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Abstract The Cassini spacecraft orbited Saturn from 2004 to 2017, and in 2006 it started exploring the
deep magnetotail, reaching distances of about 68 RS (where RS is the equatorial radius of Saturn). Since
Cassini covered a broad area of Saturn’s magnetosphere, this raises the question of what is the typical and
atypical plasma composition in different regions of Saturn’s environment. In this paper, we present a survey
of the bulk plasma composition using time-of-flight data from the Plasma Spectrometer/Ion Mass
Spectrometer instrument on Cassini, from 2004 through 2012. This is the most comprehensive study ever
made of relative abundances of thermal plasma at Saturn, maximizing the use of Cassini’s orbital coverage in
Saturn’s magnetosphere during those years, and, therefore, the sensitivity to seasonal or natural variability
of the system. We studied the ratio of counts between ions with E∕q ≃ 1.19–21,300 eV/q and mass per
charge equal to 2 (either H+

2 or He++) and ionized hydrogen ([(m∕q = 2)]/[H+]), and a mixture of ions (H2O+,
H3O+, OH+, and O+), known as the water group (W+) and ionized hydrogen ([W+]/[H+]). We present the data
as a function of position in the magnetosphere, radial distance and local time, and distance from the planet
and longitude with respect to the moons Enceladus, Dione, Rhea, and Titan. We found that the plasma
composition in Saturn’s magnetosphere presents significant local time asymmetries and variability.

1. Introduction

The aim of this study is to provide a global picture of low-energy plasma composition in Saturn’s magne-
tosphere. This aim is accomplished by a comprehensive plasma survey that uses time-of-flight (TOF) data
from the Cassini plasma spectrometer/ion mass spectrometer (CAPS/IMS) instrument. Data from the entire
on-orbit lifetime of the CAPS/IMS instrument are used (2004 through 2012). The motivating factors for this
study are to improve constraints on plasma circulation patterns, to identify more clearly plasma sources and
sinks, and to provide a more general description of Saturn’s magnetosphere. This study builds upon previous
works in this area including, for example, Andriopoulou et al. (2012, 2014), Wilson et al. (2013), and Thomsen
et al. (2010, 2014).

1.1. Plasma Sources
Multiple species and multiple sources, internal and external to the magnetosphere, contribute to Saturn’s
plasma system.

Sittler et al. 2008 use ion-electron fluid parameters derived from CAPS observations within Saturn’s inner
magnetosphere and consider in their model both transport and ion recombination (dependent on electron
density and thermal electron temperature) as a function of L: They find that recombination dominates inside
Dione’s L shell, whereas transport dominates outside Dione’s L shell. They find that the ion production (pro-
ton and water group together) maximum is 1027 ions per second, and it varies radially peaking at Tethys and
Dione; they see no peak at Enceladus’ L shell. They also find that the production of neutral molecules, instead,
peaks near Enceladus’ with a value of 2 × 1028 mol/s, value in the range of previous estimates (e.g., Fleshman
et al., 2013; Hansen et al., 2006; Jurac et al., 2002; Richardson & Jurac, 2004; Tokar et al., 2006; Waite et al.,
2006). Paranicas et al. (2012) find that the dominant Energetic Neutral Atoms (ENA) signal is found near the
orbit of Rhea.
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Saturn’s main rings are a source of H+
2 , O+, and O+

2 (Bouhram et al., 2006; Johnson, Luhmann, et al., 2006;
Johnson, Smith, et al., 2006; Luhmann et al., 2005; Martens et al., 2008; Tokar et al., 2005; Tseng et al., 2010).
Using a photochemical model and CAPS data, Elrod et al. (2012) demonstrated that production of neutrals
from Saturn’s ring atmosphere changes seasonally, influencing the ring plasma overtime. Tseng et al. (2013)
model a source rate for H2 due to photolysis of 2.0 × 1026 s−1 and for O2 of 2.0 × 1027 s−1 (corrected for the
amount of oxygen from Enceladus deposited in the A ring) at Saturn Orbit Insertion (SOI), and for H2 due to
photolysis of 2.0 × 1024 s−1 and for O2 of 2.0 × 1025 s−1 at equinox: Once ionized, these molecules contribute
to the local magnetospheric plasma. The spatial overlap between the E ring and Enceladus and also between
Mimas and the G ring complicates the differentiation between satellite and ring sources or absorption.

For Titan, Johnson et al. (2010) estimate a total ion loss rate of 1–5 × 1026 amu/s. Coates et al. (2012) used
observations of Cassini/CAPS electron and ion TOF spectra collected crossing Titan’s tail and estimated a loss
rates of 8.9, 1.6, and 4.0 ×1025 amu/s for three crossings of Titan’s tail.

Plasma produced in the inner magnetosphere is transported to the outer magnetosphere (on time scales
of weeks) via centrifugally driven interchange instability (Mauk et al., 2009, and references therein). One
strong signature of this process is the injection of hot plasma into the inner magnetosphere, associated with
magnetic pressure enhancements or deficits (e.g., André et al., 2005, 2007; Hill et al., 2005; Thomsen, 2013).

Felici et al. (2016) report a case study of Cassini data from Saturn’s magnetotail, when the spacecraft was
located at ≃2200 LT at 36 RS from Saturn. They interpreted this event as detection of ionospheric outflow in
Saturn’s magnetotail and estimated that the ionosphere could potentially provide a quantity of mass between
1.4 × 102 and 1.1 × 103 kg/s to the system, although it is not clear how much of this mass remains within the
magnetosphere and how much is lost to the solar wind.

To obtain a rough estimate of the contribution of the solar wind a source of plasma for Saturn’s magneto-
sphere we can multiply the solar wind mass flux nSWvSW by the cross-sectional area of the magnetosphere:
nSWvSWπR2

0. Estimating a magnetopause of cross-sectional area π(30 RS)2 (terminator radius of the magne-
topause from Kanani et al., 2010), considering a solar wind number density between 0.002 and 0.4 cm−3, a
solar wind speed between 400 and 600 km/s (Crary et al., 2005), and an efficiency factor O(10−3) (Bagenal &
Delamere, 2011; Hill, 1979; Hill et al., 1983; Vasyliunas, 2008) to account for the portion of plasma that does not
make it in the magnetosphere, we obtain an upper limit for the plasma provided by the solar wind to Saturn’s
magnetosphere: 8.21 × 1024 to 2.46 × 1027 ions per second.

1.2. Plasma Flow
In terms of circulation patterns, the interaction of the solar wind with the magnetosphere and the magneto-
spheric plasma motion caused by the planet rotation cause a total electric potential in the equatorial plane
given by the sum of the convection and corotation potentials. However, the corotation potential decreases
with distance, so, at large distances, the convection potential will dominate the drift of the cold plasma. This
creates two different regions in the magnetosphere. The first region is close to the planet and presents closed
equipotential field lines; corotation dominates; and the content of a flux tube is practically constant (plasma-
sphere). Out of this region, the electric field has a very strong duskward component and the flux tubes are
destined to encounter the dayside magnetopause and lose their plasma to the magnetosheath. Therefore,
the plasma density in this region drops from that in the plasmasphere. The point where the equipotential
field lines intersect at dusk is called the stagnation point. When the solar wind arrives at Saturn, the dynamic
pressure and the magnetic field are much weaker than around Earth, potentially implying that solar wind
effects on Saturn’s magnetospheric dynamics are somehow secondary to internally driven dynamics. How-
ever, the main auroral oval has been observed to undertake dramatic changes in response to the detected
solar wind disturbances, such as coronal mass ejections and corotating interaction regions (Badman &
Cowley, 2007; Cowley et al., 2004). Therefore, Dungey’s (1961) and Vasyliunas’s (1983) convection patterns
have been hypothesized to work together in Saturn’s system (Cowley et al., 2004). Dungey (1961) hypothe-
sized that the interplanetary magnetic field control is exerted by the reconnection phenomenon, consisting of
the linking between interplanetary and planetary magnetic field; magnetic flux is then carried into the night-
side magnetosphere where it builds up until reconnection happens in the tail. Reconnection in the Dungey
cycle (Dungey, 1961), namely, reconnection of open field lines carrying solar wind plasma, is then constrained
in the postmidnight sector; the X line, in this case, is located tailward from the region of returning flux from
Vasilyunas cycle, and the reconnected lobe flux tubes move sunward along the dawn flank. While the Dungey
cycle is driven by interaction with the solar wind and involves reconnection of open field lines, the Vasyliunas
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cycle is internally driven and involves reconnection of closed field lines loaded with plasma (Vasyliunas, 1983).
Reconnection in the Vasyliunas cycle (Vasyliunas, 1983), namely, centrifugally driven reconnection of closed
flux tubes loaded with magnetospheric plasma, is mostly restricted to the premidnight sector: These flux
tubes stretch in this area of the magnetosphere, preventing Dungey cycle reconnection from happening in
that region. This kind of reconnection allows plasma loss downtail, and the reconnected and plasma depleted
flux tubes, then, return to a more dipolar configuration through the postmidnight sector.

