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news & views 
 

Does predictive coding have a future?  

In the 20th century we thought the brain extracted everything it needed to know from its 

sensations – the standard ‘sandwich’ model of stimulus–cognition–response. The 21st century 

witnessed a Dennett-like ‘strange inversion’, where the brain became an organ of inference, 

constructing explanations for sensory samples – and actively resolving uncertainty about what's 

going on ‘out there’, beyond its sensory epithelia. If there has been a paradigm shift, then one 

paper played a key role at the tipping point – a paper whose insights may still be prescient today. 

Karl Friston1 
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Every decade or so, one reads a paper that makes you think “well, that's quite remarkable”. In 1999 Rao 

and Ballard1 offered a treatment of predictive coding in the visual cortex. On their view, backward 

connections from higher to lower order visual areas try to predict activity in lower order areas; while the 

counter stream of ascending, forward connections convey prediction errors; namely, what cannot be 

predicted. These prediction errors drive expectations in higher levels towards better explanations for 

lower levels. Using simulations they showed this simple (deep or hierarchical) architecture was not only 

consistent with neuroanatomy and physiology but could account for range of subtle response properties 

like ‘end-stopping’ and other extra-classical receptive field effects.  

This was a significant achievement in its own right; however, the really remarkable thing – at least for me 

– was the following: in simulating their little piece of synthetic cortex, neuronal dynamics and connectivity 

optimised the same energy or cost function. I remember reading the methods section several times to 

convince myself that they could explain all of this computational anatomy and detailed neurophysiology 

with just one energy function. Surely there was something quite profound about this: here was a truly 

normative scheme that could explain both fast neuronal dynamics – that underwrite perceptual synthesis 

– and the slow fluctuations in synaptic efficacy – that mediate perceptual learning – with just one 

imperative; namely, minimise prediction error. 

 

Self-evidencing and predictive processing 

In retrospect, it should not have been quite so remarkable (to me). The predictive coding scheme 

described by Rao and Ballard has a long pedigree that can be traced back to the students of Plato and 

Kant to Helmholtz2, via epistemological automata and analysis-by-synthesis to perception as hypothesis 

testing3, via machine learning and information theory to specific proposals for computational 

architectures in the neocortex4,5. The theme that runs through this legacy is inference and learning to the 
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best explanation for our sensorium. In other words, the brain is in the game of optimising its connectivity 

and dynamics to maximise the evidence for its model of the world6. 

So what form does this evidence take? If you were a statistician, then it is just Bayesian model evidence – 

the probability of some data given your model of how those data were generated. If you were in machine 

learning, you would use a variational bound on log-evidence. If you were an engineer, you would use the 

cost functions associated with Kalman filters. If you were an information theorist you would use efficiency 

or minimum description length. Finally, if you commit to predictive coding, you would use (precision 

weighted) prediction error. Crucially, these are all the same thing which, in my writing, is variational free 

energy7. 

Predictive coding offered a compelling process theory that lent notions like the Bayesian brain8 a 

mechanistic substance. The Bayesian brain captured a growing consensus that one could understand the 

brain as a statistical organ, engaging in an abductive inference of an ampliative nature. Predictive coding 

articulated plausible neuronal processes that were exactly consistent with the imperative to optimise 

Bayesian model evidence. Within a decade, the Bayesian brain hypothesis and predictive coding became 

a dominant paradigm in cognitive neuroscience – marking a watershed between 20th-century thinking 

about the brain as a glorious stimulus-response link and more constructivist 21st century perspectives 

that emphasised an active sampling of the sensory world. There has been a remarkable uptake of these 

ideas in fields as diverse as philosophy6,9, ethology and psychoanalysis, with dedicated meetings and books 

emerging with increasing frequency. But what about neuroscience; has predictive coding told us anything 

we did not know? In what follows, I rehearse some recent examples were the tenets of predictive coding 

have pre-empted empirical findings. 

 

The importance of being precise  

 

A recent example is a report from Marques et al10, looking at the functional organisation of cortical 

feedback inputs to primary visual cortex. In brief, their exceptional results "show that feedback [FB] inputs 

show tuning-dependent retinotopic specificity. By targeting locations that would be activated by stimuli 

orthogonal to or opposite to a cell’s own tuning, feedback potentially enhance visual representations in 

time and space." 10 p757.  

 

This particular aspect of feedback was predicted several years based on the optimisation of precision, 

when forming the precision-weighted prediction errors that mediate belief updating. In this setting, 

precision corresponds to the best estimate of the reliability or inverse variance of prediction errors11. 

Technically, getting the precision right corresponds to optimising the Kalman gain in Bayesian or Kalman 

filters1. Computationally, it underlies the optimal mixing of several streams of sensory input that differ in 

their reliability – as in multimodal sensory integration8. Psychologically, this precision-weighting has been 

associated with sensory attention and attenuation12. Physiologically, precision-weighting is thought to be 

mediated by neuromodulatory mechanisms; for example, classical neuromodulators of synchronous 
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gain13. In short, most of the interesting bits of predictive coding are about getting the precision right – to 

select newsworthy, uncertainty resolving prediction errors11.  

 

Precision was missing in 20th-century treatments of predictive coding: interestingly, Rao and Ballard 

ascribe this Kalman gain to constants they labelled k. Precision has played a key role in taking predictive 

coding to the next level in cognitive neuroscience: it underwrites computational anatomy of expectation 

and attentional selection at various levels of hierarchical perception11-14. Failures of the neuromodulatory 

basis of precision-weighting have figured prominently in explanations for false inference and 

psychopathology15, while the electrophysiological and neurochemical correlates of precision engineered, 

cortical gain control (referred to as excitation-inhibition balance) suddenly acquire a clear teleology. 

