
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 65, NO. 11, NOVEMBER 2018 2459

On the Feasibility of Automated Mechanical
Ventilation Control Through EIT

Henry F. J. Tregidgo , Michael G. Crabb , Andrew L. Hazel , and William R. B. Lionheart

Abstract—Objective: This paper aims to demonstrate the
feasibility of coupling electrical impedance tomography
(EIT) with models of lung function in order to recover param-
eters and inform mechanical ventilation control. Methods:
A compartmental ordinary differential equation model of
lung function is coupled to simulations of EIT, assuming
accurate modeling and movement tracking, to generate
time series values of bulk conductivity. These values are dif-
ferentiated and normalized against the total air volume flux
to recover regional volumes and flows. These ventilation
distributions are used to recover regional resistance and
elastance properties of the lung. Linear control theory is
used to demonstrate how these parameters may be used to
generate a patient-specific pressure mode control. Results:
Ventilation distributions are shown to be recoverable, with
Euclidean norm errors in air flow below 9% and volume be-
low 3%. The parameters are also shown to be recoverable,
although errors are higher for resistance values than elas-
tance. The control constructed is shown to have minimal H1

seminorm resulting in bounded magnitudes and minimal
gradients. Conclusion: The recovery of regional ventilation
distributions and lung parameters is feasible with the use
of EIT. These parameters may then be used in model based
control schemes to provide patient-specific care. Signifi-
cance: For pulmonary-intensive-care patients mechanical
ventilation is a life saving intervention, requiring careful
calibration of pressure settings. Both magnitudes and gra-
dients of pressure can contribute to ventilator induced lung
injury. Retrieving regional lung parameters allows the de-
sign of patient-specific ventilator controls to reduce injury.

Index Terms—Electrical impedance tomography, model
predictive control, mechanical ventilation, lung protective
ventilation.

I. INTRODUCTION

M ECHANICAL ventilation strategies play a vital role for
the treatment of patients in respiratory intensive care

units. The use of mechanical ventilation can be life saving for pa-
tients in multiple situations, for example acute lung injuries such
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as acute respiratory distress syndrome (ARDS) [1], [2] or acute
complications to chronic conditions such as chronic obstructive
pulmonary disease (COPD). However, increased stress on lung
tissue can cause ventilator induced lung injury (VILI) [3].

The risk of VILI increases in the more severe forms of ARDS,
where the lung is smaller and more inhomogeneous [4], [5]. In
these circumstances, given the low lung volume the currently
recommended tidal volume (6 mL/Kg ideal body weight) can
result in excessive lung strain (tidal volume/end-expiratory lung
volume ratio) and consequent risk of volutrauma. In addition,
during inspiration lung inhomogeneity can cause important rises
in alveolar pressure between neighbouring lung regions at differ-
ent level of inflation (stress risers). Inhomogeneity is considered
a significant factor contributing to VILI and these two factors
explain why despite using lung protective ventilation (LPV) sig-
nificant VILI can still occur [6], [7].

Two related approaches to developing LPV strategies are to
regulate both the volume of air flow and driving pressures ex-
perienced by the patient. Larger tidal volumes increase the vari-
ations in pressure between full inhalation and exhalation. One
recent study [8] has shown that the magnitude of this driving
pressure is strongly adversely linked with the mortality rate of
patients. Additionally, modelling the process of airway opening
has revealed that inducing gradients of pressure within opening
airways can cause damage [9].

In addition to monitoring variations in pressure, it is also im-
portant to set the end expiratory pressure level correctly. Because
airway collapse or recruitment can cause drastic changes in the
ventilation pattern of the lungs [10], the positive end expiratory
pressure (PEEP) is set as the minimum pressure applied during
expiration to keep airways open. There are multiple ways to
determine an optimal PEEP setting [11], but generally a recruit-
ment manoeuvre is performed, followed by PEEP titration using
measures such as lung compliance or blood gas composition to
determine when an acceptable pressure has been found [12].
These approaches, by necessity, rely upon taking measurements
that can be easily accessed from the bedside, making it diffi-
cult to take into account regional variations in the structure and
health of the lungs.

Mechanical ventilation can result in some lung lobes being
over-distended, causing damage, while others are only partly
recruited [13]. This, combined with regional variations in per-
fusion, can cause areas of alveolar dead space which do not assist
in gas transfer [14]. It is therefore desirable to have some form of
bedside imaging to recover regional ventilation distributions and
inform ventilation strategies. However, radiation concerns [15]
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limit the frequency with which computerised tomography (CT)
may be used for routine monitoring, while magnetic resonance
imaging (MRI) requires expensive tracers to accurately monitor
air flow [16]. Additionally, neither CT nor MRI is practical at
the bedside.

One proposed solution is the use of EIT. It has been shown that
air content of the lungs causes a high contrast in the conductivity
levels of tissue [17] and so time series of EIT reconstructions
can be used to monitor the regional ventilation of the lungs [18].
This has enabled clinicians to begin incorporating EIT into pa-
tient care, and techniques are being examined for such purposes
as monitoring lung fluid content [19], improving PEEP titra-
tion [20] and verifying the efficacy of pressure controls [21].

These techniques have the advantage that EIT has high tem-
poral resolution and is safe to use at the bedside for extended
periods [22]. This has resulted in the proposal of using EIT for
regional monitoring of lung function during recruitment ma-
noeuvres. In their paper Costa et al. [23] describe a method
for recovering a regional measure of lung function they name
pixel compliance, which is a measure of impedance change be-
tween PEEP and plateau pressure. This measure is useful in
estimating alveolar collapse and hyperdistension on a regional
basis to determine an optimal PEEP level. However, it is not
clear how to use pixel compliance to model the response of the
lung to pressure controls directly. For this reason we examine
the feasibility of converting high frequency regional ventilation
information into objective measures of lung function based on
widely known lung models. Once parameters have been recov-
ered we examine their utility in optimising ventilation strategies
for the patient.