McAndrews et al. (2009) found tailward flows in the postmidnight plasma sheet containing water group
ions (W+)—composition different from that expected for a Dungey cycle—and not northward magnetic
field—opposite to that expected for a region located after Dungey or Vasyliunas reconnection lines. Results
from Thomsen et al. (2014) are consistent with McAndrews et al. (2009), namely, they found that the iono-
sphere has a strong influence on the flow, but beyond 20 RS the magnetic field is not strong enough to
bring the circulating plasma to the dayside and there is a radial mass outflow. They find a clear mass outflow
beyond 30 RS in the dusk sector, in a direction parallel to the dusk magnetopause, consistent with a dusk wing
(Delamere et al., 2013; Jia et al., 2012).

The simulations of Jia et al. (2012) find results, for the relative location of reconnection sites and convection
pattern, generally consistent with Cowley et al. (2004), having then an interplay between the two cycles in
Saturn’s system. They estimated that all plasma from Enceladus and other internal plasma sources cannot
be removed from the system only by large scale plasmoids and that a large fraction of the plasma is lost
through the flanks of the tail by possibly small-scale plasmoids. Cowley et al. (2015) estimate, however, that
the downtail plasma loss via plasmoids was underestimated by an order of magnitude and that, actually, this
mechanism might be sufficient at both Jupiter and Saturn, to lose material loaded in the magnetosphere by
Io and Enceladus, respectively. At Saturn, Hill et al. (2008) present a study on three plasmoids, two of which
had sufficient plasma to determine ion composition, which was dominated by water group ions, indicating
an inner magnetosphere source. Smith et al. (2016) observed that the reconnection rate at Saturn peaks in
the postmidnight sector, although on the dusk flank there is a more sporadic yet steady loss.

Jia and Kivelson (2016) simulate plasma and field properties of the near-equatorial regions between L = 5 and
10. They find agreement with previous finding but also interpret the net flow from dusk to dawn. The way in
which the plasma is distributed along flux tubes, while the flux tubes rotate around the planet, is controlled
by the balance of the centripetal term and the pressure gradient force. In the postmidnight quadrant, the field
is stretched by both pressure gradient and centripetal terms. The field-aligned component of the centripetal
term is large, and the plasma is confined near the equator, producing a thin plasma sheet. When the dipolariz-
ing flux tube rotates toward dawn, the plasma flows away from the equator, as the dipolarization reduces the
effect of the centripetal term, so the plasma can expand along the flux tube. Hence, the plasma sheet thick-
ens again. The flux tubes then rotate from noon toward dusk, but the plasma does not return to the equator
straight away because the field-aligned component of the centripetal term is small near the equator along a
dipolar filed line.

McComas et al. (2017) analyze plasma observations from New Horizons, collected when the spacecraft was
going from 600 RJ to distances larger than 2,500 RJ through the dusk flank of the Jovian magnetotail. They
find that light ions dominate over the heavy ions, contrary of what is observed near Jupiter’s plasma disk. They
suggest a few mechanisms to explain these observations: The heavy ions are confined in the plasma sheet and
the spacecraft might have passed above it, or internal (ionosphere) or external (solar wind) sources of light
ions might be stronger than Io (source of heavy ions); McComas et al. (2017) add that another explanation for
their observations: as possible consequence of the fact that, whereas the plasma disk generally retains the
heavy ions while the flux tubes rotate through dusk and the midnight sector, the flux tubes are increasingly
bent back until they reach the dawn flank (Khurana, 2001; Kivelson & Southwood, 2005), then heavy ions are
released in the downside of the tail, allowing the flux tubes return radially to fit the downside magnetosphere.

In the model of Jupiter by Delamere and Bagenal (2010) the plasma beyond 60 RJ can reach sink regions at the
dawn magnetopause, and, along the magnetopause, the viscous solar wind interaction via Kelvin-Helmholtz
vortices allows the exchange of mass and momentum with the magnetospheric plasma. Delamere et al. (2013)
extended this model showing region of closed flux along the dawn and dusk flanks, where there is interaction
with the solar wind. Krimigis et al. (2005), using the Magnetospheric Imaging Instrument on Cassini, measured
the energetic ion population upstream from the sides of Saturn’s magnetosphere. They find upstream ener-
getic hydrogen and oxygen ions up to distances of 120 RS, that they interpret as ions leaked from Saturn’s

FELICI ET AL. 3



Journal of Geophysical Research: Space Physics 10.1029/2017JA025085

magnetosphere when the interplanetary magnetic field is in a favorable configuration. Thomsen et al. (2007),
used CAPS data on Cassini to study the composition of the ions with E∕q between 3 and 50 keV/q located
upstream from Saturn’s bow shock. They find that the ion composition is given by H+ and ions with (m∕q = 2),
which they suggest being solar wind He++ but no magnetospheric water group ions: They suggest that leaks
from the magnetosphere may not be a significant source of upstream ions in that energy range.

1.3. Asymmetries of the Magnetosphere
The instantaneous magnetospheric tilt, the net tilt angle between the dipole equator and the solar wind, is
a function of planetary rotational and orbital phase. Depending on the planet’s obliquity and dipole tilt, we
have a spectrum of periodicities for every different magnetized planet (Arridge et al., 2008). When the dipole
magnetic equator is not perpendicular to the solar wind flow, the solar wind exerts a normal stress on the
current sheet and, beyond compressing the dayside and stretching the nightside, shifts the location of the
magnetic equator (Arridge et al., 2008): The magnetospheric current sheet is moved northward (southward)
over all local times (LTs) for negative (positive) magnetospheric tilt angles. The data confirm the model of
Arridge et al. (2008).

From the comparison between two passes of identical geometry from January 2007 (with Cassini crossing
the equatorial plane in the postmidnight sector at a distance of ≃21RS) and two passes from April 2009 (also
of identical geometry, with Cassini crossing the equatorial plane in the premidnight sector again at a dis-
tance of ≃21RS) a change in the tilt and vertical offset of the planetary nightside plasma sheet was observed
(Sergis et al., 2011). The plasma sheet becomes more and more aligned to the solar wind direction reaching
the Saturnian equinox (August 2009). The scale height of the plasma species was found directly proportional
to the temperature and inversely proportional to the mass of the particle (∝

√
T∕m); thus, the thickness

of the plasma sheet is energy and mass dependent (Hill & Michel, 1976) and becomes more complex in a
multispecies plasma.

In the Jovian and Kronian magnetospheres additional asymmetries were observed. At Jupiter, beyond≃20 RJ ,
the plasma sheet is 10 times thicker at dusk (≃20 RJ) than at dawn (≃2 RJ ; (Lanzerotti et al., 1993).

