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Abstract

This thesis focuses on the numerical calculation of fluctuation identities with both dis-

crete and continuous monitoring and the wider application of finding a general numerical

solution to the Wiener-Hopf equation on a semi-infinite or finite interval. The motivating

application is pricing path-dependent options.

It is demonstrated that, with the use of spectral filters, exponential convergence can be

achieved for the pricing of discretely monitored double-barrier options. We thus describe

the first exponentially convergent pricing method for this type of option with general Lévy

processes and a CPU time which is independent of the number of monitoring dates.

Using a numerical implementation of the inverse Laplace transform, the numerical

method to calculate fluctuation identities is extended to continuous monitoring. This pro-

vides the first method for calculating continuously monitored fluctuation identities which

can be used for general Lévy processes. Furthermore a detailed error bound is obtained,

providing additional insight into the pricing methods based on fluctuation identities and

the numerical solution of the Wiener-Hopf equation in general.

Pricing algorithms for other exotic options such as α-quantile, perpetual Bermudan and

perpetual American options are also devised and a new method to compute the optimal

exercise boundary for the latter two types of contract is presented. These methods show

excellent error performance with computational time.

Finally, an application of these new numerical methods to the general solution of the

Wiener-Hopf equation is presented. The methods are applied to three new test cases which

we derived analytically and the results are presented to show that this new method has

an error convergence with grid size which has twice the speed of the current state of the

art.
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Chapter 1

Introduction

1.1 Background and overview

This research is primarily motivated by the need to value path-dependent options based

on a realistic model for the probability distribution of the price of the underlying asset

and the option contract. Classical closed-form solutions to option pricing such as those by

Black and Scholes (1973) and Merton (1973) rely on simplifying both the contracts and the

underlying processes in order to render the problem analytically tractable. The underlying

processes were modelled as log-normal which leads to elegant mathematical solutions but

is inaccurate when compared to real-world asset price data whose probability distribution

exhibits fat tails, skewness, and whose process includes jumps. In recent years, Lévy

processes, which combine both jump and diffusion processes have been considered as an

alternative.

In addition, the details of the option contract may affect the pricing requirements

and classical methods relied on assumptions such as continuous monitoring of asset price

paths when this is not realistic in practice. The importance of this particular aspect for

modelling exotic option prices was stressed by Kou (2008) who wrote “Discrete path-

dependent options are the options whose payoffs are determined by underlying prices at

a finite set of times, whereas the payoff of a continuous path-dependent option depends

on the underlying price throughout the life of the option. Due to regulatory and practical

issues, most of path-dependent options traded in markets are discrete path-dependent

options.”

As the work in this field has strived for more realism in modelling processes and

contracts, the focus has moved away from closed-form solutions and much of the most

recent literature concentrates on the search for efficient numerical methods. This has

been accompanied by an enormous increase in computational power since the original

closed-form solutions were published in the early 1970s, as per Moore’s law (Moore, 1998;

Mack, 2011). Therefore numerical techniques which would formerly be dismissed as too
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computationally heavy are now perfectly feasible.

Although numerical methods such as Monte Carlo and finite-differences are widely

used and understood in the finance industry, they tend to have poor error convergence

with computational time: polynomial for finite-differences and sub-polynomial for Monte

Carlo. This is particularly problematic for path-dependent options as these techniques also

have a computational time which increases linearly with the number of monitoring dates.

Indeed this linear relationship with the number of dates is even true for more sophisticated

methods such as the one by Feng and Linetsky (2008) who achieved excellent error results

using the sinc-based fast Hilbert transform to apply the barrier at each monitoring step.

The focus of this thesis is on developing further methods using the Spitzer identities

which are fluctuation identities providing the Fourier-z transform of probability distribu-

tion functions of the extrema of a random path, subject to monitoring at discrete intervals.

They particularly lend themselves to the pricing of discretely monitored barrier options

due to their discrete nature. Moreover, the use of the z-transform means that the time

domain is collapsed and therefore the computational time is minimally affected by the

number of monitoring dates. This property was exploited by Fusai et al. (2016), who pro-

posed numeric methods to compute the Spitzer identities for exponential Lévy processes

and thus used them to price barrier and lookback options. However, whilst the meth-

ods by Fusai et al. (2016) and Feng and Linetsky (2008) showed excellent performance

in some cases, issues remained with the double barrier case for Fusai et al. (2016) and

for the variance gamma process for both methods. Moreover, Fourier-based methods can

sometimes be regarded as a “black-box” which, whilst giving highly accurate results, are

not particularly well understood by the wider finance community. This, of course, can

have a detrimental effect on the uptake of the method, however excellent the performance.

Therefore there is also a clear need to provide rigorous error bounds for the methods to

aid insight into the error convergence that is obtained.

Thus, the work in this thesis is concerned with two overarching themes. Firstly, to

extend the application of, and improve the performance of, existing methods and secondly

to perform a detailed error examination of both the existing and new methods to afford a

thorough understanding of the performance of these numerical methods.

Although the primary practical focus of the work in this thesis is derivative pricing,

this research has the potential to reach far beyond the area of financial mathematics. The

calculation of fluctuation identities are relevant, for example, for application to queuing

systems, insurance, inventory systems, and applied probability. Moreover, first-passage

problems with models based on Markov processes are also ubiquitous in physical, bio-

logical, social, actuarial and other sciences. Beyond the applications related to random

processes, our numerical methods for calculating fluctuation identities rely on the calcula-

tion of the solution to Wiener-Hopf equations which occur in many different applications

such as electro-magnetics and biological sciences.
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1.2. PUBLICATIONS

Chapter 2 provides a technical background to the work in this thesis. It is written so

that it should contain sufficient information to ensure that this thesis is a self-contained

work. However, the breadth of the technical background means that, in a few cases, only

information directly related to the work herein has been included. Where this is the case,

comprehensive references have also been included for the interested reader.

In Chapter 3 the use of spectral filtering to improve methods using the sinc-based

fast Hilbert transform for the pricing of discretely monitored barrier options with Lévy

processes is investigated. The techniques by Fusai et al. (2016) and Feng and Linetsky

(2008) are extended and improved and a rigorous error analysis is carried out to explain

the results seen by Fusai et al. (2016), aiding insight into the numerical calculation of the

Spitzer identities and Fourier-transform based pricing techniques in general. This work

has produced the first exponentially convergent pricing technique for discretely monitored

double barrier options with general Lévy processes whose CPU time does not depend on

the number of monitoring dates.

Chapter 4 describes the extension of the discretely monitored pricing procedure for

barrier options to the continuously monitored case. Although, potentially less directly

applicable within the finance industry due to the reasons previously explained, this work

opens up the use of the technique for the other areas described above. Furthermore the

work in this chapter lays the foundations for the work on American options described in

Chapter 5 which are one example of an exotic option where continuous path dependence

is an accurate reflection of financial contracts. Moreover, the work includes a rigorous

derivation of the error bound which aids insight into the techniques in this thesis and

elsewhere.

Chapter 5 describes the use of the Spitzer identity based pricing techniques for other

exotic options, specifically α-quantile, perpetual Bermudan and perpetual American op-

tions. Two techniques have been implemented for the calculation of the early exercise

options and a new method for computing the optimal exercise barrier is introduced.

Finally Chapter 6 looks at the possibility of extending the use of the numerical method

for the calculation of the Spitzer identities to solving the Wiener-Hopf and Fredholm

equations in the general case.

1.2 Publications

The work in this thesis is also described in the following manuscripts:

[1] Chapter 3 has been published as C. E. Phelan, D. Marazzina, G. Fusai, G. Germano,

Hilbert transform, spectral filters and option pricing, Annals of Operations Research,

DOI 10.1007/s10479-018-2881-4, 2018.

[2] Chapter 4 has been published as C. E. Phelan, D. Marazzina, G. Fusai, G. Germano,

3



CHAPTER 1. INTRODUCTION

Fluctuation identities with continuous monitoring and their application to the pricing

of barrier options, European Journal of Operational Research, DOI 10.1016/j.ejor.

2018.04.016, 2018.

[3] Chapter 5 is currently a working paper C. E. Phelan, D. Marazzina, G. Germano.

2018. Spitzer based pricing methods for α-quantile and perpetual American and

Bermudan options.

[4] Chapter 6 forms a large part of the working paper G. Germano, C. E. Phelan, D.

Marazzina, G. Fusai. Solution of Wiener-Hopf and Fredholm integral equations by

fast Hilbert and Fourier transforms.

1.3 Conference communications

The work in this thesis has been presented at the following international conferences:

[1] C. E. Phelan, D. Marazzina, G. Fusai, G. Germano. Progresses on pricing barrier

options with the Spitzer identity. Quantitative Finance Workshop 2017, Milan.

[2] C. E. Phelan, D. Marazzina, G. Fusai, G. Germano. Improvement of numerical option

pricing methods based on the Hilbert transform using spectral filtering. Econophysics

Colloquium 2017, Warsaw.

[3] C. E. Phelan, D. Marazzina, G. Fusai, G. Germano. Numerical pricing of discretely

monitored barrier options with Levy jump processes using the Hilbert transform and

spectral filtering. International Conference on Computational Finance 2017, Lisbon.

[4] C. E. Phelan, D. Marazzina, G. Germano. Pricing methods for perpetual Bermudan

and quantile options based on Spitzer identities. Quantitative Finance Workshop

2018, Milan.

[5] C. E. Phelan, D. Marazzina, G. Germano. Spitzer based pricing methods for alpha-

quantile and perpetual early exercise options. 42nd meeting of the Association for

Mathematics Applied to Social and Economic Sciences 2018, Naples.

1.4 Test environment

Where numerical tests have been carried out, the software has been implemented in MAT-

LAB2016b and the results were obtained running under OS X Yosemite on a 2015 Retina

MacBook Pro with a 2.7GHz Intel Core i5 processor and 8GB of RAM.
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1.5. A NOTE ON PRONOUNS

1.5 A note on pronouns

This introductory chapter has been written in the third person. However, in order to be

consistent with the papers listed in Section 1.2, and also because it is the sincere wish of

the author that this thesis will take the reader on a journey through the work described

herein, the first person plural has been used in all that follows.
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Chapter 2

Technical background and liter-

ature review

This chapter provides a technical background to the work in this thesis and a review of

the relevant literature. Given the breadth and depth of this subject we have included

only sufficient detail to make this thesis self-contained and references have been provided

to allow the reader to explore this area in more detail if they wish. We first present the

analytic background to the work contained in this thesis. We then describe the types

of financial contract which are the subject of the work in later chapters and review the

existing literature on pricing methods. Finally we review the original numerical methods

which we analyse and modify in later chapters.

2.1 Analytic background

We begin with a description of Fourier and related transforms as they underpin all the

techniques that are described in this thesis. We then move on to look at some of the

applications of these such as the Plemelj-Sokhotsky relations and the solution to the

Wiener-Hopf equations and finally we examine how these methods may be used to find

the Spitzer identities based on the formulation by Green et al. (2010).

2.1.1 Fourier transforms

We make extensive use of the Fourier transform, which is an integral transform with many

applications. Historically, it has been widely used in spectroscopy and communications,

where the transform is moving between a function of time and a function of frequency.

Thus much of the literature refers to the function in the Fourier domain as its spectrum.

However, in this thesis a more general approach is taken and we move between a function

of x in the “state” domain (or space) and a function of ξ in the Fourier domain. For

our application of pricing options, x is the log-price; this is a common choice in finance
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literature (see Heston, 1993, for example). However, in Chapter 6 we also look at the use

of our techniques for the solution of general Wiener-Hopf and Fredholm equations and in

these cases x can be any variable.

The Fourier transform and inverse Fourier transforms, as used in the work described

herein are

f̂(ξ) = Fx→ξ[f(x)](ξ) =

∫ +∞

−∞
f(x)eiξxdx, (2.1)

f(x) = F−1
ξ→x[f̂(ξ)](x) =

1

2π

∫ +∞

−∞
f̂(ξ)e−ixξdξ. (2.2)

This version of the Fourier transform in Eqs. (2.1) and (2.2) is just one of several conven-

tions that may be used. We select this form as the forward transform in Eq. (2.1) is the

same as the formula for a characteristic function of a random variable with probability

distribution function f(x). For convenience, we retain this choice for the general solu-

tion of the Wiener-Hopf and Fredholm equations. There are many extensive references

available for the Fourier transform, see e.g. Polyanin and Manzhirov (1998); Beerends

et al. (2003); Kreyszig (2011) for a detailed technical description, with Domı́nguez (2016)

having recently provided a historical guide to its development. However, here we limit our

background to the properties which underpin the work in this thesis: shift theorem, con-

volution theorem, Plancherel’s theorem and the Paley-Wiener theorem of the analyticity

of half range Fourier transforms.

The shift theorem can operate in either the state or Fourier domain and describes the

effect of shifting the functions by a fixed amount, a. For our Fourier transform convention

in Eqs. (2.1) and (2.2)

Fx→ξ[f(x)] = f̂(ξ) → Fx→ξ[e−iaxf(x)] = f̂(ξ − a), (2.3)

F−1
ξ→x[f̂(ξ))] = f(x) → F−1

ξ→x[eiaξ f̂(ξ)] = f(x− a). (2.4)

The convolution of two functions f(x) and g(x) is

h(x) = f(x) ∗ g(x) =

∫ +∞

−∞
f(z)g(x− z)dz =

∫ +∞

−∞
f(x− z)g(z)dz. (2.5)

Depending on the form of f(x) and g(x), solving this may involve a complicated integral.

However, if both functions are transformed into the Fourier domain to give f̂(ξ) and ĝ(ξ)

then

ĥ(ξ) = f̂(ξ)ĝ(ξ, ) (2.6)

and h(x) can be obtained by applying the inverse Fourier transform to ĥ(ξ).

Plancherel’s theorem states that if we have two functions f(x) and g(x) with respective

8
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Fourier transforms f̂(ξ) and ĝ(ξ) then, with our Fourier transform convention,∫ +∞

−∞
f(x)g∗(x)dx =

1

2π

∫ +∞

−∞
f̂(ξ)ĝ ∗(ξ)dξ, (2.7)

where z∗ is the conjugate of z. In the case that g(x) is purely real then we can also use

property ĝ(−ξ) = ĝ ∗(ξ) to obtain∫ +∞

−∞
f(x)g(x)dx =

1

2π

∫ +∞

−∞
f̂(ξ)ĝ(−ξ)dξ, (2.8)

where we use g∗(x) = g(x) as g(x) takes only real values. Originally Fourier transforms

were used for real values of ξ only. However, Paley and Wiener (1933) extended ξ to the

whole complex plain and showed that the upper and lower half range Fourier transforms

of a function are holomorphic in the upper and lower planes of ξ respectively. That is if

f̂+(ξ) = Fx→ξ[f(x)1R+(x)](ξ) =

∫ +∞

0
f(x)eiξxdx, (2.9)

f̂−(ξ) = Fx→ξ[f(x)1R−(x)](ξ) =

∫ 0

−∞
f(x)eiξxdx, (2.10)

where 1A(x) is the indicator function of set A, then f̂+(ξ) is analytic in the upper half

plane of ξ (including the real line) and f̂−(ξ) is analytic in the lower half plane of ξ

(including the real line). Thus the analytic regions of f̂+(ξ) and f̂−(ξ) overlap in a strip

including the real line.

2.1.2 Characteristic functions

The Fourier transform of the PDF p(x, t) of a stochastic process X(t) is known as the

characteristic function

Ψ(ξ, t) = E
[
eiξX(t)

]
=

∫ +∞

−∞
eiξxp(x, t)dx = Fx→ξ [p(x, t)] = p̂(ξ, t). (2.11)

The characteristic function uniquely describes a process and can be used to obtain its mo-

ments. One advantage that it has over the moment generating function in that it always

exists whereas there are some random variables for which the moment generating function

does not exist, for example the log-normal process. Furthermore, some probability distri-

butions with extremely complicated PDFs have simple expressions for their characteristic

functions. This is the case for many of the Lévy processes which are described in detail

in Section 2.2.1. These properties are particularly useful in applications requiring the

calculation of an expectation of a function of a random variable. Given a function φ(X),

of a random variable X with PDF pX(x) the expectation can be expressed in the Fourier

9
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domain using the Plancherel relation which we introduced in Eq. (2.7), i.e:

E[φ(X)] =

∫ +∞

−∞
φ(x)pX(x)dx =

1

2π

∫ +∞

−∞
φ̂∗(ξ)Ψ(ξ)dξ. (2.12)

Here, φ̂∗(ξ) is the conjugate of the Fourier transform of φ(X) and Ψ(ξ) is the characteristic

function of pX(x).

2.1.3 Hilbert transforms

Similarly to the Fourier transform, the Hilbert transform is an integral transform, although

in this case it does not change the domain of the function to which it is applied. The area

of Hilbert transforms is a large topic and was covered extensively by King (2009) in his

book on the subject so here we describe only the characteristics which are important for

this thesis. The Hilbert transform of a function in the Fourier domain is

H
[
f̂(ξ)

]
= P.V.

