
Towards Scientific Incident Response

Jonathan M. Spring1(B) and David Pym1,2

1 University College London, Gower Street, London, UK
jspring@cs.ucl.ac.uk, d.pym@ucl.ac.uk

2 Alan Turing Institute, 96 Euston Road, London, UK

Abstract. A scientific incident analysis is one with a methodical, justifi-
able approach to the human decision-making process. Incident analysis is AQ1

a good target for additional rigor because it is the most human-intensive
part of incident response. Our goal is to provide the tools necessary AQ2

for specifying precisely the reasoning process in incident analysis. Such
tools are lacking, and are a necessary (though not sufficient) compo-
nent of a more scientific analysis process. To reach this goal, we adapt
tools from program verification that can capture and test abductive rea-
soning. As Charles Peirce coined the term in 1900, “Abduction is the
process of forming an explanatory hypothesis. It is the only logical oper-
ation which introduces any new idea.” We reference canonical examples
as paradigms of decision-making during analysis. With these examples
in mind, we design a logic capable of expressing decision-making during
incident analysis. The result is that we can express, in machine-readable
and precise language, the abductive hypotheses than an analyst makes,
and the results of evaluating them. This result is beneficial because it
opens up the opportunity of genuinely comparing analyst processes with-
out revealing sensitive system details, as well as opening an opportunity
towards improved decision-support via limited automation.

Keywords: Incident response · Digital forensics
Science of security · Mathematical modelling
Logical modelling · Intrusion analysis

1 Introduction and Motivation

Incident analysis is the central feature of incident response and digital forensics.
Incident response and digital forensics overlap largely in their modes of analysis.
Otherwise, they have different goals, and are done by different sorts of orga-
nizations. One might take a broad view of digital forensics and say it includes
incident response, but realistically the term “digital forensics” has too many
law-enforcement connotations for this broad usage to quite work. We focus on
incident analysis, which, as defined by [28], includes the evidence collection, anal-
ysis, and reporting phases of our topic, whether that topic is incident response
or digital forensic investigation.

c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-030-01554-1_23

A
u

th
o

r
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01554-1_23&domain=pdf
http://orcid.org/0000-0001-9356-219X

2 J. M. Spring and D. Pym

Incident analysis is part of the study of what has occurred on computers
and computer networks. An incident is an event that violates some security
policy [26]; that policy may be but is not necessarily a law. We treat incident
analysis as akin to scientific investigation. The analyst has a hypothetical model
about how the incident occurred, and tests it by gathering evidence and adjusting
the model based on the results. This is not the naive binary hypothesis testing
of a high-school science lab. Rather, it is building models for a purpose based
on empirical, structured observations of the world—the conception of science of
security argued for by [29].

We inform our logic development with examples as well as the incident
response standards review by [28]. For example, we draw inspiration from [30].
Since [30] is a description of an incident analyst tracking foreign spies through
computer networks, it is a rather obvious paradigmatic case. Another, less obvi-
ous, example of incident analysis is Assistant for Randomized Monitoring Over
Routes (ARMOR) [31]. ARMOR represents a kind of ongoing incident analysis,
though of physical security. One reason [31] is relevant is that it is deployed
decision-making. Although the form of our model is different, deployability is
a major consideration of our design choices. Our working definition of incident
analysis, adapting from that of ‘investigation’ in [6, p. 244], is:

Incident analysis: a process by an agent to build a model and explana-
tion of the phenomenon responsible for a security violation. The pro-
cess is forensic (as distinguished from engineering or design which are
forward-looking, though results should inform engineering). The process
will include collection of evidence; discovery of interrelated mechanisms;
investigative heuristics and methodology ; and reporting results. Different
incident analyses may have different goals, such as fixing the impacted
system, attributing the attack, or legal prosecution.

Italicized terms may need their own definitions in future work. However, we
are not seeking an ontology, and shall not elaborate them here.

Incident analysis is a key aspect of incident response. In turn, incident
response is a crucial aspect of information security broadly. One essential aspect
of infosec is feedback from incidents to ‘preparation’ and ‘protection’ [1].

The National Institute of Standards and Technology (NIST) guide on foren-
sics in incident response recommends analysts use “a methodical approach” [14,
p. 3-8]. However, nowhere does NIST provide such a methodical approach. This
is a general failing. A recent review of published incident response documents and
standards found that the literature lacked this middle-level of description [28].
Fine-grained, type-this-on-the-keyboard advice is available. And high-level, do-
these-management-practices advice is available. But published guidance on a
methodical approach to incident analysis is lacking, despite the central impor-
tance of the topic to cyber security.

We will contribute towards a methodical approach to incident analysis by
building a logical language for analysts to document their reasoning process
precisely. This contribution advances towards scientific incident analysis because

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 3

it improves interpretation of evidence. A logic improves interpretation because
it enables communication and repetition of the interpretive process, allowing for
iterative improvement and collaboration.

To make use of our logic for improved decision-making, we also need to under-
stand human cognition and how we think about thinking. [11] makes progress
on this topic, applying the approach by [10] for reducing the impact of cognitive
biases in analysis to computer network incident analysis. Our goal is to combine
these aspects and provide logical tools such that steps of interpretation can be
made explicit and the gaps in our knowledge identified more easily.

The paper continues as follows. Section 2 develops a new logic as a tool to
express reasoning patterns within incident analysis. Section 3 demonstrates how
to apply the logic by an example construction to express and elaborate the kill
chain model from [12]. Section 4 lays out benefits to decision-making in security
and future work.

2 Logic Definitions

In this section, we build a logical system as a tool for expressing paradigmatic
features of incident analysis. These features include abductive hypothesis gen-
eration, evidence-based evaluation of hypothetical explanations, and reasoning
about technical events. Section 3 will use the tools we build here to further elab-
orate our logic through an example.

A necessary part of a logical system is its model. A model, in this logic sense,
is a mathematical structure with which we can interpret a proposition, and then
determine whether it is satisfied or not. This sense is quite far from a scientific
model. However, as [22] argues, a logic will be most effective when its logic
model aligns with the salient features of a scientific model of the represented
phenomenon. Therefore, we develop logical tools with the purpose of incident
analysis in mind at every step. The phenomena of interest are violations of
security policy; that is, a resultant state of a computer system. We will represent
these as histories, composed of series of states of the computer.

