Di Valentino, E;
Brinckmann, T;
Gerbino, M;
Poulin, V;
Bouchet, FR;
Lesgourgues, J;
Melchiorri, A;
... Zannoni, M; + view all
(2018)
Exploring cosmic origins with CORE: Cosmological parameters.
Journal of Cosmology and Astroparticle Physics
, 2018
(4)
, Article 017. 10.1088/1475-7516/2018/04/017.
Preview |
Text
1612.00021.pdf - Accepted Version Download (4MB) | Preview |
Abstract
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ~ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements.
Type: | Article |
---|---|
Title: | Exploring cosmic origins with CORE: Cosmological parameters |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1088/1475-7516/2018/04/017 |
Publisher version: | http://dx.doi.org/10.1088/1475-7516/2018/04/017 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Physical Sciences, Astronomy & Astrophysics, Physics, Particles & Fields, Physics, cosmological parameters from CMBR, CMBR experiments, neutrino masses from cosmology, FINE-STRUCTURE CONSTANT, MICROWAVE BACKGROUND POLARIZATION, ANGULAR POWER SPECTRUM, LARGE-SCALE STRUCTURE, TEMPERATURE-REDSHIFT RELATION, PROBING NEUTRINO MASSES, COBE FIRAS INSTRUMENT, BROKEN LEPTON NUMBER, DIGITAL SKY SURVEY, COLD DARK-MATTER |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery.ucl.ac.uk/id/eprint/10056777 |
Archive Staff Only
View Item |