At Saturn, asymmetries caused by an electric field from noon to midnight were observed, corresponding to a
radially inward flow in the afternoon and a radially outward flow in the morning within 10 RS (Andriopoulou
et al., 2012; Thomsen et al., 2012; Wilson et al., 2013). Pilkington et al. (2015) find an additional dawn-dusk
asymmetry in the magnetosphere, which extends farther from the planet on the dawnside of the planet by
7 ± 1%. Krimigis et al. (2007) show that higher pressures on the dayside extend to much higher latitudes
compared to the nightside, more evidently for distances <20 RS, suggesting that the plasma sheet in the
dayside is thicker than in the nightside.

1.4. Low- and High-Energy Ion Composition at Saturn
Thomsen et al. (2010), who presented the first survey of thermal plasma, have restricted attention to low lat-
itudes (within ±5∘ of the equatorial plane) and to when corotation is covered in the CAPS field of view. The
study shows that the density of m∕q = 2 follows H+ density fairly well, from several percent in the inner mag-
netosphere to several tens of percent in the outer magnetosphere and tail (Thomsen et al., 2010). Farther than
17 RS, they measured a bimodal distribution of values, indicating that the lower values of the ratio correspond
to magnetosheath/solar wind, whereas the higher values are given by inner magnetosphere plasma. This sug-
gests that the solar wind is not the main source of plasma for the outer magnetosphere. The enhancement
in the relative density [(m∕q = 2)]/[H+] around 20 RS suggests that Titan is an important source of H+

2 . Tseng
et al. (2011) modeled the trend of H+

2 source rate in the magnetosphere. H+
2 is produced from H2 through pho-

toionization, electron impact ionization, and charge exchange with magnetospheric plasma ions, and they
showed that the ionization source rate peaks at the rings, at Rhea, and at Titan, matching the peaks measured
by Thomsen et al. (2010).

DiFabio et al. (2011), DiFabio (2012), and Blanc et al. (2015) use the Charge Energy Mass Spectrometer (CHEMS)
on Cassini to study long-term time variations of the ions with E∕Q in the range 27–220 keV/q, and they find
[H+

2 ]/[H+] partial number densities ratios for L = 7–16 to be 0.1 and [H++]/[H+] to be 0.0029, and the latter
ratio reaches a value of 0.0074 for L = 15–21. DiFabio et al. (2011) also find that the solar wind ions He++

decrease significantly near solar minimum (2009–2010). Blanc et al. (2015) estimate from results from DiFabio
et al. (2011) that 84% of the magnetospheric H+ originated in the magnetosphere, and the rest comes from
the solar wind.

FELICI ET AL. 4



Journal of Geophysical Research: Space Physics 10.1029/2017JA025085

Thomsen et al. (2010) also studied the relative density [W+]/[H+] variability with distance: They found that
W+ dominates over H+ on the equatorial plane, and they found a peak around Titan, which is not expected
from models (e.g., Johnson et al., 2010). Persoon et al.’s (2009) model shows that the heavier ions are closely
confined to the equatorial plane in the inner magnetosphere, and the equatorial density profile of W+ peaks
at 4.8 RS. Reisenfeld et al. (2008) also used TOF data from CAPS/IMS. Their data cover 2 years, predominantly
in the region of the dawn magnetosphere. They found that W+ ions dominate over H+ up to 25 RS, but W+

ions are detected till 36 RS.

Wilson et al. (2015) studied relative abundances of W+ ions in the inner magnetosphere over two orbits in
2011. They find that different W+ species dominate in different regions and also have different dependen-
cies with radial distance: H2O+ is the dominant W+ species between 4.75 and 8 RS, whereas OH+ dominates
between 8 and 10 RS. H3O+ is the second dominant species between 4.75 and 6.25 RS, whereas OH+ is the
second dominant species between 6.25 and 8 RS and H2O+ is between 8 and 10 RS. O+ is the least dominant
species from 4.75 to 8.25, and then H3O+ is the least dominant one after that. H3O+ abundance decreases
dramatically with increasing distance from Saturn, whereas H2O+ diminishes more smoothly and OH+ and O+

instead increase with radial distance up to 10 RS.

DiFabio et al. (2011), DiFabio (2012), and Blanc et al. (2015), using CHEMS data, find the relative density
[W+]/[H+] to be 2.1 in the range L = 7–16.

Holmberg et al. (2012) use the Radio and Plasma Wave Science Langmuir probe to map the ion density of
Saturn’s inner plasma torus. They use data from 129 orbits and find that the main plasma torus is located
between 2.5 and 8 RS from the planet, with the ion density that reaches its maximum between the orbits
of Enceladus and Tethys. Holmberg et al. (2014) use the Radio and Plasma Wave Science Langmuir probe
measurements from 129 Cassini orbits and find higher ion density values at the nightside and lower values
at the dayside, confirming a day/night asymmetry, and from their Figure 1b, we can appreciate how the ion
density is more radially extended at dusk. Holmberg et al. (2017) use the Radio and Plasma Wave Science
Langmuir probe to map Saturn’s plasma disk between 2.5 and 12 RS, and they find that the plasma density
peak is located at ≃4.6 RS, not near the main neutral source region (Enceladus) at 3.95 RS, due to the fact that
ionization rate by the hot electron impact peaks at ≃4.6 RS. They also confirm the result found in Holmberg
et al. 2014: A dayside/nightside ion density asymmetry, where the densities in the nightside are found to be
up to a factor of 2 larger than the densities on the dayside, especially in the region between 4 and 5 RS from
the planet.

1.5. In This Paper
In this paper, in sections 2 and 3 we describe the data reduction process that was designed and implemented
in order to minimize all the possible biases given by differences in the way that the data are collected, packed,
and transmitted to Earth. Subsequently, we will describe how the fits were performed to give the ion counts
associated with various species and further filters that were applied to the data. We will then illustrate the
data analysis performed on the results of the fits, before the data were plotted. Lastly, we will present and
discuss our results, for relative counts [(m∕q = 2)]/[H+] and [W+]/[H+], since H+, H+

2 , and W+ are the three most
abundant species in Saturn’s magnetosphere. We will present our results in different ways:

1. in the X-Y and Y-Z planes in Kronocentric Solar Magnetic (KSMAG) coordinate system (Arridge et al., 2008),
also separated seasonally by solstices and equinox;

2. in cylindrical coordinate system showing ratios versus distance from Saturn and LT sector;
3. as ratios versus distance from Saturn and longitude of the spacecraft with respect to Enceladus, Dione, Rhea,

and Titan.

2. Instrumentation

The CAPS measures the energy per charge and arrival direction of electrons and ions. The instrument con-
sists of three sensors: the electron spectrometer (ELS), which measures electrons from 0.7 eV/q to 29 keV/q,
the ion beam spectrometer (IBS), which measures narrow ion beams from 1 eV/q to 50 keV/q, and the
IMS, formed by a top hat electrostatic analyzer that measures the E∕q of ions in the range from 1 eV/q to
50 keV/q (SNG data), followed by a TOF analyzer for the determination of mass per charge of incoming par-
ticles. A motor-driven actuator rotates the sensor package to provide a useful range restricted in azimuth to
−80∘ < 𝜓 < +104∘ scanning in the azimuth of the spacecraft, covering approximately 2π sr of the sky every
3 min; the spacecraft rolls can occasionally increase the field of view to 4π sr (Young et al., 2004).
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Figure 1. Number of orbits (top) and number of time-of-flight spectra
(bottom) binned in 2 RS × 2 RS bins in the equatorial plane (X-Y in KSMAG
coordinate system). Both the number of orbits per bin (top) and number
of time-of-flight spectra (bottom) are summed in Z and collapsed together
in the same bin in X-Y . In the plots, Saturn is located at the origin, dayside
is on the positive X direction on the right, in the positive Y direction we find
the dusk sector, midnight is on the left, and dawn sector is at the bottom
of the plot. KSMAG = Kronocentric Solar Magnetic.