To incorporate EIT into the control of mechanical ventilators
it is necessary to examine existing control procedures. Modern
ventilators rely on both user input and feedback control tech-
niques from control theory. Chatburn lists a hierarchy for the
levels of user input and feedback control in his review of com-
puter control systems [24]. The lowest level in this hierarchy
is set-point control, in which the user defines a set pressure to
be experienced by the patient. Due to the interaction between
the patient’s lung and the ventilator, the applied pressures may
not be the same as those experienced by the patient’s airways,
so the ventilator uses measurements of the airway pressure as
feedback to adjust the applied pressures accordingly.

A more advanced approach in Chatburn’s hierarchy is to allow
the computer to modify this pressure set-point based on optimis-
ing mathematical models of lung function in a scheme known
as optimal control. One example of such a model is given by Li
and Haddad [25], where they track changes in pressure, volume
flows and states between breathing periods for a simulated lung
system. They then use a linear compartmental reference model
for the lungs to adapt their pressure control using a repetitive
model predictive control scheme. However, model based ap-
proaches are limited by the availability of patient specific model
parameters. This motivates our feasibility study on incorporat-
ing patient-specific parameters from EIT into a model based
control scheme.

Using patient-specific lung parameters and standard tech-
niques in control theory, it is possible to directly calculate pres-

Fig. 1. Flowchart showing a proposed procedural workflow for imple-
menting EIT guided control of mechanical ventilation, including section
numbers for implementations of post processing steps.

sure controls for a target state while minimising the so-called
H1 semi-norm associated with the Sobolev space W 1,2 [26],
[27]. By modelling the response of the lung to a given pressure
control profile and using the result as a target for control, we
demonstrate that a new patient-specific profile may be gener-
ated. Such an approach ensures that the magnitude of the new
pressures remain bounded and the time gradients of pressure
are minimised without changing the resulting ventilation state
of the patient. We demonstrate that this is possible for a model
of lung function in which regional parameters are recoverable
from EIT. This is a necessary first step in the development of
true patient-specific mechanical ventilation controls.

We present a feasibility study of techniques to detect regional
airflow from imaging, recover regional ventilation parameters
and modify pressure controls to improve them with respect to
the H1 semi-norm. We perform tests using the observed re-
lationships between electrical conductivity and air volume, as
well as the noise properties of EIT reconstructions. These tech-
niques may be adapted to work with other imaging modalities
so long as they can provide information on the regional distri-
bution of air within the lungs with a high temporal resolution. A
preliminary version of this work has already been reported [28].

II. METHODS

To determine the feasibility of EIT guided control of mechan-
ical ventilation, the workflow shown in Fig. 1 is examined. In
Section II-A a linear ordinary differential equation (ODE) com-
partmental model of the lungs is outlined. This model uses the
mechanical parameters resistance and elastance defined for dif-
ferent regions of the lung, which can be used to determine when
ventilator settings are acceptable [29]. In Section II-B the recov-
ery of regional ventilation profiles by coupling EIT conductivity
reconstructions and ventilator data during normal ventilation is
described. In Section II-C the recovery of mechanical parame-
ters from the regional ventilation profiles is outlined. In Section
II-D techniques from linear control theory are used to generate
a pressure control specifically designed to have bounded mag-
nitudes and minimal time gradients. Once the control procedure
has finished the process of recovering ventilation and parameters
begins again during a new phase of normal ventilation.
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Fig. 2. Compartment layout for ODE model. Compartments are labeled
in the order top right, top left, bottom right, bottom left to align with an
extruded chest model used to simulate EIT reconstruction.

This paper provides an initial feasibility study of the workflow
Fig. 1 outlined in Sections II-A to II-D rather than any specific
EIT reconstruction or segmentation scheme. In a clinical setting
bulk parameters would have to be recovered from the imaging
modality, and in the case of EIT there would first be an initial
step of segmenting the image and obtaining a representative
conductivity value from each segment. In the present feasibility
study this is simulated by generating conductivity time series
for each compartment, using a homogenisation rule, and corre-
lated noise is generated by performing difference EIT on voltage
measurements with added noise. This method, described in de-
tail in Section II-E, generates time series with errors following
a distribution likely to be found in clinical measurements.

A. Linear ODE Lung Model

A linear compartmental ODE model is used to test the work-
flow in Fig. 1. Such models have been a standard method for
understanding lung function for over 60 years [30] and have
been well studied [31]. There is also evidence for the accuracy
of these models as similar models have been used to provide
boundary conditions in computational fluid dynamics simula-
tions of the lungs [32].

Equations in this section model air as an incompressible fluid
passing through a central airway into four compartments under
the action of a pressure difference as shown in Fig. 2. These com-
partments have been assigned to upper and lower lung regions
on left and right sides of thorax as described in Section II-E.
Four compartments have been specified as a demonstrative ex-
ample due to dyadic branching tree structure of the lungs and
to simplify the modelling process in Section II-E. Section IV-A
examines further how these compartments may be aligned with
physiologically meaningful divisions of the lung.

In the model, pressure drops occur as air passes through the
central airway and the airways leading into each compartment
under the action of airway resistance. Each airway has its own
resistance parameter denoted by Ri, where i denotes the num-
ber assigned to the compartment each airway leads to and R0
refers to the central airway, or tracheal, resistance. Once airway

pressure drops have been accounted for the pressure difference
between air within each compartment and the pleural pressure
outside the lungs is counteracted by the elastance of each com-
partment denoted by Ei .

