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Necroptosis mediates myofibre death in
dystrophin-deficient mice
Jennifer E. Morgan1, Alexandre Prola 2, Virginie Mariot3, Veronica Pini1, Jinhong Meng1, Christophe Hourde4,

Julie Dumonceaux3, Francesco Conti 1, Frederic Relaix2,5, Francois-Jerôme Authier2,5, Laurent Tiret 2,

Francesco Muntoni1 & Maximilien Bencze 1,2

Duchenne muscular dystrophy (DMD) is a severe degenerative disorder caused by mutations

in the dystrophin gene. Dystrophin-deficient muscles are characterised by progressive

myofibre necrosis in which inflammation plays a deleterious role. However, the molecular

mechanisms underlying inflammation-induced necrosis in muscle cells are unknown. Here we

show that necroptosis is a mechanism underlying myofibre death in dystrophin-deficient

muscle. RIPK1, RIPK3 and MLKL are upregulated in dystrophic mouse myofibres. In human

DMD samples, there is strong immunoreactivity to RIPK3 and phospho-MLKL in myofibres. In

vitro, TNFα can elicit necroptosis in C2C12 myoblasts, and RIPK3 overexpression sensitises

myoblasts to undergo TNF-induced death. Furthermore, genetic ablation of Ripk3 in mdx mice

reduces myofibre degeneration, inflammatory infiltrate, and muscle fibrosis, and eventually

improves muscle function. These findings provide the first evidence of necroptotic cell death

in a disease affecting skeletal muscle and identify RIPK3 as a key player in the degenerative

process in dystrophin-deficient muscles.
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The progressive degeneration of muscle fibres (myofibres) is
a hallmark of many neuromuscular disorders, including
Duchenne muscular dystrophy (DMD)1. DMD is caused

by mutations in the dystrophin gene and affects 1 in 5000 male
births2. While its pathogenesis has been extensively investigated,
the molecular basis of cell death affecting dystrophin-deficient
myofibres remains elusive. The involvement of apoptosis has been
proposed because nuclei with apoptotic DNA fragmentation are
found in muscles of DMD patients and of the C57BL/10ScSn-
Dmdmdx (hereafter named mdx) mouse model of DMD3–5.
However, it is relatively rare, suggesting a limited contribution of
apoptotic death in the loss of muscle fibres. In contrast, a necrotic
morphology characterises most degenerating myofibres in
DMD5,6.

The induction of cell death is multifactorial: dystrophin defi-
ciency renders myofibres more susceptible to mechanical stress,
and cytotoxic factors induced by the inflammatory process par-
ticipate in muscle loss7,8. Although molecular triggers and cyto-
solic death pathway(s) in myofibres necrosis remain elusive, the
tumour necrosis factor-α (TNFα) pro-inflammatory cytokine has
a strong pro-necrotic effect in mdx myofibres9,10.

Recently, a genetically controlled form of necrosis named
necroptosis has been identified11. Although necroptosis is a
caspase-independent mechanism, its signalling partially overlaps
with extrinsic apoptosis. These two forms of programmed cell
death can be triggered by TNF receptor superfamily ligands,
including TNFα. Necroptosis often requires receptor interacting
protein kinase-1 (RIPK1) activity in caspase-compromised con-
ditions, and it critically depends on RIPK3 and mixed lineage
kinase domain like pseudokinase (MLKL)12. Furthermore,
necroptosis is involved in several pathogenic processes affecting
solid organs, including ischaemia/reperfusion of the brain and
heart13. The pathophysiological relevance of necroptosis in ske-
letal muscle degeneration remains to be established.

Here, we show that necroptosis contributes to myofibre death in
dystrophin-deficient skeletal muscle. We demonstrate that TNFα can
trigger caspase-independent cell death in myogenic cells, by activating
RIPK3-dependent necroptotic signalling. We find evidence of
necroptosis in degenerating dystrophic muscles from DMD patients
and dystrophin-deficient mdx mice, associated with RIPK3 upregu-
lation. Importantly, mdx mice deficient in RIPK3 had reduced
myofibre necrosis and muscle fibrosis and present with improvement
in muscle function. This study provides evidence of programmed
necrosis in a pathology affecting skeletal muscle, highlighting the
relevance of necroptotic cell death to DMD pathogenesis.

Results
Necroptosis is activated in dystrophin-deficient mouse and
human muscles. RIPK3 expression is essential for the induction
of canonical necroptosis14,15. To determine whether skeletal
muscle is necroptosis competent, we initially examined the levels
of RIPK3 in normal hindlimb muscles of C57BL/6 mice by
western blot. RIPK3 protein was present in extensor digitorum
longus (EDL), soleus, gastrocnemius, and tibialis anterior (TA)
muscles of adult mice (Fig. 1a). Levels of RIPK3 in hindlimb
muscles were comparable to those found in the brain (Fig. 1a), a
well-established necroptotic-competent tissue11.