IMS does not identify ion mass separately. After the ions exit the top hat
they pass through a carbon foil, liberating an electron that generates a
start signal. The stop signal for the TOF is generated by the ion or its
neutral counterpart. The start-only signals (called singles data, SNG) are
monitored separately from the coincidence (start and stop) signals that
make the TOF data set. SNG data carries the information of the direc-
tion of motion of detected particles. TOF data instead do not carry any
directional information.

The top hat analyzer covers the whole E∕q range, adjusting the poten-
tial difference between the two curved plates of the electrostatic analyzer
every 4 s, in 64 intervals (63 measured energies and 1 fly back). The accu-
mulation time is 62.5 ms for each voltage, but one eighth of this, 7.8125 ms,
is dead time used to switch to the next voltage; therefore, the real accu-
mulation time is 54.6875 ms for each of the 63 steps. TOF, instead, has 32
energy steps rather than 63. In the case of IMS, the term azimuth refers to
a particular voltage sweep of the top hat analyzer from high to low volt-
ages (energy step 1 to energy step 63). The sweep tables report the correct
value of the voltage steps over the hemispheres of the top hat and/or the
corresponding E∕q of the ions selected by those voltage steps used in the
instrument during a specific data acquisition.

An A cycle is the basic interval of time for the CAPS instruments and lasts
32 s. For SNG data, a complete voltage sweep lasts 4 s, as such there
are eight voltage sweeps (the electrostatic analyzer goes through the 63
energy steps) per A cycle. B cycles are instead used for TOF measurements.
A B cycle, theoretically, can have one of three different durations, usually
256 s, but also 512 or 1,024 s (8, 16, or 32 A cycles), dependent on teleme-
try modes. However, only a subset of the daily A cycles are also included in
B cycles, which is dependent on the telemetry mode of the time.

The TOF instrument has 2,048 different TOF channels (1 TOF chan-
nel = 0.78125 ns) where data can fall, but only a subset are returned to
Earth. At most 512 TOF channels are returned. Even if 512 channels are
present in the TOF data product, they do not necessarily correspond to the

same subset of 2,048 channels. From SOI up until 2005-058T01:00:00, the 512 channels corresponded to every
fourth channel of the full 2048, for both the straight-through (ST; TOF) detector and linear electric field detec-
tor (LEF; TOF). After 2005-058T01:00:00 the start channel is number 40, with every other channel returned,
continuing up to channel 1062.

In this study we use data from the ST detector.

3. Methods

We chose to study the variability of the ratio of counts between species to automatically eliminate the bias that
would have been introduced by having areas of the magnetosphere covered multiple times by the spacecraft,
possibly resulting in more counts in specific regions than in others.

In this study we use ratio between counts, [(m∕q = 2)]/[H+] and [W+]/[H+], and not purely counts for each
species, for the following reasons:

1. The spacecraft spent different amounts of time in different regions of the magnetosphere (see Figure 1),
so if we wanted to use counts for this study, in each bin we should have had to renormalize the counts for
each species by the average number of counts for that species in that bin.

2. If we had renormalized the counts, however, as mentioned in the previous point, the average number of
counts would have been biased by the fact that the environmental conditions, and look directions, are
different for each passage in a bin; in fact, the CAPS actuator can be off (staring mode) or on, but, even in the
latter case, the instrument does not have full sky viewing and covers only 2π steradians: If the instrument
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is not looking in the right direction, ion beams can be missed. To solve that, we could have filtered the data
by look direction, but TOF data do not carry directional information.

3. To obtain directional information, we could have utilized SNG data (which carries directional information)
to select a look direction, but doing so, we should have excluded valuable information (e.g., data collected
when CAPS was looking in a different direction from the one selected) from this study that, instead, wants
to give a global picture of Saturn’s magnetosphere.

This study may also contribute to the identification of areas with solar wind influence (known values for this
relative density [He++]/[H+] peaks at ≃4%, but can reach ≃7–8%, in the solar wind (Kasper et al., 2007; Wang,
2008), and to better understand the correlation between species. From Blanc et al. (2015, and references
therein) we know that, at higher energies, H+

2 /H+ ≃ 0.17, whereas He++/H+ ≃ 0.0029 in the inner magneto-
sphere, and we expect high relative counts [(m∕q = 2)]/[H+] ratio around Titan’s orbit (Thomsen et al., 2010),
where (m∕q = 2) is more likely to be H+

2 . Hence, when solar wind and inner magnetosphere plasma are mixed
together, or where the solar wind penetrates the magnetosphere, we might find a depressed relative counts
ratio compared to that found in the inner magnetosphere (He++/H+ < H+

2 /H+).

3.1. Survey
We collected the data of the TOF instrument on CAPS/IMS from 2004 through 2012, and we binned them in
three different ways, to look at the data from different points of view:

1. In KSMAG coordinate system we binned the data
- in 2 RS × 2 RS bins in the X-Y coordinates in the equatorial plane, summing together all the TOF spectra

in the Z coordinates;
- 2 RS × 2 RS bins in the Y-Z plane, summing together all the TOF spectra in the X coordinate, where we

could select whatever numbers of bins in X we could sum.
2. In a cylindrical coordinate system, we binned the data in bins measuring 1 RS× 7.5∘ (0.5 hr LT) bins, namely,

with radial distance as radial coordinate and LT as angular coordinate, in the equatorial plane, summing
together all the TOF spectra in the Z coordinates; this approach allowed us to explore the data with more
resolution and added information to the results obtained with Cartesian binning.

3. We binned the data in a frame with higher resolution in radial distance from the planet versus longitude
(0.1 RS× 20∘ bins) with respect to the moons Enceladus, Dione, Rhea, and Titan; all the data in the Z coor-
dinates were collapsed together. This approach to the data allowed us to look for changes between the
upstream and downstream plasma for each moon.

The data processing accounts for a number of instrumental and telemetry mode issues, in order to minimize
biases that could have been given by the way data were collected, or packed to be returned to Earth, and also
where the spacecraft was located with respect to the magnetosphere. We wanted to make the data as homo-
geneous as possible to be fitted together or, if that was not possible, fitted separately and then combined as
a second step. At this stage, we implemented the following selection:

1. Firstly, since B cycles can last, according to the telemetry mode, either 8, 16, or 32 A cycles, if a change in the
data acquisition setting from A cycle to A cycle in the same B cycles occurs, we have to exclude that B cycle
from our study. Therefore, our code checks that both sweep table number and microchannel plate voltage
stay the same for all the A cycles in a specific B cycle.

2. Since B cycles have different durations, we convert the measured counts/accumulation into counts per
second using the B cycle duration for each spectrum.

3. Furthermore, we calculated—through Spacecraft Planet Instrument C-matrix ("Camera matrix") Events
(SPICE), the NASA ancillary information system—the distance of the spacecraft from each major moon, in
terms of the specific moon radius.

4. Our aim is to study the plasma composition inside the magnetosphere; therefore, we wanted to make sure
that all the data we were analyzing were indeed inside the magnetosphere. In order to exclude all data
from outside the magnetopause, we obtained a list of magnetopause crossings from N. Pilkington (private
communication, 2015), which were used in a study of the magnetopause (Pilkington et al., 2015). Our code,
then, runs through the B cycles and classifies them as inside or outside the magnetosphere. Since we do not
know what angle the spacecraft trajectory had to the magnetopause during the crossing, we do not know
the duration of the crossings; to make sure we keep B cycles from only inside the magnetosphere then, we
consider that crossings last for a minimum of 2 hr. Each spectrum was classified into four groups, so that
we could select which B cycles we want to process later in the analysis (data inside the magnetosphere,

FELICI ET AL. 7



Journal of Geophysical Research: Space Physics 10.1029/2017JA025085

data outside the magnetosphere, data collected during a magnetosphere crossing, and data that cannot
be classified).

The data resulting by this part of the analysis were then fitted as explained in the next section.