Denote the volume of air in each compartment at time t as
the continuous scalar function vi(t). By conservation of mass
the volume flow at the top of the airway is taken to be the sum
of the rates of change in each of these volumes. The difference
between the driven pressure at time t, P (t), and the pleural
pressure P0 can be formulated as the equation

P (t) − P0 = R0

4∑

j=1

v̇j (t) + Riv̇i(t) + Eivi(t), (1)

as described in [33, chapter 7]. Equation (1) holds true for each
of the compartments and can therefore be reformulated into a
matrix ODE system.

Using bold notation to denote vectors, v(t) is defined to be
a vector containing the air volumes vi(t), p(t) is a vector of
pressure drops, P (t) − P0 , across the system and E and R are
matrices with the structures

E =

⎛

⎜⎜⎝

E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

⎞

⎟⎟⎠ ,

R =

⎛

⎜⎜⎝

R1 + R0 R0 R0 R0
R0 R2 + R0 R0 R0
R0 R0 R3 + R0 R0
R0 R0 R0 R4 + R0

⎞

⎟⎟⎠ . (2)

This allows eq. (1) to be reformulated as

Rv̇(t) + Ev(t) = p(t), (3)

which is then solved using a fourth order explicit Runge-Kutta
method, allowing calculation of the system’s response to smooth
input pressure profiles.

B. Ventilation Monitoring from EIT

This section describes the recovery of the ventilation distri-
bution, i.e. compartmental flows and volumes for the models in
Section II-A, from EIT images. EIT reconstruction generates
time series of homogenised or effective conductivities σi , that
are related to air volume vi , for each compartment. It is demon-
strated here that the recovery of interior flow and volumes can
be reduced to differentiation of conductivity time series and fit-
ting to the measured flow data at the ventilator. The case where
compartmental volumes are known up to a Gaussian noise dis-
tribution is examined in [34, chapter 6].

In [21] and [35] it is shown that there is an approximate linear
relationship between the effective electrical resistivity ρi , and
filling factor F . Here ρi is approximated as the reciprocal of
effective conductivity, ρi ≈ 1

σi
, and F is defined as the ratio of

air volume content to tissue volume. This results in a relationship
of the form

vi = αViρi + β, (4)
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where Vi is the volume of lung tissue in compartment i, and
α and β are constants independent of ρi . It is assumed that Vi

can be determined from another imaging modality capable of
determining regional air volumes. For example the Hounsfield
unit values assigned to volume elements in a CT image are
proportional to the tissue content of that element, allowing the
volumes of air and tissue to be computed [36]. For the purposes
of this study β is estimated by computing a linear fit of values
from the equations used in Section II-E to generate conductivity
maps.

Under the assumption of incompressibility the volume flow
measured at the ventilator Q is equal to the sum of the compart-
mental flows. This allows α to be determined by performing a
least squares fit on the equation

Q = α
∑

i

d
dt

(Viρi) = α
∑

i

Vi
d
dt

ρi, (5)

once the ρi have been differentiated. Differentiation amplifies
the effects of noise so the time derivative of ρi is posed as the in-
version of an integration operator to allow explicit regularisation
of the solution [37]. This gives the equation

d
dt

ρ̃i = arg min
u

‖Au − ρi‖2 + λi‖Lu‖2 , (6)

where ρi is a time series vector containing the ρi values for
multiple time samples, A is an integration matrix used in a data-
fit term, in this case constructed using the composite trapezium
rule, λi is a regularisation hyperparameter, L is a second order
central difference operator used to enforce a level of smoothness
on the solution and ρ̃i is a regularised approximation to the
resistivity time series of the compartment.

The regularisation hyperparameters for each compartment are
found using an L-curve method. L-curve methods aim to bal-
ance the data misfit with the regularisation penalty by plotting
the resulting values of the residual and regularisation norms on
a log-log plot. This graph has a characteristic L shape and the
value of λi corresponding to the point of maximal negative cur-
vature, or corner, is typically used due to the transition at this
point between the two straight sections. Modified versions of the
functions cgsvd and l_curve from the Regularization Tools
Matlab toolbox [38] are used to choose the regularisation pa-
rameter for this problem automatically. In this case parameters
within an interval correspond to points on the graph with nega-
tive curvature, producing a rounded corner. As such, λi is chosen
to be the lower of the two values in this interval at points with
half the maximum curvature. This is to emphasise the data-fit
for the use of reconstructed flows in parameter estimation.

Once the regularisation parameter has been found for each
compartment a Tikhonov regularised inverse can be found for
the problem in eq. (6) allowing the derivative to be computed
quickly. The result is a smooth approximation to the time
derivative of the electrical resistivity in a given compartment.
These derivatives are then summed and normalised against
the volume flow measured at the mouth to give a measure of
regional flow. Integrating these values with respect to time then
gives a regularised approximation to the resistivity time series
of the compartment removing measurement noise to aid in later

parameter estimation. This time series can then be converted
into an approximation for the air volume within a compartment.

C. Ventilation Parameters from Regional Flows

Once the smoothed flows and volumes have been estimated
using the methods in Section II-B, these can be used in a pa-
rameter estimation problem to find the mechanical ventilation
parameters Ei and Ri for each compartment and airway. As in
Section II-A the governing equations for this inversion can be
derived from eq. (1). However, unlike in eq. (3), the parameters
of resistance and elastance are treated as the dependent vari-
ables while the values of compartmental flow and resistance are
known parameters. This allows the system to be reformulated
as a single matrix multiplication Mx = P, in which the matrix
M is composed of copies of the time series values of flows
and volumes while entries of the target vector x are the desired
parameters and P contains copies of the pressure series.