Next, we investigated the presence of necroptosis in
dystrophin-deficient muscles. The upregulation of proteins
belonging to the necroptosis machinery (i.e., RIPK1, MLKL,
and more specifically RIPK3) is a strong indication of necroptosis
in vivo16. The extent of myofibre degeneration in hindlimb
muscles of mdx mice varies over the lifespan: muscle fibre
degeneration begins around weaning age at 3 to 4 postnatal
weeks, and then decreases17,18. Therefore, we evaluated the levels

of necroptosis biomarkers in TA muscles from mdx mice of
different ages by quantitative PCR (Fig. 1b). In TAs of 2-week-old
mdx mice (i.e., before the onset of myonecrosis), the levels of
Ripk1, Ripk3, and Mlkl transcripts were similar to those in TAs
from C57BL/10 controls. At 21 days (corresponding to the
degenerative spike in TA muscles), Ripk1, Ripk3, and Mlkl
transcripts dramatically increased (Dunn’s multiple comparison
tests, Ripk1: P= 0.0022, Ripk3: P < 0.0001, Mlkl: P < 0.0001). All
transcripts were decreased at 9 and 13 weeks compared to
3 weeks, suggesting a transitory necroptotic peak at 3 weeks in TA
muscle (Fig. 1b). Nevertheless, Mlkl transcript remained threefold
higher at 9 weeks than at 2 weeks (P= 0.0017) in TA muscles. In
3–4-week-old mdx mice, RIPK3 upregulation at the protein level
was confirmed in TA and gastrocnemius muscles (Fig. 1c–e).

We then examined the localisation profile of RIPK3 within
dystrophic muscles by immunolabelling. In dystrophic muscles
from mdx mice or DMD patients, we observed areas with strong
sarcoplasmic immunoreactivity to RIPK3 antibody, which were not
seen in mouse or human controls (Fig. 1f–h). This may reflect local
RIPK3 overexpression at the myofibre level. Next, we examined the
profile of RIPK3-immunoreactive myofibres and found F4/80-
positive macrophages surrounding them, suggesting the recruitment
of phagocyte cells. High RIPK3 immunoreactivity in mdx myofibres
was also strongly associated with mouse immunoglobulin G (IgG)
uptake, a marker for necrosis in muscle tissue19 (Fig. 1g).

RIPK3 immunolabelling was performed using a RIPK3 anti-
body raised in rabbit. Its immunoreactivity was due to the
binding of the primary antibody and not to the binding of the
secondary antibody (Supplementary Fig. 1). Overall, the correla-
tion of RIPK3 upregulation with necrotic cell fate may also
suggest a RIPK3-dependent death mechanism.

In order to confirm the significance of these findings in human
pathology, we labelled quadriceps samples of DMD patients with
an antibody directed against human phospho-MLKL, which is the
only available marker for necroptosis20. We observed MLKL-
positive myofibres in DMD samples but not in control patients
(Fig. 1k–l), indicating the activation of the final step of the
necroptotic pathway by some DMD muscle fibres.

Together, these data suggest that the necroptotic machinery is
activated in degenerating dystrophin-deficient muscles.

RIPK3 upregulation sensitises TNFα-induced necroptosis in
C2C12 myoblasts. To elucidate the signalling events underlying
necroptosis in skeletal muscle cells, we investigated necroptosis
induction in myogenic cells. C2C12 myoblasts express significant
levels of RIPK3 and are shown with mouse embryonic fibroblasts
(MEFs), which served as positive control (Fig. 2a). Since TNFα is
pro-necrotic in mdx mice9,10, and is also a well-established
necroptotic trigger in cardiomyocytes12,21, we used TNFα to
induce necrotic demise in myoblasts.

TNFα stimulation on its own failed to reduce cellular adenosine
triphosphate (ATP) content in C2C12 myoblasts (Fig. 2b). Indeed,
eliciting cell death by TNFα treatment often requires sensitising
methods, such as the pharmacological inhibition of transforming
growth factor-beta-activated kinase-1 (TAK1), which has pro-
survival activity following TNFα binding22. Therefore, we used
(5Z)-7-Oxozeaenol, a TAK1 inhibitor (O treatment), to sensitise
cells to TNF-induced cell death. TAK1 inhibition alone did not
affect cell survival (Fig. 2b–d). However, when combined with
TNFα stimulation (TO treatment), intracellular ATP levels were
reduced by around 40% within 3 h (Fig. 2b, c). ATP decrease in
C2C12 myoblasts was associated with a markedly (~700%) increase
of their membrane permeability (Fig. 2d). Taken together, ATP
reduction and the induction of plasma membrane permeability in
C2C12 cells are indicative of cell death.
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To exclude the involvement of apoptosis in the death induced
by TO treatment, we blocked caspases using Z-VAD.fmk, a pan-
caspase inhibitor (TOZ treatment), which did not significantly
restore initial levels of ATP (Fig. 2c) or plasma membrane
integrity (Fig. 2d). Death elicited by TOZ treatment was rescued
by necrostatin-1s (Nec-1s), an inhibitor of RIPK1 kinase
activity11,23(Fig. 2c, d). These data demonstrate that TNFα can
trigger a caspase-independent cell death involving RIPK1 activity
in C2C12 myoblasts, and suggest activation of the early steps of
the necroptotic pathway24. To further support the involvement of
necroptosis in TNF-induced myoblast death, we either pharma-
cologically inhibited RIPK3 activity in a dose-dependent manner
with the RIPK3 inhibitor GSK’87225 (Fig. 2e, f), or silenced Ripk3
and Mlkl expression by RNA interference (RNAi; Fig. 2g,
Supplementary Fig. 1a,b). All treatments reduced C2C12 death

elicited by TOZ treatment, confirming that TNFα can elicit
necrosis via the necroptotic pathway in myoblasts. Moreover, it is
well established that reactive oxygen species (ROS) generation can
participate in necroptotic death execution26,27. Interestingly, we
found that the ROS scavenger butylated hydroxyanisole (BHA)
protected myoblasts against necroptosis (Fig. 2h, i), suggesting
that oxidative stress also participates in the execution of TNF-
induced necroptosis in C2C12 myoblasts.

