acoustic analogues of classical α- and β-diversity indices 
(Sueur et al., 2008).

Despite growing interest in these methods, their results to date 
have been mixed. Systematic tests in both terrestrial and marine 

environments occasionally find correlations between acoustic indi-
ces and species diversity, suggesting that soundscape-based met-
rics can sometimes function as ecological indicators (Gasc, Pavoine, 
Lellouch, Grandcolas, & Sueur, 2015; Gasc et al., 2013; Harris et al., 
2016; Sueur et al., 2008). However, many indices are highly sensi-
tive to site-specific and temporal differences in vocalising animal 
community composition and nontarget sound levels (e.g., weather, 
anthropogenic sound, other vocalising species) (Gasc et al., 2015; 
Lellouch, Pavoine, Jiguet, Glotin, & Sueur, 2014; Staaterman et al., 
2017). It is therefore difficult to directly compare acoustic index 
values between sites and surveys, which limits the reliability of 
indices in PAM studies that span multiple localities, dates and 
habitat types. Most ecoacoustics studies to date have focused on 
relatively undisturbed habitats such as forests, where anthropo-
genic sound may present fewer problems; in contrast, systematic 
tests suggest that indices are highly sensitive to heterogeneous 
urban soundscapes, limiting their suitability for monitoring in cities 
(Fairbrass, Rennett, Williams, Titheridge, & Jones, 2017). Similarly, 
there is growing interest in marine soundscape analysis, for in-
stance, in studies of reef phenology (McWilliam, McCauley, Erbe, 
& Parsons, 2017), the use of acoustic cues by fish (Simpson et al., 
2008), mapping biotic sound across oceanic habitats (Nedelec 
et al., 2015), and development of biodiversity indicators (Sueur 
et al., 2014). However, these efforts are complicated by the acous-
tic connectedness of underwater habitats, with long-range sounds 
and anthropogenic noise potentially swamping local variations in 
biotic sound (Harris et al., 2016; McWilliam & Hawkins, 2013).

More fundamentally, the theorised link between community 
and biotic sound diversity remains controversial. The acoustic 

F IGURE  5  Indices of biotic and environmental sound. Conventional metrics such as power spectral density (ai) can measure the acoustic 
environment. Ecoacoustic indices range from simple power ratios across broad frequency bands (e.g., Normalised Difference Soundscape 
Index; aii) to finer-band spectral/temporal diversity and entropy (aiii). Their practical applications are limited by poor understanding of the 
relationships between the diversity of recorded biotic sound, the diversity of vocalising species, and wider community diversity (b)
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niche partitioning hypothesis that underpins acoustic indices 
has rarely been empirically tested, and the sensory, environ-
mental and evolutionary processes that structure vocalising 
animal communities are poorly understood (Tobias et al., 2014). 
It remains unclear if and how landscape-scale biotic sound di-
versity relates to either vocalising species diversity or wider 
community diversity, and how this relationship varies taxonom-
ically, geographically, and between terrestrial and marine realms 
(Figure 5b) (Gasc et al., 2013; Harris et al., 2016; Sueur et al., 
2014). Despite this lack of clarity, tools for calculation of acous-
tic indices are increasingly accessible in bioacoustic software 
packages; similar to auto-ID softwares their outputs should 
be treated critically, with index values at a minimum ground-
truthed against either expert-labelled audio subsets and/
or other forms of survey data (e.g., Harris et al., 2016; Sueur 
et al., 2008). If these practical and theoretical problems can be 
resolved, acoustic community analyses promise to be one of 
PAM’s unique ecological applications, with potential to offer 
rich local biodiversity information to complement landscape 
data from satellite and aerial LIDAR sensing (Bush et al., 2017). 
For now, leveraging these opportunities will likely require the 
use of acoustic indices or similar proxies. Ongoing work to im-
prove these prospects could include systematic evaluation of 
the performance of indices across taxa and habitats (including 
tests in well-characterised, low-diversity communities), along-
side fundamental research into the structure and evolution of 
acoustic communities (Farina & James, 2016).