We make a variety of choices to adapt the logic to incident analysis. Some
are simple: incident analysis is largely about past events, so we include both
past-tense and future-tense temporal operators. Others are more subtle. For
example, we define a separation of network, storage, and processor resources
at a basic level because practitioners think about, monitor, and defend these
things quite differently. We wanted the logic to reflect this reality deeply. And
some of our choices have an eye towards pragmatics of usability and deployable
decision-making. As [18] describes, the road from formal logic to operational
implementation is long. However, we include the ‘and, separately’ operator in
our logic, which supports composable reasoning and an eye towards scalability.

A
u

th
o

r
P

ro
o

f

4 J. M. Spring and D. Pym

2.1 Expressions

Our definition of expressions is essentially the same as [13] and [4]. An expression
can be an integer, an atom, or a variable.

E ::= x Variable
| 37 Integer
| nil nil
| a atom
| . . .

The open-ended definition of expressions allows for additional expressions so
long as they can be interpreted in the semantic domain specified.

Our semantic domains are values, addresses, and content, analogous to and
slightly more general than the values, stacks, and heaps used in [4]:

V al = Int ∪Atoms ∪ Loc A = V ar ⇀fin V al C = Loc ⇀fin V al × V al

where Loc = {�, . . . } is an infinite set of locations, the term V ar = {x, y, . . . } is
a set of variables, Atoms = {nil, a, . . . } is the set of atoms, and finite partial
functions are represented by ⇀fin. Elements of addresses and content are a ∈ A
and c ∈ C, respectively. As is customary for stack variables, we do not provide
an explicit operation for allocating address variables.

The domain of an element of addresses is dom (a) for a ∈ A. Similarly, dom (c)
is the domain for an element of contents. Note that English grammar here may
be confusing. An address a is a set of mappings from variables to values, not a
singleton. Likewise, c is a set of content mappings, not a singleton.

Interpretation is independent of the particular computer being represented,
analogous to heap-independent interpretations in [4]: �E� a ∈ V al, where dom (a)
includes the free variables of E.

2.2 Basics and Syntax

We will make use of some familiar classical propositional connectives, some per-
haps less-familiar temporal connectives, and a ‘spatial’ connective from a more
recent logic. The familiar classical connectives are ‘if, then’, ‘and’, ‘or’, and ‘not’
and the familiar first-order quantifiers are ‘there exists’ and ‘for all’.

Before marching on with definitions, we briefly describe the intention of the
less common operators which we use. The operators ‘until’ and ‘since’ are both
temporal, whose definition we take from [17]. ‘Until’ is about the future, and
‘since’ is about the past, but otherwise they are similar. We have ‘φ until ψ’
when the first formula φ is true now and into the future, for at least enough
time such that the second formula becomes true at some time later. It is what
one might expect when asking “Hold this cup until I get back.” Though in our
logic we will need to be explicit about the social assumption, in classical logic, of
“If I return, then give me the cup.” ‘Since’ is similar. We have ‘φ since ψ’ when
at some point in the past ψ occurred, and φ has been occurring from then up

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 5

through to the present. Again, as one might expect from “I have been sad since
my cup broke.”

The final less-familiar connective we use is ∗ for ‘and, separately’. Usual, clas-
sical ‘and’ is collapsible. That is, “I have five coins and I have five coins” is, in
classical logic, the same as “I have five coins.” The connective ‘and, separately’
is not collapsible. We take this connective from O’Hearn and Pym’s logic of
bunched implications (BI) [8,19,23], a non-classical (‘substructural’) logic with
a semantics that can be interpreted in terms of the composition and comparison
of resources and which forms the basis for Separation Logic [13,24]. Separation
Logic is a specific theory of BI for handling memory allocation—our direct start-
ing point in this section. Readers may see [22] for an accessible introduction to
Separation Logic.

Computers, like coins, are resources. We use Separation Logic because we
want to be able to express “A computer is compromised and, separately, a com-
puter is compromised” to be reasoned with as two computers are compromised,
for example. The classical ‘and’ would lose this information that two computers
are compromised, because the formula would collapse.

Following these intuitions, logical formulae are constructed inductively:

φ, ψ ::= α Atomic formulae
| ⊥ Falsity
| φ ⇒ ψ Material implication
| emp Empty content
| ∃x.φ Existential quantification
| φUψ TemporalUntil
| φSψ Temporal Since
| φ ∗ ψ Spatial conjunction

Atomic formulae include equality and points-to relations, and predicates.

α ::= E = E′ Equality
| E �→ E1, E2 Points to
| P ((V al1, E1) , (V al2, E2)) Relational predicate
| . . .

In [13], points-to is defined as a three-place relation, E �→ E1, E2. [4] contains
both a simple points-to relation, E �→ E′ and a higher-order concept of lists that
treats the properties of lists as primary, rather than their contents. Our goal is
not to analyze details of doubly-linked lists or higher-order lists. Our syntax
does not treat lists directly. However, this three-place syntax provides a way
to separate a large data element into arbitrary chunks while preserving their
order. This works for memory, files on disk, and network packets. An example of
why this is useful: we can represent malware analysis techniques, such as segment
hashing, by representing properties of a connected series of expressions. However,
our intention is not to be exhaustively faithful to the file-system representation.
If the segments of a large file are not of interest, we may elide the details of the
file system block size and the linked list that actually composes the file contents.

A
u

th
o

r
P

ro
o

f

6 J. M. Spring and D. Pym

The usual classical and temporal symbols are defined from available formulae:

– negation; i.e., ‘not’, is ¬φ def= φ ⇒ ⊥
– truth is simply not false; i.e.,
 def= ¬⊥
– conjunction; i.e., ‘and’ is customarily φ ∨ ψ def= (¬φ) ⇒ ψ

– disjunction; i.e., ‘or’ is thus φ ∧ ψ def= ¬ (¬φ ∨ ¬ψ)
– ‘for all’ is in terms of the existential, ∀x.φ def= ¬∃x.¬φ
– ‘at least once in the future’ relates to until, φ

def=
Uφ
– ‘henceforth’ is φ

def= ¬ ¬φ
– analogously, ‘at least once in the past’ is φ

def=
Sφ
– and ‘has always been’ is φ

def= ¬ ¬φ.

We follow [15], in that we do not have a simple ‘next’ temporal operator.
For various reasons [15] lays out, and we feel a choice that is validated by how
incident analysts reason in our case studies, we primarily care about observable
changes, not the precise sequence that brings those changes about.

2.3 Model

Our model is designed to support incident response reasoning by embedding the
most important objects of analysis as the basis of the model. We keep the three
salient types of computing resources separate, and index by time. Each resource
is a partial monoid with composition operator and unit.