3.2. Fitting
As mentioned in the previous section, after the data reduction, the TOF spectra (E∕q, TOF channel) for each bin
are then summed together and fitted with the code provided from Dan Reisenfeld (private communication
2013). This fitting procedure uses calibration functions for CAPS/IMS and had already been used in previous
studies (e.g., Thomsen et al., 2010). The model function used for fitting is a linear combination of the basis
functions, H+, H+

2 , or He++ (representing m∕q = 2), C+, N+, O+, OH+, H2O+, and H3O+, which also considers
the contribution of heavier molecules that break into daughter species and the background basis function
that consists of a straight line. The function returns counts for each species and the error associated to the
counts. The function is then minimized with the Levenberg-Marquardt technique.

Further filtering on the data was performed at this stage as well:

1. From SOI up until 2005 doy 058 hr 01:00:00 (2005-058T01:00), the 512 channels corresponded to every
fourth channel of the full 2048, for both ST and linear electric field. However, after a few months of TOF
data from Saturn, it was understood that many of the TOF channels were never populated by counts. As a
consequence, after 2005-058T01:00, the returned 512 channels correspond to a start channel that equals
to 40, with every other channel returned up to channel 1062. We, therefore, performed the fits on the two
cases separately, and the results were combined later on and the errors were propagated accordingly (see
next section).

2. In order to avoid having possible biases in LT variability (due to possible multiple moon encounters in a
specific sector of the magnetosphere), we excluded from the analysis B cycles collected when the spacecraft
was closer to each major moon (Titan, Rhea, Enceladus, Tethys, Dione, Iapetus, and Hyperion) than 10 moon
radii.

3. We only fit for energy steps from 3 to 31 (see Wilson et al., 2012, available at http://ppi.pds.nasa.gov/),
E∕q ≃ 1.19–21,300 eV/q.

4. We do not consider heavier species in the fit (e.g., O+
2 , N+

2 , NH+, NH+
2 , and NH+

3 ).

The model returns the counts associated with each species under consideration, as a function of E∕q. We
start by assuming that the spectrum contains H+, m∕q = 2, O+, OH+, H2O+, and H3O+ and fits the model to
the summed spectrum. The counts are divided by the efficiencies, which are energy and species dependent:
The counts of a certain species at a certain energy are divided by the efficiency of that species at that
energy. Then, the counts for each species are integrated in E∕q, and if one species is consistent with 0 count
within error, that species is removed from the fit and the fit is recalculated with the remaining species. This is
continued until no more species are discarded. After that, lastly, the counts are integrated in E∕q to get the
total counts for each species.

3.3. Analysis and Plotting
Before plotting, we analyze the results of the fits. As mentioned in section 3.2, we fitted separately the two
most common options of returning 512 channels: from 0 to 2048 taking every fourth channel (filter 1) and
from channels 40 to 1062 returning every other channel (filter 2). Hence, at this stage, we combine the results
for the two filters, calculate the ratios, and calculate the errors propagating the uncertainties from the fit on
the various species and on the ratios between species. Effectively, with ratio of counts we indicate the ratio of
corrected count rates.

In Figure 2 we report a schematic to illustrate the data processing, from the TOF data to the ratios. The
schematic shows, as an example for the binning step, the case in which the bins are in XY in KSMAG
coordinates.

In Figure 3 we show the results of the fitting, performed on original data and reduced data: In the plot on the
left we show the results for [(m∕q = 2)]/[H+] only from the fitting, before all the data reduction and analysis
steps were implemented, and in the plot on the right we show the data left after the data reduction was
performed. In Figure 3, right, we represented with gray-colored bins, spatial bins where the spacecraft had
passed, but we have data with relative error larger than 50% or where the data were reduced.
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Figure 2. Schematic of the data processing, and as an example for the binning step, the case in which the bins are in XY
in KSMAG coordinates.

4. Abundance of He++ or H+
2

to Protons: [(m∕q = 2)]/[H+]

In Figure 4, a zoom in of Figure 3, right, we show the ratio [(m∕q = 2)]/[H+] in the equatorial X-Y plane in the
KSMAG coordinate system. We plot the maximum and minimum position of the magnetopause calculated by
Arridge et al. (2006) to represent the magnetopause positions at extremes of the solar wind conditions and
the orbit of Enceladus (circle at 4 RS) and of Titan (circle at 20 RS).

We know that TOF does not discriminate between species with the same m∕q; therefore from TOF data we
cannot differentiate between H+

2 , from inside the magnetosphere, and He++ from the solar wind. However, the
relative density [He++]/[H+] peaks at ≃4% but can reach ≃7–8%, in the solar wind (Kasper et al., 2007; Wang,
2008) and from Blanc et al. (2015, and references therein) we know that at higher energies the relative density
[H+

2 ]/[H+] ≃ 0.17, whereas [H++]/[H+] ≃ 0.0029 in the inner magnetosphere. In addition, we expect a high
relative density [(m∕q = 2)]/[H+] around Titan’s orbit (Thomsen et al., 2010), where (m∕q = 2) is more likely
to be H+

2 . Hence, when solar wind and inner magnetosphere plasma mix, or where the solar wind penetrates
the magnetosphere, we might find a depressed ratio compared to that found in the inner magnetosphere
([He++]/[H+] < [H+

2 ]/[H+]).

For distances from the planet between 2 and 6 RS the [(m∕q = 2)]/[H+] ratio ranges between 0.01 and about
0.08. We find a value of the ratio larger in the dusk sector compared to dawn.

From 6 RS to 10 RS the ratio varies from ≃0.09 to 0.4. In the afternoon (1200–1800 LT) and premidnight
(1800–0000 LT) sectors, from ≃10 RS (Rhea’s orbital distance = 8.7 RS) outward, the ratio starts increasing
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Figure 3. Ratio [(m∕q = 2)]/[H+] before the data reduction (left) and after the data reduction (right). We reported data
binned in 2 RS × 2 RS bins in the equatorial plane (X-Y in KSMAG coordinate system). Columns in Z with a 2 RS × 2 RS
base in the equatorial X-Y plane are collapsed together in the same bin in X-Y . Saturn is located at the origin, dayside is
on the positive X direction on the right, in the positive Y direction we find the dusk sector, midnight is on the left,
and dawn sector is at the bottom of the plot. In the plots, we reported, as gray curves, the average position of
the magnetopause (on the plot on the left) and maximum and minimum positions of the magnetopause (on the plot
on the right in dark gray) with parameters estimated by Arridge et al. 2006 to represent the magnetopause positions
in both extremes of the solar wind conditions and gray circles representing Enceladus’ orbit (4 RS) and Titan’s orbit
(20 RS). We excluded from the plot on the right data with relative error larger than 50% so that the analysis was not
biased by TOF spectra with poor signal to noise: In gray we plotted bins where the spacecraft had passed, but data were
excluded either as a result of the data reduction process or due to the large relative error.

approaching ≃0.6–0.7, reaching the farthest distance from the planet at ≃40 RS, at ≃1830–1900 LT. We
expected an increase in the ratio around 8–9 RS, due to Rhea, and 20 RS, due to Titan (Thomsen et al., 2010;
Tseng et al., 2011), as these are both sources of H+

2 . We cannot know if this high ratio region we see at
dusk extends at farther distances and later LT, although beyond 27 RS downtail we find a much smaller ratio
(≃0.2–0.3), suggesting that the high ratio region is coming to an end.

Figure 4. Ratio [(m∕q = 2)]/[H+]. Figure format is the same as in Figure 3,
right.

Even though the coverage at dawn is more sparse than the coverage at
dusk, we can still notice that the ratio at dawn is lower than the ratio at
dusk. This suggests that heavier ions (m∕q = 2) got lost either downtail via
plasmoids, or along the magnetopause flanks.

It has to be kept in mind that we are dealing with a ratio between two
species so, if one of the two changes, the ratio changes. Hence, a decrease
in the ratio may be produced by an increase in H+, not a decrease in
m∕q = 2. Future studies are needed to shed light on this subject.

In addition to seeing a lower ratio at dawn, we see bins that show a ratio
that might result from a combination between the two m∕q = 2 species,
along the magnetopause ([m∕q = 2]/[H+] ≃ 4%), and very clearly around
the magnetopause subsolar point.