1

π

∫ +∞

−∞

f̂(ξ′)

ξ − ξ′
dξ′

= lim
ε→0+

1

π

(∫ ξ−ε

ξ−1/ε

f̂(ξ′)

ξ − ξ′
dξ′ +

∫ ξ+1/ε

ξ+ε

f̂(ξ′)

ξ − ξ′
dξ′

)
, (2.13)

where P.V. denotes the Cauchy principal value. There is no separate inverse transform

as the Hilbert transform has the property that H[H[f̂(ξ)]] = −f̂(ξ). We can relate the

Hilbert transform to convolution theorem, desribed in Section 2.1.1 above, by seeing that

Eq. (2.13) is a convolution of f(ξ) and 1
πξ . As i

πξ is the Fourier transform of the signum

function, applying the Hilbert transform in the Fourier domain is equivalent to multiplying

the function in the state domain by −i sgnx, where

sgn x =


1 x > 0,

0 x = 0,

−1 x < 0.

(2.14)

2.1.4 Laplace transforms

The Laplace transform is an integral transform similar to the Fourier transform and is

Lt→s[f(t)] = f̃(s) =

∫ ∞
0

f(t)e−stdt. (2.15)

It can be considered more general than the Fourier transform as s can be any complex

number unlike iξ which is purely imaginary. Widder (1945) provided an excellent intro-

duction to the subject and latterly most engineering mathematics books contain detailed

chapters on the properties and use of the Laplace transform (see e.g. Kreyszig, 2011).

10
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One significant difference compared to the Fourier transform is that the integral runs

from 0 to∞ rather than from −∞ to +∞. When the integral for the Laplace transform is

performed over the range ±∞ the transform is known as the bilateral Laplace transform

(Widder, 1945). However, the use of the single sided Laplace transform here is justified; we

use it to transform a price function which is defined in terms of time to expiry (τ = T − t)
and therefore set maturity as τ = 0 and so are not concerned with the behaviour at τ < 0.

In many engineering applications, or when solving simple ODEs in general, the inverse

Laplace transform is often obtained by comparing the equations in the s-domain with

known L[f(t)] = f̃(s) pairs. However, for more general applications a formula for the

inverse Laplace transform is required. This is known as the Bromwich contour inversion

integral:

f(t) =
1

2πi

∫ a+i∞

a−i∞
f̃(s)estds, (2.16)

where a is a real number and lies to the right of all singularities of f̃(s) in the complex s-

plane. The Bromwich integral can be complicated to perform in closed-form and, therefore,

a numerical approximation is often required in practice. For the work on continuously

monitored barrier options in Chapter 4 we implement and test a numerical method by

Abate and Whitt (1995) which is based on a similar philosophy to the well established

method for inverse z-transforms described in Section 2.3.3 of this chapter.

2.1.5 Z-transforms

The z-transform for functions defined on a discrete domain is similar to the Laplace

transform and is

Zn→q[f(n)] = f̃(q) =

∞∑
n=0

f(n)qn, (2.17)

where q is a complex number and f is a discretely sampled function which takes values

f(n), where n ∈ {0, 1, 2, . . .}. It is often defined with a negative signed exponent on q in

Eq. (2.17). However, the use of the positive exponent means that it has the same form as

the probability generating function and thus matches the convention used in probability

related literature. It is also closely related to the Laplace transform, as explored in more

detail in Section 2.1.5.1. Similarly to the Laplace transform, the bilateral z-transform is

used when the limits on the summation in Equation (2.17) are ±∞ rather than 0 to +∞.

However, the use of the single sided transform can be justified in the same way that the

use of the single sided Laplace transform is justified in Section 2.1.4: we use n as number

of dates to expiry which means that we are unconcerned with the behaviour for n < 0.

The z-transform is often used in engineering applications such as the analysis of discrete

time signals (see Martin, 1991; Ifeachor and Jervis, 1993, for examples) and, similarly to
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the Laplace transform, the inverse is often obtained using known Z[f(n)] = f̃(q) pairs.

For more general functions the inverse z-transform is

f(n) =
1

2πi

∮
C

f̃(q)

qn+1
dq, (2.18)

where C is a counterclockwise closed path encircling the origin and entirely in the region

of convergence. This is often impossible to solve analytically and so a numerical approx-

imation is required. For the work in this thesis, following its successful use in pricing

techniques (Fusai et al., 2016), we implemented the method based on a Fourier series ap-

proximation by Abate and Whitt (1992a,b). We describe this in Section 2.3 which details

the numerical methods used in the later chapters of this thesis.

2.1.5.1 Relationship between the z-transform and the Laplace transform

We have seen in the previous sections that the Laplace transform is a single sided integral of

a continuous function and the z-transform is a single sided summation of a discrete time

function. We can explore this similarity further to show the mathematical equivalence

between the two transforms.

Given a continuous function fc(t), we define the discrete function fd(n) consisting of

sampled values of the former, where ∆t is the sampling interval and tn = n∆t are the

sampling times, i.e. fd(n) = fc(n∆t). Then with a z-transform parameter q = e−s∆t, the

Laplace and z-transforms are related in the limit ∆t→∞:

Lt→s[fc(t)] =

∫ ∞
0

e−stfc(t)dt

= lim
∆t→0

∆t
∞∑
n=0

e−sn∆tfc(n∆t)

= lim
∆t→0

∆t

∞∑
n=0

(e−s∆t)nfd(n)

= lim
∆t→0

∆t
∞∑
n=0

qnfd(n)

= lim
∆t→0

∆tZ [fd(n)] . (2.19)

Thus the Laplace transform is equal to the limit of ∆t multiplied by the z-transform as

∆t → 0. In addition to the relationship described above, the connection between the

s-plane and the z-plane can be considered (Wang, 2014). This is a conformal mapping,

preserving the angles between contours on the two planes and is illustrated in Figure 2.1.

The vertical lines on the s-plane map to circles of radius e−<s on the z-plane and the

horizontal lines map to lines emanating from the origin at an angle of −=s to the positive

real axis on the s-plane. As the angle between a line emanating from the origin and the

circumference of a circle centred at the origin is π
2 then this is a conformal mapping. It

12
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Figure 2.1: Conformal mapping between the z-plane and the s-plane.

is also important to note that the mapping from the s-plane to the z-plane is not unique.

The point s = σ + iω will map to the same point on the z-plane as s = σ + i(k2π + ω),

where k is an integer.

The relationship between the inverse Laplace and inverse z-transforms can also be

considered. The inverse Laplace transform in Eq. (2.16) can be written in terms of the

z-transform

f(t) =
1

2πi

∫ a+i∞

a−i∞
lim

∆ t→0
∆tZ[f(n)]estds. (2.20)

As q = e−s∆t, then ds = −dq/(∆tq), in addition the path of q now traces a contour of

radius e−at around the origin on the q plane rather than a line on the s plane as shown in

Figure 2.1. Then Eq. (2.20) is equivalent to

f(t) =
1

2πi

∮
C

lim
∆ t→0

∆tZ[f(n)]
−1

∆tq

1

qn
dq

=
1

2πi

∮
C
Z[f(n)]

1

qn+1
dq. (2.21)

This is the same as the expression for the inverse z-transform in Eq. (2.18).

13
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2.1.6 Plemelj-Sokhotsky relations

One of the most important concepts for the work in this thesis is that of he “+” and “−”

parts of a function. These are defined as f+(x) = f(x)1R+(x) and f−(x) = f(x)1R−(x)

and many of the techniques described herein require their Fourier transforms, i.e. f̂+(ξ) =

Fx→ξ
[
f(x)1R+(x)

]
and f̂−(ξ) = Fx→ξ

[
f(x)1R−(x)

]
which are equivalent to the half range

Fourier transforms described in Eqs. (2.9) and (2.10). To obtain these directly in the

Fourier domain, the Hilbert transform described in Section 2.1.3 can be used to calculate

the Plemelj-Sokhotsky relations (see Germano et al., 2018, for example). These relations

use the property described in Section 2.1.3 that applying the Hilbert transform in the

Fourier domain is equivalent to multiplying the function by −isgnx in the state domain.

Therefore as f(x)sgnx = f+(x) − f−(x) and the Hilbert transform is a linear operation

due to it being an integral transform we obtain

−iH[f̂(ξ)] = f̂+(ξ)− f̂−(ξ). (2.22)

The Fourier transform is also a linear operation and as f(x) = f+(x) + f−(x) then

f̂(ξ) = f̂+(ξ) + f̂−(ξ). (2.23)

Eqs. (2.22) and (2.23) can then be combined to give the Plemelj-Sokhotsky relations

which split a function into its positive and negative parts, a processes also known as

decomposition,

f̂+(ξ) =
1

2

[
f̂(ξ) + iHf̂(ξ)

]
, (2.24)

f̂−(ξ) =
1

2

[
f̂(ξ)− iHf̂(ξ)

]
. (2.25)

We can also use the shift theorem described in Section 2.1.1 to generalise the Plemelj-

Sokhotsky relations to decompose a function above and below an arbitrary barrier b,

f̂b+(ξ) =
1

2

{
f̂(ξ) + eibξiH

[
e−ibξ f̂(ξ)

]}
, (2.26)

f̂b−(ξ) =
1

2

{
f̂(ξ)− eibξiH

[
e−ibξ f̂(ξ)

]}
. (2.27)

Eqs. (2.26) and (2.27) can be combined to obtain the Fourier transform the part of a

function between two barriers, i.e. f̂lu(ξ) = Fx→ξ
[
f(x)1[l,u](x)

]
,

f̂lu(ξ) =
1

2

{
eilξiH

[
e−ilξ f̂(ξ)

]
− eiuξiH

[
e−iuξ f̂(ξ)

]}
. (2.28)

The numerical methods described in this thesis also require the factorisation of a function,

i.e. the calculation of f̂⊕(ξ) and f̂	(ξ) such that f̂(ξ) = f̂⊕(ξ)f̂	(ξ). Note the use of

14
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·⊕ and ·	 to donate factorisation instead of decomposition. Factorisation is achieved by

arithmetically decomposing the logarithm ĥ(ξ) = log f̂(ξ) i.e.

ĥ+(ξ) =
1

2

[
ĥ(ξ) + iHĥ(ξ)

]
=

1

2

[
log f̂(ξ) + iH log f̂(ξ)

]
, (2.29)

ĥ−(ξ) =
1

2

[
ĥ(ξ)− iHĥ(ξ)

]
=

1

2

[
log f̂(ξ)− iH log f̂(ξ)

]
, (2.30)

and then exponentiating the results to obtain f̂⊕(ξ) = exp ĥ+(ξ) and f̂	(ξ) = exp ĥ−(ξ).

For the factorisation of a function multiplied by a constant e.g. ĝ(ξ) = T f̂(ξ), we apply

the logarithm for ĥ(ξ) = log ĝ(ξ) = log T + log f̂(ξ). The Plemelj-Sokotsky relations then

give

ĥ+(ξ) =
1

2

[
ĥ(ξ) + iHĥ(ξ)

]
=

1

2

[
log T + log f̂(ξ) + iH log f̂(ξ)

]
, (2.31)

ĥ−(ξ) =
1

2

[
ĥ(ξ)− iHĥ(ξ)

]
=

1

2

[
log T + log f̂(ξ)− iH log f̂(ξ)

]
, (2.32)

where we use the Hilbert transform properties of linearity and zero value for a constant

input. These differ from Eqs. (2.29) and (2.30) only by the term 0.5 log T , which gives the

following relation between the factors of f̂(ξ) and ĝ(ξ)

ĝ⊕(ξ) =
√
T f̂⊕(ξ), (2.33)

ĝ	(ξ) =
√
T f̂	(ξ). (2.34)

Thus the effect of the constant T is equally split between the positive and negative factors

so that they are both multiplied by
√
T .

2.1.7 Wiener-Hopf technique

An important subject for the work in this thesis, both as a stand-alone topic and for the

application of option pricing, is the solution of the Wiener-Hopf (or Fredholm) equations

which are of the form

λf(x)−
∫ b

a
k(x− x′)f(x′)dx′ = g(x) x ∈ (a, b) (2.35)

(see e.g. Polyanin and Manzhirov, 1998), where we wish to solve for f(x). The functions

k(x) and g(x) are known and are respectively referred to as the kernel and forcing function.

If either a = −∞ or b = +∞ then the expression in Eq. (2.35) is a Wiener-Hopf equation

(Wiener and Hopf, 1931; Noble, 1958; Lawrie and Abrahams, 2007) and if a and b are

both finite then it is referred to as a Fredholm equation (Fredholm, 1903). When λ = 0

then it is an equation of the first kind and when λ 6= 0 it is of the second kind.

From its application to microwave propagation, as in Daniele and Lombardi (2006),

the former is often described as a classical Wiener-Hopf equation (CWHE) and the latter
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as a longitudinally modified Wiener-Hopf equation (LMWHE) (Daniele and Zich, 2014).

In addition to radio propagation, the overview of the Wiener-Hopf method by Lawrie

and Abrahams (2007) described further applications such as crystal growth, fracture me-

chanics, flow mechanics (see also Choi et al., 2005), geophysics and diffusion. It is also

connected to problems in probability such as the Spitzer identities which are discussed in

detail in Section 2.1.8 below. The Wiener-Hopf technique has been used several times in

the finance literature to price discretely monitored path-dependent options. This has in-

volved both the calculation the price directly such as in Fusai et al. (2006) and also finding

probability distributions of underlying processes subject to discrete monitoring such as in

Green et al. (2010), Fusai et al. (2016) and Marazzina et al. (2012).

The Wiener-Hopf method was described in great detail in the book by Noble (1958)

with Lawrie and Abrahams (2007) providing both a historical perspective and references

for the more recent developments in the technique. The latter is especially recommended

to the interested reader wishing for an introduction to the subject. Here we present a brief

description of the solution to the Wiener-Hopf and Fredholm equations of the second kind

in order to provide a framework for the numerical methods developed in the later chapters

of this thesis.

We first describe the Wiener-Hopf method for Eq. (2.35) over a semi-infinite range and

therefore set b =∞. The lower integration limit can also be shifted to a = 0 without loss

of generality (Germano et al., 2018) and so Eq. (2.35) becomes

λf(x)−
∫ ∞

0
k(x− x′)f(x′)dx′ = g(x) x ∈ (0,∞). (2.36)

The similarity of the integral to the convolution in Eq. (2.5) is immediately apparent but

as the range of the integration is not infinite the convolution theorem cannot be applied

directly. In order to use the convolution theorem we must first extend Eq. (2.36) over the

whole range of x ∈ R. We write

λf(x)1R+(x)−
∫ +∞

−∞
k(x− x′)f(x′)1R+(x′)dx′ + fs(x)1R−(x) = g(x)1R+(x) x ∈ R

(2.37)

where, as before, 1A(x) is the indicator function of the set A. The use of the indicator

function within the integral allows the extension of x′ over the full range of R. The

supplementary function fs(x) is introduced as

fs(x) =

∫ ∞
−∞

k(x− x′)f(x′)1R+(x′)dx′, (2.38)

and allows the function to be defined over all values of x ∈ R. For ease and clarity of
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notation the new functions are defined

f+(x) =1R+(x)f(x), (2.39)

g+(x) =1R+(x)g(x), (2.40)

f−(x) =1R−(x)fs(x). (2.41)

Notice how the ·+ subscript corresponds to a “+” function and the ·− subscript to a “−”

function. We can thus rewrite Eq. (2.37) more concisely as

λf+(x)−
∫ +∞

−∞
k(x− x′)f+(x′)dx′ + f−(x) = g+(x), x ∈ R. (2.42)

Having extended the Wiener-Hopf equation to x ∈ R, we can now apply the Fourier

transform to Eq. (2.42) and use the convolution theorem to obtain

λf̂+(ξ)− k̂(ξ)f̂+(ξ) + f̂−(ξ) = ĝ+(ξ), (2.43)

and by defining l̂(ξ) = λ− k̂(ξ) we can write Eq. (2.43) more compactly as

l̂(ξ)f̂+(ξ) + f̂−(ξ) = ĝ+(ξ). (2.44)

The first step in the Wiener-Hopf method is to factorise l̂(ξ) so that l(ξ) = l̂⊕(ξ)l̂	(ξ). We

have the constraint that if l̂	(ξ) is a “–” function then l̂	
−1

(ξ) must also be a “–” function

(Noble, 1958), but we can show that if we use the factorisation method described in

Section 2.1.6 then, subject to conditions on log l̂(ξ)1, this requirement is met. Decomposing

log l̂(ξ) = [log l̂(ξ)]+ + [log l̂(ξ)]− gives a function [log l̂(ξ)]+
(
[log l̂(ξ)]−

)
which, by the

Paley-Wiener theorem, is analytic in the upper (lower) ξ plane. Using the same notation

as Section 2.1.6 we obtain

l̂⊕(ξ) = e[log l̂(ξ)]+ , (2.45)

l̂	(ξ) = e[log l̂(ξ)]− . (2.46)

As l̂⊕(ξ)
(
l̂	(ξ)

)
is calculated via the exponentiation of an analytic function we know

that it is both analytic and non-zero in the upper (lower) ξ plane and therefore l̂⊕
−1

(ξ)(
l̂	
−1

(ξ)
)

is also analytic and non-zero in the upper (lower) ξ plane. Having factorised

l(ξ), the next step is to divide Eq. (2.43) through by l̂	(ξ) for

l̂⊕(ξ)f̂+(ξ) + l̂	
−1

(ξ)f̂−(ξ) = l̂	
−1

(ξ)ĝ+(ξ). (2.47)

Then as l̂⊕(ξ)f̂+(ξ) is purely a “+” function and l̂	
−1

(ξ)f̂−(ξ) is purely a “–” function,

1We use the Paley-Wiener theorem which requires that f(x) ∈ L2(R+) for the Fourier transform over
≥ 0 and f(x) ∈ L2(R+) for the Fourier transform over ≤ 0
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we can decompose l̂	
−1