(RM , ·M , eM) for processor and RAM (M for memory)
(RD, ·D, eD) for file storage (D for disk)
(RN , ·N , eN) for network bandwidth (N for network)

where, for i ∈ {M,D,N}, Ri is a set of resource elements of the given type,
·i : Ri ×Ri ⇀ Ri is a partial function operating on resources of the given type,
and ei is the unit element of ·i such that for all r ∈ Ri it is the case that
r ·i ei = r = ei ·i r.

More concretely, each RM , RD, RN is composed of (address, content) pairs
analogous to (stack, heap) pairs. We define m::=s, h for m ∈ RM , d::=δ, β for
d ∈ RD, and n::=κ, υ for n ∈ RN . These sub-parts of the resources are proper
subsets of the address and content defined above. The fact that s ∈ S with S ⊂ A
and h ∈ H with H ⊂ C makes the usual stack-heap model of separation logic
somehow contained in our address-content model. Further, we define δ ∈ N for
N ⊂ A and β ∈ B for B ⊂ C (for inodes and file blocks). For network host
addresses and data units (i.e., packets), κ ∈ K for K ⊂ A and υ ∈ U for U ⊂ C.

Formally, these three resource monoids could be considered as one monoid
R = (R, ·,E) where R = RM � RD � RN (the disjoint union of the resources),
composition ·, · : R × R → R such that

· (r1, r2) ::=

{
r1 ·i r2 if r1, r2 ∈ Ri

undefined otherwise

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 7

and E = {eM , eD, eN}
where E · r::=

{⋃
e∈E r ·i e = {r} =

⋃
e∈E e ·i r if r ∈ Ri

undefined otherwise
The definitions of · and a set of units are adapted from [3, Definition 2.3].

These definitions will be used to describe the state of a computer or a computer
network at a given time as a composition of different programs, files, and network
activity.

Incident analysis needs a notion of time and changes. Therefore, we adopt a
linear time model composed of a sequence of states. Each state is represented
by an element r ∈ R. We define a history H ∈ H as a ordered finite set

H::=
{
r1, r2, . . . , rt, . . . , rT

}
,

with T ∈ N. (H, t) uniquely identifies the state rt ∈ R. The length of a history
is |H| = T . There is no notion of absolute time or a “wall clock.” The time T
indicates a sequence without any claims about the time between transitions.

History Monoid. We define a monoid, H = (H (R) , ◦, e) where H is the set
of histories H (defined above) that can be constructed using a given resource
monoid R; ◦ : H × H → H; unit e to be the empty history with |e| = 0. More
specifically, we define ◦ as:

(H1 ◦H2, t) ::=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(rt
1 · rt

2, t) for rt
1 ∈ H1 and rt

2 ∈ H2 if |H1| = |H2|
(H2, t) ifH1 ≺ H2

(H1, t) ifH2 ≺ H1

undefined otherwise

Here H1 ≺ H2 indicates that one history is contained in the other. We define
four conditions that must all be met for this to hold. Specifically, H1 ≺ H2 iff

1. |H1| < |H2|, where |H1| = T , |H2| = T ′; and
2. for all rt

1 ∈ H1, with t ∈ T , there exists some rt′
2 ∈ H2 with t′ ∈ T ′ such that

rt
1 = rt′

2 and t ≤ t′; and
3. for all rt′

2 ∈ H2 and given any rt
1, r

x
1 in H1 with t, x ∈ T , it is the case that

rt′
2 = rt

1 and rt′
2 = rx

1 iff t = x; and
4. for all rt

1, r
x
1 in H1 with t, x ∈ T such that t < x, it is the case that, for

rt′
2 , r

x′
2 ∈ H2 with t′, x′ ∈ T ′, we have rt

1 = rt′
2 and rx

1 = rx′
2 iff t′ < x′.

The intuition for these requirements as expressing the concept of “contained in”
is as follows. A smaller history is contained in a larger one. All the events of the
smaller history appear in the larger one, in the same relative ordering. The only
change permitted is that new events are inserted into the larger history; such
inserted events can be interleaved in any way.

The unit e as the empty history behaves as expected.

H ◦ e = H = e ◦H
Proof of identity by cases. We have|e| = 0, so either

A
u

th
o

r
P

ro
o

f

8 J. M. Spring and D. Pym

1. |H| = 0, that is H is e, thus we have to prove e ◦ e = e
(a) This is true. We follow rt::=rt

1 · rt
2. However, T = 0 so there are no

elements to compose. The result is the history of length 0, namely, e.
2. |H| ≥ 1

(a) Requirement 1 for ≺ holds (0 < 1).
(b) Requirement 2 holds vacuously (all rt

1 ∈ e is ∅).
(c) Requirement 3 holds vacuously, without rt

1, r
x
1 to compare.

(d) Requirement 4 holds vacuously, without rt
1, r

x
1 to compare.

One might think the unit for ◦ could be the history containing just the unit
element E (recall E = {eM , eD, eN}). However, if defined thus, requirement 2
for ≺ might fail if there is no element of H in H ◦ e such that (H, t) = E. Then
H ◦e could be undefined for |H| > 1, in which case H ◦e = H = e◦H would not
hold as required. Every history could start with the unit element to make this
true by construction, but that seems unnatural. Therefore the unit of ◦ should
be the empty history |e| = 0.

A history will be used to represent a hypothesis for the series of events
and changes to the resources of a computer system during the course of the
incident. Combining histories can represent, for example, combining explanations
of simultaneous events on two different locations on the network.

2.4 Semantics

The semantics of the atomic expressions are many-sorted operations. To unfold
the truth value of an expression, recall (H, t) def= [(st, ht) , (δt, βt) , (κt, υt)].

[(st, ht) , (δt, βt) , (κt, υt)] |= E = E′ iff

⎧⎪⎨
⎪⎩

�E� st = �E′� st

�E� δt = �E′� δt

�E�κt = �E′�κt

We can abbreviate this as

H, t |= E = E′ iff �E� at = �E′� at

Because these three resources are disjoint (namely S ⊂ A;N ⊂ A;K ⊂ A and
S ∩ N = S ∩ K = N ∩ K = ∅), only one of the three interpretations will be valid.
Namely, only one of �E� s or �E� δ or �E�κ can hold for any E, or they are
equivalent. Only one exists because for �E� a to be interpretable, dom (a) must
include the free variables of E. The domains of s, δ, κ are disjoint by definition.
If there are no free variables in E, then �E� s = �E� δ = �E�κ.