Three investigations were carried out to examine if the extensions of the
high ratio region in the dusk sector were related to biases introduced by
(a) averaging very different abundances in the vertical plane, (b) magne-
tospheric tilt, and (c) type of binning and proximity to moons.

4.1. [(m∕q = 2)]/[H+]: Y-Z in KSMAG
We examined the distribution of the ratio in the Y-Z plane to verify that
the high ratio region that we see at dusk (see Figure 4) is not due to the
fact that many vertical bins are collapsed together in the same bin in X-Y .
Figure 5 shows, as example, [(m∕q) = 2]/[H+] for −26 RS < X < −14 RS
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Figure 5. Ratio of counts [(m∕q = 2)]/[H+] in the Y-Z plane, X between −26
RS and −14 RS in the tail. Saturn is located in the origin of the axis; on the
positive Y we have dusk sector; on the negative Y , the dawn sector; for
positive Z we have north hemisphere; and for negative Z, the south
hemisphere. We excluded from our plots data with relative error larger than
50% so that the analysis was not biased by time-of-flight spectra with poor
signal to noise: In gray we plotted bins where the spacecraft had passed,
but data were excluded either as a result of the data reduction process or
due to the large relative error. KSMAG = Kronocentric Solar Magnetic.

in the tail. To produce this projection, the data were analyzed as before,
but instead of collapsing the bins in Z they were integrated over a range
in X and split into bins in Z.

In the dawnside, the ratio reaches a value of ≃0.6, and this value extends
from about 10 to 16 RS far from the planet in the Y axis. Even though we
do not have much vertical coverage, beyond 15 RS from the planet, the
ratio is lower than what is seen at closer distances, suggesting that, even if
we had vertical coverage, we would possibly still have lower ratio. Around
12 RS, where we have bins showing high ratio, we also have more vertical
coverage, and we can see how there the high ratio (≃0.4–0.6) does not
extend vertically (4 RS) as much as it does at dusk (6 RS). At dusk, the ratio
reaches a value ≃0.7, therefore larger than at dawn, extends vertically ≃2
RS larger than at dawn, and extends for 38 RS in width. Therefore, the data
suggest that the high ratio region that we see in the X-Y plane at dusk, is
about 6 RS thick and about 38 RS wide.

At higher latitudes, we see bins that show a value of the ratio lower than
0.1: Since this value of the ratio seems to appear also at dusk on the equa-
torial plane, at distances from the planet ≃40 RS, we might be detecting
regions with a mixed composition from solar wind and inner magneto-
sphere. However, we must consider that m∕q = 2 and H+ have different
scale height (Hill & Michel, 1976), so the vertical extension of the high ratio
region does not necessarily reflect the dimensions of the plasma sheet.

4.2. [(m/q=2)]/[H+]: Seasonal Variability
Secondly, we wanted to investigate if there were a seasonal difference for
the high ratio we see in the dusk sector in Figure 4, and if this had any rela-
tion with the magnetospheric tilt with respect to the solar wind. In Figure 6
we show seasonal separation for the data: Figure 6a shows data from the

nearer solstice periods—data before 11 February 2008 and after 11 February 2011—and Figure 6b shows
data from near the equinox, after 11 February 2008 and before 11 February 2011. During solstices, the absolute
value of the magnetospheric tilt angle ranges from 10∘ to 25∘.

We can see that the high ratio region seen at dusk is present in both plots: Figure 6a shows a high ratio region
starting around Rhea’s radial distance from the planet and expanding outward at dusk. Data from nearer

Figure 6. Ratio of counts [(m∕q = 2)]/[H+] for nearer solstice (a), includes data before 11 February 2008 and after 11
February 2011, when the absolute value of the magnetospheric tilt angle ranges from 10∘ to 25∘ , and nearer equinox (b)
after 11 February 2008 and before 11 February 2011. Figure format is the same as in Figure 4. KSMAG = Kronocentric
Solar Magnetic.
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Figure 7. The plot shows the variation of [(m∕q = 2)]/[H+] with distance from Saturn for bins covering 6 hr in LT.
In panels a, b, c, and d, respectively, we show sectors from 1200 to 1800 (afternoon), from 1800 to 0000 (premidnight),
from 0000 to 0600 (postmidnight), and from 0600 to 1200 LT (prenoon). The time-of-flight spectra in the Z
coordinates are summed together, as done for the Kronocentric Solar Magnetic coordinates. We excluded from
our plot data with relative error larger than 50% so that the analysis was not biased by time-of-flight spectra with poor
signal to noise. LT = local time.

equinox overlap on the high ratio region close to Rhea’s orbital distance seen in the data at times closer to sol-
stice and then extends in the dusk sector, as the orbital coverage has changed. Although the spacecraft does
not cover completely the dusk high ratio region when nearer to solstices, we see from Figure 6 that the high
ratio region we see at dusk, and not at dawn, is not a consequence of the magnetospheric tilt with respect to
the solar wind.

4.3. [(m∕q = 2)]/[H+]: Radial, Local Time, and Longitudinal Variability
We binned the data in cylindrical coordinates and longitudinal coordinates to understand if the high ratio
region present at dusk and seen in Figure 4 was affected by the Cartesian binning or the proximity to the
moons. In cylindrical coordinates we binned the data in basic bins that measure 1 RS × 7.5∘ (0.5 hr LT). These
bins, can be combined to span a larger LT sector. In Figure 7 each panel represents a 6-hr LT sector from 1200
to 1800 (afternoon), from 1800 to 0000 (premidnight), from 0000 to 0600 (postmidnight), and from 0600 to
1200 LT (prenoon). We show the ratio for 6 hr in LT as a function of distance from Saturn. The errors that we
show in the plots are those calculated through error propagation techniques from the errors given by the fit.
We can appreciate how, from sector to sector, the high ratio extends to different distances from the planet.
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Figure 8. In this plot we show the [(m∕q = 2)]/[H+] as a function of distance from Saturn and the longitude of the
spacecraft with respect to Enceladus (panel a), Dione (panel b), Rhea (panel c), and Titan (panel d), in the premidnight
sector, namely, from 1800 to 0000 LT. We indicated on the plots also the orbital distance for Mimas (M), Enceladus (E),
Tethys (Th), Rhea (R), and Titan (T).
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Figure 9. Ratio [W+]/[H+]. Figure format is the same as in Figure 4 (top) and
a zoom in of the inner magnetosphere. Figure format is the same as in
Figure 4. KSMAG = Kronocentric Solar Magnetic.

In the afternoon sector (1200–1800 LT), see Figure 7a, the ratio starts
increasing at about 5 RS, and peaks around 19 RS. After a dip in the ratio
around 20 RS, the ratio has a further peak after 30 RS. Large errors might
indicate that, in the presence of lower counts, the fitting code might have a
less accurate performance. In the premidnight sector (1800–0000 LT), see
Figure 7b, the ratio begins to increase around 5 RS and peaks at around
17 RS. After that radial distance the ratio decreases to lower values, and it
peaks again around 30 RS and 45 RS; however, a larger error is associated
with the latter. In the postmidnight sector (0000–0600 LT), see Figure 7c,
the highest ratio is reached at about 22 RS, and then again beyond 40
RS, with very large errors associated to these values. The premidnight and
postmidnight sectors are the sectors where the ratio drops at a higher dis-
tance from the planet, since the plasma from the inner magnetosphere
can be transported in the tail. In the prenoon sector (0600–1200 LT), see
Figure 7d, the ratio increases until 20 RS, and peaks again at ≃ 30 RS.

From Figure 7, we can see that the maximum ratio of ≃0.48 in the after-
noon sector drops to a maximum value of≃0.45 in the premidnight sector,
then it drops again to ≃0.4 in the postmidnight sector, to drop to a maxi-
mum value of ≃0.3 in the prenoon sector. Through this analysis, we were
able to appreciate that the [(m∕q = 2)]/[H+] ratio diminishes progressively
as one moves from one sector to another sector beyond ≃10 RS radial
distance from the planet.