(ξ)ĝ+(ξ) and

l̂⊕(ξ)f̂+(ξ) =
[
l̂	
−1

(ξ)ĝ+(ξ)
]
+
, (2.48)

l̂	
−1

(ξ)f̂−(ξ) =
[
l̂	
−1

(ξ)ĝ+(ξ)
]
−. (2.49)

The Fourier transform of the unknown function f̂+(ξ) can then be calculated by rearrang-

ing Eq. (2.48)

f̂+(ξ) = l̂⊕
−1

(ξ)
[
l̂	
−1

(ξ)ĝ+(ξ)
]
+
. (2.50)

If we extend the method to the Fredholm equation then a and b are both finite. Therefore

defining Eq. (2.35) over the entire range of x gives

λf(x)1(a,b)(x)−
∫ +∞

−∞
k(x− x′)f(x′)1(a,b)(x

′)dx′

+fs(x)1(−∞,a)(x) + fs(x)1(b,∞)(x) = g(x)1(a,b)(x) x ∈ R. (2.51)

As before, fs(x) is a supplementary function which allows the extension of the Fredholm

equation to the entire range of x ∈ R and is

fs(x) =

∫ ∞
−∞

k(x− x′)f(x′)1(a,b)(x
′)dx′, (2.52)

Again, for brevity and clarity we define

f0(x) =1(a,b)(x)f(x), (2.53)

g0(x) =1(a,b)(x)g(x), (2.54)

f+(x) =1(b,∞)(x)fs(x), (2.55)

f−(x) =1(−∞,a)(x)fs(x), (2.56)

k0(x) =1(a−b,b−a)(x)k(x), (2.57)

so Eq. (2.51) is now

λf0(x)0 −
∫ +∞

−∞
k0(x− x′)f0(x′)dx′ + f−(x) + f+(x) = g0(x) x ∈ R. (2.58)

We again apply the Fourier transform to obtain

l̂(ξ)f̂0(ξ) + f̂−(x) + f̂+(x) = ĝ0(x), (2.59)

where l̂(ξ) = λ − k̂0(ξ). However, we now have two supplementary functions, f̂−(x) and

f̂+(x), so unlike the solution to the Wiener-Hopf solution over a semi-infinite range of x
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described in Eqs. (2.42)–(2.50) we cannot solve this directly. An iterative solution was

proposed by Henery (1977), but this is a theoretical solution and has not been successfully

implemented. The iterative solution successfully realised by Germano et al. (2018) is based

on producing two versions of Eq. (2.59), one shifted so that b is the origin and one shifted

so that a is the origin:

e−ibξ l̂(ξ)f̂0(ξ) + e−ibξ f̂−(x) + e−ibξ f̂+(x) = e−ibξ ĝ0(x), (2.60)

e−iaξ l̂(ξ)f̂0(ξ) + e−iaξ f̂−(x) + e−iaξ f̂+(x) = e−iaξ ĝ0(x). (2.61)

We then factorise l̂(ξ) and divide Eqs. (2.60) and (2.61) by l̂⊕(ξ) and l̂	(ξ) respectively to

obtain,

e−ibξ l̂	(ξ)f̂0(ξ) + e−ibξ l̂⊕
−1

(ξ)f̂−(x) + e−ibξ l̂⊕
−1

(ξ)f̂+(x) = e−ibξ l̂⊕
−1

(ξ)ĝ0(x), (2.62)

e−iaξ l̂⊕(ξ)f̂0(ξ) + e−iaξ l̂	
−1

(ξ)f̂−(x) + e−iaξ l̂	
−1

(ξ)f̂+(x) = e−iaξ l̂	
−1

(ξ)ĝ0(x). (2.63)

Here, the terms e−ibξ l̂	(ξ)f̂0(ξ) and e−iaξ l̂	
−1

(ξ)f̂−(x) are “−” and the terms e−iaξ l̂⊕(ξ)f̂0(ξ)

and e−ibξ l̂⊕
−1

(ξ)f̂+(x) are “+”. Therefore, by decomposing the remaining terms in Eqs. (2.62)

and (2.63) and rearranging, we can obtain expressions for f̂+(ξ) and f̂−(ξ) which can be

used to solve Eq. (2.59)

f̂+(x) = l̂⊕(ξ)eibξ

[
e−ibξ

(
ĝ0(x)− f̂−(x)

l̂⊕(ξ)

)]
+

= l̂⊕

[
ĝ0(x)− f̂−(x)

l̂⊕(ξ)

]
b+

, (2.64)

f̂−(x) = l̂	(ξ)eiaξ

[
e−iaξ

(
ĝ0(x)− f̂+(x)

l̂	(ξ)

)]
−

= l̂	

[
ĝ0(x)− f̂+(x)

l̂	(ξ)

]
a−

, (2.65)

where the notation [·]a− and [·]b+ denotes decomposition around a barrier as described in

the generalized Plemelj-Sokhotsky relations in Eqs. (2.26) and (2.27). The expressions in

Eqs. (2.64) and (2.65) cannot be solved directly; they form a system of equations which

can be solved using an iterative scheme such as the fixed-point algorithm employed by

Fusai et al. (2016) and Germano et al. (2018). The value of f̂+(ξ) is initialised as 0 and

then Eq. (2.65) is solved to give an estimate for f̂−(x) which is then input to Eq. (2.64) to

provide an estimate for f̂+(x), and so on, until a required tolerance or maximum number

of iterations is reached. The computed values for f̂+(x) and f̂−(x) are then used to solve

Eq. (2.59) for f̂0(ξ):

f̂0(ξ) =
ĝ0(x)− f̂−(x)− f̂+(x)

l̂(ξ)
. (2.66)

Work by Fusai et al. (2016) using this iterative method found that convergence to the

final error level is achieved within about 2–3 iterations, beyond which little improvement

is possible.
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The work in this thesis is based on the iterative method described above, however

for completeness we provide here a summary of the latest developments finding a direct

solution to the Fredhom equation; for more details the reader is directed to Germano et al.

(2018).

The approach by Noble (1958) puts Eqs. (2.62) and (2.63) in matrix form(
l̂(ξ) ei(b−a)ξ

0 1

)(
f̂0(ξ)e−iaξ

f̂+(ξ)e−ibξ

)
+

(
0 1

l̂(ξ) ei(a−b)ξ

)(
f̂0(ξ)e−iaξ

f̂−(ξ)e−ibξ

)

=

(
0 1

l̂(ξ) ei(a−b)ξ

)(
0

ĝ0(ξ)e−iaξ

)
. (2.67)

Multiplying by
(

0 1
l̂(ξ) ei(a−b)ξ

)−1
from the left gives

(
−ei(b−a)ξ 0

l̂(ξ) ei(b−a)ξ

)(
f̂0(ξ)e−iaξ

f̂+(ξ)e−ibξ

)
+

(
f̂0(ξ)e−iaξ

f̂−(ξ)e−ibξ

)
=

(
0

ĝ0(ξ)e−iaξ

)
. (2.68)

When this is written in short form as

l̂(ξ)f̂+(ξ) + f̂−(ξ) = ĝ+(ξ), (2.69)

the similarity with Eq. (2.44) is immediately apparent. Thus, if we could factorise l̂(ξ) we

could solve the Fredholm equation directly without the use of iterative methods. Signif-

icant advances were made by Jones (1984, 1991) on the factorisation of 2 × 2 matrices.

However the conditions that must be met to apply this method are not fulfilled due to the

presence of elements such as ei(a−b)ξ. Similarly to the conditions required by the Wiener-

Hopf method that if l̂	(ξ) is “−” then l̂	
−1

(ξ) must also be “−” (Noble, 1958), we also

require that l̂	
−1

(ξ) is “−”. Unfortunately the inversion of a “−” element such as ei(a−b)ξ

gives a “+” element ei(b−a)ξ 2 (Daniele and Zich, 2014).

An alternate factorisation method was proposed by Voronin (2004). This requires the

conversion of a known matrix factorisation such that m̂(ξ) = m̂	(ξ)m̂⊕(ξ) into one where

m̂(ξ) = m̂⊕(ξ)m̂	(ξ) and again whilst methods exist for this operation, the form of our

matrices is not such that we can apply them (Jones, 1984). Since these major developments

in the 1980s, there have been a number of advances in the area of Wiener-Hopf matrix

factorization, both for 2× 2 matrices such as by Abrahams (1997); Kisil (2015); Mishuris

and Rogosin (2016) and for the more general case of the factorisation of an n× n matrix

(see Veitch and Abrahams, 2007). However, it remains the case that no general solution

for the factorisation of an n×n Wiener-Hopf matrix has been discovered. Therefore we are

2We can easily see this by recognising that eicξ is the Fourier transform of a shifted delta function
δ(x − c) and if c changes sign the delta function will change from being a “+” to a “-” function or vice
versa
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required to use an iterative scheme such as the one by Fusai et al. (2016) described above,

or to use other solutions to integral equations such as quadrature method, as described in

Press et al. (2007) Eq. (4.1.12).

2.1.8 Spitzer identities and the Green et al. formulation

Spitzer (1956) devised his eponymous fluctuation identities using combinatorial arguments;

these were extended to the continuous case by Baxter and Donsker (1957) and to the

double-barrier case by Kemperman (1963). The Spitzer identities provide the Fourier-z

transform of the probability distributions of the extrema of a process subject to discrete

monitoring and of the final value of a process conditional on the process crossing a dis-

cretely monitored barrier. The link to Wiener-Hopf factorisation was first discussed by

Baxter (1961); this has been explored in much greater detail by Green et al. (2007); Green

(2009); Green et al. (2010). This work used a modified Wiener-Hopf technique (Jones’

method) to recast the Spitzer identities in a form that is both numerically tractable and

useful for the pricing of path-dependent options.

The relevance of the Spitzer identity in several fields is nowadays well recognised. We

mention, for example, the application to queuing systems (see the classical contributions by

Cohen (1975, 1982) and Prabhu (1974) and more recent work by Bayer and Boxma (1996))

Markov chains (Rogers, 1994), insurance (Chi and Lin, 2011), inventory systems (Cohen

and Pekelman, 1978; Grassmann and Jain, 1989), and applied probability (Grassman,

1990), as well as in mathematical finance. The reader is directed to the work by Green

(2009) for a comprehensive guide to the formulation of the Spitzer identities used for the

work in this thesis. However, we include here a brief summary of this technique in order

to provide sufficient background information for the work herein.

For a discretely monitored process Xn, (n = 0, 1, 2, ...) with the transition density

between monitoring dates of k(x − x′) for Xn = x and Xn−1 = x′, we wish to know

the probability density of Xn = x subject to the process not having crossed upper or

lower barriers at previous monitoring dates. We adapt the slightly unusual designation

of k(·|∆t) for the transition density, where ∆t is the time between monitoring dates, to

clearly illustrate the link to the Wiener-Hopf method described in Section 2.1.7.

We dub the probability density which we wish to compute p(x, n) and the idea behind

Green’s formulation of the Spitzer identities is that the relationship between p(x, n) at

subsequent monitoring dates can be expressed recursively as

p(x, n) =

∫ u

d
k(x− x′|∆t)p(x′, n− 1)dx′, (2.70)

where p(x0) = δ(x0), the Dirac delta function. Applying the z-transform defined in
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Eq. (2.17) to Eq. (2.70) gives

p̃(x, q)− δ(x) = q

∫ u

d
k(x− x′|∆t)p̃(x′, q)dx′, (2.71)

where p̃(x, q) = Z[p(x, n)] =
∑∞

j=0 q
np(x, n) and q is the z-transform parameter. The

expression in Eq. (2.71) can be rewritten as a Wiener-Hopf equation similar to Eq. (2.35),

where the z-transformed probability distribution p̃(x′, q) is used instead of f(x) for the

unknown function, the kernel k(x) is replaced by the transition density k(x|∆t)and δ(x)

is the forcing function g(x). The techniques used to solve the Wiener-Hopf and Fredholm

equations in Section 2.1.7 can then be used to provide an expression for the required

probability distribution in the Fourier-z domain.

For the work on barrier options in Chapters 3 and 4 and early exercise options in

Chapter 5, the identities we require are

pl(x, n)dx = P

[
Xn ∈ (x, x+ dx) ∩ max

j<n
Xj > l

]
, (2.72)

plu(x, n)dx = P

[
Xn ∈ (x, x+ dx) ∩ max

j<n
Xj < u ∩ min

j<n
Xj > d

]
. (2.73)

It should be noted that these are defective probability distributions in x because, defining

the cumulative distribution function (CDF) as F (x) =
∫ x
−∞ p(x, n)dx, then F (+∞) −

F (−∞) < 1. Eq. (2.72) is calculated in the Fourier-z domain as

pl(x, n) =

Z
−1
q→n

[
F−1
ξ→x

[
Pl+(ξ,q)
Φ⊕(ξ,q)

]]
x ≥ l,

Z−1
q→n

[
F−1
ξ→x [Pl−(ξ, q)Φ	(ξ, q)]

]
x < l.

(2.74)

Here, Φ⊕(ξ, q) and Φ	(ξ, q) are the Wiener-Hopf factors of Φ(ξ, q) = 1 − qΨ(ξ,∆t) =

Φ⊕(ξ, q)Φ	(ξ, q), Ψ(ξ,∆t) being the characteristic function of the transition density k(x,∆t),

and Pl±(ξ, q) result from the decomposition around l of P (ξ, q) = 1/Φ	(ξ, q) = Pl+(ξ, q)+

Pl−(ξ, q). Green et al. (2010) extended the usual definition of the single sided Wiener-Hopf

equation, where the range of x is limited to the range of the integral. Using arguments

from complex analysis Green showed that the form of the identity for the final value sub-

ject to the path being monitored in Eq (2.74) is different depending on whether the value

of X(tn) at the final date is above or below l and this is reflected above. If we link the

formulation of this identity for x < l to the Wiener-Hopf method described in Section

2.1.7, then the general idea behind these identities is that rather than solving Eq. (2.48)

for f̂+(ξ), we instead solve Eq. (2.49) for f̂−(ξ). The pricing scheme for barrier options

in Fusai et al. (2016) used in Chapters 3 requires the expression in the case that the final

value of X(tn) is above the barrier. However, the pricing methods for Bermudan options

described in Chapter 5 require the distribution where the value of X(tn) < l. Eq. (2.73)
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is calculated in the Fourier-z domain as

plu(x, n) = Z−1
q→n

[
F−1
ξ→x

[
1− Jl−(ξ, q)− Ju+(ξ, q)

Φ(ξ, q)

]]
, (2.75)

where Jl− and Ju+ are the solutions to the coupled equations.

Ju+(ξ, q)

Φ⊕(ξ, q)
=

[
1− Jl−(ξ, q)

Φ⊕(ξ, q)

]
u+

, (2.76)

Jl−(ξ, q)

Φ	(ξ, q)
=

[
1− Ju+(ξ, q)

Φ	(ξ, q)

]
l−
. (2.77)

Eq. (2.75) is analogous to Eq. (2.65) in Section 2.1.7 for the general solution to the Fred-

holm equation and Eqs. (2.76) and (2.77) are equivalent to the coupled equations for the

auxiliary functions in Eqs. (2.64) and (2.65).

For the work on α-quantile options in Chapter 5, we also require the probability dis-

tribution of the minimum and maximum of discretely monitored processes, i.e.

pm(x, n)dx = P

[
max
j≤n

Xj ∈ (x, x+ dx)

]
, (2.78)

pM (x, n)dx = P

[
min
j≤n

Xj ∈ (x, x+ dx)

]
. (2.79)

Green (2009) used arguments from complex analysis to caluclate these in the Fourier-z

domain as

pm(x, n) = Z−1
q→n

[
F−1
ξ→x

[
1

Φ⊕(0, q)Φ	(ξ, q)

]]
, (2.80)

pM (x, n) = Z−1
q→n

[
F−1
ξ→x

[
1

Φ⊕(ξ, q)Φ	(0, q)

]]
. (2.81)

In addition to Spitzer identities for the distribution of the values of processes subject to

touching discretely monitored barriers, Green (2009) produced formulations for the PDFs

of the first crossing time of discretely monitored barrier. For example, the PDF of the

first crossing time of a lower barrier τl is obtained by calculating the probability that n is

the first date that Xj ≤ d ∀j ≤ n as

P [τl = n] =

∫ d

−∞
pl(x, n)dx, (2.82)

where the required expression for pl(x, n) can be obtained applying the inverse Fourier-z

transform to the expression for x < l in Eq. (2.74).
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2.1.8.1 Green’s formulation for continuous monitoring

Following the work by Baxter and Donsker (1957), it was shown in Green et al. (2010)

and the supplementary material of Fusai et al. (2016) that the identities derived above

for discretely monitored barriers could be extended to the continuous monitoring case

using the relationship between the Laplace and z-transforms described in Eq. (2.19). We

repeat this here due to its importance for later chapters of this thesis. Having rearranged

Eq. (2.71) in the form of the standard Wiener-Hopf equation, the first step in the solution

method outlined in Section 2.1.7 is to factorise l̂(ξ) = λ − k̂(ξ) which is equivalently

defined as Φ(ξ, q) = 1− qΨ(ξ,∆t) using the notation from Section 2.1.8 where Ψ(ξ,∆t) is

the characteristic function, as defined in Eq. 2.11, of the transition density k(x|∆t).
To obtain Green’s formulation of the Spitzer identities for continuous monitoring, first

the equivalent quantity of 1
Φ(ξ,q) in the Laplace domain 1

Φ c(ξ,s) must be calculated. This

can be found using the result shown in Eq. (2.19), i.e. L[fc(t)] = lim∆t→0 ∆tZ[fd(n)].