Similarly, points-to can be defined over the three disjoint parts of the model
at a given time, and then abbreviated in terms of elements of A and C:

[(st, ht) , (δt, βt) , (κt, υt)] |= E �→ E1, E2

iff

⎧⎪⎨
⎪⎩
ht (�E� st) = 〈�E1� s

t, �E2� s
t〉 {�E� st} = dom (ht)

βt (�E� δt) = 〈�E1� δ
t, �E2� δ

t〉 {�E� δt} = dom (βt)
υt (�E�κt) = 〈�E1�κ

t, �E2�κ
t〉 {�E�κt} = dom (υt)

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 9

which we abbreviate as

H, t |= E �→ E1, E2iff
{
�E� at

}
= dom

(
ct

)
and ct

(
�E� at

)
=

〈
�E1� a

t, �E2� a
t
〉

The element emp actually represents a set of three related elements:{
M
emp,

D
emp,

N
emp

}
. The semantics for emp is defined as

[(st, ht) , (δt, βt) , (κt, υt)] |= M
emp iff ht = []

[(st, ht) , (δt, βt) , (κt, υt)] |= D
emp iff βt = []

[(st, ht) , (δt, βt) , (κt, υt)] |= N
emp iff υt = []

H, t |= emp iff
M
emp and

D
emp and

N
emp

Here, ht = [], βt = [], and υt = [], represent the empty heap, empty file
system, and empty network, respectively.

The semantics for a relational predicate, P , is given by

H, t |= P ((V al1, E1) , (V al2, E2)) iff (H, t) ∈ V [P ((V al1, E1) , (V al2, E2))]

Here V : A → P (States) is the valuation function from the set A of atoms of
P ((V al1, E1) , (V al2, E2)) to the powerset of possible states of the form (H, t).

The other semantic clauses are as follows:

H, t |= φ ⇒ ψ iff if H, t |= φ then H, t |= ψ
H, t |= ∃x.φ iff for some v ∈ V al. [a|x �→ v] , c |= φ
H, t |= φUψ iff for some i ∈ T with i ≥ t and (H, i) |= ψ such that

for all j ∈ T with t ≤ j < i it is the case (H, j) |= φ
H, t |= φSψ iff for some i ∈ T with i ≤ t and (H, i) |= ψ such that

for all j ∈ T with i < j ≤ t it is the case (H, j) |= φ
H, t |= φ ∗ ψ iff for some H1,H2 such that H1#H2 and H1 ◦H2 = H

where H1, t |= φ and H2, t |= ψ

Here H1#H2 indicates the histories are pointwise disjoint. H1#H2 is true if and
only if the following conditions hold:

1. |H1| = |H2| = T ; and
2. For all [(st

1, h
t
1) , (δ

t
1, β

t
1) , (κ

t
1, υ

t
1)] ∈ H1 and [(st

2, h
t
2) , (δ

t
2, β

t
2) , (κ

t
2, υ

t
2)] ∈ H2

it is the case that, for all t ∈ T :
(a) dom (ht

1) ∩ dom (ht
2) = ∅ and

(b) dom (βt
1) ∩ dom (βt

2) = ∅ and
(c) dom (υt

1) ∩ dom (υt
2) = ∅.

2.5 Abduction

These tools will allow us to capture abduction.Abduction would naturally be
grouped into a trio with deduction and induction. These terms have long, prob-
lematic histories of usage. Deduction requires a proof theory, and because one

A
u

th
o

r
P

ro
o

f

10 J. M. Spring and D. Pym

can justifiably define different proof theories for different purposes [21], ‘deduc-
tion’ is not just one thing. But generally ‘deduction’ captures the reasoning from
premises to conclusions following explicit rules. We discuss proof theory briefly
in Sect. 2.6. ‘Induction’ has received voluminous attention, since Hume in the
1740 s [9]. It roughly means concluding that because something has been the
case before, it will be again. A more fruitful discussion might be had under the
topic of how we generalize from what we know. Generalization methods will
generate the heuristics we need for the logic. However, we leave generalization
aside for now; there are other discussions of effective methods (see, e.g., [29]).

Abduction is neither deduction nor induction. Abduction is the generation
of an explanation, which can then be evaluated against available evidence [2,
CP 5.171]. More formally, abduction asks what (minimal) formula needs to be
added to a proposition such that it will be satisfied. As [4] demonstrates, abduc-
tion is automatable as long as the problem space is constrained, checking the
validity of hypothetical additions is scalable, and human heuristics for generat-
ing additions can be encoded in the logic. Attack ontologies will serve as these
heuristics for incident analysis. We will endeavor to represent one common attack
ontology—the intrusion kill chain [12]—in our logic. We will also demonstrate
that we can link existing knowledge bases, such as Snort rules, into this struc-
ture. Therefore, we are confident a system could be built that instrumented a
computer network, ingested security-relevant information, and, given a security
incident, used our logic to assist in the process of abducing explanations of how
an adversary penetrated the network. Given this decision support, we would then
imagine testing and improving different abduction rules in a scientific manner.

2.6 On the Metatheory of the Security Incident Analysis Logic

Generally, when setting up and explaining a system of logic, one gives a language
(of propositions) and a semantics specified by a class of models together with a
satisfaction relation which specifies which propositions are true in which parts of
an arbitrary model. Typically, one also gives a proof system—that is, a collection
of inference rules—which determines which propositions are provable. The first
meta-theoretic challenge is then to establish that the provable things are also
true in the models (soundness) and that there is model for which the notion of
truth specified in the semantics coincides with the notion of provability specified
by the inference rules (completeness). This, together with other metatheoretic
analyses, is what assures us that a logic makes good sense.

In this section, we have described a logic for analysing security incidents.
We have defined the logic by giving its propositional language together with a
semantics given by a specific model together with a satisfaction relation which
determines which propositions are true in which parts of the given model.

So, given that we haven’t done all the usual work, why are we confident
that the logic is a good one? Although the logic we have defined may look quite
exotic, it is, in fact, based on a combination of some quite well-understood con-
structions together with a specific concrete model. In this respect, its definition

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 11

Fig. 1. The intrusion kill chain, as explained by [12]. We will add more detail to this
attack ontology by specifying certain aspects in our incident analysis logic.

somewhat resembles that of the logic from which it draws much inspiration,
namely Separation Logic [4,23].