Lastly, we wanted to investigate whether the high ratio we see at dusk
in Figure 4 is a feature possibly created by a proximity with the moons.
Therefore, we looked at the ratio of counts as a function of distance from
the planet and longitude of the spacecraft with respect to the moons
Enceladus (E; Figure 8a), Dione (D; Figure 8b), Rhea (R; Figure 8c), and
Titan (T; Figure 8d), and we report the case for the premidnight sector
(1800–0000 LT). In Figure 8a we also report the position of the moons
Mimas (M) and Tethys (Th). The bins measure 0.1 RS in radial distance
and 20∘ in longitude. We start having data coverage beyond Mimas dis-
tances (see Figure 8a) where the ratio is <0.2, then the ratio drops around
Enceladus’ orbit, up to Tethys distances, where it increases slightly, always
to stay<0.2. However, when we do have coverage, we can appreciate how
the ratio does not seem to be affected by being measured upstream (neg-
ative values of longitude) or downstream (positive values of longitude) to
a moon. This suggests that the high ratio region that we see at dusk is not
an effect given by moon proximity.

5. Abundance of W+ to Protons: [W+]/[H+]

In Figure 9 (top) we show the relative counts [W+]/[H+] in the X-Y plane,
and in Figure 9 (bottom) a zoom in of the inner magnetosphere for the

same ratio. Near the orbit of Enceladus [W+]/[H+] > 10 can be seen. In the dusk sector at that radial distance,
the ratio of counts has lower maximum values (≃10–20) compared to dawn (≃20–50), but the high [W+]/[H+]
ratio is more extended (from 2 to 6 RS) compared to dawn (from 2 to 4 RS). We also see some bins with ratio
larger than 10 downtail after midnight.

As mentioned before, we binned the data in cylindrical coordinates in basic bins that measure 1
RS × 7.5∘ (0.5 hr LT). These bins, can be combined to span a larger LT sector. In Figures 10a and 10b we show the
relative counts [W+]/[H+] as a function of distance from Saturn, for two 12-hr bins, respectively from 1200 to
0000 (dusk) and from 0000 to 1200 (dawn). The errors that we show in the plots are those calculated through
error propagation techniques from the errors given by the fit. We can appreciate how we have lower max-
imum values of the [W+]/[H+] ratio at dusk but with the higher ratio region more spread in radial distance
from the planet, opposite to that we find at dawn, where we have higher values of the ratio but with a sharper
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Figure 10. The plot shows the variation of [W+]/[H+] with distance from Saturn for bins covering 12 hr in LT. Panels a
and b show respectively sectors from 1200 to 0000 (dusk) and from 0000 to 1200 (dawn). The time-of-flight spectra in
the Z coordinates are summed together, as done for the Kronocentric Solar Magnetic coordinates. We excluded from our
plot data with relative error larger than 50% so that the analysis was not biased by time-of-flight spectra with poor
signal to noise.

drop before reaching 10 RR. We also find that [W+]/[H+] increases again at higher distances from the planet
(around 35 RS in the dusk sector and around 40 RS at dawn).

6. Discussion

We presented a survey that used data from IMS/TOF on Cassini/CAPS from 2004 through to 2012. After a
complex data reduction we fitted the TOF distribution with a code that uses TOF calibration functions for
CAPS/IMS. We obtained relative counts [(m∕q = 2)]/[H+] and [W+]/[H+]. We reported data binned in KSMAG
coordinate system, through 2 RS × 2 RS bins in the equatorial plane (X-Y plane, collapsing together columns
of data in Z coordinates) and in the Y-Z plane (collapsing together a chosen range in X coordinates). We
have used the same data reduction techniques but enhanced the resolution to explore the data studying
the relative counts [(m∕q = 2)]/[H+] and [W+]/[H+] as a function of LT and radial distance from the planet
for a selected portion of LT and also the [(m∕q = 2)]/[H+] ratio as a function of the distance from the planet
around four moons (Enceladus, Dione, Rhea, and Titan) and longitude of the spacecraft with respect to each of
those moons.

For the [(m∕q = 2)]/[H+] ratio of counts (see Figure 4), we found a very low value in the inner magneto-
sphere, increasing to approximately 0.1–0.7 in the outer magnetosphere, with trend compatible with that
found by Thomsen et al. (2010). Blanc et al. (2015) estimate that the (m∕q = 2) at CHEMS energies was
≃84% coming from internal sources and ≃16 % from the solar wind, so it must be considered that plasma
detected in the magnetosphere might also have a solar wind component. The ratio was found to increase
near Rhea and Titan, which might be a consequence of these satellites being sources of H+

2 (Tseng et al., 2011).
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Figure 11. We overlapped Figure 2 from Cowley et al. 2004 to our results
shown in Figure 4. We indicated on the plot that solid lines joined by Xs
indicated reconnection line associated with the Dungey cycle and the
dashed lines with Xs reconnection line for the Vasyliunas cycle; we also
indicated the location of the stagnation point.

An alternative interpretation for why the ratio starts increasing around
Rhea’s radial distance might be that the majority of the molecules pro-
duced by Enceladus are ionized far away from the moon (Fleshman et al.,
2010). In the dusk sector we found a region extending from near the orbit
of Rhea to approximately 40 RS far from the planet, where the ratio was
higher than in other LT sectors. The relative density presented by Thom-
sen et al. (2010) was as a function of radial distance, and so this new survey
suggests that at least some of the variability observed by Thomsen et al.
(2010) is due to LT variations. We investigated the high [(m∕q = 2)]/[H+]
ratio region that we see at dusk in Figure 4 in different ways, and we con-
cluded that it is not due to the fact that we had collapsed bins in Z in the
same binning in X-Y (see Figure 5), to season (see Figure 6), to type of bin-
ning (see Figure 7), nor to longitude of the spacecraft with respect to the
moons (see Figure 8). We concluded that the high [(m∕q = 2)]/[H+] ratio
region seen at dusk in Figure 4 is a real LT asymmetry.

We also report the distribution of the [(m∕q = 2)]/[H+] ratio in the Y-Z
plane for −26 RS < X < −14 RS in the tail; see Figure 5. To produce this
projection, the data were analyzed as for the X-Y plane, but instead of col-
lapsing the bins in Z they were integrated over a range in X and split into
bins in Z. We find that the high ratio region that we see in the X-Y plane
at dusk, is about 6 RS thick and about 38 RS wide, for this range in X coor-
dinates. The fact that we see the high ratio region extending vertically at
dusk more than at dawn could be explained with the mechanism modeled
by Jia and Kivelson 2016. However, we must consider that [(m∕q = 2)]/[H+]
is a ratio between two different species with two different scale heights,

therefore the high ratio region that we see does not necessarily represent the effective vertical extension of
the plasma sheet.

The high [(m∕q = 2)]/[H+] ratio extends radially to different distances from the planet depending on which of
the four LT sectors we are looking (see Figure 7): On average, the maximum ratio≃0.48 in the afternoon sector,
drops to a maximum value ≃0.45 in the premidnight sector, to a maximum value of ≃0.4 in the postmidnight
sector, and to a maximum value of ≃0.3 in the prenoon sector. The ratio at prenoon is more than 18% lower
than the ratio in the afternoon suggesting that the internally produced plasma has been lost through magne-
topause flanks and downtail (Hill et al., 2008; McComas et al., 2017) and/or that the H+

2 dissociates. McAndrews
et al. (2009) and Thomsen et al. (2010) both find that, in the premidnight to dawn sector, beyond 20 RS, the
flow had typically a tailward and dawnward direction; Cowley et al. (2004) and Jia et al. (2012) suggest that
plasma is lost along the magnetopause flanks. Thomsen 2013 and Thomsen et al. (2014) find a mass outflow
beyond 30 RS in the dusk sector parallel to the magnetopause, consistent with that modeled by Delamere
et al. (2013) and Jia et al. (2012), a dusk wing given either by viscous momentum transfer with the solar wind
or by the fact that the inertia of the plasma rotating from the dayside is larger than the planetary magnetic
field stress. Future studies are needed to shed light on this subject.