Defining 1
Φ c(ξ,s) in terms of the limit of the z-transform gives

1

Φ c(ξ, s)
= lim

∆t→0

∆t

Φ(ξ, q)

= lim
∆t→0

∆t

1− qΨ(ξ,∆t)

= lim
∆t→0

∆t

1− e−s∆teψ(ξ)∆t

= lim
∆t→0

∆t

1− e(ψ(ξ)−s)∆t

=
1

s− ψ(ξ)
, (2.83)

where the final step uses the Taylor expansion ex =
∑∞

n=0
xn

n! . Having obtained Φc(ξ, s),

the solution can be obtained using the Wiener-Hopf method as before, except in this case

the results will be the probability distribution of the final value of a process subject to

continuous monitoring, expressed in the Fourier-Laplace domain.

2.2 Option pricing

There are many applications for Spitzer identities and Wiener-Hopf equations; examples

are described in Sections 2.1.7 and 2.1.8, although these lists are not intended to be

exhaustive. The main focus of this thesis is the application of the pricing of financial

options which has been a major area within finance literature for the last few decades.

Seminal work by Black and Scholes (1973) and Merton (1973) introduced the ideas of

the risk neutral measure and replicating portfolio which are still important today (see

e.g. Björk, 2009; Hull, 2017; Shreve, 2004). The famous formula by Black and Scholes

(1973) gives a closed-form solution for the price of European options and Merton (1973)
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described closed-form solutions for both perpetual American options and down-and-out

barrier options. However both papers were limited to a log-normal price process for

the underlying asset and where barrier monitoring was required, it was assumed to be

continuous. Since that time a large area of research has been to increase the sophistication

of both the models of the underlying assets and the contracts in order to simulate the

real world more accurately. The importance of this work was brought sharply into focus

during the 2007–2008 global financial crisis which demonstrated the risks associated with

the reliance on models which inaccurately reflected reality.

2.2.1 Stochastic processes for modelling asset prices

In terms of increasing the model sophistication, one approach has been to retain the log-

normal form of the stochastic differential equation controlling the underlying asset, i.e.

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (2.84)

but then to introduce one or more stochastic process driving the process parameters.

Examples for stochastic volatility are the Heston (1993) model, the CEV model (Cox,

1975) and the SABR model (Hagan et al., 2002) with Chen (1996) being the first to

publish a model with both stochastic mean and volatility.

Another approach to improve the model of the underlying asset has been to keep the

parameters deterministic but to increase complexity by combining a diffusion process, as

described in Eq. (2.84), with a jump process. This allows the process to model large sudden

movements in the asset price and also produces the excess kurtosis seen in the distribution

of real world market returns. A large class of processes that combine diffusion with jumps

process are known as Lévy processes (see Cont and Tankov, 2004, for example), and have

the following characteristics:

1. X(0) = 0.

2. Independence of increments, i.e. for any 0 < t1 < t2 < ... < tn < ∞, X(tn) −
X(tn−1), X(tn−1)−X(tn−2), ..., X(t1)−X(t2) are independent.

3. Stationarity of increments, i.e. for any s < t,X(t) −X(s) has the same probability

distribution as X(t− s).

4. Continuity in probability, i.e for any ε > 0 and t ≥ 0 it holds that limh→0 P (|Xt+h−
Xt| > ε) = 0.

The simplest examples of Lévy processes are a Wiener process where the increments are

normally distributed with a mean of 0 and a variance of t− s, or a Poisson process where

increments have a Poisson distribution with mean and variance λ(t − s). Other Lévy

processes are made up of both these components, for example Merton jump-diffusion which
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is comprised of a diffusion process and a compound Poisson process. It is often the case

that financial assets are modelled as exponential Lévy processes, i.e. S(t) = S0e
X(t), where

S0 is the initial value of S(t), a simple example of this being geometric Brownian motion.

The increased flexibility of general Lévy processes allows for more accurate simulation of

the movement of real asset prices. In addition, they have the advantage that they have the

same simple form of characteristic function, i.e. Ψ(ξ, t) = eψ(ξ)t, where the characteristic

exponent ψ(ξ) is given by the Lévy-Khincine formula as

ψ(ξ) = iaξ − 1

2
σ2ξ2 +

∫
R

(eiξη − 1− iξη1[−1,1](η))ν(dη). (2.85)

The Lévy-Khincine triplet (a, σ, ν) uniquely defines the Lévy process: the value of a defines

the linear drift of the process, σ is the volatility of the diffusion part of the process, and

the jump part of the process is specified so that ν(η) is the intensity of a Poisson process

with jump size η. Under the risk-neutral measure the parameters of the triplet are linked

by the equation

a = r − q − 1

2
σ2 −

∫
R

(eη − 1− iη1[−1,1](η))ν(dη), (2.86)

where r is the risk-free interest rate and q is the dividend rate. In general the characteristic

function of a Lévy process is available in closed-form. Specific examples of this are the

Gaussian (Schoutens, 2003), Normal inverse Gaussian (NIG) (Barndorff-Nielsen, 1998),

CGMY (Carr et al., 2002), Kou double exponential (Kou, 2002), Merton jump-diffusion

(Merton, 1976), Lévy alpha stable (Nolan, 2018), variance gamma (VG) (Madan and

Seneta, 1990) and Meixner (Schoutens, 2003) processes.

2.2.2 Exotic options

Having initially focused on the problem of pricing vanilla options, where the payoff only

depends on the value of the underlying asset at a single predefined expiry date, finance

literature is now more concerned with exotic options, especially those where the option

payoff depends on the path of the underlying as well as its final value. Fluctuation identi-

ties, such as the ones by Spitzer described in Section 2.1.8, have applications in the pricing

of many of these contracts such as single and double-barrier, lookback, quantile, perpetual

Bermudan and perpetual American options; these are described in more detail in Sections

2.2.2.1–2.2.2.3 below.

2.2.2.1 Barrier options

A barrier option is a financial contract which has a payoff which is a function of the value

of the underlying asset at expiry, but which only pays out depending on whether the

path of the underlying has touched (knock-in) or not touched (knock-out) a predefined
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barrier. They are widely traded in the financial markets, according to Dadachanji (2015)

“In particular, barrier options are one of the most traded exotic derivatives in the forex

market”. Types of single-barrier options are down-and-out, up-and-out, down-and-in and

up-and-in. When considering single-barrier options in this thesis we concentrate on the

down-and-out type of option, which becomes valueless if the asset touches a lower barrier,

but similar techniques can be used for other types of single-barrier options. Closed-form

solutions were derived by Merton (1973) and Goldman et al. (1979) for continuously mon-

itored single-barrier options with the underlying asset price driven by geometric Brownian

motion. Kunitomo and Ikeda (1992) extended this to the double-barrier case, deriving

a solution which is a sum of an infinite series with rapid convergence. However these

solutions, although elegant, do not lend themselves to our application as we wish to price

discretely monitored barrier options with general Lévy processes and therefore we need

to explore numerical techniques. As also quoted by Lian et al. (2017) the requirement for

discrete monitoring is explained by Kou (2008) who wrote “due to regulatory and practi-

cal issues, most of path-dependent options traded in markets are discrete path-dependent

options.... In practice most, if not all, barrier options traded in markets are discretely

monitored. In other words, they specify fixed time points for the monitoring of the barrier

(typically daily closings).”

When devising such methods we would wish for one with the following attributes:

computational complexity which is invariant with the number of monitoring dates, very

fast (preferably exponential) convergence with increasing computational time, useful for

both single and double-barriers. Of the existing methods for option pricing, one of the

simplest to to implement and most intuitive, is Monte Carlo pricing. However, although

variance reduction techniques have been published, such as those by Beaglehole et al.

(1997) and Dingeç and Hörmann (2012), which improve the convergence with the number

of sample paths, the issue of the computational time increasing linearly with the number

of monitoring dates remains.

Another possibility, given the existence of some closed-form solutions for barrier op-

tions, is whether continuously monitored option prices can be used as an approximation

for the discrete case. Such methods would have the advantage that the computation

time is invariant with the number of monitoring dates N . Unfortunately, as shown by

Broadie et al. (1997), the convergence of discretely monitored solutions to the continuous

case with the number of dates has the very slow rate of O(1/
√
N). Moreover, despite

the existence of continuously monitored solutions with geometric Brownian motion, there

is no solution for general exponential Lévy processes. Indeed, in Chapter 4 we explore

the extension of the Spitzer identity calculations to continuous monitoring using option

pricing as a motivating example. Whilst continuously monitored barrier options are not

usually used in practice, the technique leads directly to the method for perpetual American

options described in Chapter 5, which is a realistic example of a contract using continu-
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ous time. Furthermore, a method for the solution of the continuous monitoring barrier

problem with exponential Lévy processes is useful for other fields. First-passage prob-

lems with models based on Markov processes are also ubiquitous in physical, biological,

social, actuarial and other sciences. For example, our technique could be used to compute

the ruin probability, i.e. the probability that a Lévy process takes value in a set A at a

time T > 0 given that the process never falls below a barrier B in the interval [0, T ],

i.e., P (X(T ) ∈ A,mint∈[0,T ]X(t) > B). This a classical problem in actuarial science and

applied probability; see for example Klüppelberg et al. (2004). For applications in physics

and biophysics, see e.g. the review by Bray et al. (2013). Similar problems also arise in

statistics, see for example the classical paper by Chernoff (1961), or in studying when a

process reaches for the first time an adverse threshold state (a patient dies, or an industrial

device breaks down).

Finite-difference schemes for pricing discretely monitored options have also been ex-

plored in the option pricing literature (see Boyle and Tian, 1998, for example) and recently

Golbabai et al. (2014) presented a model which was empirically shown to have 4th order

accuracy with grid size. However, the results by Golbabai et al. (2014) were only presented

for geometric Brownian motion and not for general Lévy processes. Furthermore, finite-

difference schemes have the underlying drawback that they must have at least as many

time domain grid point as monitoring dates and thus computational load is generally not

independent of N .

Quadrature methods use the property that the price process for discretely monitored

double-barrier options can be expressed as a recursive integral for each time step, similar

to Eq. 2.70

v(x, n) =

∫ u

d
k(x− x′|∆t)v(x′, n− 1)dx′. (2.87)

Here v(x, n) is the value of the option at the nth monitoring date, k(x − x′|∆t) is the

transition density of the underlying process, and the option value at expiry is the payoff

function φ(x). Quadrature methods can be used to solve this integral at each time step

as shown by Andricopoulos et al. (2003) and Fusai and Recchioni (2007), for example.

The convergence of these methods is polynomial, albeit often of a very high order, and

the technique can be used for general Lévy process. However, the disadvantage is that we

must have at least one integration step for each monitoring date and so the computational

load increases linearly with the number of monitoring dates.

The last class of methods that we discuss, and the main focus of this thesis, is the use

of transforms in option pricing. These use the integral transforms described in Section 2.1

applied to either the time or log-price domain, or both. Due to the importance of these

methods to the work herein we also briefly describe a history of the technique applied

to option pricing in general before concentrating on its application to barrier options. A
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technical overview of the use of Fourier transforms for pricing options is included in Section

2.2.3 below.

Derivative pricing with Fourier transforms was famously investigated by Heston (1993)

who looked at calculating the characteristic functions of the probability of options being in

the money at expiry. This approach was preceded by Chen and Scott (1992) who used the

moment generating function (Laplace transform of the PDF) instead of the characteristic

function. The Fourier transform technique was also used by Bakshi and Chen (1997) and

Scott (1997), underlining its usefulness when applied to the probability distributions of

price movements in financial markets. The next major step forward in the area of option

pricing using transforms was by Carr and Madan (1999) who published the first method

for pricing European options with both the characteristic function and the payoff in the

Fourier domain. More recently Fang and Oosterlee (2008) devised a pricing technique for

European options based on the Fourier-cosine expansion and this was extended to general

Lévy processes (Lord et al., 2008) and more exotic types of options including discretely

monitored barriers (Fang and Oosterlee, 2009, 2011). The Fourier-cosine method exhibits

extremely good accuracy having exponential error convergence with the number of grid

points in the log-price domain when the transition density of the underlying asset is

completely smooth in all orders of differentiation, i.e. k(x− x′|∆t) ∈ C∞. Unfortunately,

for discretely monitored options, this technique has the drawback that the computational

time increases linearly with the number of monitoring dates. The original techniques also

had the disadvantage that for transition densities where k(x− x′|∆t) /∈ C∞, such as VG,

the error converges polynomially. However very recently Ruijter et al. (2015) showed that

this can be improved with very little additional computational cost using spectral filters.

For pricing discretely monitored barrier options, the Hilbert transform (King, 2009)

was also successfully employed by Feng and Linetsky (2008, 2009) to price barrier options

using backward induction in Fourier space. This method showed excellent accuracy having

exponential error convergence with log-price grid size down to machine accuracy of 10−16.

However, it also shares the two main disadvantages of the original Fourier-cosine series

method when applied to discretely monitored barrier options: its computational load

increases linearly with the number of monitoring dates and for transition densities where

k(x− x′|∆t) /∈ C∞ the performance is polynomial. We investigate improving this method

with the use of spectral filters in Chapter 3 of this thesis.

In order to remove the linear dependence on the number of dates of the computational

time inherent in many pricing methods for discretely monitored barrier options, Fusai

et al. (2006) looked at collapsing the time domain using the z-transform. This meant that

the z-transform of the option price could be written in the form of a Wiener-Hopf equation

which was then solved analytically for a log-normal price process. The inverse z-transform

by Abate and Whitt (1992a,b) has a computational time independent of the number of

dates due to the use of the Euler acceleration (see e.g. O’Cinneide, 1997). Therefore,
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applying this method to the z-transform of the price obtained by solving the Wiener-Hopf

equation gives a pricing scheme whose computational time is independent of monitoring

dates. As described in Section 2.1.8, this technique was adapted by Green et al. (2007);

Green (2009); Green et al. (2010) to give the Fourier-z transform of the required probability

distributions. These can then be used to price options in the Fourier domain using the

Plancherel relation in Eq. (2.12), as described in Section 2.2.3 in more detail. Fusai et al.

(2016) provided a numerical implementation of this scheme that used the discrete Hilbert

transform from Stenger (1993, 2011) which was so successfully employed by Feng and

Linetsky (2008). This implementation is applicable to general exponential Lévy processes,

has a computational load which is independent of the number of monitoring dates and

achieves exponential error convergence for single-barrier options where k(x−x′|∆t) ∈ C∞.

However, for double-barriers or when k(x− x′|∆t) /∈ C∞, only polynomial convergence is

achieved. The work in Chapter 3 of this thesis shows that we can improve this performance

with the addition of spectral filters in a similar way to the improvement to the Fourier-

cosine method achieved by Ruijter et al. (2015); see also Phelan et al. (2018).

Recently Lian et al. (2017) proposed a method for barrier options with general expo-

nential Lévy processes which avoids the use of the inverse z-transform by calculating the

price at the N th date through computing the (N − 1)th power of a matrix. However, they

did not make use of any standard acceleration techniques for matrix power calculations,

such as diagonalisation. Therefore, the computational load associated with calculating

the N th power of a matrix is dependent on N and therefore in some ways this method is

a retrograde step as it cannot be considered date independent. In other recent literature

Farnoosh et al. (2017) and Sobhani and Milev (2018) published methods based on projec-

tion and Legendre polynomials that have computational time independent of the number

of monitoring dates. However, although interesting, both methods have only been imple-

mented for Brownian motion thus far and therefore currently do not fulfil the requirement

for a pricing model for general exponential Lévy processes.

2.2.2.2 Perpetual Bermudan and American options

It is well known that, in contrast to European options which can only be exercised at a

single expiry date, American options can be exercised at any time up to expiry. Bermudan

options can be considered to be halfway between the two in that they can be exercised at a

finite set of dates. Alternatively, they can be thought of as a discretely monitored version

of an American option. These can have a fixed expiry date, beyond which the contract

is worthless or no expiry date, known as perpetual Bermudan and American options.

The valuation of American options is a long-standing problem in mathematical finance

(Merton, 1973; Brennan and Schwartz, 1977) as it combines an optimisation problem

(that of the early exercise barrier) and a pricing problem, but a closed-form solution has

not been found with a finite expiry date.
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Perpetual American options do permit a closed-form solution when the underlying

is driven by geometric Brownian motion (Merton, 1973), as the perpetual nature of the

option means that the optimal exercise barrier is constant rather than a function of time

to expiry. However, this closed-form solution cannot be extended to Bermudan options.

Moreover, as explained by Boyarchenko and Levendorskii (2002a), the smooth pasting

method used for pricing perpetual American options can fail under jump processes such

as those in the general Lévy class.

Several approximate methods suggested for finite-horizon American options, such as

finite-differences (Brennan and Schwartz, 1977), trees (Cox et al., 1979), Monte Carlo

(Rogers, 2002) and recursive Hilbert transforms by Feng and Lin (2013), are inherently

discrete and thus lend themselves to Bermudan options with finite expiry. However, they

are not particularly accurate or efficient for perpetual Bermudan options as the compu-

tational load increases with the number of monitoring dates which is, of course, infinite

for perpetual contracts. Moreover, in times of very low interest rates such as the last

decade, the existence of potential exercise dates even many years in the future can have

a significant effect on the option value and thus the number of dates cannot be approxi-

mated with a sufficiently low value for these methods to be computationally efficient for

perpetual options.