In short, for general mathematical reasons about how logics are constructed,
we can be confident that the logic will work properly in the established senses.

3 A Worked Example

The “kill chain” was introduced by Lockheed Martin to explain an abstract
pattern they observed in attacks targeting their organization [12]. It is a useful
model of computer network attacks, because it helps inform the incident analyst
about expected sorts of activities, against what sorts of entities, and their orga-
nization. The abstract nature of the kill chain makes it a good example to be
expressed in our logic. It also models a useful unit of incident analysis – a single
attack. Multiple attacks are almost always sequenced to achieve an adversary’s
overall goal during a campaign. Also, most attacks do not succeed, so usually
many attacks occur in parallel. Therefore, modelling a single attack should be a
fruitful example because we can compositionally build on it to analyze security
incidents.

Figure 1 summarizes the steps in the kill chain. The mechanistic expression
of the kill chain elaborated in [27] also guides the expression in our logic.

Our example is to turn this conceptual model of the kill chain into a set
of logical statements of pre- and post-conditions that express useful abduction
heuristics. However, we need to realign the components of the model. Our logic
talks about observable computer activity, and as such the humans implicit in
the kill chain have no place in our logic. Their interests are represented in the
definition of our predicates. For example, the truth values of compromised ()
will depend on the security policy of the defender.

What counts as malware or an exploit is also dependent on the point of
view of the agents. In our logic, we model only software instructions, computer
systems, and bit-strings. These categories are intention-neutral. Malware is a
subclass of software. Strictly, we do not discuss software (as this implies a com-
plete product), but rather just instruction sets—a computation. But we shall not
dictate how malware is classified as such. One benefit of our logic is to express
precisely how an analyst determines how to differentiate malware from benign

A
u

th
o

r
P

ro
o

f

12 J. M. Spring and D. Pym

computations. Descriptions of what behaviors are indicative of malicious versions
of those elements will be contingent.

To define our representation of a computation (i.e., software, functions, etc.),
we adapt Hoare-Floyd logic. Hoare logic is a mainstay of program verification.
It is primarily concerned with statements of the form {φ} C {ψ}, where φ is pre-
conditions, ψ is post-conditions, and C is some specific computation. The goal
of Hoare logic is to verify that ψ can be guaranteed to be satisfied if C executes
in an environment that satisfies φ.

The construction of Hoare logic is about the details of C and whether we can
demonstrate post-conditions given pre-conditions. We are going to turn this on
its head. The incident responder knows a post-condition, usually some security
violation, and wants to understand more about the pre-conditions and software.

The computation C can be described in various levels of detail. This is an
important benefit. Our logic, so defined, permits description of programmatic
details. Malware reverse engineering tries to construct details of an unknown C.
Incident analysis is primarily involved in a higher level task, merely constraining
the observable traces in the system, not how some C made these changes. There-
fore, while knowing malware details is helpful, because it narrows the poten-
tial pre- and post-conditions, we leave discussion of how C works in malware
for future work. Practicing incident responders should reduce attention regards
malicious logic as simply the Hoare triple {φ} C {ψ} where φ and ψ are known.
This approach to knowledge is essentially the programming principle of encap-
sulation. If we know what goes in and what comes out, we do not need to know
how it works to reason about impacts on our system.1

We represent a computer system as σ, taken from the systems known to
the analyst. The full complement of systems is represented by S. At a given
time t, the system is σt. The system σt is shorthand for a cluster of resources
[(st, ht) , (δt, βt) , (κt, υt)]. Therefore, at any given time t, the state of the world
(H, t) might be decomposed into one or more systems σt

1·σt
2·...·σt

n. The concept of
system is therefore merely a shorthand for a cluster of resources that the incident
analyst is interested to treat as a unit of analysis.

Our third and final entity, bit-strings are a type of expression E. Usually
we represent strings in human-readable form. Human-readable strings can be
represented as integers, so the syntax for E remains unchanged. We elide the
details of local encodings (ASCII vs. unicode vs. hexadecimal, big- vs. little-
endian, etc.) that complicate mapping between strings and integers. Notating
strings as strings instead of expressions is merely a syntactic convenience.

Given computations and systems, we can define all the predicates we need:

– compromised (σt)
– hostile (σt)
– malicious (C)
– trusts

(
σt

1, σ
t′
2

)
(often with t = t′)

– match (string1, string2)

– vulnerable (σt, C)

– exploited (σt, C)

1 Any given {φ} C {ψ} for a program will be treated as a hypothesis, and one that
given sufficient evidence might be overturned and modified.

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 13

Compromised, hostile, and malicious have the intuitive meanings. In our
current set of definitions, these have binary truth values. We recognize analysts
may be interested in intermediate values; however, we leave an extension of the
logical definitions to a many-valued logic as future work.

Note that our intention here is that the compromised system is internal, under
defender ownership, whereas a hostile system is on the Internet, not owned by
the defender. Therefore, a different reasonable definition would be to define an
ownership predicate, and define compromised () in terms of hostile and owned.
That is, there are multiple compatible ways to represent relevant concepts. We
select the above as a viable definition, not the only one.

The predicate trusts
(
σt

1, σ
t′
2

)
is a relationship between two systems.

Although it is an oversimplification, for the time being we reduce trust to the
ability to communicate. More specifically, receive information. That is, given an
address a1 ∈ A such that a1 ⊂ σt

1 and address a2 ∈ A such that a2 ⊂ σt
2 and any

expression E, we have trusts
(
σt

1, σ
t′
2

)
just in case that (a1 �→ E) ⇒ (a2 �→ E).

This is an abstract concept of communication. It just says that if some address
in system one points to an expression, somehow eventually an address in system
two comes to point to the same expression. The reason this is trust, and not
chance, is that this relationship holds for any expression. This definition abstracts
away from how that communication is executed. A real security policy may
restrict which expressions are permitted or disallowed. We leave such definitions
of a trust predicate as future work.

The predicate match () represents a common use case in incident analysis and
computer network defense: pattern matching. Tools such as intrusion detection
systems, firewall ACLs, and spam email detection all rely on matching incoming
communications to known patterns of interest. These patterns are signatures or
blacklists of malicious behavior.