To relate these findings to dystrophic pathology, we investi-
gated under which conditions TNFα can induce necroptosis
without sensitising methods such as TAK1 inhibition. Since the
overexpression of RIPK3 potentiates TNF-induced necroptosis in
cardiomyocytes21, we transfected C2C12 cells with green
fluorescent protein (GFP)-tagged or Ripk3 GFP-tagged plas-
mids28 (Supplementary Fig. 2c). Transfected cells were GFP-
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Fig. 1 Necroptosis is activated in mouse and human dystrophin-deficient muscles. a Immunoblot of RIPK3 protein expression in brain, extensor digitorum
longus (EDL), tibialis anterior (TA), soleus, and gastrocnemius muscles of C57BL/6 and gastrocnemius from RIPK3 KO mouse. GAPDH was used as loading
control. b Tibialis anterior muscles of 4-week-old C57BL/10, and 2-, 3-, 9-, and 13-week-old mdx mice were analysed for Ripk1, Ripk3, and Mlkl mRNA levels
by quantitative PCR. Data were normalised to mouse Psma2 gene expression (n= 5 C57BL/10 and n= 5, 8, 10, 6, and 6 respectively, for 2-, 3-, 9-, and 13-
week mdx TAs, Dunn’s multiple comparison test). c Protein extracts of C57BL/10, RIPK3 KO, and mdx gastrocnemius muscles were analysed by western
blot for RIPK3 and GAPDH protein expression. Quantification of RIPK3 protein expression normalised to GAPDH in gastrocnemius (d) and TA (e) (n= 6
C57BL/10 and n= 9 mdx gastrocnemius; n= 3 C57BL/10 and n= 5 mdx TA, Student’s t-test). f Mouse gastrocnemius C57BL10 (left) and mdx (right) mice
were immunolabelled with an antibody to RIPK3 (green). g Quantification of RIPK3-positive myofibres in gastrocnemius of C57BL10 (n= 3) and mdx mice
(n= 4). h Representative transverse sections of quadriceps biopsies from a healthy non-dystrophic (CTL human) and a DMD patient, immunolabelled with
an antibody to RIPK3 (green). i Representative image of immunostaining using antibodies to RIPK3 (green) and mouse IgG (red), a functional marker for
membrane permeability in myofibres. j Representative image of immunostaining using antibodies to RIPK3 (green) and F4/80 (red), a marker for murine
macrophages. k Confocal image of transverse cryosections of DMD quadriceps labelled with antibodies to human phospho-MLKL (green), human laminin
α2 (red), and DAPI (blue). l Quantification of the number of p-MLKL-positive myofibres per field (n= 5 control human and n= 6 DMD). Data presented as
the mean ± SEM. Scale bars, 100 µm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06057-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3655 | DOI: 10.1038/s41467-018-06057-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


sorted and then stimulated with necrotic triggers. Cell death
induced by TOZ treatment was greater in C2C12 cells over-
expressing RIPK3 (Fig. 2j). Importantly, we found that TNFα
stimulation in caspase-compromised conditions, without TAK1
inhibition, could induce cell death in myoblasts overexpressing
RIPK3 (TZ treatment). This indicates that high RIPK3 expression
is sufficient to facilitate TNF-induced necroptosis in myoblasts.

RIPK3 depletion alleviates muscle necrosis in mdx mice.
Having demonstrated that muscle cells can undergo RIPK1-,
RIPK3-, and MLKL-dependent necrosis in vitro, and that

necroptosis occurs in dystrophin-deficient muscles, we aimed
to determine the contribution of necroptosis to mdx myofibre
death. We crossed RIPK3 knockout (KO) with mdx mice. Overall,
Ripk3−/− mice have a normal phenotype when unchallenged,
but are more resistant to cell death induced by necroptotic stimuli
in various tissues29. Nonetheless, the effect of RIPK3 deficiency
in skeletal muscle degeneration has never been reported.
mdxRipk3+/+ (mdx) and mdxRipk3−/− littermates were gener-
ated by intercrossing mdxRipk3+/− mice. No difference was
observed in overall body weight, nor in the mass of isolated TA
muscles between mdxRipk3+/+ (mdx), mdxRipk3+/− and
mdxRipk3−/− littermates in adult mice (Supplementary Fig. 3a-c).
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Fig. 2 RIPK3 upregulation facilitates TNFα-induced necroptosis in C2C12 myoblasts. a Immunoblot of RIPK3 expression in mouse embryonic fibroblast
(MEF) cells and C2C12 myoblasts. b C2C12 myoblasts were exposed for 1, 2, or 3 h to either DMSO, mouse TNFα (100 ng/ml), TAK1 inhibitor (5Z)-7-
Oxozeaenol (1 µM), and TNFα+TAK1 inhibitor (respectively T, O, and TO treatment) and cell survival was assessed by measuring ATP levels (CellTiter-Glo
assay). Levels of ATP in DMSO-treated cells were defined as 100% survival. Data represented as the mean ± SEM of two independent experiments. c
C2C12 myoblasts were challenged for 3 h with TNFα, (5Z)-7-Oxozeaenol, the pan-caspase inhibitor Z-VAD.fmk at 50 µM (Z), and the inhibitor of RIPK1
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one-way ANOVA). f Cells were treated as in e and membrane permeability was monitored by CytoTox-Glo assay. Data presented as the mean ± SEM of
four pooled independent experiments (n= 4, one-way ANOVA). g Ripk3 or Mlkl mRNAs were knocked down using specific RNAi. Transfected C2C12 cells
were treated with either TNFα alone or TOZ and cell survival was assessed. Representative of two independent experiments (five replicates per group). h–i
C2C12 myoblasts were challenged by TOZ with or without Butylated hydroxyanisole (BHA). Cell survival (h) and membrane permeability (i) were
monitored. Data presented as the mean ± SEM of four pooled independent experiments (n= 4, one-way ANOVA). j C2C12 myoblasts were transfected
with a GFP plasmid or a GFP-tagged Ripk3 plasmid. Transfected cells were stimulated and the survival was monitored (n= 4 pooled independent
experiments, two-way ANOVA). Data shown as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Because apoptosis and necroptosis are interconnected death
pathways, we checked whether the inhibition of RIPK3-
dependent necroptosis would promote apoptosis in mdx muscles.
Since the TUNEL (terminal deoxynucleotidyl transferase dUTP
nick end labeling) assay is known to be an unreliable method for
labelling apoptotic death30, muscles of mdx and mdxRipk3−/−