Boyarchenko and Levendorskii (2002a) published a method for pricing perpetual Amer-

ican options for many Lévy processes using analytic approximations to the Wiener-Hopf

factors, this was a major step forward in showing their applicability to pricing perpetual

options with Lévy processes. However it is an approximate solution as there is no general

closed-form method for calculating the Wiener-Hopf factors. In addition, the proposed

method is not applicable to all Lévy processes and specifically excludes the VG process.

In Boyarchenko and Levendorskii (2002b) this method was adapted for perpetual Bermu-

dan options. However, the Wiener-Hopf factorisation again requires approximation in

some cases and calculations were presented for simple jump-diffusion and NIG processes

only.

Mordecki (2002) also devised a pricing approximation for perpetual American put

options with Lévy processes which was based on the optimal stopping problem for partial

sums by Darling et al. (1972) and therefore intrinsically operates in discrete time and thus

is useful for Bermudan options. However, this method had restrictions placed on the jump

measure used in the Lévy-Khinchine characteristic exponent in Eq. (2.85) and therefore

cannot be used for general Lévy processes.

Green (2009) suggested a pricing method based on his formulation of the Spitzer iden-

tities and his expression for prices of first touch and overshoot options. This also uses the

residue method and is applicable for general Lévy processes, however an implementation

of this method has not been published. In Chapter 5 we construct a pricing scheme based

on Green’s residue method and also specify an alternate scheme based on the Spitzer
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identities which includes a new way to calculate the optimal exercise barrier.

2.2.2.3 Quantile options

Hindsight options are a class of options with a fixed expiry where the payoff at expiry is

determined by the path of the option up to that date. Two such examples are lookback

options and quantile options. Fixed-strike lookback options have a similar payoff to a

European option. However, instead of being a function of the underlying asset price at

expiry it is calculated using the maximum or minimum over the monitoring period i.e.

(SM − K)+ for a call and (K − Sm)+ for a put. For a continuously monitored option

SM = maxt∈[0,T ] S(t) and Sm = mint∈[0,T ] S(t), but for a discretely monitored lookback

option, the maximum or minimum is based on the asset price at set of discrete dates, i.e.

SM = maxn∈[1,N ] S(tn) and Sm = minn∈[1,N ] S(tn).

Quantile options can be considered an adaption of lookback options because, rather

than using the maximum or minimum of an asset price, the payoff is based on the value

which the asset price spends α% of the time below. For this reason they are often described

as α-quantile options. They were first suggested by Miura (1992) as as way to design a

hindsight option which is less sensitive to very extreme but short lived extrema of the asset

price than simple lookback options. Akahori (1995) and Yor (1995) published analytic

pricing methods with geometric Brownian motion. Since then, most work on pricing these

types of options has been based on the remarkable identity by Dassios (1995) which used

work by Port (1963) and Wendel (1960). The Dassios-Port-Wendel identity states that the

α-quantile of a Brownian motion over T has the same distribution as the sum of the infinum

of a Brownian motion over time (1−α)T plus the supremum of an independent Brownian

motion over time αT . That is if Xm = mint∈[0,(1−αT )]X1(t) and XM = maxt∈[0,αT ]X2(t),

where X1(t) and X2(t), are independent Brownian motions then

Xα
d
= Xm +XM , (2.88)

where Xα is the α-quantile of the Brownian motion. A note by Dassios (2006) also showed

that this could also be extended (although not necessarily uniquely) to general Lévy pro-

cesses. Several pricing methods with Lévy processes have been developed, such as Monte

Carlo methods for jump-diffusion processes by Ballotta (2002) and an analytic method for

the Kou double exponential process by Cai et al. (2010). For discrete monitoring, Fusai

and Tagliani (2001) explored the relationship between continuously and discretely mon-

itored quantile options and whilst they made recommendations for selecting an optimal

pricing method depending on the value of ∆t, they did not produce a correction term like

the one by Broadie et al. (1997) for barrier options.

Atkinson and Fusai (2007) provided closed-form prices for discretely monitored quan-

tile options by using the z-transform to write the problem in terms of a Wiener-Hopf
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equation. They solved this analytically for prices driven by geometric Brownian motion

and also demonstrated the relationship between their results and the Spitzer identities.

This approach was extended to general Lévy processes by Green (2009), who developed

direct methods for calculating the distribution of the supremum and infimum of processes

based on his formulation of the Spitzer identities. These were implemented for lookback

options in Fusai et al. (2016) achieving exponential error convergence for general Lévy

processes with a CPU time which was independent of the number of monitoring dates. In

Chapter 5 we implement a pricing scheme for α-quantile options based on the numerical

methods by Fusai et al. (2016).

2.2.3 Option pricing using Fourier methods

As discussed in Section 2.2.2.1, several different approaches can be used for option pricing

with Fourier transforms. For example, Fusai et al. (2006) looked at collapsing the time

domain of the price process using the z-transform to form a Wiener-Hopf equation which

was then solved for geometric Brownian motion. However, in this thesis we concentrate

on methods where the required PDF is calculated separately in the Fourier-z or Fourier

domain and then the price calculation is done using the Plancherel relation with a Fourier

transform of the payoff function. We therefore provide here a brief technical background

to pricing options when both the payoff and PDF are available in the Fourier domain. We

use a payoff which is calculated for an exponential random process which is the case for

the option pricing methods we explore in this thesis.

Let S(t) be the price of an underlying asset and x(t) = log(S(t)/S0) its log-price. To

find the price v(x, t) of an option at time t = 0 when the initial price of the underlying is

S(0) = S0, and thus its log-price is x(0) = 0, we need to discount the expected value of

the undamped option payoff φ(x(T ))e−αdx(T ) at maturity t = T with respect to an appro-

priate risk-neutral probability distribution function (PDF) p(x, T ) whose initial condition

is p(x, 0) = δ(x). The most straightforward method uses convolution and makes the key

assumption that the probability distribution function of the underlying process at time T ,

given it’s value at an earlier time t can be represented as a transition density, i.e.

p(x(T )|x(t)) = k(x(T )− x(t)). (2.89)

That is, the probability distribution of the process is purely dependent upon the different

between the current and future values and not on either of their absolute values. We can
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then calculate a price using the convolution theorem described in Section 2.1.1

v(x, t) = e−rTE
[
φ(x(T ))e−αdx(T )|x(t) = x

]
= e−rT

∫ +∞

−∞
φ(x)e−αdxp(x′|x)dx′

= e−rT
∫ +∞

−∞
φ(x′)e−αdxk(x− x′)dx

= e−rTF−1
ξ→x

[
φ̂(ξ)Ψ∗k(ξ + iαd, T )

]
, (2.90)

where we make use of the fact that the third line in Eq. (2.90) is a convolution and

is therefore a multiplication in the Fourier domain. Here, Ψ (ξ, T ) is the characteristic

function of the transition density and so Ψ∗k(ξ + iαd, T ) is the complex conjugate of the

Fourier transform of e−αdxk(x, T ). To price options using this relation, we need the Fourier

transforms of both the damped payoff and the characteristic function. A double-barrier

option has the damped payoff

φ(x) = eαdxS0(θ(ex − ekS ))+1[l,u](x), (2.91)

where eαdx is the damping factor, θ = 1 for a call, θ = −1 for a put, 1A(x) is the

indicator function of the set A, u = log(U/S0) is the upper log-barrier, l = log(L/S0)

is the lower log-barrier, U is the upper barrier and L is the lower barrier. For the log-

strike we use kS = log(K/S0) where the subscript distinguishes it from the transition

density (k(·,∆T )) and K is the strike price. The Fourier transform of the damped payoff

is available analytically:

φ̂(ξ) = S0

(
e(1+iξ+αd)a − e(1+iξ+αd)b

1 + iξ + αd
− ekS+(iξ+αd)a − ekS+(iξ+αd)b

iξ + αd

)
, (2.92)

where for a call option a = u and b = max(kS , l), while for a put option a = l and

b = min(kS , u).

For a Lévy process we have seen that the characteristic function is Ψ(ξ, t) = eψ(ξ)t,

where the characteristic exponent ψ(ξ) is given by Eq. (2.85) and is, in general available,

in closed-form. Whilst Eq. (2.90) is useful for pricing options where the requirement that

p(x(T )|x(t)) = k(x(T )−x(t)) is met, it cannot be used in more general cases. An example

of this is pricing barrier options where the required probability distribution of future values

depends not only on the distance to the current value but also on its proximity to a barrier.

In cases such as these Lewis (2001) showed that this can be done using the Plancherel
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relation:

v(0, 0) = e−rTE
[
φ(x(T ))e−αdx(T )|x(0) = 0

]
= e−rT

∫ +∞

−∞
φ(x)e−αdxp(x, T )dx

=
e−rT

2π

∫ +∞

−∞
φ̂(ξ)p̂ ∗(ξ + iαd, T )dξ

= e−rTF−1
ξ→x

[
φ̂(ξ)p̂ ∗(ξ + iαd, T )

]
(0). (2.93)

The expression in Eq. (2.93) looks very similar to Eq. (2.90) but the key difference is that

the former is only valid at x(t) = 0 whereas the latter is valid for all values of x(t). This is

acceptable for our pricing application where the current value of x(t) is normalised using

S(t) so that it is equal to zero.

2.3 Numerical methods

The analytical methods described in Section 2.1 which are required to price the options

described in Section 2.2 are described theoretically. However, many of the calculations

involve some some expressions which cannot be solved in closed-form. Therefore their

implementation requires the use of numerical approximations which we describe in the

following sections.

2.3.1 Discrete Fourier transform and spectral filtering

The forward and inverse Fourier transforms in Eqs. (2.1) and (2.2) are integrals over an

infinite domain and in order to compute them numerically one needs to approximate them

with a discrete Fourier transform (DFT). Rather than being defined over an infinite and

continuous range of x and ξ values, the DFT is defined on grids of size M in the x and ξ

domains. For our numerical schemes both the x and ξ grids are centred around zero and

their definition is determined by the maximum value in the x domain xmax. The step size

is ∆x = 2xmax/M and the x domain grid is defined as

xj = j∆x, j = −M
2
,−M

2
+ 1, . . . ,

M

2
− 1. (2.94)

The points in the ξ domain are then calculated according to the Nyquist relation by

obtaining the step size ∆ξ = π/xmax and range ξmax = π/∆x to give the ξ domain grid as

ξk = k∆ξ, k = −M
2
,−M

2
+ 1, . . . ,

M

2
− 1. (2.95)
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Figure 2.2: Illustration of the effect of the Gibbs phenomenon on a rectangular pulse
recovered applying the inverse FFT with grid size M to sinc(ξ/2π). The left-hand plot
shows the recovered waveform and the right-hand plot shows the error. On increasing M ,
the peak error at the discontinuity remains the same, the error away from the discontinuity
reduces and the frequency of the oscillations increases.

The discrete Fourier transform is then

f̂M,∆x(ξk) = ∆x

M/2−1∑
j=−M/2

f (xj) e
ixjξk (2.96)

fM,∆ξ(xj) =
∆ξ

2π

M/2−1∑
k=−M/2

f̂ (ξk) e
−ixjξk . (2.97)

There are several techniques to improve the efficiency of this calculation such as the fast

Fourier transform (FFT) which reduces the computational complexity from O(M2) to

O(M logM) by restricting the number of FFT points to integer powers of 2. In practice,

we perform this calculation using the built-in MATLAB FFT function based on the FFTW

library by Frigo and Johnson (1998).

2.3.1.1 Gibbs phenomenon

It can be seen in Eqs. (2.96) and (2.97) that the range over which we calculate the Fourier

transform is truncated, so we must consider the effect of the Gibbs phenomenon on the

error performance. The Gibbs phenomenon describes the way that the shape of the func-

tion fM,∆ξ(x) approximated by a truncated Fourier series, i.e. the finite sum in Eq. (2.97),

converges to the analytical function f(x) corresponding to an infinite sum. Hewitt and

Hewitt (1979) provided a comprehensive guide to this effect which was first observed by

Wilbraham (1848) and later described by Gibbs (1898, 1899). An example of a way this

effect can be manifested is illustrated in Figure 2.2 which shows how fM,∆ξ(x) for a rect-

angular pulse varies as the value of M increases. The error peaks at the discontinuity

f(xd), where |xd| = 0.5, and oscillates away from it, with the amplitude decreasing as a

function of distance from the discontinuity. The value of the recovered function at the
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Figure 2.3: Illustration of the effect of the Gibbs phenomenon on a the Fourier transform
of a standard normal distribution. Notice how the presence of a small discontinuity in the
function changes the decay of the Fourier coefficients from exponential to polynomial.

discontinuity fM,∆ξ(xd) will be the mean of the values immediately before and after the

discontinuity, i.e. fM,∆ξ(xd) = 1
2 [f(x+

d ) + f(x−d )], and thus stays the same even as the

value of M increases. In contrast, it can be observed from Figure 2.2 that the oscillations

increase in frequency and decrease in amplitude as the value of M increases.

An important aspect of the Gibbs phenomenon is that, even for values of x far away

from a discontinuity, the speed of convergence of the recovered function is altered by

the presence of the discontinuity. If f(x) ∈ C∞, x ∈ R, the discrete Fourier transform

converges exponentially, i.e. maxj |f(xj) − fM,∆ξ(xj)| < e−αM , where α > 0 is some

constant. However, in the case of a function with a jump we achieve 0th order convergence

at the discontinuity and away from the discontinuity we only achieve first order polynomial

convergence, i.e. for xj 6= xd, |f(xj) − fM,∆ξ(xj)| ∼ O(1/M) (Gottlieb and Shu, 1997).

In general, if the truncation error has kth order convergence, then |f(x) − fM,∆ξ(x)| ∼
O(1/Mk).

More generally, from the “integration by parts coefficient bound” described by Boyd

(2001) (see also Ruijter et al., 2015), if the function is smooth up to and including its

(k−2)th derivative, and its kth derivative is integrable, then the Fourier coefficients decrease

as O(1/ξk). This is illustrated in Figure 2.3 which shows the plot of a Fourier transform

of a standard normal distribution and a plot of a Fourier transform of the same function

multiplied by the Heaviside unit step function H(x − x0) with x0 = 1.5. It can be seen

that introducing even a very small step in a function has the effect of changing the decay

of the Fourier transform to O(1/ξ). From Boyd (2001) we also have the “last coefficient

error estimate” which states that for polynomial convergence we can approximately bound
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the error performance of a function with the discontinuity in the (k − 1)th derivative as

O(1/Mk−1). However, these are upper bounds; as observed by Ruijter et al. (2015), it is

often the case that an error convergence of O(1/Mk) or even better is seen and that this

may be due to the alternating behaviour of the Fourier coefficients.

2.3.2 Discrete Hilbert transform

We saw in Section 2.1.3 that the calculation of the Hilbert transform of a function f̂(ξ)

can be realised with an inverse/forward Fourier transform pair and multiplication by the

signum function,

H
[
f̂(ξ)

]
= −iFx→ξ

[
sgn(x)F−1

ξ→xf̂(ξ)
]
. (2.98)

However, this gives an error performance which is polynomially decreasing with the number

of grid points M . In order to obtain exponential error convergence, Feng and Linetsky

(2008) and Fusai et al. (2016) implemented the Hilbert transform using the sinc expansion

techniques comprehensively studied by Stenger (1993, 2011). Stenger showed that, given

a function f̂(ξ) which is analytic in the whole plane including the real axis, the function

and its Hilbert transform can be expressed as

f̂(ξ) =

+∞∑
k=−∞

f̂(k∆ξ)
sin(π(ξ − k∆ξ)/∆ξ)

π(ξ − k∆ξ)/∆ξ
, (2.99)

H
[
f̂(ξ)

]
=

+∞∑
k=−∞

f̂(k∆ξ)
1− cos(π(ξ − k∆ξ)/∆ξ)

π(ξ − k∆ξ)/∆ξ
, (2.100)

where ∆ξ is the grid step size in the Fourier domain. Stenger (1993) also showed that, when

the function f̂(ξ) is analytic in a strip of the complex plane including the real axis, the

expressions in Eqs. (2.99) and (2.100) are approximations whose error decays exponentially

as ∆ξ decreases. In addition to discretisation, the infinite sum in Eq. (2.100) must also be

truncated to the grid size M , so that the discrete approximation of the Hilbert transform

becomes

H
[
f̂(ξ)

]
≈

+M/2∑
k=−M/2

f̂(k∆ξ)
1− cos(π(ξ − k∆ξ)/∆ξ)

π(ξ − k∆ξ)/∆ξ
. (2.101)

Feng and Linetsky (2008, 2009) showed that if f̂(ξ) decays at least exponentially as

ξ →∞, i.e. f̂(ξ) ≤ κ exp(−c|ξ|ν), then the error in the Hilbert transform and the Plemelj-

Sokhotsky relations caused by truncating the infinite sum in Eq. (2.100) is also exponen-

tially bounded. They also showed that if f̂(ξ) is polynomially bounded as ξ → ∞, i.e.

f̂(ξ) ≤ c|ξ|ν , then the error caused by truncating the series is no longer exponentially

bounded (Stenger, 1993; Feng and Linetsky, 2008, 2009).
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2.3.3 Inverse z-transform

To recover the option price from the Wiener-Hopf and Spitzer identity calculations we must

apply the inverse z-transform. This is a complex contour integral as shown in Eq. (2.18)

and can be difficult to calculate in closed-form, therefore a numerical inverse transform

is required for this step. We use the Fourier series based technique by Abate and Whitt

(1992a,b) which has been used with great success in financial applications (see e.g. Fusai

et al., 2006, 2011, 2012; Marazzina et al., 2012; Chang et al., 2013; Chen et al., 2014; Fusai

et al., 2016).