We define the semantics of match (string1, string2) such that:[(
st, ht

)
,
(
δt, βt

)
,
(
κt, υt

)] |= match (string1, string2)

just in case

in
([(

st, ht
)
,
(
δt, βt

)
,
(
κt, υt

)]
, string2

) ∧ string1 = string2

The in () predicate holds just in case

�string2� ∈ dom (st) ∨ �string2� ∈ dom (ht) ∨
�string2� ∈ dom (δt) ∨ �string2� ∈ dom (βt) ∨
�string2� ∈ dom (κt) ∨ �string2� ∈ dom (νt)

We may abbreviate this as in (σt, string) or in ((H, t) , string). If we wish to
emphasize a certain type of string only occurs in the contents of files, for example,
we may elide the other variables and write in (βt, string).

A
u

th
o

r
P

ro
o

f

14 J. M. Spring and D. Pym

The equality operator is expression equality as defined in Sect. 2.4, since
strings are expressions. Specifically, if strings are understood as integers, the
expressions will have no free variables and so it becomes the usual integer
equality.

We write σt |= {φ} C {ψ} just in the case that there is some content c ∈ C
and σt |= match (C, c) ⇒ (φ ⇒ ψ). This assumes that the computation C
terminates. But we are primarily concerned with malware that has successfully
run, so this should not cause great trouble. Furthermore, we have defined time
as finite, so termination can always be defined as the state at (H, t) when t = T .

We then propose to define vulnerable (σt, C) to hold iff σt |= ({φ} C {ψ})∧φ∧
malicious (C). The real-world impact if vulnerable (σt, C) holds is a bad security
situation. Such a system can be exploited at the will of the adversary.

To differentiate from the less severe situation where a system is vulnerable
but exploit code is not present, we define σt |= vul (φ). This is a syntactic
convenience; it means only that σt |= φ and that φ is the precondition for the
execution of some malware.

Vulnerability is not the same as exploitation (in the traditional terminology
of computer security). Exploit also requires access, which we can define in terms
of trusting, execution, etc. However, simply the state of having been exploited,
exploited (σt, C), we can define as σt |= ({φ} C {ψ}) ∧malicious (C) ∧ ψ.

3.1 A Logic of the Kill Chain

The kill chain provides the incident analyst with abduction heuristics for abduc-
ing the pre-conditions that lead to observed post-conditions. Thus, we can define
pre- and post-conditions that we expect from each of the seven steps of the kill
chain. If we observe the post-conditions of one, we can abduce its pre-conditions.
We will use the kill chain to provide the basic structure of a single attack. Once
this is complete, we will suggest how the logic can group attacks together into
campaigns. Thirdly, we can specify more specific conditions for kill chain steps
at a level of detail that is compatible with tools available to practicing incident
analysts.

The last step in the kill chain is the first that an incident analyst is likely
to observe. Thus our measure of time starts with t = T , the end of the history,
and works backwards to t = 0. Because we have no absolute notion of time, each
discrete phase moves back time one step. In this way, we will continue to step
backwards through the attack from the end to the beginning:

– Action on Objectives, the final state: the system is under adversary control
• Post-condition (observed): H, t |= Compromised (σt

1) for t = T .
• Pre-condition: C&C, defined as: there is some σ2 such that
H, t |= trusts (σt

1, σ
t
2) ∧ hostile (σt

2) for t = T − 1.

This does not tell the analyst much, but it importantly identifies that there
must be some hostile system that the defender’s system has come to trust.
Unwinding the next steps backwards would shed light on how.

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 15

– Command and control
• Post-condition (observed): C&C, as defined above
• Pre-condition: Installation of malware, that is
σt

1 |=
({
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1

)
, for t = T − 2. The indicates that the

malware will be able to execute indefinitely into the future, not just once.

Where
{
φ̂C1

}
C1

{
ψ̂C1

}
as follows:

ψ̂C1 is a post-condition for the adversary’s objectives, namely at minimum estab-
lishing a communication channel; i.e., H, t |= trusts (σt

1, σ
t
2) for t = T − 1.

Discovery of further unobserved objectives is likely one investigative goal.
φ̂C1 is the pre-conditions for the malware to run. These may simply be the post-

conditions of the installer (i.e., ψ̂C2 , defined below), but may include what
type of system the adversary can or wants to target.

A more flexible definition of the pre-conditions for command and control
would be

({
φ̂C1

}
C1

{
ψ̂C1

})
Uφ, for some φ, instead of

({
φ̂C1

}
C1

{
ψ̂C1

})
.

– Installation of C1 (the main malware) by C2 (a downloader, installer, etc.)
• Post-condition (observed): Installation, captured by
σt

1 |=
{
φ̂C1

}
C1

{
ψ̂C1

}
∧ φ̂C1 , for t = T − 2.

• Pre-condition: Exploitation; i.e., σt
1 |= exploited (σt

1, C2), for t = T − 3.

Note that the installation post-condition is weaker than the command and
control pre-condition. The post-condition is what can be observed, but the pre-
condition is abduced. In this context, the analyst should not assume the malware
will stop, but rather that it will continue running indefinitely. Of course, like all
abductions, this hypothesis might be changed by further observations.

Here
{
φ̂C2

}
C2

{
ψ̂C2

}
is as follows.

ψ̂C2 contains at least that σt
1 |=

({
φ̂C1

}
C1

{
ψ̂C1

})
∧ φ̂C1 , for t = T − 2. I.e.,

system one both stores the malware and is configured such that it can run.
φ̂C2 is a pre-condition containing at least the transfer of data necessary for the

installation; i.e., there is some σ3 such that H, t |= trusts (σt
1, σ

t
3), for t =

T − 4.

– Exploitation of system σ1 by an exploit C3.
• Post-condition (observed): σt

1 |=
{
φ̂C2

}
C2

{
ψ̂C2

}
∧ ψ̂C2 , for t = T − 3.

• Pre-condition: σt
1 |= vulnerable (σt

1, C3), for t = T − 5.

Here
{
φ̂C3

}
C3

{
ψ̂C3

}
is as follows:

ψ̂C3 contains at least σt
1 |=

({
φ̂C2

}
C2

{
ψ̂C2

})
∧ φ̂C2 , for t = T − 4. We say “at

least” here because the exploit may or may not delete itself, for example, so
in general additional traces on the system cannot be specified.

A
u

th
o

r
P

ro
o

f

16 J. M. Spring and D. Pym

φ̂C3 represents the exploited vulnerability and any targeting by the adversary.

– Delivery of an exploit
• Post-condition (observed): There exists content c, c′ ∈ C such that it is

the case σt
1 |= match (C2, c) ∗match (C3, c

′), for t = T − 6.
• Pre-condition: There is σ4 such that (H, t) |= trusts (σt

1, σ
t
4), for t = T−7.