mice were instead analysed using cleaved caspase-3 antibody
(Fig. 3a, b). Very rare positive cells were found in both groups
(around 0.004% of total nuclei). Of note, no positive nuclei were
observed within the myofibre sarcolemma (Fig. 3a). This indicates
that RIPK3 deficiency does not favour apoptosis in the
dystrophin-deficient muscles.

Then, we examined the effect of RIPK3 depletion on mdx
muscle degeneration (Fig. 3c, d). Quantifying muscle necrosis at

different ages, we found that control mdx mice presented the
characteristic necrotic peak at 3 weeks of age (18% of cross-
section area (CSA)) followed by lower necrosis at 4.5 and 9 weeks
of age (1–2% of CSA)18. In mdxRipk3−/− mice, we found a
threefold reduction in the extent of myofibre necrosis at 3 weeks
(2-way analysis of variance (ANOVA), Sidak’s multiple compar-
isons test, P < 0.0002, Fig. 3c, d). Interestingly, mdxRipk3−/− mice
had statistically similar levels of myofibre death at all tested time
points (3 weeks versus 4.5 weeks, P= 0.8434; 3 weeks versus
9 weeks, P= 0.9916) (Fig. 3b). Muscle necrosis is a powerful
inflammatory activator and is promptly followed by macrophage
infiltration31. Any protection against myofibre death is therefore
expected to reduce the postinjury inflammatory infiltrate. IgG
uptake reduction in the mdxRipk3−/− myofibres was associated
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with a significant diminution of cell infiltrate (Fig. 3e), and a 40%
decrease in macrophages (Fig. 3f), indicating that RIPK3 has a
role in the inflammatory response to myonecrosis. Of note,
although we found no difference in the quantification of necrotic
myofibres at 9 weeks, there was a modest but significant
reduction of cell infiltrate in mdxRipk3−/− muscles (Fig. 3d, e).

The kinetics of muscle regeneration were established by
quantifying the percentage of centrally nucleated myofibres. In
both groups, a low and equal percentage of centrally nucleated
fibres were found at 3 weeks, indicating that no significant death
events occur before weaning. At 4.5 weeks, there was a 40%
reduction in centrally nucleated myofibres in mdxRipk3−/−

muscles compared to mdxRipk3+/+ littermates (Fig. 3g). The
decrease in the formation of myofibres at 4.5 weeks is in line with
the reduction of myonecrosis observed earlier at 3 weeks (Fig. 3d).
At 9 weeks, the proportion of central nucleation was similar in
both groups and did not support a clear involvement of RIPK3
depletion in the myonecrosis affecting mdx TA muscles in
adulthood.

Next we questioned whether RIPK3 depletion affects the basal
regenerative capacity of dystrophic muscles. Having observed at
4.5 weeks of age an equal amount of myonecrosis (Fig. 3d) and cell
infiltrate (Fig. 3e), we analysed TA muscles using the neonatal
myosin heavy chain (NeoMHC) antibody, so that only very recently
regenerating myofibres are labelled. The same proportion of neonatal
NeoMHC-positive fibres were found in mdx and mdxRipk3−/−. This
suggests that, at comparable injury extent, regeneration is similar.

Together, our data indicate that RIPK3 drives the initial acute
phase of muscle degeneration occurring at 3 weeks of age in mdx
hindlimb muscles.

RIPK3 deficiency ameliorates muscle pathology in adult mdx
mice. We next extended the analysis of the phenotype to adult
mdxRIPK3-deficient mice. The pathological occurrence of
degeneration/regeneration cycles in DMD and in mdx mice
muscles leads to the progressive development of fibrotic tissue.
Extracellular matrix deposition was quantified in TA of 9-week-
old mice. MdxRipk3−/− mice had reduced muscle fibrosis
(Fig. 4a, b). The compensatory hypertrophy of myofibres, which
is characteristic of mdx muscles, was also slightly decreased in
mdxRipk3−/− males but not in females (Supplementary Fig. 4).
Furthermore, mdxRipk3−/− mice had over 50% diminution in
serum creatine kinase (CK) levels (P= 0.0150) (Fig. 4c), indi-
cating a broad effect of RIPK3 on the mdx muscle degeneration in
adulthood.

Finally, we examined whether the RIPK3-dependent necrop-
tosis ultimately contributes to long-term loss of motor function
in mdx mice. RIPK3 deficiency improved the grip strength in
adult mdx mice by 20% (P= 0.0073) (Fig. 4d). Furthermore,
hanging performance was also increased by 30% (P= 0.0259)
(Fig. 4e). To determine whether the amelioration of muscle
function caused by RIPK3 deficiency also influenced their global
movement capacities, we assessed the nocturnal spontaneous
activity of mice. During the night, mdxRipk3−/− mice were
more active compared to control mdx mice (P= 0.0252)
(Fig. 4f), with a substantial although non-statistically significant
improvement in the time spent performing fast movements and
in the global distance they covered during the night (Supple-
mentary Fig. 5).