The first step in the Abate and Whitt method is to approximate the integral numeri-

cally as

f(n) ≈ 1

2nρn

f̃(ρ) + 2

n−1∑
j=1

(−1)j Re f̃
(
ρe

πji
n

)
+ (−1)nf̃(−ρ)

 . (2.102)

The parameter ρ is selected to control the error; for an accuracy of 10−λ, we require

ρ = 10−λ/2n. In order to perform the inverse z-transform in Eq. (2.102), we must compute

the weighted sum of f̃(q) for calculated for n distinct values of q. Thus the computation

time of the operation described in Eq. (2.102) increases with n. In order to overcome

this, Abate and Whitt used the Euler series acceleration which approximates the later

coefficients of an alternating convergent series with a binomial average of the earlier points

in the series: see the online supplementary material of Fusai et al. (2016) for an illustration

of the accelerated convergence using this method.

The Abate and Whitt numerical method to recover f(n) from f̃(q) via the inverse

z-transform is therefore a two stage process:

1. Compute the partial sums

f(l) =
1

2
f̃(ρ) +

l−1∑
j=1

(−1)j Re f̃
(
ρe

πji
n

)
. (2.103)

2. Calculate the binomial average (or Euler transform) of these values from nE to

nE +mE as

f(n) ≈ 1

2mEnρn

nE+mE∑
l=nE

(
mE

l − nE

)
f(l) (2.104)

The values of nE and mE are selected to give sufficient accuracy. Fusai et al. (2016)

reported that experimental results showed that these could be set to nE = 12 and mE = 20.

This means that for a number of dates N greater than 32, the computational time required

by the inverse z-transform is independent of n.
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2.3.4 Numerical pricing techniques

In Chapters 3 and 4 we adapt existing numerical pricing procedures by Fusai et al. (2016)

and Feng and Linetsky (2008). Chapter 3 looks at the effect of the Gibbs phenomenon on

the error performance of the pricing method for discrete barrier options. Chapter 4 extends

the calculation of the Spitzer identities to continuous monitoring using option pricing as

a motivating example. In addition, for the methods based on the pricing procedures by

Fusai et al. (2016), we perform a detailed error analysis which gives additional insight

into their original method. For a comprehensive background to the techniques we refer

the interested reader to the aforementioned papers. However in order to provide a self

contained guide to the work done in later chapters we include here brief summaries of the

original implementation of the three pricing methods that we modify and improve in this

thesis.

2.3.4.1 Spitzer based method for single-barrier options

We describe the pricing procedure devised by Fusai et al. (2016) for single-barrier down-

and-out options as an example, but the use of the Spitzer identities is equally applicable to

other types of barrier options and also to lookback options; the pricing formulae described

by Green et al. (2010) include methods for single-barrier up-and-out and knock-in options.

1. Compute the characteristic function of the underlying asset process Ψ(ξ + iαd,∆t),

where αd is the damping parameter introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φ(ξ, q) := 1−Ψ(ξ + iαd,∆t) = Φ⊕(ξ, q)Φ	(ξ, q) (2.105)

with q selected for N−2 dates according to the criteria specified by Abate and Whitt

(1992b) for the inverse z-transform.

3. Decompose with respect to l

P (ξ, q) :=
Ψ(ξ + iαd)

Φ	(ξ, q)
= Pl+(ξ, q) + Pl−(ξ, q), (2.106)

and calculate ˜̂p(ξ, q) := Ψ(ξ + iαd)
Pl+(ξ, q)

Φ⊕(ξ, q)
. (2.107)

4. Calculate the option price as

v(0, 0) := F−1
ξ→x

[
φ̂∗(ξ)Z−1

q→N−2
˜̂p(ξ, q)] (0), (2.108)

where φ̂∗(ξ) is the complex conjugate of the Fourier transform of the damped payoff
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function given in Eq. (2.92).

Notice that in the numerical implementation described above, the Spitzer identity is

calculated for N − 2 dates, with the inclusion of the characteristic function Ψ(ξ+ iαd,∆t)

in Eqs. (2.106) and (2.107) applying the first and final dates respectively. In Fusai et al.

(2016), results were presented showing exponential error convergence for general Lévy

processes and in Section 3.1.1 of Chapter 3 we explore the reason for this and develop

bounds for the error convergence.

2.3.4.2 Spitzer based method for double-barrier options

The pricing procedure by Fusai et al. (2016) for double-barrier options is very similar

to the method for the single-barrier options described in Section 2.3.4.1, in that it uses

Wiener-Hopf factorisation and decomposition to compute the appropriate Spitzer identity.

However, the major difference in this case is that the equations cannot be solved directly

and so require the use of a fixed-point algorithm. The steps in the pricing procedure are

the same as those for single-barrier down-and-out options described in Section 2.3.4.1 with

the exception of Step 3 which is now replaced by the fixed-point algorithm

3 (a) Set J−(ξ, q) = Jl−(ξ, q) = 0.

(b) Decompose with respect to l

Pc(ξ, q) :=
Ψ(ξ + iαd)− Φ⊕(ξ, q)Ju+(ξ, q)

Φ	(ξ, q)
= Pl+(ξ, q) + Pl−(ξ, q), (2.109)

and set Jl−(ξ, q) := Pl−(ξ, q).

(c) Decompose with respect to u

Qc(ξ, q) :=
Ψ(ξ + iαd)− Φ	(ξ, q)Jl−(ξ, q)

Φ⊕(ξ, q)
= Qu+(ξ, q) +Qu−(ξ, q), (2.110)

and set Ju+(ξ, q) := Qu+(ξ, q).

(d) Calculate

˜̂p(ξ, q) := Ψ(ξ + iαd)
Ψ(ξ + iαd)− Φ	(ξ, q)Jl−(ξ, q)− Φ⊕(ξ, q)J−(ξ, q)

Φ(ξ, q)
. (2.111)

(e) If the difference between the new and the old value of ˜̂p(ξ, q) is less than a prede-

fined tolerance or the number of iterations is greater than a certain threshold then

continue, otherwise return to step (b). Numerical tests have shown that an iteration

threshold of 5 is sufficient, as higher values do not yield improvements.

Similarly to the procedure for single-barrier options described in Section 2.3.4.1, the Spitzer

identity is calculated for N − 2 dates and the first and last date are applied using the
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characteristic function in Eqs. (2.109)–(2.111). In contrast to the method for pricing single-

barrier options, Fusai et al. (2016) present result showing polynomial error convergence

only. The reason for this is explored in more detail in Section 3.1.2 and we present an

updated method with exponential error convergence in Section 3.2.

2.3.4.3 Feng and Linetsky method

As shown in Section 2.1, we can use Eqs. (2.26)–(2.28) to obtain the Fourier transform of

the part of a function above or below a barrier or between two barriers. This property

of the Hilbert transform was used by Feng and Linetsky (2008) to price discrete barrier

options exploiting the relationship between the price at two successive monitoring dates:

v(x, tn−1) =

∫ u

l
v(x′, tn)k(x− x′,∆t)dx′. (2.112)

Here v(x, tN ) = φ(x)e−αdx, i.e. the payoff of the option, and k(·,∆t) denotes the transition

density of the underlying process with step size ∆t and Ψ(ξ,∆t) is its characteristic func-

tion. Using the convolution theorem together with the Hilbert transform the relationship

between the price at two successive dates can be expressed as

v̂(ξ, tn−1) =
1

2

{
Ψ(ξ + iαd,∆t)v̂(ξ, tn) + eilξiH

[
e−ilξΨ(ξ + iαd,∆t)v̂(ξ, tn)

]}
(2.113)

for a single-barrier down-and-out option and

v̂(ξ, tn−1) =
1

2

{
eilξiH

[
e−ilξΨ(ξ + iαd,∆t)v̂(ξ, tn)

]
− eiuξiH

[
e−iuξΨ(ξ + iαd,∆t)v̂(ξ, tn)

]}
(2.114)

for a double-barrier option.

Feng and Linetsky (2008) presented results for this method showing exponential error

convergence for underlying processes with exponential characteristic functions and poly-

nomial error convergence for the VG process. This was explained in detail in the original

paper and in Section 3.1.3 we present a new method with improved error performance for

the VG process.

2.3.5 Practical implementation of the numerical techniques

The work in this thesis is primarily focused on the challenges associated with the numerical

pricing of exotic options driven by exponential Lévy processes. For this we have made

the implicit assumption that the parameters controlling the underlying Lévy processes

are known and we have concentrated on developing the new numerical methods described

herein. Indeed, in Appendix A we list process parameters which are based on values used

in some of the existing literature on exotic options, thus allowing a fair comparison with
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previous numerical methods.

However, if the methods developed in this thesis are to be used in a trading environment

we must first calibrate the Lévy process parameters to market data before using our

numerical pricing methods. Although this is not the primary focus of this thesis we

direct the reader to the work by Cont and Takov (2004); Cont and Tankov (2006), which

deals with the calibration of several exponential Lévy processes including all the ones

used herein. Also of interest is the later work by Askari and Krichene (2008) which

investigates calibrating oil price dynamics to Merton jump-diffusion and VG processes

and by Ramezani and Zeng (2007) which considers the double exponential jump process

by Kou (2002) as a model for the NASDAQ and S&P500 indices.
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Chapter 3

Hilbert transform, spectral fil-

ters and option pricing

In this chapter we modify the pricing method for discretely monitored barrier options

by Fusai et al. (2016) and Feng and Linetsky (2008), described in Section 2.3.4. In the

following we refer to the method by Fusai et al. (2016) as FGM and the method by Feng

and Linetsky (2008) as FL. We first perform a detailed error examination into the existing

techniques and then propose improved methods based on spectral filtering. Lastly, we

present results showing that the improved method now achieves exponential convergence

whilst retaining the advantages of the original method, i.e. a CPU time independent of

the number of monitoring dates for the FGM method and applicability to general Lévy

processes for both methods.

3.1 Error performance of the pricing procedures

In this section we investigate the error convergence of the calculations making up the

original pricing procedures without spectral filters and show bounds for the individual

steps. As described in Chapter 2, these methods are based on the sinc-based fast Hilbert

transform by Stenger (1993), who showed that the discretisation error is exponentially

convergent with grid step size, under conditions which are met, described in more detail

in Section 2.3.2. Therefore, here, our error analysis is concerned with the truncation errors

of each step as it was shown by Feng and Linetsky (2008) that this can vary with the shape

of the function in the Fourier domain. As part of the error investigation, the effect of each

step in the procedure on the shape of the output function as |ξ| → ∞ in the Fourier

domain is also considered, as this largely determines the truncation error of the successive

steps.

In the FGM and FL pricing methods, the computation of the characteristic function

is done directly in the Fourier domain so there are no numerical errors associated with
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this calculation, thus we concentrate our investigation on the later steps in the pricing

procedures.

In the following calculations, the damping factor αd is omitted to make the notation

more concise. This is appropriate as the value of iαd becomes insignificant as |ξ| → ∞.

In the error calculations below, cn (where n = 1, 2, 3...) are included as positive constants.

3.1.1 Pricing single-barrier options with the VG process using the

Spitzer identity

Following the calculation of the characteristic function, the next step in the pricing pro-

cedure described in Section 2.3.4.1 is the factorisation of Φ(ξ, q) = [1− qΨ(ξ,∆t)], which

means that we need to apply the discrete Hilbert transform to log Φ(ξ, q) = log[1 −
qΨ(ξ,∆t)]. With the exception of the VG process, as |ξ| → ∞, qΨ(ξ,∆t) ∼ qe−∆tξ2

which

quickly becomes very small. Thus we can say that as |ξ| → ∞, | log[1 − qΨ(ξ,∆t)]| <
ce−κ∆tξ2

with c, κ positive constants. Therefore, from the error bounds for the sinc-based

Hilbert transform proved by Stenger (1993) and Feng and Linetsky (2008), described in

Section 2.3.2, the output of the decomposition of log Φ(ξ, q) has exponential error perfor-

mance for exponentially decaying characteristic functions.

By contrast the characteristic function for the VG process is

Ψ(ξ, t) =

(
1− iνθξ +

1

2
ν2ξ2σ2

)−t/ν
. (3.1)

When the value of ξ is very large then Ψ(ξ,∆t) is dominated by ξ−2∆t/ν , so when |ξ| →
∞, | log[1 − qΨ(ξ,∆t)]| < cξ−2∆t/ν and we can use this to bound the truncation error

from the decomposition of log[1 − qΨ(ξ,∆t)]. Feng and Linetsky (2008) showed that

the truncation error from applying the sinc-based Hilbert transform to a function which

decays as c|ξ|−2∆t/ν is bounded by 2cν
2∆t−ν (M∆ξ)−(2∆t/ν−1), where there is a constraint

on the process parameters of ∆t > ν/2. We show that if we take into account the form

of the discrete Hilbert transform and the similarity between the positive and negative

tails of the characteristic function, a tighter bound can be defined and the constraints on

the parameters can be relaxed. Defining f∆ξ(ξ) as the output of the infinite sum from
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Eq. (2.100) and f∆ξ,M (ξ) as the output of the truncated sum from Eq. (2.101),

|f∆ξ(ξ)− f∆ξ,M (ξ)| <c1∆ξ

∣∣∣∣∣∣
∑

k>M/2

(k∆ξ)−2∆t/ν
(

1− cos
(
π ξ−k∆ξ

∆ξ

))
ξ − k∆ξ

+
∑

k<−M/2

(k∆ξ)−2∆t/ν
(

1− cos
(
π ξ−k∆ξ

∆ξ

))
ξ − k∆ξ

∣∣∣∣∣∣
<c1∆ξ

∑
k>M/2

(k∆ξ)−2∆t/ν

∣∣∣∣∣∣
1− cos

(
π ξ−k∆ξ

∆ξ

)
ξ − k∆ξ

+
1− cos

(
π ξ+k∆ξ

∆ξ

)
ξ + k∆ξ

∣∣∣∣∣∣ .
(3.2)

The two cosines are equal because the difference of their arguments is 2kπ and so

|f∆ξ(ξ)− f∆ξ,M (ξ)| <c2∆ξ
∑

k>M/2

(k∆ξ)−2∆t/ν

∣∣∣∣ 1

ξ − k∆ξ
+

1

ξ + k∆ξ

∣∣∣∣
<c3∆ξ

∑
k>M/2

(k∆ξ)−2∆t/ν

|ξ2 − (k∆ξ)2|
< c4∆ξ

∑
k>M/2

(k∆ξ)−2∆t/ν

(k∆ξ)2

<c5

∫ +∞

M∆ξ/2
ξ
−( 2∆t

ν
+2)

k dξk < c6(M∆ξ)−( 2∆t
ν

+1). (3.3)

In this case, for the integral to converge we must have 2∆t/ν+2 > 1, which is the case for

all possible process parameters. When the output of this decomposition is exponentiated

to obtain the results of the factorisation, the error will be bounded by∣∣∣∣∣ef∆ξ(ξ) − ef∆ξ,M (ξ)

ef∆ξ(ξ)

∣∣∣∣∣ < c7

[
1− ec8(M∆ξ)

−( 2∆t
ν +1)

]
. (3.4)

For large M this converges as O
(
M−(2∆t/ν+1)

)
; thus the error convergence of the fac-

torisation is polynomial. The expression in Eq. (3.3) gives the error at fixed values of ξ,

i.e. the chosen grid points; therefore ξ can be absorbed into c2. Moreover, in the final

price calculation the Spitzer identities are multiplied by the payoff and the characteristic

function which both decay as |ξ| increases and therefore the errors close to ξ = 0 will have

the largest influence on the final error of the solution. However, as M increases, our range

of ξ increases and so we should consider the effect of errors at large values of ξ on the

error of the next step in the calculation. As explained below, we multiply the input to

the subsequent Hilbert transform by the characteristic function and if the number of grid

points increases from M∗ to M , where M∗ � M , then the additional error from these

points is bounded as

c9

M∑
j=M∗

j∆ξM−(4∆t/ν+1)

ξ − j∆ξ
< c10

M∑
j=M∗

M−(4∆t/ν+1) < c11M
−(4∆t/ν). (3.5)
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Figure 3.1: Input and output functions for the factorisation of Φ(ξ, q) = 1 − qΨ(ξ,∆t)
with the Kou process for q = ρ.

Depending on the parameters of the VG process, this decreases more or less rapidly than

the original bound, and if we were to select our parameters according to the requirement

in Feng and Linetsky (2008) of 2∆t/ν > 1 then O
(
M−(2∆t/ν+1)

)
will dominate. However,

regardless of parameter selection, the error converges polynomially with M .

The requirement to multiply the output of the the factorisation by the characteristic

function is due to its shape in the Fourier domain as this will influence the error perfor-

mance of the subsequent step. Figure 3.1 shows that the function flattens out at high

values of |ξ| and asymptotically approaches 1. Therefore, if we were to input Φ±(ξ,∆t)

directly to the Hilbert transform in the decomposition step then we would not be able

to bound the truncation error using Feng and Linetsky’s error limit for exponentially

bounded functions.

However, the last date is taken out of the FGM pricing scheme. This means that we

multiply the function to be decomposed by the characteristic function. In the case of

exponentially decaying characteristic functions, this restores the exponential decay of the

function for high values of ξ which again means that the truncation error of the discrete

Hilbert transform is exponentially bounded. However, if the VG process is used then

the input to the decomposition is only polynomially decaying and thus we again have

polynomial error convergence for this stage.