In Figure 11 we overlap the flow pattern suggested by Cowley et al. (2004) onto the map of the [(m∕q =
2)]/[H+] ratio presented in Figure 4. The flow pattern diagram was scaled to match the corotating pattern
near Enceladus and the position of the subsolar magnetopause. The flanks of the magnetopause in the flow
pattern diagram lie between the minimum and maximum positions of the magnetopause as modeled by
Arridge et al. (2006). From this simple scaling we can see that Cassini’s orbits have not covered the region
in the direction, which the model suggests as location of the stagnation point. However, [(m∕q = 2)]/[H+]
is found to fall to < 0.1 around 40 RS at earlier LTs than the modeled stagnation point. This suggests loss of
internally produced plasma down the magnetotail to the solar wind and that the high ratio region coming to
an end might actually indicate the end of a plasmasphere. Therefore, these data suggest that the stagnation
point is actually at earlier LTs, around 1900 LT, perhaps by a rotation of streamlines in the sketch of Cowley
et al. (2004). It is difficult to make a strong statement on the region of the magnetosphere downstream of the
Dungey cycle X line on the dawn flank as the coverage is sparse and many of the bins have a high uncertainty.
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One anomaly seen in Figure 4 is the depression of [(m∕q = 2)]/[H+] between the orbits of Titan and Rhea and an
enhancement outside of the orbit of Titan both after 0000 LT. Possible causes that might be working together
are chemical reactions with injected energetic protons (Paranicas et al., 2012) charge-exchanging with neu-
tral gas and increasing the H+ density, thus reducing the [(m∕q = 2)]/[H+] ratio or electron impact-driven
chemistry with hot electrons on the nightside (Arridge, private communication, 2015). However, we do not
have any directional information, and, therefore, any consideration about this is speculative. Hence, further
work is needed in this matter.

Another interesting feature is that we find bins showing high [(m∕q = 2)]/[H+] ratios far from the planet in the
dusk sector (see Figure 4), where at lower radial distances we detected lower ratios. Motion of the plasma flow
pattern due to expansion/contraction of the magnetosphere could produce such features. We see bins that
show a [(m∕q = 2)]/[H+] ratio that might result from a combination between the two m∕q = 2 species, along
the magnetopause, and very clearly around the magnetopause subsolar point. Being a statistical study, we
know that during the 9 years represented in our data set, the position of the magnetopause must have varied
as a consequence of changes in solar activity; therefore, we do not know, a priori, how far Cassini was from the
magnetopause when a particular spectrum was measured, and, in case of Kelvin-Helmholtz instabilities, we
cannot estimate how far from the magnetopause the solar wind would have penetrated the magnetosphere
or we could be detecting the area outside a plasmasphere.

We find a high relative counts [W+]/[H+] around Enceladus (see Figure 9), as expected observationally
(Thomsen et al., 2010) and theoretically (Fleshman et al., 2010; Persoon et al., 2009). The fact that the rela-
tive abundance of W+ to H+ is still high for distances <3.9 RS might be due to several factors that could also
operate together: (1) the spreading of the Enceladus’ neutral cloud (Cassidy & Johnson, 2010), resulting in
neutrals transported closer to the planet that then get ionized, (2) Mimas (orbit at ≃3.07 RS), and the rings
can be minor plasma sources (Tseng et al., 2013), which is hard to determine since the E ring and Enceladus,
and G ring and Mimas could overlap spatially. Sittler et al. (2008) model that the peak of the ion density is
located between Tethys and Dione, and Holmberg et al. (2017) measured the ion density peak to be at 4.6 RS

from Saturn, so the fact the we see a high [W+]/[H+] ratio around Enceladus and even at lower radial distances
from the planet might suggest that although around Enceladus the ion density is low, the majority of the ions
is formed by W+.

Comparing the dusk sector with the dawn sector (see Figure 10) we find that [W+]/[H+] maximum values are
generally smaller and more radially spread out in the dusk sector. This radial extension asymmetry is found
by Holmberg et al. (2014), who find that the ion density is more spread out in the dusk sector compared to
the down sector. We also find that [W+]/[H+] increases again at higher distances from the planet (around 35
RS and 47 RS in the dusk sector and around 20, 35, and 45 RS at dawn). This may be due to higher abundance
of water group ions present in plasmoids: Hill et al. (2008) find that the two plasmoids for which they can
determine composition were dominated by water group ions.

We saw differences in LT for both ratios [(m∕q = 2)]/[H+] and [W+]/[H+] between dawn and dusk sectors,
suggesting a difference in the chemistry and/or the transport between the two sectors, possibly due to
convection (Cowley et al., 2004; Jia et al., 2012), noon-to-midnight electric field (Andriopoulou et al., 2012,
2014; Wilson et al., 2013), or presence of hot protons (Paranicas et al., 2012) and electrons (Arridge, private
communication, 2015) around midnight at Rhea’s distances.

Unfortunately, since directional information is not available for the IMS TOF data it is impossible to determine
the direction in which the plasma is flowing. Therefore, we cannot make a definitive statement, for instance,
about the position of the X line from these data, although Smith et al. (2016) suggest that the X line should lie
around 30 RS, some of the TOF spectra should have been taken from both sides of the X line. However, these
results do provide evidence for circulation and LT asymmetries in Saturn’s magnetosphere.

7. Conclusions

Our aim was to have a global picture of plasma flow patterns, to investigate sinks and source mechanisms. The
baseline for this study was an extensive analysis and reduction of data from the TOF instrument on CAPS/IMS,
from 2004 through 2012, accounting for instrument artifacts, and minimizing instrumental and observational
biases, and nonlinear fitting of the TOF spectra.
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This is the most comprehensive study ever made of relative abundances of thermal plasma at Saturn, since it
utilizes CAPS/IMS data from 2004 through to 2012, which is all the CAPS data from the mission, maximizing
the use of Cassini’s orbital coverage at Saturn’s magnetosphere during those years.

Since this study covers about 9 years of data, we have to consider that in 9 years the magnetosphere changed
quite significantly, through solstices and equinox, but also in response to changes in the solar wind condi-
tions, for example, the size of the magnetosphere, its tilt with respect to the solar wind, the activity of the
ionosphere as a source of plasma, and the reconnection rate. These seasonal changes could have affected the
location of plasma populations and the ratios we are studying. Therefore, for some of the features detected, it
is not possible to categorically assert whether they are permanent or isolated due to changing Cassini orbital
coverage with time.

In conclusion, we found the plasma composition in Saturn’s magnetosphere presents significant LT asymme-
tries and variability that should be included in models of the system. Some evidence of displacement of the
stagnation point toward earlier LTs (≃1900 LT) compared to Cowley et al.’s (2004) plasma circulation model
suggests that the solar wind has greater influence on Saturn’s magnetosphere than previously predicted.

Future modeling of the features identified, both from the point of view of the chemistry and in terms of mag-
netospheric circulation, will be crucial to shed light on their origin. Many questions arise from the results of
this study. For example, [(m∕q = 2)]/[H+] appears to increase in the outer magnetosphere beyond ≃35 RS. Is
this due to Cassini detecting plasmoids, or is this a permanent characteristic of the system? Why do we see a
lower [(m∕q = 2)]/[H+] ratio close to Rhea’s orbit around midnight? Moreover, further experimental investiga-
tion can be done, for instance studying the [(m∕q = 2)]/[H+], [W+]/[H+], and [O+, OH+, H2O+, H3O+]/[W+] ratio
variations during times of different solar activity, and the [O+, OH+, H2O+, H3O+]/[W+] ratios could be studied
as a function of L shell and LT or in Cartesian and cylindrical coordinate system centered on Enceladus.
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