The delivery phase does not assume the exploit runs, just that it reaches the
defender’s system from somewhere. We abduced the existence that system, σ4.

– Weaponization against an observed vulnerability
• Post-condition (explicitly unobserved): This is the creation of the mal-

ware. It also might include all the work the adversary did to discover the
vulnerability, etc.

• Pre-condition: The reconnaissance was successful and the adversary learns
that the system σt

1 |= vul (φ) for some φ, for t = T − 8.

Weaponization is an abduced step. Because it occurs local to the adversary,
the defender almost never observes it, but knows that it must happen.

– Reconnaissance on target systems
• Post-condition: Observable communication between σ5 and σ1. That is,

(H, t) |= trusts (σt
1, σ

t
5)∧ψ, for t = T−9, where ψ represents the informa-

tion communicated. In some situations, it may be possible to learn what
vulnerability is likely communicated, that is ψ ⇒ vul (φ).

• Pre-condition: There exists σ5 such that (H, t) |= trusts (σt
1, σ

t
5), for t =

0. Depending on the communication, it may be possible to put constraints
on what cluster of resources represent σ5.

The adversary-controlled systems σ5, σ4, σ3, σ2 may or may not be the same
real-world system, sharing some combination of resources.

3.2 Composition of Attacks into a Campaign

To model a campaign of many attacks, we would join attacks together by ∗.
This is particularly important because the compromised system σ1 might be
used to conduct further attacks locally. The postconditions of one attack might
be preconditions for other attacks. It’s important that this is ∗ and not ∧, to
count compromised machines and attacks as individuals.

A logical description of botnet operations, such as Zeus, should be possible
by composing aspects and instances of the kill chain. Indeed, [5] accomplish
something similar by stitching together kill chain instances with Bayesian belief
statements. Incorporating existing tools such as MulVal [20], which helps with
vulnerability management by logical discovery of impactful attack graphs, are
promising areas for synergy with the logic presented here. We leave a worked
campaign example for future work.

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 17

3.3 Using More Granular Knowledge

[27] use the kill chain as an example of mechanistic explanation and demonstrate
incorporating a lower (mechanistic) level of explanation via a type of exploita-
tion: drive-by download. In our logic, we can similarly refine our expressions.
For example, known exploits would put constraints on

{
φ̂C3

}
C3

{
ψ̂C3

}
. We will

demonstrate using a simpler example than drive-by downloads.
Integrating specific rules should enable automating the process of finding

likely explanations. The incident analyst might have many thousands of poten-
tial specifications of various phases of the kill chain, derived from anti-virus
signatures, blacklists, and so on. The logic mechanizes the inspection of which
details are more likely to be at play in a given incident based on observations.

We will demonstrate how existing knowledge bases can be leveraged in this
way via a Snort rule. An intrusion detection system (IDS) rule, such as Snort
rules, is a structured statement of suspicious network activity. We consider an
old, but representative, example rule from [25], which introduced Snort. Trans-
lations from anti-virus rules, etc., should be similarly easy.

alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0 FFFF
FF|/bin/sh"; msg:"IMAP Buffer Overflow detected!";)

This rule is a specification of the kill chain “Delivery” phase. Some parts
are responses, such as “alert”, which need not be represented in the logic. Sim-
ilarly, annotation such as the “msg” field is useful, but would be implemented
elsewhere.

This leaves essentially two elements of the rule. The header, which specifies
the matching rules for packet headers, and the payload detection options (here,
“content”). In this case, these aspects map to statements about the network,
namely κ, ν. Specifically, header rules are about κ and content rules are about
ν. This makes translation of such Snort rules relatively straightforward.

The network headers are simply communication between some external sys-
tem, σ4, and the defender’s system σ1. System σ4 remains unconstrained, repre-
sented by any any for IP and port matches. However, we have two constraints
on σ1. Firstly, the system is 255 IP addresses, namely 192.168.1.0/24. We
represent this as the claim that there exists some κ ∈ A such that

σt
1 |= dip (192.168.1.0, κ) ∨ ... ∨ dip (192.168.1.255, κ) ∧ dport (143, κ)

The predicates dip () and dport () use the match () predicate, defined to match
specific parts of an IP packet header (destination IP and port, respectively).

The content is a string-matching constraint on the communication between
σ4 and σ1. We change the notation for hexadecimal content from |FF |, as Snort
uses, to FF. Then this half of the Snort rule is easily translated; we assert there
exists some ν ∈ C such that

σt
1 |= match (E8C0FFFFFF/bin/sh, ν) .

A
u

th
o

r
P

ro
o

f

18 J. M. Spring and D. Pym

This matches with an exploit, represented as C3 in our formulation. The Snort
rule is the conjunction of these two statements.

Recall the broad statement of delivery in the kill chain. Transfer of data,
including C3, from some σ4 to σ1. We have demonstrated how one can specify
greater detail of these aspects. Specifying the specifics of all such attacks is a
huge undertaking. For that reason, we have chosen an example – Snort rules
– where much of this undertaking has already been collected and curated in
machine-readable form. Such existing data bases of attack patterns should be
readily leveraged by our incident analysis logic.

We should also propagate specifics forward in the kill chain. This example
finds an attack against email servers. Therefore, we know more accurate pre-
conditions for C3. Particularly, whether vulnerable (σ1, C3) holds. If σ1 is not
an email server, then it is not vulnerable. This sort of reasoning should allow
the analyst to reduce the number of systems that need to be investigated as to
whether the exploitation step was successful, for example.

4 Conclusions

One ambition for this logic is to represent the reasoning in [30]. This task requires
a large – but finite – collection of observations, reasoning heuristics, hypothetical
explanations, and deduced conclusions. We have not laid out these usage patterns
in detail, but we are confident our tools would work similarly to Separation Logic,
which has these features [4]. But the question may remain: why?

We envision three primary benefits to incident analysis (and perhaps cyber-
security broadly) from engaging with logical tools; namely, communication, clar-
ification, and decision-support potential.

A logic such as the one we have sketched aids communication between ana-
lysts. In general, logical tools aid communication by reducing ambiguity. If one
analyst describes their process in our logic, it will help other analysts understand
and reproduce that process. Furthermore, one challenge in security is a justified
secrecy among allies, which inhibits communication. A logic allows the analyst
to abstract away from some sensitive system details.