3.1.2 Double -barrier options with the unfiltered Spitzer identity

The original pricing procedure for double-barrier options shows polynomial convergence for

all processes, even those whose characteristic function decays exponentially. The main dif-

ference between the pricing procedure for single and double-barrier options is the presence

of the fixed-point algorithm and in this section we show how this causes the polynomial

error convergence. As shown in Section 3.1.1, with exponentially decaying characteristic

functions the factorisation has exponential error convergence. In addition we multiply
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the input to the fixed-point algorithm by the characteristic function, which means that

it is exponentially bounded as |ξ| → ∞. Provided the input function to the first itera-

tion of the fixed-point algorithm is exponentially bounded, the error on the output of the

initial decomposition is exponentially bounded. However, the decomposition operation is

equivalent to multiplying the function in the x domain by either 1R+(x) or 1R−(x), which

introduces a jump into the output functions. Due to the Gibbs phenomenon, this means

that the output function from the decomposition decays as O(1/ξ) as ξ →∞. The effect

of this is that the input function to the second iteration of the fixed-point algorithm is no

longer exponentially bounded and so, according to Stenger (1993) and Feng and Linetsky

(2008), the error from the truncation of the infinite sum in Eq. (2.100) to give Eq. (2.101)

is no longer exponentially bounded. A bound for this error is

|f∆ξ(ξ)− f∆ξ,M (ξ)| < c1∆ξ
∑

k>M/2

1

(k∆ξ)2

< c2

∫ +∞

M∆ξ/2

1

ξ2
k

dξk < c3
1

M∆ξ
. (3.6)

Therefore, using the fixed-point algorithm with more than one iteration means that the

error is no longer exponentially bounded. The bound shown in Eq. (3.6) is O(1/M).

However, the error of the pricing procedure actually decays as O(1/M2); this better per-

formance may be due to the alternating nature of the Fourier coefficients.

3.1.3 Feng and Linetsky pricing method with the VG process

The FL method is described in Eqs. (2.113) and (2.114), which show how the Hilbert

transform is applied for each monitoring date. As explained in Section 3.1.2, the applica-

tion of the Hilbert transform introduces a discontinuity into the function in the log-price

domain, therefore the Fourier coefficients on the output of the Hilbert transform will de-

cay as O(1/ξ) as ξ → ∞. However, before the Hilbert transform is applied for the next

monitoring date, the Fourier domain function is multiplied by the characteristic function

of the underlying process. Therefore, as explained by Feng and Linetsky (2008), if the

characteristic function is exponentially decaying, this will result in an exponentially con-

vergent error. However, with polynomially decaying characteristic functions, such as that

of the VG process, then a polynomially convergent error will be achieved.

3.2 Updated pricing procedures

In the previous section we showed how the Gibbs phenomenon causes polynomial error

convergence in the original pricing techniques. In this section we show how we can use

spectral filtering to achieve exponential convergence whilst retaining the advantages of the

original methods.
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3.2.1 Spectral filtering

Investigating and overcoming the Gibbs phenomenon is a mature field with applications

in many areas. As a result, there is a large body of literature proposing different solu-

tions to the problem. Some of these are too computationally heavy to be useful for our

application, such as adaptive filtering and mollifiers suggested by Tadmor and Tanner

(2005) and Tadmor (2007). David Gottlieb, Chi-Wang Shu and their colleagues published

several results showing that it is possible to solve the Gibbs phenomenon by transforming

the Fourier series coefficients to a series which converges more rapidly using other basis

functions such as Gegenbauer polynomials (Gottlieb et al., 1992; Gottlieb and Shu, 1995a,

1996, 1995b, 1997). In this article we adopt the approach of Ruijter et al. (2015) by using

simple spectral filtering techniques which are applied by a pointwise multiplication in the

Fourier domain and therefore add very little computational load.

In the papers by Vandeven (1991) and Gottlieb and Shu (1997) , a filter of order p was

defined as a function σ(η) supported on η ∈ [−1, 1] with the following properties:

a) σ(0) = 1, σ(l)(0) = 0,

b) σ(η) = 0 for |η| = 1,

c) σ(η) ∈ Cp−1. (3.7)

The scaled variable η is related to ξ in our application as η = ξ/ξmax. In this paper we

investigate the use of two filters. The exponential filter, described by Gottlieb and Shu

(1997) has the form

σ(η) = e−ϑη
p
, (3.8)

where p is even and positive. This does not strictly meet criterion b in Eq. (3.7) as it

does not go exactly to zero when |η| = 1. However, if we select ϑ < ε log 10, where 10−ε

is machine precision, then the filter coefficients are within computational accuracy of the

requirements. An advantage of the exponential filter is that it has a simple form and the

order of the filter is equal to the parameter p which is directly input to the filter equation.

The other filter we study here is the Planck taper (McKechan et al., 2010), which is

defined piecewise as

σ(η) =



0, η ≤ η1, η1 = −1,

1
e z(η)+1

, z(η) = η2−η1

η−η1
+ η2−η1

η−η2
, η1 < η < η2, η2 = ε− 1,

1, η2 ≤ η ≤ η3, η3 = 1− ε,
1

e z(η)+1
, z(η) = η3−η4

η−η3
+ η3−η4

η−η4
, η3 < η < η4, η4 = 1,

0, η ≥ η4.

(3.9)
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The value of ε gives the proportion of the range of η which is used for the slope regions.

Outside these regions, it is completely flat with a value of 1. This contrasts with the

exponential filter which introduces some, albeit often very minor, distortion for any value

of η 6= 0. In addition the Planck taper has the notable property that for all values of

ε > 0, σ(η, ε) ∈ C∞ and therefore the order of the Planck taper is ∞. However, it is clear

that different values of ε give a different filter shape, so the order of a filter alone cannot

be taken as a predictor of performance. Examples of the two filters are shown in Figure

3.2.
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Figure 3.2: Shape of the exponential filter (left) and Planck taper (right) with different
parameter values.

3.2.2 Single-barrier options with Spitzer identities

Fusai et al. (2016) showed that the Spitzer-based method for single-barrier options could

achieve exponential convergence with a wide range of Lévy processes. However, the per-

formance of the method with the VG process only achieved polynomial convergence. This

is consistent with the error behaviour of the discrete Hilbert transform with the VG pro-

cess, as explained in Section 2.3.2 above. Section 3.1 explains in more detail how the error

performance is bounded when this process is used.

In order to improve the result, we modified the method in Section 2.3.4.1 by multi-

plying the characteristic function by a spectral filter σ(η) so that the input to both the

factorisation and decomposition steps decay exponentially. The modified pricing proce-

dure is

1. Compute the characteristic function Ψ(ξ+ iαd), where αd is the damping parameter

introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-
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torise

Φ(ξ, q) := 1−Ψ(ξ + iαd,∆t)σ

(
ξ

ξmax

)
= Φ⊕(ξ, q)Φ	(ξ, q), (3.10)

with q selected according to the criteria specified by Abate and Whitt (1992b) for

the inverse z-transform.

3. Decompose with respect to l

P (ξ, q) :=
e−ilξΨ(ξ + iαd,∆t)σ

(
ξ

ξmax

)
Φ	(ξ, q)

= Pl+(ξ, q) + Pl−(ξ, q), (3.11)

and calculate ˜̂p(ξ, q) := Ψ(ξ + iαd,∆t)σ

(
ξ

ξmax

)
Pl+(ξ, q)

Φ⊕(ξ, q)
. (3.12)

4. Calculate the option price as

v(0, 0) := F−1
ξ→x

[
φ̂∗(ξ)Z−1

ξ→x
˜̂p(ξ, q)] (0), (3.13)

where φ̂∗(ξ) is the complex conjugate of the Fourier transform of the damped payoff

function given in Eq. (2.92).

3.2.3 Double-barrier options

Unlike the direct method for single-barrier options described in Section 2.3.4.1, the it-

erative method described in Section 2.3.4.2 is limited to polynomial error convergence

for all processes and in Section 3.1 above, we have shown that this is due to the Gibbs

phenomenon. In order to improve the error performance we placed a filter σ(η) on the

input to each decomposition step in the fixed-point algorithm. Step 3 in the single-barrier

pricing procedure in Section 2.3.4.1 is replaced by the filtered fixed-point algorithm

3 (a) Set Ju+(ξ, q) = Jl−(ξ, q) = 0.

(b) Decompose with respect to l

P (ξ, q) := σ

(
ξ

ξmax

)[
Ψ(ξ + iαd)− Φ⊕(ξ, q)Ju+(ξ, q)

Φ	(ξ, q)

]
= Pl+(ξ, q) + Pl−(ξ, q),

(3.14)

and set Jl−(ξ, q) := Pl−(ξ, q).

(c) Decompose with respect to u

Q(ξ, q) := σ

(
ξ

ξmax

)[
Ψ(ξ + iαd)− Φ	(ξ, q)Jl−(ξ, q)

Φ⊕(ξ, q)

]
= Qu+(ξ, q) +Qu−(ξ, q),

(3.15)

and set Ju+(ξ, q) := Qu+(ξ, q).

52



3.2. UPDATED PRICING PROCEDURES

(d) Calculate

˜̂p(ξ, q) := Ψ(ξ + iαd)
Ψ(ξ + iαd)− Φ	(ξ, q)Jl−(ξ, q)− Φ⊕(ξ, q)Ju+(ξ, q)

Φ(ξ, q)
. (3.16)

(e) If the difference between the new and the old value of ˜̂p(ξ, q) is less than a prede-

fined tolerance or the number of iterations is greater than a certain threshold then

continue, otherwise return to step (b). Numerical tests have shown that an iteration

threshold of 5 is sufficient, as higher values do not yield improvements.

It must also be noted that this change is only designed to provide significant improve-

ments to the double-barrier method with exponentially decaying characteristic functions.

In the case of a polynomially decaying characteristic function such as that of the VG pro-

cess, this method will also be subject to the same limitations on accuracy as described in

Section 3.1.1 for single-barrier options. Therefore, if we wish to use this scheme with the

VG process, we must also apply filtering to the factorisation step as shown in Eq. (3.10).

Therefore, instead, we replace Step 3 in the single-barrier pricing procedure in Section

3.2.2 by the filtered fixed-point algorithm above. Numerical results with the updated

method for the double-barrier case are shown in Section 3.3.

3.2.4 Feng and Linetsky method

The third pricing method that we examine in order to illustrate the improvements obtained

by the addition of spectral filtering to the sinc-based Hilbert transform is the recursive

one by Feng and Linetsky (2008), explained in Section 2.3.4.3. In general, the FL method

achieves excellent results for both single and double-barrier options (Feng and Linetsky,

2008; Fusai et al., 2016); the error converges exponentially with grid size and reaches

machine accuracy for fairly small grid sizes. However, with respect to the FGM model, it

has the disadvantage that the computational time increases linearly with the number of

monitoring dates.

Similarly to the FGM method for single-barrier options, exponential error convergence

is achieved only for processes where the characteristic function reduces exponentially as

|ξ| → ∞. Therefore, poor error performance is achieved for the VG process which has a

characteristic function which only reduces polynomially as |ξ| → ∞. Feng and Linetsky

(2008) explained this in some detail, showing how this is linked to the truncation error of

the discrete Hilbert transform. In order to improve the results, we altered the FL method

by placing a filter on the input to the Hilbert transform to ensure it decays exponentially.
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We replaced Eqs. (2.113) and (2.114) by

v̂(ξ, tn−1) =
1

2

{
σ

(
ξ

ξmax

)
Ψ(ξ + iαd,∆t)v̂(ξ, tn)

+eilξiH
[
e−ilξσ

(
ξ

ξmax

)
Ψ(ξ + iαd,∆t)v̂(ξ, tn)

]}
, (3.17)

v̂(ξ, tn−1) =
1

2

{
eilξiH

[
e−ilξσ

(
ξ

ξmax

)
Ψ(ξ + iαd,∆t)v̂(ξ, tn)

]
−eiuξiH

[
e−iuξσ

(
ξ

ξmax

)
Ψ(ξ + iαd,∆t)v̂(ξ, tn)

]}
. (3.18)

3.2.5 Removing the first and last dates from the pricing procedure

As described in Sections 2.3.4.1 and 2.3.4.2, the first and last dates were removed from

the Spitzer scheme and applied via convolution. In the case of single-barrier options this

has the effect of ensuring that the Fourier coefficients are exponentially bounded on the

input to the decomposition and the final inverse Fourier transform. However, this does

not work for the fixed-point algorithm, thus necessitating the use of additional filtering at

every iteration. With regards to the discretely monitored barrier options, the removal of

the characteristic function from the pricing procedure is not especially advantageous. It

would enable the scheme to be used for contracts with 2 dates or less, but these are extreme

cases which would anyway probably be more suited to the use of the FL method due to

the very low number of monitoring dates. However, in order to move to the continuously

monitored case, as described in Chapter 4, we do not have a characteristic function to use

as ∆t = 0 and therefore it is useful to show that the pricing procedure works well, even

without the use of the characteristic function to provide additional smoothing.

There are three main alterations associated with this change. First we must remove

the characteristic function in Eqs. (3.14), (3.15) and (3.16) and so any smoothing on the

input to the next step is solely provided by the spectral filter. Secondly the the inverse

z-transform will now go from q to N , rather than N −2, dates. The third change concerns

the form of the payoff function. When the final date step is applied by convolution, then

the barrier is not applied to the probability distribution at the final date. This does not

cause problems as the the barrier is applied via the payoff function so the pricing method

gives the correct value. However, when all N dates are inside the Spitzer scheme then the

barrier is applied by the probability distribution as illustrated in Figure 3.3. It was found

that if the barrier is also applied by the payoff, then only polynomial error performance

is achieved. However, if the barrier for the payoff is moved to the truncation value of x,

rather than the upper barrier, then exponential performance is recovered.
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Figure 3.3: Comparison of the probability density with and without the final date inside
the Spitzer scheme.

3.2.6 Error performance with filtering on the sinc-based Hilbert

transform

The multiplication by a filter with exponentially decaying coefficients as |ξ| → ∞ gives

an exponentially convergent truncation error for the sinc-based discrete Hilbert transform

compared with the non-truncated version. However, filtering distorts the function some-

what. The numerical results with the updated method are shown in Section 3.3 and the

prices calculated with the filtered version have been compared with the price calculated

using the unfiltered FL method with the maximum grid size to confirm that any distortion

error is less significant than the improvement in error convergence. Due to the error being

influenced by these two opposing effects, we have not attempted to devise a tight error

bound which closely matches the improvement in performance achieved in practice. It is

often seen in the literature on the Gibbs phenomenon that the empirical results outstrip

the calculated error bounds. For example, Ruijter et al. (2015) suggested that the faster

convergence they see may be due to the alternating nature of the Fourier coefficients.

3.3 Numerical results

We performed numerical tests using the pricing schemes updated to include filtering, as

described in Section 3.2. The results for the FGM method for double-barrier options with

exponentially decaying characteristic functions are presented in Section 3.3.1 and Section

3.3.2 contains results for all methods with the VG process. Details of the contract and

the model parameters are included in Table A.1 in Appendix A.
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3.3.1 Results with exponentially decaying characteristic functions

We present results for the FGM method for double-barrier options with filtering included

in the fixed-point algorithm as described in Section 3.2.3. We examined the performance

for both the Kou and NIG processes with N = 4, 52 and 252. The values of 52 and 252

represent weekly and daily monitoring over 1 year. Results with N = 4 are presented in

order to show the performance of the method with very few monitoring dates. Figure 3.4

shows results for the Kou process and Figure 3.5 shows results for the NIG process. The

original FL and FGM methods are labelled “FL” and “FGM”. The FGM method with

filtering is labelled “FGM-E, p=order” for results with the exponential filter and “FGM-P,

ε=parameter” with the Planck taper. Comparing the results for all methods, we see that

the FL method gives the best error convergence versus grid size. This is due to the error of

the FGM method being limited by the performance of the inverse z-transform. Comparing

the filtered FGM methods, the exponential filter gives better results but the Planck taper

is less sensitive to variations in the filter shape. The best results were achieved with an

exponential filter of order p = 12.

Tables 3.1 and 3.2 present the number of iterations and the computational time for a

range of dates. The results demonstrate that as the number of dates increases, the number

of iterations and computational time either does not increase, or minimally increases, and

thus confirm that the computational time is independent of the number of monitoring

dates. Figures 3.4 and 3.5 show how the convergence of the numerical techniques changes

with the grid size and Figures 3.6 and 3.7 show how the convergence behaviour corresponds

to computational time with an exponential filter of order 12.

The inclusion of a filter in the FGM method produces a large improvement compared to

the unfiltered method due to an increase in accuracy of the calculation, as shown in Figures

3.4 and 3.5. However, this also improves the algorithm computationally as it now reaches

the required accuracy in a smaller number of iterations than the original FGM method.

Despite this improvement, for low numbers of monitoring dates the FL method shows the

best performance. However, for 252 monitoring dates, the filtered FGM method performs

around the same as the FL method for errors greater than 10−8; for higher number of

dates, the filtered FGM method shows the best performance for errors greater than 10−8.