Looking forward, newer machine learning methods may offer al-
ternative means to tackle the problem of soundscape monitoring. 
For instance, a recent study used CNNs to separate and quantify 
biotic and anthropogenic sound in urban audio, thereby explicitly 
bypassing the issue of background noise sensitivity (although their 
transferability to different cities or environments remains unknown) 
(Fairbrass et al., 2018). Another promising avenue involves unsuper-
vised learning of acoustic patterns directly from survey data. For ex-
ample, Eldridge, Casey, Moscoso, and Peck (2016) used sparse coding 
to isolate periodic sound components within bird chorus recordings, 
which they suggest may correlate with particular sound types or spe-
cies calls. Although embryonic, such approaches might eventually fa-
cilitate estimation of vocalising species diversity without requiring 
comprehensive auto-ID tools (although reference material would be 
required to link unsupervised classifications to species). It is still un-
clear whether this could be feasible, but if so it would represent a 
major step towards broadly applicable acoustic ecological indicators.

6  | EMERGING AND FUTURE 
OPPORTUNITIES FOR PA SSIVE ACOUSTIC S

Finally, we outline some major emerging opportunities, as PAM 
moves beyond proof-of-concept studies towards applications in 
management and conservation. Until recently, outcomes-driven 
acoustic monitoring projects have mostly occurred where PAM is 

either the only feasible approach, or provides clear advantages over 
other methods despite higher costs (i.e., bat and cetacean surveys, 
and field bioacoustics studies). However, low-cost sensors have 
pushed the bottlenecks into the analysis and management stages, 
and as we have emphasised, addressing these logistical and analyti-
cal barriers now increasingly requires collaborative, community-led 
efforts. Marine research remains a source of key innovations, in-
cluding auto-ID software development (Baumgartner & Mussoline, 
2011; Gillespie et al., 2009), acoustic sensor tags (Johnson & Tyack, 
2003), density estimation methods (Marques et al., 2013), real-time 
reporting (Baumgartner et al., 2013; http://dcs.whoi.edu/), and col-
lation of multisource datasets (Davis et al., 2017). Increased integra-
tion between marine and terrestrial PAM communities would be 
beneficial to jointly addressing pressing challenges, such as stand-
ardisation of survey protocols, establishment of publically archived 
audio datasets and sound libraries, development of an improved 
theoretical and analytical framework for measuring vocalising ani-
mal communities, and research around operationalising PAM data 
for conservation. There is already promising coordination, for ex-
ample, via the International Society of Ecoacoustics, and multi-
institution initiatives such as the US Northeast Passive Acoustic 
Sensing Network (NEPAN; Van Parijs et al., 2015).

Currently, we are seeing the arrival of massive acoustic datasets 
collected across research networks and citizen science programmes 
(Table 1). As auto-ID tools and wireless data transmission improve, 
the increasing scope of these datasets could facilitate, for example, 
the tracking of range shifts under climate change (Davis et al., 2017), 
long-term studies of population ecology and habitat use (Wrege 
et al., 2017), year-on-year tracking of population trends (Jaramillo-
Legorreta et al., 2016), conservation planning and efficacy assessment 
(Astaras et al., 2017; Border et al., 2017), behaviour and phenology 
studies in taxa beyond birds and cetaceans (Nedelec et al., 2015), as 
well as monitoring of species of concern as ecosystem services pro-
viders (e.g., pollinators), pests, invasive species or public health threats 
(Mukundarajan, Hol, Castillo, Newby, & Prakash, 2017).

Looking further forward, emerging networked sensors and 
on-board analysis pipelines raise the possibility of using PAM-
derived data for real-time monitoring and adaptive management 
(Table 1). Detections derived from sensor networks can provide 
highly spatially and temporally detailed data on wildlife activ-
ity (e.g., London’s Nature-Smart Cities bat monitoring network: 
https://naturesmartcities.com). Real-time data feeds could, for in-
stance, be applied to adjust urban lighting regimes to reduce im-
pacts on bat activity, mitigate human-wildlife conflict, adaptively 
reroute shipping traffic to avoid threatened cetacean populations 
(Davis et al., 2017; Van Parijs et al., 2009), or report on illegal 
logging or hunting (Astaras et al., 2017, Rainforest Connection 
https://rfcx.org). Beyond the institutional and political barriers, 
developing such an infrastructure would still face substantial 
technical difficulties, especially since the ultimate goal of devel-
oping comprehensive suites of robust auto-ID tools is likely many 
years or even decades away. Nonetheless, these possibilities 
represent exciting futures for a technology that, alongside other 

http://dcs.whoi.edu/
https://naturesmartcities.com
https://rfcx.org
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sensing technologies, is providing increasingly sensitive insights 
into the effects of human pressures on wildlife and ecosystems.
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