 

When applied to problems like figure-ground segregation16, the precision of prediction errors – say in 

primary visual cortex – is optimised to produce representational sharpening via lateral inhibition14. This 

requires the modulatory effects of descending predictions of precision to extend beyond the classical 

receptive field to produce extraclassical receptive field effects. It further requires the suppression 

representations that do not conform to the attended or inferred stimulus attribute; e.g., orientation or 

direction. In short, predictive coding predicts exactly the neuromodulation of cells reporting prediction 

errors (e.g., superficial pyramidal cells) in orthogonal perceptual dimensions or opposite preferences10.  

 

In short, on the predictive coding view, one would expect that context-sensitive extraclassical receptive 

field effects would be mediated by excitatory feedback projections to pyramidal cells reporting prediction 

errors on stimulus attributes that were orthogonal or opposite to the currently inferred or attended 

attribute. See Figure 1 for a more detailed explanation. This representational sharpening contextualises 

the formation of prediction errors per se (that require top-down retinotopic projections to inhibitory 

interneurons in the classical receptive field). 

 

It could be said that predictive coding – as a hypothesis for message-passing in cortical hierarchies – has 

yet to be empirically confirmed17,18. An alternative view of the literature speaks to an enormous amount 

of anatomical and physiological evidence for predictive coding; particularly, in early visual processing (see 
19 for a list of examples). One could take this view further with specific predictions that have subsequently 

been confirmed. A nice example (number 6 in the list above) is a spectral asymmetry in forward and 

backward message-passing during perceptual (visual) synthesis: “Principal cells elaborating predictions 

(e.g., deep pyramidal cells) may show distinct (low-pass) dynamics, relative to those encoding error (e.g., 

superficial pyramidal cells)”19 p21). This was subsequently confirmed four years later20,21 and is now 

almost a ‘meme’ when characterising laminar-specific neurophysiological responses22,23.  

 

Predictions that have subsequently been confirmed are not restricted to neurophysiology. For example, 

in neuroanatomy: “As an example, a neural inference arising from the earliest formulations of predictive 

coding is that the source populations of forward and backward pathways should be completely separate, 

given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons 
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do not project in both directions - has only recently been confirmed.”24 p. 1792.  

 

 

 
 

 

Fig. 1 | Hierarchical predictive coding: schematics that describe the hierarchical message passing implicit in predictive 

coding based on deep generative models. This message passing is described mathematically on the right as differential equations 

(i.e., neuronal dynamics). In this scheme, sensory input is conveyed to sensory (e.g., primary visual) cortex via ascending 

prediction errors (e.g., from the lateral geniculate). Posterior expectations, encoded by the activity of deep pyramidal cells, are 

driven by ascending prediction errors. At the same time, they are subject to lateral interactions that mediate (empirical) priors. 

Crucially, prediction errors are modulated by predictions of their precision (blue arrows). The predicted precision is based upon 

the expected precision (based on the sum of squares prediction errors). Heuristically, expectations about precision release 

posterior expectations from constraints in the vicinity of an inferred attribute or trajectory – and allow them to respond more 

sensitively to ascending input. This is illustrated in the left panel, which associates the terms in the differential equations with 

neuronal projections. The key point here is that prediction errors compete for influence over pyramidal cells representing 

stimulus features (i.e., expectations). If a representation (here, the black triangle in the middle) is released from top-down 

constraints, it is disinhibited and becomes more sensitive to ascending prediction error. In terms of extra-classical receptive field 

effects, this corresponds to a representational sharpening (as illustrated in the lower panel). Here, µ denote expectations, while 

 describes precision-weighted prediction errors ε. The generative model is denoted by g(µ) – a function that generates 

predictions from expectations. For a more detailed description, see16.  

 

I introduced the target article by noting that perceptual inference (i.e., neurodynamics) and learning (i.e., 

neuroplasticity) are in the game of optimising the same thing; namely, model evidence or its variational 

equivalent (i.e., free energy). This remains as prescient today as it was 20 years ago. To see perception, 

learning and attention (and sensory attenuation) as working hand-in-hand towards the same imperative 

Hierarchical predictive coding and representational sharpening
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provides an integrative account that may still have an important message. On the one hand, there are still 

swathes of computational neuroscience that concern themselves almost exclusively with learning (e.g., 

reinforcement learning) that ignore the inference problem. On the other hand, vanilla predictive 

processing can often overlook the experience-dependent learning that accompanies evidence 

accumulation – and the Bayesian model selection (a.k.a., structure learning) of models per se. On one 

view, predictive coding inherits from perceptual psychology, while reinforcement learning is a legacy of 

behaviourism. This dialectic is also seen in machine learning (a.k.a., classification schemes), with deep 

learning on the one hand25 and problems of data assimilation and uncertainty quantification on the other. 

The have been heroic attempts to repair this dialectic (e.g., amortization procedures in machine learning 

that, effectively, learn how to infer). However, these attempts do not appear to reflect the way that the 

brain has gracefully integrated perception and learning within the same computational anatomy. This may 

be important, if we aspire to creating artificial intelligence along neuromimetic lines. In short, perhaps the 

insight afforded by Rao and Ballard1 – that learning and perception are two sides of the same coin – still 

has something important to tell us. 
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