UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A microscopic Kapitza pendulum

Richards, CJ; Smart, TJ; Jones, PH; Cubero, D; (2018) A microscopic Kapitza pendulum. Scientific Reports , 8 , Article 13107. 10.1038/s41598-018-31392-8. Green open access

[thumbnail of Richards_Microscopic.pdf]
Preview
Text
Richards_Microscopic.pdf - Published Version

Download (1MB) | Preview

Abstract

Pyotr Kapitza studied in 1951 the unusual equilibrium features of a rigid pendulum when its point of suspension is under a high-frequency vertical vibration. A sufficiently fast vibration makes the top position stable, putting the pendulum in an inverted orientation that seemingly defies gravity. Kapitza’s analytical method, based on an asymptotic separation of fast and slow variables yielding a renormalized potential, has found application in many diverse areas. Here we study Kapitza’s pendulum going beyond its typical idealizations, by explicitly considering its finite stiffness and the dissipative interaction with the surrounding medium, and using similar theoretical methods as Kapitza. The pendulum is realized at the micrometre scale using a colloidal particle suspended in water and trapped by optical tweezers. Though the strong dissipation present at this scale prevents the inverted pendulum regime, new ones appear in which the equilibrium positions are displaced to the side, and with transitions between them determined either by the driving frequency or the friction coefficient. These new regimes could be exploited in applications aimed at particle separation at small scales.

Type: Article
Title: A microscopic Kapitza pendulum
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41598-018-31392-8
Publisher version: https://doi.org/10.1038/s41598-018-31392-8
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/10056562
Downloads since deposit
80Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item