Using over-tilde notation to denote quantities which have
been recovered in Section II-B, denote Q̃ as a vector of length
S containing the sum of the smoothed compartmental flows,
and build matrices M̃i , with dimension S × 2, and vectors P̃ of
length S in the form

M̃i =

⎛

⎜⎝
ṽi(t1) ˙̃vi(t1)

...
...

ṽi(tS ) ˙̃vi(tS )

⎞

⎟⎠ P̃ =

⎛

⎜⎝
P (t1) − P0

...
P (tS ) − P0

⎞

⎟⎠ , (7)

with S denoting the number of time samples. Using Q̃, M̃i and
P̃ and block matrix notation, eq. (1) can be reformulated as a
4S × 9 overdetermined system Mx = P with the form

⎛

⎜⎜⎝

Q̃ M̃1 0 0 0
Q̃ 0 M̃2 0 0
Q̃ 0 0 M̃3 0
Q̃ 0 0 0 M̃4

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0
E1
R1
E2
R2
E3
R3
E4
R4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎝

P̃
P̃
P̃
P̃

⎞

⎟⎟⎠ , (8)

which can be solved by a Moore-Penrose generalised inverse to
give a least squares solution

x̃ = (MT M)−1MT P. (9)

D. Ventilation Optimisation from Control Theory

This section describes techniques for modifying the pressure
set point of a ventilator, using parameters recoverable via the
methods in Sections II-A to II-C. The control theory concepts in
this section are classical linear control theory techniques which
are taken from [26] and [27, Part 1].

The approach examined in this paper stems from the control-
lability of the ODE model described in Section II-A. A control-
lable linear system of ODEs

ẏ = Ay + Bu, (10)
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can be steered from any state y0 to any other state yT in time
T by a control u. In this general case y is an n-dimensional
function, A is an n × n state space matrix, B is an n × m state
space matrix and u is an m-dimensional control function.

Applying the definition of controllability to the lung mod-
els from Section II-A would appear to imply that regions of
lung could be controlled independently. However, in practice
the controls produced to do this would violate constraints on
both pressure and air flow. This coupled with the simplicity of
the lung models used prohibits the design of full feedback con-
trol schemes from these methods. Instead this section describes
a simple model predictive control scheme to test the feasibility
of incorporating parameters from bedside imaging into ventila-
tor control. This scheme uses parameters, recoverable through
the methods in Section II-C during a normal ventilation period,
to optimise a prototype pressure mode control for a given initial
condition and time period before returning to normal ventila-
tion as outlined in Fig. 1. The resulting control has improved
magnitudes and gradients of pressure, while steering the ODE
model to the same end state as the initial prototype.

The possibility of optimising a prototype pressure profile
stems from the fact that the controls corresponding to given ini-
tial conditions, target states and time constraints are not unique.
However, there exist closed form solutions providing the con-
trols that are minimal in a given norm. The control that has
minimal L2 norm,

‖u‖L2 =
(∫ T

0
|u(s)|2ds

) 1
2

, (11)

is specified at every time s as

u(s) = −B∗ exp{(T − s)A∗}Q−1
T (exp{TA}y0 − yT ),

(12)

where QT is a Gramian matrix [27, Prop 1.1]. Therefore, if
the system in eq. (10) is controllable, the result of ventilating
with a prototype profile can be simulated and eq. (12) can be
used to generate an equivalent profile with minimal pressure
magnitudes.

Before the control in eq. (12) may be used, the controllability
of the system must be confirmed. This is done by examining the
Kalman controllability matrix

K = [B|AB| · · · |An−1B]. (13)

A necessary and sufficient condition for the system in eq. (10)
to be controllable is for matrix K to have rank n, where n is
the length of the vector y [26], or in this case the number of
separate compartments in the model. To determine if the lung
system is controllable eq. (3) is reformulated as

v̇ = −R−1Ev + R−1b(P (t) − P0), (14)

where b is a vector of ones and the matrix K is formed from eq.
(13), using

A = −R−1E, B = R−1b. (15)

The rank of K is then calculated to determine if the system
is controllable. The circumstances which result in a loss of

controllability, along with methods for treating these cases, are
discussed in Section IV-C.

Once controllability has been determined the control pres-
sures are generated. To improve numerical stability this is done
using the basis of eigenvectors. Therefore the first step is com-
puting the eigenpairs for the matrix −R−1E. It can be proven
that the eigenvalues for this matrix are negative and have a full
set of linearly independent eigenvectors, giving the equation

−R−1E = UDU−1 (16)

where the columns of U are the eigenvectors and D is a diag-
onal matrix of eigenvalues. Properties of these eigenpairs are
discussed further in Section IV-C.

The required Gramian QT is then computed as

QT := U

[∫ T

0
exp {Dr}U−1bb∗U−∗ exp {Dr}dr

]
U ∗,

= UQ̄T U ∗, (17)

and the required exponentials are computed as

e−R−1 E (T −s) = UeD (T −s)U−1 . (18)

These are combined using eq. (12) to provide a control pressure
u of the form

u(s) = −b∗U−∗eD (T −s)Q̄−1
T (eDT U−1v0 − U−1vT ), (19)

where v0 and vT are the initial and target values of v.
These result can also be generalised such that if the system

in eq. (10) is controllable then so is the system
(

ẏ
u̇

)
=

(
A B
0 0

) (
y
u

)
+

(
0
I

)
w,

˙̄y = Āȳ + B̄w (20)

where I indicates the appropriate identity matrix. This result
follows from construction of the corresponding Kalman con-
trollability matrix, which will have full rank if K has full rank,
and allows a control to be found that minimises the H1 semi-
norm,

|u|H 1 =
(∫ T

0
|u̇(s)|2ds

) 1
2

. (21)

This means that a pressure profile can be constructed that takes
a linearised model of the lungs to a specified state, at a given
pressure with minimised jumps and oscillations.