Clarification of an analyst’s own thinking is another benefit. Expressing one’s
reasoning in such a logical language forces an analyst to be precise. As [10] identi-
fies, human cognitive biases often subtly insert themselves into analytic thinking.
By specifying reasoning explicitly, we can examine the reasoning process for such
instances of bias and work to reduce it.

Decision-support is an ultimate aim. We believe logics are a better tool for
explanations than machine learning. And explanations are ultimately what sci-
entists seek to make the unknown intelligible [7]. The components of a scientific
explanation are outlined in [29]. Logical tools move us towards a scientific inci-
dent analysis in part because they can represent such explanations. The point of
going through the pain of specifying a logic, rather than remaining in the realm
of philosophy of science and natural language descriptions of incident analysis, is
that logics are automatable. Automation is a clear prerequisite for any decision-
support in a field like incident analysis, where data volumes are so large. At

A
u

th
o

r
P

ro
o

f

Towards Scientific Incident Response 19

the same time, we have adapted logical tools that have demonstrated scalable
reasoning in other contexts [16,22]. The design of our logic is not just tailored to
incident analysis, but, insofar as is possible at this stage, tailored to a scalable
automation of support for incident analysis.

Based on analyst accounts and case studies, we have developed logical tools
for incident analysis. Our goal is both descriptive and prescriptive. We have
sought a useful and accurate description of what analysts do. At the same time,
analysts should emulate these descriptions and build on them, to express their
process methodically. Of course, this process will be gradual. Logical tools pro-
vide a new paradigm which helps enable this gradual advancement, alongside
existing incident management and forensics practices.

Our work begins an approach to decision support for incident analysts. What
we have provided so far also serves to highlight where additional formal defi-
nitions are appropriate (e.g., see Sect. 2.6). And of course, as with Separation
Logic, the devil will be in the details of implementing such formal definitions [18].
Although the core sense-making and goal-setting aspects likely will remain a
distinctly human endeavor, our developments provide hope that logical tools
tailored to incident analysis could reduce the analyst’s workload.

Acknowledgements. Spring is supported by University College London’s Overseas
Research Scholarship and Graduate Research Scholarship. Thanks to Simon Docherty
for discussion and constructive comments.

References

1. Alberts, C., Dorofee, A., Killcrece, G., Ruefle, R., Zajicek, M.: Defining inci-
dent management processes for CSIRTS: a work in progress. Technical report.
CMU/SEI-2004-TR-015, Software Engineering Institute, CMU 2004 (2004)

2. Bergman, M., Paavola, S.: ‘Abduction’: Term in The Commens Dictionary: Peirce’s
Terms in His Own Words. New Edition, 14 July 2016. http://www.commens.org/
dictionary/term/abduction

3. Brotherston, J., Villard, J.: Sub-classical Boolean bunched logics and the meaning
of par. In: Proceedings of CSL, vol. 24, pp. 325–342. LIPIcs (2015)

4. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

5. Caltagirone, S., Pendergast, A., Betz, C.: The diamond model of intrusion
analysis. Technical report, Center for Cyber Intelligence Analysis and Threat
Research (2013). http://www.threatconnect.com/methodology/diamond model
of intrusion analysis

6. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers,
and The Internet. Academic press, Cambridge (2000)

7. Dear, P.: The Intelligibility of Nature: How Science Makes Sense of the World.
University of Chicago Press, Chicago (2006)

8. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux.
Math. Struct. Comp. Sci. 15(06), 1033–1088 (2005)

9. Henderson, L.: The problem of induction. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer
2018 edn. (2018)

A
u

th
o

r
P

ro
o

f

http://www.commens.org/dictionary/term/abduction
http://www.commens.org/dictionary/term/abduction
http://www.threatconnect.com/methodology/diamond_model_of_intrusion_analysis
http://www.threatconnect.com/methodology/diamond_model_of_intrusion_analysis

20 J. M. Spring and D. Pym

10. Heuer, R.J.: Psychology of Intelligence Analysis. US Central Intelligence Agency
(1999)

11. Horneman, A.: How to think like an analyst, 17 July 2017. https://insights.sei.
cmu.edu/sei blog/2017/07/how-to-think-like-an-analyst.html

12. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains.
Lead. Issues Inform. Warfare Secur. Res. 1, 80 (2011)

13. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Principles of Programming Languages, pp. 14–26. ACM, London (2001).
https://doi.org/10.1145/360204.375719

14. Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to integrating forensic tech-
niques into incident response. Technical report, SP 800–86, National Institute of
Standards and Technology, August 2006

15. Lamport, L.: What good is temporal logic? In: Mason, R. (ed.) IFIP Congress, pp.
657–668. Elsevier (1983)

16. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Wesley, Boston (2002)

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

18. O’Hearn, P.W.: From categorical logic to Facebook engineering. In: Logic in Com-
puter Science (LICS), pp. 17–20. IEEE (2015)

19. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symbolic Logic
5(2), 215–244 (1999)

20. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security Symposium, pp. 113–128 (2005)

21. von Plato, J.: The development of proof theory. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Winter 2016 edn. (2016)

22. Pym, D., Spring, J.M., O’Hearn, P.: Why separation logic works. Philosophy and
Technology (2018).https://doi.org/10.1007/s13347-018-0312-8

23. Pym, D.J., O’Hearn, P.W., Yang, H.: Possible worlds and resources: the semantics
of BI. Theor. Comput. Sci. 315(1), 257–305 (2004)

24. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science, pp. 55–74. IEEE (2002)

25. Roesch, M.: Snort: lightweight intrusion detection for networks. In: Large Instal-
lation Systems Admin, pp. 229–238. USENIX, Seattle, November 1999

26. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949, August 2007
27. Spring, J.M., Hatleback, E.: Thinking about intrusion kill chains as mechanisms.

J. Cybersecur. 3(3), 185–197 (2017)
28. Spring, J.M., Illari, P.: Review of human decision-making during incident analysis.

Under review (2018)
29. Spring, J.M., Moore, T., Pym, D.: Practicing a science of security: a philosophy

of science perspective. In: New Security Paradigms Workshop, Santa Cruz, 1–4
October 2017

30. Stoll, C.: The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer
Espionage. Pan Books, London (1989)

31. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, Cambridge (2011)

A
u

th
o

r
P

ro
o

f

https://insights.sei.cmu.edu/sei_blog/2017/07/how-to-think-like-an-analyst.html
https://insights.sei.cmu.edu/sei_blog/2017/07/how-to-think-like-an-analyst.html
https://doi.org/10.1145/360204.375719
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/s13347-018-0312-8