Together, these data indicated that RIPK3 has long-term
modulatory effects on mdx pathogenesis.
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Discussion
Necroptosis is involved in the pathogenesis of disorders which
can affect tissues including brain, heart, liver, kidney, and pan-
creas32. More recently, the necroptotic machinery has also been
shown to participate in the degeneration of nucleus pulposus
cells33, ageing of male reproductive system34, and ventilator-
induced lung injury35. Skeletal muscle is a tissue that alone
constitutes 30 to 38% of body mass36. In this report, we provide
for the first time evidence that necroptosis is involved in a skeletal
muscle pathology, more specifically in the degeneration of
dystrophin-deficient muscles.

Although the morphology of degenerating myofibres in
dystrophin-deficient muscle is described as necrotic, TUNEL-
positive nuclei were observed in mdx and DMD muscle samples,
suggesting activation of apoptosis3–5,37. However, DNA frag-
mentation labelled by the TUNEL assay is not considered a
reliable method to identify apoptotic cell death in situ30. Of note,
it can also label necroptotic cells38. Caspase activity also correlates
with dystrophic muscle degeneration39. However, caspases also
have nonapoptotic roles. More specifically, caspase-3 has been
shown to be involved in the cell differentiation process in mul-
tiple cell types40, including myogenic progenitor differentiation
and fusion41. Therefore, it cannot be excluded that caspase acti-
vation observed in dystrophic muscles is due to myogenic dif-
ferentiation rather than caspase-dependent cell demise.

Using an antibody directed against the cleaved form of caspase-
3, we quantified the number of positive nuclei and found extre-
mely rare events (0.004%) (Fig. 3a, b). Since there was no increase
in the proportion of cleaved caspase-3 nuclei in mdxRipk3−/−

degenerating myofibres (Fig. 3a, b), we concluded that RIPK3
deficiency does not generate a switch from necrotic towards the
apoptotic death pathway in mdx muscles. Interestingly, we
observed no cleaved caspase-3-positive nuclei within the sarco-
lemma and so have no evidence of apoptotic demise of myofibres.

Evidence of necroptosis was collected in both mouse and
human dystrophin-deficient muscles. Marked elevation of RIPK1,
MLKL, and especially RIPK3 is a feature of necroptotic injuries
in vivo14,16,21,42. We found upregulated expression of these three
genes in mdx muscles (Fig. 1b–e). Although macrophages also
express necrosome proteins, and their infiltration of necrotic
tissue could contribute to the elevation of necroptosis markers in
mdx muscles, we showed a strong RIPK3 immunoreactivity
within mdx muscle fibres (Fig. 1f, g). These results are in line with
the profile of RIPK3 immunoreactivity observed in the necrop-
totic heart or retina43,44. In addition, RIPK3-positive myofibres
are associated with a necrotic fate (Fig. 1i, j). In some liver
injuries20,45, or in the white matter in patients affected by mul-
tiple sclerosis46, the presence of phospho-MLKL-positive cells is
indicative of necroptotic events. Upregulation of Mlkl in TA of 3-
and 9-week-old mdx and the presence of phospho-MLKL-
positive myofibres in DMD muscles (Fig. 1k, l) further indicates
necroptosis activation in human dystrophin deficiency.

Historically, inhibition of necroptosis was achieved using the
RIPK1 inhibitor necrostatin-111. However, RIPK1-independent
forms of necroptosis have been identified26. Furthermore, RIPK1
inhibitors have a very short half-life in vivo11 making their
delivery unsuitable for studying chronic and unsynchronised cell
death such as in dystrophin-deficient muscles. Analysis of the
necrosome components expression over time showed that Ripk1,
Ripk3, and Mlkl fades in mdx TA after the degeneration peak and
indicates a transitory period of necroptosis at the onset of the
pathology. It is in line with the lack of myonecrosis protection
observed in this muscle at 4.5 and 9 weeks (Fig. 3d). To note,Mlkl
transcript is still upregulated in mdx TA at 9 weeks (Fig. 1b).
Also, there is a significant decrease in cell infiltrate at the same
time point in mdxRipk3−/− muscles (Fig. 3f). This may suggest

an existing, but mild, contribution of RIPK3-dependent cell death
after the weaning period (Fig. 3d, e) in mdx hindlimb muscles.

Considering the transient activation of necroptosis we observed
in mdx TA, we carefully investigated whether RIPK3-dependent
necrosis has long-term effect on the overall mdx mouse
pathology.

The assessment of the general myonecrosis in adult mdx mice
was performed by the quantification of serum CK levels. We
found more than 50% decrease of CK levels in 3-month-old
mdxRipk3−/− mice (Fig. 4c), demonstrating that some muscle
groups undergo significant amounts of RIPK3-dependent
necrosis in adulthood. Whether respiratory muscles such as the
diaphragm, which are more affected by myonecrosis in older
mice47, undergo more necroptosis than limb muscles will have to
be verified in future studies. We further demonstrate the invol-
vement of RIPK3 in the pathogenesis of dystrophin-deficient mice
by a protective effect of RIPK3 deficiency on the excessive devel-
opment of interstitial fibrosis. Indeed, unresolved inflammation
linked to chronic degeneration/regeneration episodes and the
ultimate exhaustion of the regenerative capacity are a major driver
of fibrotic tissue deposition48, and is a key factor in the loss of
function in DMD patients. The fibrosis reduction in mdxRipk3−/−

muscles (Fig. 4a, b) is in line with the reduced necrosis and
inflammation occurring at earlier time points (Fig. 3c–f).