The methods shown in eq. (17) to eq. (19) may be gener-
alised for the system in eq. (20). The eigenvalues for this system
are the same as those for eq. (10) with the addition of a zero
eigenvalue. Therefore the eigenpairs must be updated to include
a zero eigenvalue with corresponding eigenvector and the vec-
tor b must be adjusted to correspond to the new system. By
doing this and following the procedure above, the formula in
eq. (19) produces the derivative of the control pressure and can
be integrated numerically to provide a minimised H1 pressure
profile.

Additionally, as both the initial and final pressures are spec-
ified in this formulation, it is possible to relate this to the full
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Fig. 3. Human adult male thorax CT outline (left) and extruded mesh
used for reconstruction aggregation (right).

H1 norm. As the gradients of this control are minimised, the
pressures must be close to a linear function between the two
pressures measured in the H1 semi-norm. In fact, using the
Poincaré-Fredrichs inequality, it can be proved that the H1 norm
of this difference is bounded by a constant times the difference
between the original pressure and the same linear function. The
constant is monotonically increasing with both the control time
period and improvement between original and minimised pro-
files as measured in the H1 semi-norm. This implies that for
large enough improvements in gradients the full H1 norm of
the new control will also be improved, resulting in both lower
pressures magnitudes and minimal gradients.

E. Simulating Conductivity Time Series with Noise

This section describes the process of generating time series
values of bulk conductivity. This involves the generation of a
finite element (FE) model of the thorax including segmented
compartments representing the lungs. This FE mesh is then
used to produce correlated noise through EIT to simulate best
case reconstructions.

Volume time series values from the equations in Section II-A
are converted to conductivity time series using the equations
described by Nopp in [39]. These equations model alveoli as
cubes and include components for blood, cellular membrane,
endothelial and epithelial cells, and extracellular and intracel-
lular fluids. Given the conductivity time series, correlated noise
is generated by reconstructing voltage measurement noise di-
rectly through EIT. This gives a reasonable approximation to the
level of noise produced under the assumptions that the shape
of a patient’s thorax can be modelled and tracked accurately
through the course of ventilation [40], electrode positioning and
impedance is modelled accurately [41] and the noise in each of
the voltage measurements follow independent, identical distri-
butions.

Before generating the conductivity time series, FE meshes of
the thorax geometry are built using Netgen [42] to extrude the
boundary contour of the adult male chest CT shown on the left
in Fig. 3. Three meshes are produced including the coarse mesh
shown in Fig. 3 as well as a fine and ultra-fine mesh. These
are composed of 10K, 341K and 1.03M volume elements re-
spectively and each contain four cylindrical inclusions. For the

purposes of this feasibility study and to simplify the mesh gen-
eration process the cylinders represent the four compartments in
the lung model from Section II-A. The fine and ultra-fine meshes
include 4 rings of 16 electrodes embedded onto the outer thorax
shape in order to simulate EIT as described later in this section.

In order to set the compartmental conductivity time series
using the Nopp equations, the frequency of EIT current injec-
tion, taken here as 100 kHz, the filling factor and the ratio
of lung tissue conductivity to background conductivity in each
lung compartment cylinder must be specified. To calibrate the
ratio of conductivities between lung and background tissues, the
values given in [43] are used providing a ratio of 0.125 at full
inhalation. The mid inhalation conductivities are generated by
normalising the Nopp conductivity values for max inhalation, at
F = 4 [39], to 0.125 and then calculating the normalised con-
ductivities expected if the lung model were held at the median
ventilation pressure.

Simulated EIT voltage measurements and conductivity re-
constructions are produced using modified code from EIDORS
version 3.8 [44]. The electrodes are indexed from 1 to 64, where
electrodes in the top ring are numbered from 1 to 16 and the fur-
ther 3 rings are indexed beginning at 17, 33 and 49 respectively.
EIT is simulated with pairwise current driven at 0.1mA and
voltages are measured on pairwise electrodes both with a skip
of 23 so that current is driven and measurements are recorded
across rings. The voltages are computed on the ultra-fine mesh
through a piecewise linear FE method using the complete elec-
trode model [45]. Noise values are generated using a normal dis-
tribution with a signal to noise ratio of ‖φ‖/‖ε‖ = 100 where φ
is a vector of measured voltage differences and ε is the vec-
tor of noise values. Measured in decibels this equates to a
40 dB signal, which is significantly worse than the practical
upper range of accuracy in EIT measurements of approximately
100 dB [46]. The errors in conductivity caused by these volt-
age noise values are calculated using the EIDORS function
inv_solve_diff_GN_one_step. This reconstructs con-
ductivity using a single Gauss-Newton step with a Jacobian
calculated using the fine mesh of the domain. The values from
this inversion are mapped to the coarse mesh to aggregate the
reconstruction and reduce the dimensionality of the problem.
The reconstructed conductivity values are then aggregated into
four compartmental noise values by taking a volume weighted
average within the regions of interest. These four averaged val-
ues are then added to the Nopp generated values to give a noisy
sampled time series of conductivities.

III. RESULTS

The techniques described in Sections II-A to II-E were
used to test the feasibility of the procedure shown in Fig. 1.
Firstly the ventilation distribution for the model described in
Section II-A were generated for a period of 30 s with an as-
sumed EIT data acquisition rate of 20 frames per second, giv-
ing 600 equispaced time steps. The parameters used, shown in
Table I, were chosen to be of a similar magnitude to those
provided in [33] and to ensure that the parameters could be
recovered and that the ODE system is controllable, which will



TREGIDGO et al.: ON THE FEASIBILITY OF AUTOMATED MECHANICAL VENTILATION CONTROL THROUGH EIT 2465

Fig. 4. Graphs comparing the simulated and recovered flows and volumes in each compartment. True simulated values are shown as a dashed
blue line, while reconstructed values are a solid black line. Flows are shown on the left and volumes are shown on the right.

TABLE I
MODEL PARAMETERS

Elastance Resistance
(Pressure/Volume) (Pressure × Time/Volume)

Compartment 1 10 10
Compartment 2 10 20
Compartment 3 15 5
Compartment 4 25 10
Trachea - 5

be discussed further in Section IV-C. These parameters are given
in arbitrary units of pressure per volume for elastance and pres-
sure per volume multiplied by time for resistance as all quantities
were normalised to achieve tidal breathing variations consistent
with filling factor values given in the literature [39]. The in-
put pressure profile for ventilation followed a sinusoidal pattern
with values chosen such that the most compliant compartments
would reach full exhalation and inhalation filling factor values
if held at minimum or maximum pressures respectively. The ini-
tial conditions were chosen such that each compartment started
with a filling factor of 1, simulating a lung collapsed beyond
normal exhalation being reinflated by mechanical ventilation.
The resulting volumes were used to calculate a time series of
compartmental conductivity values.

EIT reconstruction of noise voltages were performed for each
time step and volume averaged noise values added to the con-
ductivity time series as described in Section II-E. The techniques
from Sections II-B to II-C were then used to find recovered ven-
tilation distribution and parameters. This process was repeated
1000 times with new draws from a normally distributed pseu-
dorandom number generator to test robustness to noise.

To test the feasibility of the techniques in Section II-D an H1

minimisation procedure for a PEEP step was simulated. First
the response of the system to a sinusoidal pressure profile, os-
cillating at 18 breaths per minute, was calculated. A step up
in PEEP during the sixth breath was generated by a smoothed
Heaviside function. This original profile was chosen to demon-

strate the behaviour of the H1 minimisation process on pressure
profiles while ensuring the stability of the fourth order explicit
Runge-Kutta method used in simulation. A control was then
generated to produce the same jump in pressures and volumes
over the course of three breaths. This was performed using the
true ventilation parameters to demonstrate the properties of the
control under optimal conditions.

All timings presented are from calculations performed on a
2.8 GHz Intel Core i7-3840QM processor with 16GB 1.6 GHz
DDR3 RAM, running code written for MATLAB_R2015a. For
comparison the difference EIT reconstructions performed took
an average of 2.4 ms per frame.

A. Ventilation Monitoring

In each case, the recovered flows and volumes were qualita-
tively close to the original simulated values as shown in Fig. 4.
However, differences can be seen at the edges of the flow graphs
in Fig. 4. These errors and their positioning in the time series
flow pattern highlights one weakness in this approach to recov-
ering flow parameters. By using Tikhonov regularisation and
a high regularisation parameter additional smoothness is en-
forced on the flows which may obscure features that are highly
localised or occur at higher frequencies. In this case the initial
transient behaviour of the flows inflating compartments from a
partially collapsed state is dampened during the initial frames.

This effect is demonstrated further by examining the norms of
errors in the flow recovery. Table II shows the Euclidean norms
of the error in recovered flows, ‖v̇i − ẏi‖2 , taken as a percentage
of the same norm applied to the simulated flow ‖ẏi‖2 , where ẏi

is the simulated flow for compartment i. Both the mean error
and standard deviation (STD) are shown for the full flow and
the flow limited to exclude the first 2.5 s that are dominated by
the transient behaviour.

This effect is not as pronounced for the volume reconstruc-
tions, as shown by minor vertical offsets in the volume graphs
in Fig. 4. This is due to the fact that the flows are integrated
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TABLE II
FLOW RECOVERY RELATIVE ERRORS

Comp. No. Mean (Full) STD (Full) Mean (Limited) STD (Limited)

1 6.46% 1.02% 6.77% 1.65%
2 8.53% 1.72% 7.33% 1.99%
3 16.58% 0.80% 6.15% 1.49%
4 49.37% 1.48% 8.39% 1.69%

TABLE III
VOLUME RECOVERY RELATIVE ERRORS

Comp. No. Min Max Mean STD

1 0.46% 4.42% 1.32% 0.58%
2 0.47% 4.30% 1.34% 0.59%
3 0.49% 4.81% 1.36% 0.64%
4 1.41% 5.51% 2.36% 0.57%

to produce the volumes, meaning that the L2 error values are
equivalent to a rescaled evaluation of the data fit term in eq.
(6). As the data fit term is an explicit part of the differentiation
step it is expected that the errors in volume recovery should be
smaller than those for flow reconstruction.

Similarly Table III shows the same Euclidean norm error
percentages as applied to the volumes recovered. As expected
from the qualitative behaviour in Fig. 4, the errors shown in
these tables are higher and more varied for the flow recovery
than for the volume recovery.

The computation time for these flows is more encouraging.
Although the initial differentiation step took 0.52 seconds (s)
this dropped to between 113 and 198 ms for all subsequent
runs. Similarly the time taken to normalise the differentiated
values, converting to volumes and flows, was initially 49 ms but
dropped to between 3.8 and 6.9 ms. This implies that clinicians
could be presented with visual representations of a period of re-
gional ventilation within approximately 0.2 s of post processing
time.

B. Parameter Recovery

In each test the reconstructed volumes and flows were used
to generate the system matrix shown in eq. (8), which in turn
was used to generate recovered ventilation parameters through
eq. (9). Both the simulated parameters and the distribution of
the recovered parameters are shown in Fig. 5.