The functional analysis of adult mdxRipk3−/− mice showed a
greater grip strength than mdx littermates (Fig. 4d), and was
indicative of an improvement of muscle function, with benefits at
the organism level revealed by an increased nocturnal feeding,
grooming, and locomotor activity (Fig. 4f). Although we observed
an improvement in the time spent in fast locomotion and in the
total distance covered by mdxRipk3−/− mice, it did not reach
statistical significance (Supplementary Fig. 5). This may be due to
heterogeneity in the mouse phenotype, and is in line with the
mild locomotor phenotype observed in mdx mice49.

Together, our data demonstrate that RIPK3 is involved in the
myonecrosis of dystrophin-deficient mice at all investigated ages,
but more specifically at the onset of the pathogenesis in TA
muscle. In adulthood, RIPK3 depletion meaningfully improves
muscle homoeostasis and function in mdx mice.

Whether RIPK3 deficiency in myeloid cells can participate in
the mdxRipk3−/− phenotype remains a possibility. Indeed, recent
studies suggest a complex and poorly understood role for RIPK3
in the control of inflammation. Lipopolysaccharide can promote a
pro-inflammatory response in macrophages via RIPK3, but
independently of cell death50. Alternatively, necroptosis of mye-
loid cells is an effective means to halt the production of TNFα and
pro-inflammatory cytokines51. Therefore, RIPK3 deficiency in
myeloid cells could have both pro- or anti-inflammatory effects.
Further investigation will require phenotypic analyses of mdx
mice with a macrophage-specific genetic inactivation of Ripk3.

Our study addresses the questions of the asynchrony and the
heterogeneity of muscle cell necrosis in dystrophic mice. Inter-
estingly, while two-thirds of myonecrosis affecting mdx hindlimb
muscles at 3 postnatal weeks is driven by RIPK3 (Fig. 3d), our
results suggest no crucial involvement of RIPK3 at time points
when the TA is undergoing less degeneration later in life. Indeed,
the number of TA myofibres which are affected by leaky sarco-
lemma (trapping serum proteins and IgG) did not significantly
vary in Ripk3+/+ and Ripk3−/− mdx mice at 4.5 and 9 weeks.
This indicates that RIPK3 is a major driver of limb muscle
degeneration at the onset of mdx pathogenesis in hindlimb
muscles, with long-term functional consequences. Since serum
CK levels in DMD patients are extremely high in very young
patients and gradually decrease with the reduction of locomotor
activity in muscle mass52, a potential preeminent role of RIPK3 in
myonecrosis affecting the very onset of human pathology can be
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envisaged. Whether a compensatory mechanism fading the
necroptosis pathway would occur in dystrophic mice and not in
dystrophic humans (and would therefore contribute to the dis-
crepancy between mouse and human pathology) is not to be
excluded.

The next important question to address is the identification of
death triggers involved in the necroptosis of dystrophic myofibres
in vivo. Indeed, factors participating in muscle injury in the mdx
mouse, such as inflammatory infiltrate, TNFα, ischaemic stress, or
ROS, are also associated at different levels with necroptotic
demise in other tissues8,12,53. Following muscle injury, neu-
trophils and M1 macrophages rapidly invade tissue and generate
a strong pro-inflammatory environment31. The cocktail of pro-
inflammatory cytokines secreted by M1 macrophages have
powerful cytotoxic effects, but also support satellite cell pro-
liferation, and so they can participate in muscle regeneration54,55.
High levels of TNFα are released by macrophages and myogenic
cells during muscle degeneration, more specifically between 2 to
4 weeks of age in mdx mice56, and promote necrosis9,10. Our data
demonstrate that TNFα is a death ligand that can trigger
necroptosis in myoblasts (Fig. 2). While TNFα drives the apop-
tosis of mdx fibro/adipogenic progenitors57, no death mechanism
triggered by inflammatory stimuli and leading to necrosis was
identified in muscle tissue.

RIPK3 overexpression in hindlimb muscles at 3 weeks, in
synergy with the strong TNFα presence in the muscle environ-
ment, could provide appropriate conditions to induce myofibre
necroptosis. Generally, TNFα is not sufficient to trigger cell death
in vitro, but activates the pro-survival nuclear factor (NF)-κB
pathway. In L929 fibrosarcoma cells, TAK1 activity is required for
NF-κB activity following TNFα binding, and its inhibition pro-
motes RIPK1-dependent apoptosis or necroptosis, depending on
caspase-8 activity22,58. Satellite cells depleted in TAK1 were
recently reported to undergo spontaneous RIPK1-dependent cell
death, but independently of TNFα stimulation59. We found
in vitro that C2C12 myoblasts did not spontaneously die by
pharmacological TAK1 inhibition but required TNFα treatment.
In myoblasts overexpressing RIPK3, TNFα alone could trigger
necroptosis in caspase-compromised conditions, no longer
requiring sensitising methods to facilitate death (i.e., TAK1
inhibition) (Fig. 2i, j). In degenerating mdx muscles, the whole
necroptosis machinery, including RIPK3, was upregulated and
two-thirds of TA myonecrosis was RIPK3 dependent. It is
tempting to speculate that the massive TNFα release at 3 weeks
can represent a potent extracellular death trigger for myofibres
upregulating RIPK1, RIPK3, and MLKL. However, other death
ligands such as TWEAK (TNF-related weak inducer of apopto-
sis), interferon-γ, and Toll-like receptor-4 are released by
inflammatory cells in dystrophin-deficient muscles60 and could
possibly participate in the induction of necroptosis. Mechanical
stimuli were shown to trigger necroptosis in nucleus pulposus
cells33. Whether skeletal muscle cells can be sensitised to
necroptosis by mechanical stress remains to be investigated.