Elastance values were generally recovered much more ac-
curately than compartmental resistance values, while the resis-
tance values were harder to recover in compartments with higher
elastance. In order to compare the recovery of these different pa-
rameters a time constant was calculated for each compartment
as the total recovered series resistance leading to a compart-
ment, including tracheal resistance, divided by the recovered
compartmental elastance. These time parameters have clinical
relevance, as time constant ratios of flow rate to lung volume
can be used as a measure of lung health [47]. The distribution
of these recovered time constants is shown in Table IV. In each
compartment the value the mean overestimation of this time

Fig. 5. Chart showing the true simulated values (bars) and the distri-
bution of their recovered values (lines). The vertical lines are marked at
the minimum, maximum and mean values recovered as well as points
two standard deviations from the mean.

TABLE IV
TIME CONSTANT RECOVERY ERRORS

Comp. No. True Value Mean Error STD(%)

1 1.50 1.64 0.14 3.68%
2 2.50 2.64 0.14 2.83%
3 0.67 0.84 0.17 8.56%
4 0.60 0.75 0.15 10.52%

constant was between 0.14–0.17 s with a standard deviation in
the error of less than 11%. While values were not recovered
perfectly, the near constant bias in time constant recovery may
allow the compartments relative health to be compared.

The low error ranges for elastance recovery are also encour-
aging as they may be easily converted to the more common
measure of compliance, currently used for guiding recruitment
manoeuvres. These regional measures were again recoverable
within a short time, taking between 0.3 ms and 6.6 ms to com-
pute after the flows had been recovered. This implies that the
parameter recovery technique is a natural choice for extending
the volume and flow recovery in a clinical setting.

C. Control

Volumes and flows were generated under the action of
the sinusoidal pressure profile described above with a simu-
lated increase in pressure at t = 20 s using the techniques in
Section II-A. The pressure patterns for first 5 and last 2 breaths
were retained to be used in the new pressure profile. The venti-
lator pressure and compartmental volumes taken at t = 15 s as
initial condition for H1 control, while the pressure and volumes
taken at t = 25 s were taken as a target for steering.

Fig. 6 shows both the original smoothed PEEP step as de-
scribed above and the minimised H1 pressure profile for this
increase in PEEP. Fig. 7 shows the responses of the system to
both PEEP increases.

As expected the initial five and final two breaths proceed
exactly the same under the action of both pressure profiles. The
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Fig. 6. Original (solid line) and minimised H 1 (dotted line) pressure
profile including an increase in PEEP level.

only differences are found during the controlled section. In the
controlled case, the rate of pressure increase is slower, while the
flow spikes visible for the original pressure profile are smoothed
out reducing stress on the lungs.

The process of predicting a flow for the given pressure pro-
file, obtaining initial and target conditions, generating a control
and recombining to give a minimised H1 pressure profile took
10.9 ms. This demonstrates that by combining regional infor-
mation with control theory, it may be possible to derive patient
specific pressure controls that attain the same results as classical
techniques while reducing risk factors.

IV. DISCUSSION

A. Ventilation Modelling and Recovery

In the interests of demonstrating the feasibility of this work-
flow the ODE ventilation model has been used for forward
modelling, parameter recovery and control, this is an example
of an inverse crime. Inverse crimes occur when the same model
is used to both generate and invert simulated data [48] leading to
better reconstructions with simulated data as opposed to mea-
sured data. This improvement in reconstructions justifies the
model re-use in this instance. The post processing techniques in
sections Sections II-B to II-D cannot be feasible if they do not
work with the reconstructions provided in this manner. Where
possible, other inverse crimes have been avoided, for example
using the Nopp formulas to generate conductivity values rather
than assuming a perfect linear relationship, or using different
mesh refinements for voltage generation, calculation of the Ja-
cobian and reconstruction.

Use of the ODE model illustrated in Fig. 2 is, in the authors’
opinion, a reasonable simplification of the lung system for the
purpose of recovering regional parameters. The structure of the
lungs can be split into lobes and bronchopulmonary segments
each supplied by a single branch in the bronchial tree mirror-
ing the compartmental structure of the ODE. Segmentation of
imaging down to at least lobe level has been achieved [49]–[51],

raising the possibility of obtaining values for compartments in
the ODE model corresponding to lung lobes. This motivates
the choice of a four compartment model for our tests as each
compartment can then correspond to a physiologically distinct
region supplied by airways at the same bifurcation level of the
lung’s dyadic tree structure, where two lobes of the right lung
are treated as one functional unit.

This model also allows the production of numeric and vi-
sual representations of the distribution of regional ventilation
and of parameters such as regional elastance. These provide ad-
ditional information on the degree of regional inhomogeneity
present in the lung. As lung inhomogeneity is considered a risk
factor for VILI [6], [7], this information could be of use to clin-
icians in understanding whether therapeutic intervention, such
as recruitment manoeuvres, variation in PEEP levels or prone
positioning, are effective at decreasing regional lung inhomo-
geneity and therefore increasing lung protection. Similarly this
information could help identify when mechanical ventilation
remains injurious and, in the more severe forms, lung rest and
extracorporeal support should be sought as a way to achieve
lung protection [52]. Nevertheless the qualitative fidelity of the
ODE systems, and recovered parameters, compared to more
complex models must be verified before implementation in a
clinical setting.