In myocardial ischaemia, the depletion of RIPK3 is also asso-
ciated with a reduction of inflammatory cell infiltration and
fibrosis, and the generation of ROS21,43. ROS production affects
dystrophic mouse muscles at an early stage and participates in
lipid peroxidation and membrane permeability61. We report that
the inhibition of ROS generation alleviates necroptosis in C2C12
myoblasts (Fig. 2h, i). While the mechanisms at the origin of
oxidative stress in dystrophic muscles are unclear, our in vitro
findings suggest that necroptosis execution could involve ROS
generation in muscle cells.

Collectively, these results demonstrate that skeletal muscle
tissue can undergo a programmed form of necrosis called
necroptosis. More specifically, the strong peak of degeneration

characterising the onset of mdx pathology is driven by RIPK3 and
its depletion ameliorates myofibre survival, decreases inflamma-
tory infiltrate, and improves muscle function.

Methods
Animals. Mice were bred and experimental procedures carried out at both the
Biological Services Unit of the Great Ormond Street Institute of Child Health and
the University College London in accordance with the Animals (Scientific Proce-
dures) Act 1986, under Home Office Licences 70/7086 and 70/8389, and in the
mouse facility of the Alfort School of Veterinary Medicine, France, registered under
the number EU94-046-6. All experiments were performed following the United
Kingdom, French, and European guidelines (Directive 2010/63/UE of the European
Parliament and of the Council). C57BL/10 and mdx mice were purchased from the
Jackson Laboratory. C57BL/6 Ripk3+/− mice were kindly provided by Genentech
(San Francisco, CA). MdxRipk3−/− mice were generated by crossing Ripk3−/−

with mdx mice. Resulting mice were intercrossed for at least three generations
to obtain mdxRipk3+/− breeders to generate progeny that were used in the
experiments described, so that analysed mdxRipk3+/+ (mdx phenotype) and
mdxRipk3−/− mice were littermates.

Human muscle biopsies. Human biopsies were obtained either from the MRC
Centre for Neuromuscular Diseases Biobank London and were approved by the
National Health Service (NHS) National Research Ethics Committee (reference
number: 05/MRE12/32) or from the Henri Mondor Biological Resource Platform
(registration DC-2009-930, French Ministry of Research). An informed consent
was obtained from all human participants. Quadriceps biopsies from seven DMD
patients were analysed and compared to six samples collected from patients for
whom diagnosis involved neither muscular dystrophy nor signs of muscle
degeneration by histological analysis.

Plasmids and RNAi-mediated knockdown. C2C12 myoblasts were grown in
Dulbecco's modified Eagle's medium (high glucose) supplemented with 10% foetal
bovine serum, 1% GlutaMAx, and 100 U/ml penicillin–streptomycin. For RNAi
studies, C2C12 cells were plated 1 day before transfection at 4 × 104 cells per well of
a 24-well plate in culture medium. Myoblasts were transfected with 100 nM Ripk3
SiRNA (Dharmacon) using Lipofectamine 2000 (ThermoFisher) for 6 h before
changing to fresh culture medium. Cells transfected with scrambled small inter-
fering RNA (siRNA) were used as control. After 72 h, transfected cells were ana-
lysed by reverse transcriptase (RT) quantitative PCR or used for cell death assays.

For RIPK3 upregulation, a plasmid co-expressing the wild-type murine Ripk3
and the GFP was used as a gift from Francis Chan (Addgene plamid #41382). A
GFP-expressing plasmid (pEGFP-C2) was used as a control. C2C12 myoblasts were
transfected with TurboFect transfection reagent (ThermoFisher #R0531) according
to the manufacturer's instructions. Transfected cells were incubated overnight at
37 °C and on the following day, a second transfection was performed to improve
the percentage of transfected cells. After 24 h, cells were GFP-sorted through
fluorescence-activated cell sorting and seeded overnight before cell death assays.

Cell death assays. Cells were seeded into 96-well plates (5000 cells per well) and
pre-treated for 1 h with 1 µM TAK1 inhibitor (5Z)-7-Oxozeaenol (NP-009245,
AnalytiCon Discovery GmbH), 50 µM of pan-caspase inhibitor Z-VAD.fmk
(Promega), 30 µM Nec-1s (Cambridge Bioscience), 0.1–3 µM GSK’872 (Generon),
100 µM Butylated hydroxyanisole (BHA Sigma), and dimethyl sulfoxide (DMSO).
Then, cells were stimulated with recombinant mouse TNFα (Peprotech) at 100 ng/
ml for 3 h unless otherwise stated. Cell survival was determined by CellTiter-Glo
luminescent cell viability assay (Promega) and membrane permeability by
CytoTox-Glo cytotoxicity assay (Promega) according to the manufacturer’s
instructions. Luminescence was read by a microplate reader Fluostar Optima
(BMG Labtech).