Another source of difficulty with this model is the current
trend in the EIT community to use what is known as 2.5D differ-
ence imaging. This is where reconstructions are performed using
a single plane of electrodes modelled on an extruded 2D con-
tour, ensuring the volume does not vary along the caudal-distal
axis. To resolve physiologically meaningful compartments, and
calibrate the recovered air volumes, 3D imaging must be per-
formed [53] with some way of estimating a constant of integra-
tion between compartmental flows and volumes. As shown in
Section II-B it is possible to obtain a constant of proportionality
from time derivative information but obtaining true values of air
volume requires more information. A first approximation to this
may be acquired by taking 1 frame of absolute EIT, informed
with mutual information from MRI or CT [54], followed by dif-
ference imaging. Hence, EIT noise distributions are modelled
using difference imaging in this paper

B. Parameter Recovery

The ventilation parameters used in this paper are chosen to
ensure the existence of a unique solution to the system in eq.
(8). It can be proved that for periodic pressure profiles the sys-
tem matrix has linearly independent columns so long as the
parameter pairs (Ri,Ei) are not all multiples of each other. The
proof relies on treating the non-zero sections of each matrix
column as a function that can be Fourier decomposed. As many
of these sections are constructed from volumes, they must be
non-negative and have a non-trivial zero frequency component,
which will not be present in the flow columns. Due to the struc-
ture of the matrix and the repeated presence of the top level flow,
for the matrix to drop in rank the top level flow must be a linear
multiple of each compartmental flow. Choosing compartments
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Fig. 7. Flow (left) and volume (right) responses of the system to both a step increase in pressure (solid lines) and minimised H 1 control pressure
(dashed line)

to have linearly independent sets of R and E ensures recoverable
parameters.

This means that, although there is not always a unique solu-
tion to eq. (8), it is always possible to find the regional elastance
values and obtain ratios between resistances in different com-
partments, using any clinically acceptable, periodic pressure
profile. It also means that in the most dangerous situations for
lung health, where successive compartments are out of phase
with each other, there will always be a unique least squares
solution.

Once the system matrix is built from reconstructed flows, the
problem in eq. (8) becomes a total least squares problem (TLS).
TLS problems arise where a least squares solution is needed to
a system with unknown errors in both the measured data vector
and the system matrix [55]. Unconstrained solutions to this type
of problem can be computed using singular value decomposi-
tions. However, applying these techniques to the problem in eq.
(8) was found to produce larger errors in reconstructed values.
This is possibly due to the block structure and sparsity of the
system matrix in this case. It is possible that the use of con-
strained total least squares (CTLS) techniques [56], [57] may
improve the parameter recovery. However, as it is unclear how
the errors in the matrix would be distributed, implementation of
these techniques was deemed beyond the scope of this paper.

C. Control

The first step in designing a control using techniques in Sec-
tion II-D is to test if the system is controllable by taking the
rank of the matrix K shown in eq. (13). Computing the rank of
a matrix is an ill-posed operation especially when the dimension
is increased by having large numbers of compartments. Instead
it is more stable to examine the equivalent matrix

[b̂|Db̂| · · · |Dn−1 b̂], (22)

where b̂ is the pressure transfer vector in the basis of eigen-
vectors and D is a diagonal matrix of eigenvalues for the sys-

tem [26]. From this it can be seen that the rank will drop in
the case of a repeated eigenvalue in D or a zero entry in b̂.
In the case of zero tracheal resistance this only happens when
compartmental parameter pairs (Ri,Ei) are multiples of each
other. The presence of tracheal resistance introduces a rank one
perturbation to the eigenvalues of the system making such a
determination more complex. Rank one perturbation theory al-
lows conditions to be defined on the separation of eigenvalues
in the unperturbed system to guarantee distinct eigenvalues for
the perturbed system [58]. Using these methods it can be shown
that a drop in rank only occurs when the parameters for differ-
ent compartments are close to being multiples of each other [59,
Chapter 4]. This causes these compartments to be ventilated in
phase with each other allowing them to be treated as one larger
compartment to be controlled. Therefore, in these cases, the
ODE model can be reformulated to reduce the number of com-
partments and the same minimisation techniques can be used on
the new system.

While the controllability of these systems is encouraging it
does not imply that a feasible control can be created to reach any
desired ventilation state directly. Unphysical changes in pres-
sure, including large negative pressures, were observed when
targeting unstable states of ventilation. This is due to the lack of
constraints on the pressure in this formulation of control theory.
While the H1 minimisation process produces a smoother pres-
sure profile than any that attains the same result, more advanced
constrained control or optimisation is needed to compute the
best control for any given situation.

A similar argument may be made for problems with auto-
mated feedback control. Decreasing the time between initial
condition and target can result in high temporal gradients in
pressure so completely controlling the volumes from one time
step to the next is currently infeasible. Similarly extending the
time period used for control resulted in sections of constant
pressure for increasing lengths of time. These were followed by
the same waveform in order to attain the required target state.
This raises the concept of a natural time scale for changes to be
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applied. Ideally an optimisation procedure will be developed to
find best states and time periods to steer towards.

It is also important to note that control in this case uses
a linearisation of a non-linear system. As airways open dur-
ing a control procedure, the compliance of under-recruited
compartments will change [29]. This will make the control less
accurate the longer process takes and the further the target is
from the initial conditions. However, it still offers potential im-
provements in cases such as recruitment manoeuvres.

V. CONCLUSION

The care of mechanically ventilated patients benefits greatly
from improvements in both monitoring techniques and system-
atic methods of correctly setting the ventilator. Current ventila-
tion strategies rely on global measures of lung function or the
average responses of large groups. Safe, robust and repeatable
imaging techniques available at the bedside raise the possibility
of tailoring care to regional lung changes and the associated
changes in a patient’s requirements.

We investigate three post processing procedures for EIT to
improve the ability of the imaging modality to usefully inform
clinicians. Through these procedures both regional ventilation
and ventilation parameters may be estimated for a linearisation
of the lung system. This parameter estimation can be attained
without modifying the pressure profile used for ventilation, re-
ducing the negative impacts of monitoring.

As well as informing care this allows construction of mod-
ifications to existing recruitment manoeuvres through control
theory. These minimal H1 controls are designed to attain the
same results while reducing the risks of high gradients in pres-
sure or large flow rates.

As the combined time for calculating volumes, parameters
and controls is fractions of a second it is feasible to attempt
personalised control of ventilation for mechanically ventilated
patients through the use of EIT.
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