RNA extraction, PCR, and real-time PCR. Snap-frozen muscles were thawed and
transferred in tube which contains 1.4 mM ceramic beads (Precellys, Bertin Corp,
MD, USA) plus 1 ml of Trizol (Life Technologies, Saint Aubin, France) and cen-
trifuged once at 6500 rpm for 20 s. Total RNAs were extracted using trizol
according to the manufacturer’s protocol (Life Technologies, Saint Aubin, France).
The quantity of RNA was determined using a Nanodrop ND-1000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA). Quantitative PCR (qPCR)
was designed according to the MIQE standards. qPCRs were performed on a
LightCycler 480 Real-Time PCR System (Roche, Meylan, France) in a final volume
of 9 µl with 0.4 µl of RT product, 0.18 µl each of forward and reverse primers (20
pmol/ml), and 4.5 µl of SYBRGreen Mastermix (Roche, Basel, Switzerland). After
qPCR, the PCR products were run on a 2% agarose gel and were cloned using the
Topo cloning kit (Life Technologies, Saint Aubin, France) and sequenced. Primers
used in this study are the following: forward mPsma2 5′-AGAGCGCGGTTA-
CAGCTTC-3′ and reverse 5′-CTCCACCTTGTGAACACT
CCTT-3′, forward mRipk3 5′-CGGGCACACCACAGAACAT-3′, mRipk3 and
reverse 5′- GTAGCACATCCCCAGCACCAC-3′, forward mRipk1 5′-AGAAGA
AGGGAACTATTCGC-3′ and reverse mRipk1 5′-TTCTATGGCCTCCACGAT-3′,
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and forward mMlkl 5′-ATCAAAGTATTCAACAACCCC-3′ and reverse mMlkl 5′-
GCAAATCCCAAATATACGCAA-3′.

Antibodies and western blotting. Protein extracts from mouse muscles, C2C12
myoblasts, and MEFs (strain CF-1, Millipore) were analysed using the following
primary antibodies: rabbit antibody to RIPK3 clone H-43 (Santa Cruz, sc-135170,
1:300), rabbit antibody to RIPK3 (Sigma, PRS2283, 1:1000), mouse antibody to
GAPDH (Abcam, 9484, 1:500). Secondary antibodies were: IRDye 680RD con-
jugated goat anti-rabbit IgG (LI-COR, 925-68071, 1:15,000) and IRDye 800CW
conjugated goat anti-mouse IgG (LI-COR, 926-32210, 1:15,000). Detection was
performed using a LI-COR Odyssey instrument (fluorescent detection) and the
quantification of images was performed using ImageJ. Uncropped scans are shown
in the Supplementary Figure 6.

For immunofluorescence, mouse antibody to human Laminin α2 (clone 5H2,
MAB1922, 1:1000), rabbit to RIPK3 clone H-43 (Santa Cruz, sc-135170, 1:50),
rabbit antibody to human phospho-MLKL (Abcam, Ab-187091, 1:80), rat antibody
to CD68 (clone FA-11, 137001, 1:50), rabbit antibody to mouse pan-Laminin
(Sigma, L9393, 1:1000), rabbit antibody to Collagen VI (Abcam, Ab6588, 1:150),
and neonatal myosin heavy chain antibody (Clone BF34; Developmental Studies
Hybridoma Bank, 1:50) were used.

Image analysis. For the analysis of the following parameters, myonecrosis, CD68-
positive cell infiltrate, NeoMHC-positive fibres, and fibrosis, transverse cryosec-
tions taken from the entire length of the TA muscle were immunostained and
quantified using Metamorph software. The section with the highest area of each
measured parameter (normalised to CSA) for each muscle is presented. Myone-
crosis levels were determined by measuring the area corresponding to mouse IgG
uptake in myofibres (and not in interstitial areas) and expressed as the percentage
of the CSA. Muscle fibre minimal Feret diameter, corresponding to the minimum
distance between the two parallel tangents of myofibres, was determined. Images
analyses were performed with ImageJ by a specific self-developed macro that
recognises muscle fibres62.

Serum CK activity. Blood (50–100 µl) obtained by puncture of the mandibular
vein was left for 20 min at room temperature. Serum was separated from the clot by
a refrigerated centrifugation for 10 min at 2000 × g, and immediately stored at −80
°C. Quantification of serum CK activity was batch-performed using series of
thawed sera diluted at 1:15, using the Catalyst DX Chemistry Analyzer connected
to the VetLab station (IDEXX Laboratories, The USA; chemistry batches #9741 and
#9608).

Muscle strength. Grip strength was measured on male mice with a grip strength
metre (BIO-GS3, Bioseb, France) according to the manufacturer’s instructions.
Briefly, the four limbs were allowed to grasp the grid and mice were gently pulled
backwards. Five measurements were recorded and the highest was used for ana-
lysis. Absolute value was normalised to the body weight. The hanging test was
performed to assess abdominal and limb muscle fatigability. Mice were placed on a
grid which was gently inverted so that mice were hanging under the grid. The
latency to fall was timed and normalised to the body weight.

Activity recording. The 10–12-week-old male mice were individually caged to
form five groups of mixed mdxRipk3+/+ and mdxRipk3−/− littermates. They were
housed in the same rack with a 12:12 light/dark cycle, the dark onset being set at 7
pm. During 4 consecutive days at around 6:30 pm, mice were trained with an
increasing moderate exercise using a treadmill (Panlab LE8710MTS, Harvard
Apparatus). On day 4, they walked for 5 min at 1 cm/s followed by 3 min at 5 cm/s
and then ran for 3 min at 10 cm/s, 2 min at 12 cm/s, 2 min at 14 cm/s, and ended
the exercise by 2 min at 17 cm/s. Then, their nightly individual spontaneous activity
was recorded from around 7 pm for 14 h using the ActivMeter system (Bioseb,
France), with the activity threshold set to 2. The activity included mobile activity
and immobile activity such as grooming and feeding. Inactive time included
sleeping or resting with no other movements than breathing. The low speed
threshold was set to 3.5 cm/s and the high speed threshold set to 7 cm/s. Activity
data from 7:30 pm to 7:30 am were extracted from raw files and data recorded the
night after the moderate stimulating exercise (day 4) were analysed.

Data availability
All relevant data are available from the author upon request.
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