Including the filter in the FL method produces a result with very slightly worse absolute

error performance but which still retains exponential convergence. We can relate this to

the error discussion in Section 3.2.6: the filter causes a slight distortion which degrades

the absolute error performance, but there is no improvement to be gained in the rate of

convergence as the unfiltered method already achieves exponential convergence.
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Figure 3.4: Error vs. grid size M for the Kou process and varying number of monitoring
dates N . The filter improves the performance of the FGM method from polynomial to
exponential. The best results are obtained with an exponential filter of order p = 12.

Dates Tolerance M Average iterations Price Error CPU time

4 E-8 1024 2.000 0.00721968941 4.12E-14 5.63E-03
52 E-8 1024 2.000 0.00518403635 3.07E-13 3.81E-02

104 E-8 1024 2.000 0.00490517113 5.54E-13 3.99E-02
252 E-8 1024 2.000 0.00465711572 4.29E-12 3.72E-02
504 E-8 1024 2.000 0.00452396360 4.31E-09 3.80E-02

4 E-10 1024 2.000 0.00721968941 4.12E-14 1.82E-02
52 E-10 1024 2.000 0.00518403635 3.07E-13 3.50E-02

104 E-10 1024 2.091 0.00490517113 5.62E-13 3.88E-02
252 E-10 1024 2.121 0.00465711572 4.31E-12 3.71E-02
504 E-10 1024 2.152 0.00452396360 4.31E-09 3.90E-02

Table 3.1: Results for the Kou process with the fixed-point algorithm tolerance set to 10−8

and 10−10. The results demonstrate that as the number of dates increases, the number of
iterations and computational time either does not increase, or minimally increases, and
thus confirm that the computational time is independent of the number of monitoring
dates.
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Figure 3.5: Error vs. grid size M with the NIG process and varying number of monitoring
dates N . The filter improves the performance of the FGM method from polynomial to
exponential. The best results are obtained with an exponential filter of order p = 12.

Dates Tolerance M Average iterations Price Error CPU time

4 E-8 1024 2.000 0.00545479385 2.38E-13 1.50E-02
52 E-8 1024 2.000 0.00359559460 5.07E-13 8.57E-02

104 E-8 1024 2.000 0.00341651334 5.92E-10 8.58E-02
252 E-8 1024 2.091 0.00328484367 3.15E-07 9.63E-02
504 E-8 1024 2.182 0.00322814330 6.84E-07 9.34E-02

4 E-10 4096 2.000 0.00545479385 7.17E-14 1.45E-02
52 E-10 4096 2.242 0.00359559460 6.70E-13 2.20E-01

104 E-10 4096 2.303 0.00341651275 3.80E-13 2.15E-01
252 E-10 4096 2.364 0.00328453104 2.33E-09 2.08E-01
504 E-10 4096 2.485 0.00322753427 7.53E-08 2.21E-01

Table 3.2: Results for the NIG process with the fixed-point algorithm tolerance set to 10−8

and 10−10. The results demonstrate that as the number of dates increases, the number of
iterations and computational time either does not increase, or minimally increases, and
thus confirm that the computational time is independent of the number of monitoring
dates.
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Figure 3.6: Error vs. CPU time for a double-barrier option with the Kou process and
varying numbers of monitoring dates N . The filter improves the FGM method for all N ;
FGM-F is the fastest method for an error of 10−8 with N > 252.
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Figure 3.7: Error vs. CPU time for a double-barrier option with the NIG process and
varying numbers of monitoring dates N . The filter improves the FGM method for all N ;
FGM-F is the fastest method for an error of 10−8 with N ≥ 504.
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3.3.2 Polynomially decaying characteristic functions

We present results for the FL and FGM methods for a process with a polynomially decaying

characteristic function, i.e. the VG process. Figures 3.8 and 3.9 show the results of tests for

single and double-barrier options where we have applied exponential filtering, as described

in Section 3.2.
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Figure 3.8: Error vs. grid size M for a single-barrier down-and-out option with the VG
process and varying numbers of monitoring dates N . The filter improves both the FGM
and FL methods, with the FL-F method performing best at low numbers of dates.

The performance for a low number of dates shows a good improvement with the ad-

dition of filtering for both the FGM and FL methods. This demonstrates that the per-

formance of the sinc-based discrete Hilbert transform of polynomially decaying functions

can be improved even when the polynomial decay is a true representation of the function

shape and not simply an artefact of the fixed-point algorithm as was the case in Section

3.3.1. For a higher number of dates, the error convergence vs. grid size for the FGM

method is improved so that it is the same as the FL method with or without filtering.

This is a significant improvement as the FGM method has the advantage over the FL

method that its computation time beyond a small threshold is independent of the number

of dates, unlike the linear increase of the FL method. This is demonstrated by the results

shown in Figures 3.10 and 3.11 where the filtered methods show the best performance for

all dates. Filtered FL is the best performing method for low numbers of monitoring dates

and filtered FGM is the best performing method for higher numbers of dates.
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Figure 3.9: Error vs. grid size M for a double-barrier option with the VG process and
varying numbers of monitoring dates N . The filter improves both the FGM methods for
all numbers of monitoring dates and improved the FL method for low numbers of dates.
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Figure 3.10: Error vs. CPU time for a single-barrier option with the VG process and
varying numbers of monitoring datesN . The best performance of the new filtered methods,
FL-F and FGM-F, either equals or exceeds the performance of the existing methods over
all numbers of dates.
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Figure 3.11: Error vs. CPU time for a double-barrier option with the VG process and
varying numbers of monitoring datesN . The best performance of the new filtered methods,
FL-F and FGM-F, either equals or exceeds the performance of the existing methods over
all numbers of dates.

3.3.3 Summary of results

Table 3.3 shows a summary of the best performing methods in terms of CPU time for

different processes and types of options. The table gives the fastest method for an error of

10−8 for the NIG and Kou processes and, due the slower convergence of all methods with

the VG process, entries marked with an asterisk show the quickest method for an error of

10−5. The entries in the table are coloured to give an at a glance guide to the improvements

achieved by spectral filtering. Green entries mean that a filtered method provides the best

performance. Blue entries mean that the performance of the filtered methods equals, but

does not exceed, the best performance of an existing method. The remaining red entries

are the few cases where an existing method performs best. Therefore for 75% of the

test cases, the new methods equalled or improved upon the performance of the existing

method. However for options traded in the market it most common for contracts to be

written over several years with daily, or latterly even intra-day, monitoring. Therefore in

terms of the options that are traded on the market, the proportion for which our new

methods provide the best performance is likely to be far in excess of this percentage.
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Single barrier Double barrier

Dates VG Kou NIG VG

4 FL-E FL FL FL-E
52 FL-E FL FL FL-E

104 FL-E, FGM-E FL FL FL-E
252 FL-E, FGM-E FGM-E, FL FGM-E, FL FGM-E, FL-E, FL
504 FGM-E∗ FGM-E FGM-E FGM-E∗

1008 FGM-E∗ FGM-E FGM-E FGM-E∗

Table 3.3: Quickest method for an error of 10−8. Due to the slower convergence of all
methods with the VG process, entries marked with an asterisk show the quickest method
for an error of 10−5. Green: a filtered method provides the best performance. Blue: the
performance of the filtered methods equals, but does not exceed, the best performance of
an existing method. Red: the few cases where an existing method performs best.

3.4 Conclusions

We showed that numerical methods for pricing derivatives based on the Hilbert transform

computed with a sinc function expansion can be modified with the addition of spectral

filters to improve their convergence. Furthermore, we expanded on the work by Stenger,

and Feng and Linetsky which showed how the shape of the function on the input to the

Hilbert transform relates to the resultant error on the output of the Hilbert transform.

We showed that due to the Gibbs phenomenon, an algorithm using successive Hilbert

transforms will achieve polynomial performance unless additional filtering is applied after

the first Hilbert transform. Moreover, we demonstrated that simple spectral filters such

as the exponential filter or the Planck taper are sufficient to improve performance so that

exponential convergence can be achieved. In addition, we showed that the pricing schemes

by Feng and Linetsky and Fusai et al., which have relatively poor performance with the

VG process, even for single-barrier options, can also be improved by spectral filters.
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Chapter 4

Continuously monitored barrier

options

As described in Section 2.1.8.1, Green et al. (2010) showed that the numerical method

for calculating discretely monitored Spitzer identities can be extended to the continuous

case by substituting the Laplace transform for the z-transform. In this chapter we use

this extension to price continuous barrier options. Whilst continuously monitored barrier

options may be uncommon in finance, they are useful as a motivating example as it allows

us to compare results with the method for discrete monitoring described in Chapter 3.

Moreover, the work in this chapter serves as background to the pricing of American options

in Chapter 5 which are examples of options which operate in continuous time.

We first describe the new pricing procedure and detail the inverse Laplace transform

by Abate and Whitt (1995) which replaces the inverse z-transform used for discrete moni-

toring. We then perform an in-depth error examination which shows how the error perfor-

mance is affected by each step in the pricing procedure. Lastly we present results which

closely match the error bound and describe how the performance of the method with con-

tinuous monitoring represents a limit of the performance for discrete monitoring with a

very large number of dates.

4.1 Pricing procedure with continuous monitoring

We adapt the pricing procedures for discretely monitored barrier options to continuous

monitoring by replacing Φ(ξ, q) = 1−qΦ(ξ,∆t) in the Fourier-z domain with Φc = s−ψ(ξ).

Step-by-step methods are presented for both single and double-barrier options.

4.1.1 Pricing procedure: single-barrier options

1. Compute the characteristic exponent ψ(ξ+iαd), where αd is the damping parameter

introduced in Section 2.2.3, Eq. (2.91).
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2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φc(ξ, s) := s− ψ(ξ + iαd) = Φc⊕(ξ, s)Φc	(ξ, s) (4.1)

for all s = A+2kπi
2t required for the inverse Laplace transform, these are specified in

Eq. (4.9) below.

3. Decompose with respect to l

Pc(ξ, s) :=
σ(ξ/ξmax)

Φc	(ξ, s)
= Pcl+(ξ, s) + Pcl−(ξ, s), (4.2)

and calculate ˜̂p(ξ, s) :=
Pcl+(ξ, s)

Φc+(ξ, s)
, (4.3)

where σ(ξ/ξmax) is an exponential filter of order p (see Section 4.3.2).

4. Calculate the option price as

v(0, 0) := F−1
ξ→x

[
φ̂∗(ξ)L−1

s→T
˜̂p(ξ, s)] (0), (4.4)

where φ̂∗(ξ) is the complex conjugate of the Fourier transform of the damped payoff

function which is given in Eq. (2.92).

4.1.1.1 Pricing procedure: double-barrier options

The pricing procedure for double-barrier options is very similar to the method for the

single-barrier options described in Section 4.1.1, in that it uses Wiener-Hopf factorisation

and decomposition to compute the appropriate Spitzer identity. However, similarly to the

pricing method for discretely monitored options in Chapter 3, the major difference in this

case is that the equations cannot be solved directly and so require the use of a fixed-point

algorithm. The steps in the pricing procedure are the same as those for single-barrier

down-and-out options described in Section 4.1.1 with the exception of Step 3 which is now

replaced by the fixed-point algorithm

3 (a) Set Jcu+(ξ, s) = Jcl−(ξ, s) = 0.

(b) Decompose with respect to l

Pc(ξ, s) := σ

(
ξ

ξmax

)
1− Φc⊕(ξ, s)Jcu+(ξ, s)

Φc	(ξ, s)
= Pcl+(ξ, s) + Pcl−(ξ, s), (4.5)

and set Jcl−(ξ, s) := Pcl−(ξ, s).
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(c) Decompose with respect to u

Qc(ξ, s) := σ

(
ξ

ξmax

)
1− Φc	(ξ, s)Jcl−(ξ, s)

Φc⊕(ξ, s)
= Qcu+(ξ, s) +Qcu−(ξ, s), (4.6)

and set Jcu+(ξ, s) := Qcu+(ξ, s).

(d) Calculate

˜̂p(ξ, s) := σ

(
ξ

ξmax

)
1− Φc	(ξ, s)Jcl−(ξ, s)− Φc⊕(ξ, s)Jcu+(ξ, s)

Φc(ξ, s)
. (4.7)

(e) If the difference between the new and the old value of ˜̂p(ξ, s) is less than a prede-

fined tolerance or the number of iterations is greater than a certain threshold then

continue, otherwise return to step (b). Numerical tests have shown that an iteration

threshold of 5 is sufficient, as higher values do not yield improvements.

4.2 Inverse Laplace transform

The Spitzer identities with continuous monitoring provide the Laplace transform of the

required characteristic function, so to calculate the option price using Eq. (4.4), we must

apply the inverse Laplace transform. We implement the numerical scheme by Abate and

Whitt (1995) which uses the trapezoidal rule to approximate the analytic expression for

the inverse Laplace transform shown in Eq. (2.16) with

f(t) ≈ eA/2

2t
Ref̃

(
A

2t

)
+
eA/2

t

∞∑
k=1

(−1)kRef̃

(
A+ 2kπi

2t

)
, (4.8)

where f̃
(
A+2kπi

2t

)
is the Laplace transform f̃(s) with s = A+2kπi

2t . The value of A is

selected to control the accuracy of the approximation; for an accuracy of 10−γ we must

select A = γ log(10). We then use the Euler transform to accurately approximate this

infinite series. First the partial sums

bk =
eA/2

2t
Ref̃

(
A

2t

)
+
eA/2

t

k∑
j=1

(−1)jRef̃

(
A+ 2jπi

2t

)
(4.9)

are calculated for k = nE, ..., nE + mE. We then take the binomially weighted average

(Euler transform) of these terms, i.e.,

f(t) ≈ 1

2mE

mE∑
k=0

(
mE

k

)
bnE+k. (4.10)

The values of nE and mE are selected large enough to give sufficient accuracy, but low

enough to avoid unnecessary computational effort. Numerical tests were carried out in-
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Figure 4.1: Output of the inverse Laplace transform of f̃(s) = e−10s

s . Increasing nE and
mE reduces the size of the oscillations but they are unaffected by increasing A.

verting the Laplace transform of a delayed unit step step function f̃(s) = e−sτ/s where

the delay τ is set to 10. This is an extreme test case as it has a jump discontinuity and

Abate and Whitt (1992a) stated that the performance bound of 10−γ = e−A does not

apply in the presence of jumps. However it is important to consider the performance of

the inverse Laplace transform with discontinuities in the time domain as the value of the

contracts that we are pricing will abruptly become zero on expiry. The recovered functions

for different values of A, nE and mE are shown in Figure 4.1 and the errors are shown in

Figures 4.2 and 4.3. The empirical results in Figure 4.3 show that we can select values for

A, mE and nE so that, away from the discontinuity, the performance matches the bound

of 10−γ = e−A specified by Abate and Whitt. Furthermore, we show in Sections 4.3 and

4.4 that the error bounds and observed results for the pricing procedure are limited by the

performance of the sinc-based Hilbert transform and so are not limited by the accuracy of

the inverse Laplace transform. Therefore, we can use the Abate and Whitt inverse Laplace

transform method to price mid to long-dated options.

We base the selection of the parameters for the inverse Laplace transform on empirical

results. From Figures 4.1 and 4.2 we can see that the size of the oscillations due to the

discontinuity are predominantly affected by mE and nE. The error floor is controlled by

the selection of A; the values of 18.4, 23 and 27 in Figures 4.1–4.3 correspond to errors

of approximately 10−8, 10−10 and 10−12 respectively. However, Figure 4.3 shows that the

variation of the error floor is ≈ 10−10 and therefore there is no advantage in selecting

values of A larger than 23. For the pricing calculations we use A = 23, mE = 61 and

nE = 100 which give a combination of high accuracy and fast computation time.
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Figure 4.2: Error of the inverse Laplace transform of f̃(s) = e−10s

s . Increasing nE and mE

reduces the size of the errors due to the oscillations but they are unaffected by increasing
A.
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Figure 4.3: Error of the inverse Laplace transform of f̃(s) = e−10s

s . Increasing the value
of A decreases the error floor but it is unaffected by increasing nE and mE. The noise on
the error floor is ≈ 10−10.

4.3 Error convergence of the pricing procedure

We examine the performance of each stage of the pricing procedure and discuss their

respective error bounds. In addition, the effect of each step on the shape of the output

function in the Fourier domain is investigated, as this influences the error convergence

of later steps. Stenger (1993) showed that the discretisation error of the sinc-based fast

Hilbert transform in Eq. (2.100) is exponentially convergent when the function f(ξ) is

analytic in a strip of the complex plane including the real axis. Therefore, similarly to

the error calculations in Section 3.1, our concern is with the truncation error from the

approximation in Eq. (2.101). As before, the truncation error using the sinc-based Hilbert

transform depends on the behaviour of the characteristic exponent as |ξ| → ∞; Table

4.1 shows the characteristic exponents of five Lévy processes. The damping factor αd
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is omitted to make the notation more concise which is appropriate as the value of iαd

becomes insignificant as |ξ| → ∞.

Process Characteristic exponent ψ(ξ) Rational

Normal iξµ− 1
2σ

2ξ2 3

Kou iξµ− 1
2σ

2ξ2 + λ
(

(1−ρ)η2

η2+iξ + ρη1

η1−iξ

)
3

Merton iξµ− 1
2σ

2ξ2 + λ
(
eiαξ−

1
2
δ2ξ2 − 1

)
7

NIG δ
(√

α2 − (β + iξ)2 −
√
α2 − β2

)
7

VG − 1
ν log

(
1− iξθν + 1

2νσ
2ξ2
)

7

Table 4.1: Characteristic exponent of some Lévy processes.

4.3.1 Factorisation

After calculating the characteristic exponent, the next step in the pricing procedure is

the numerical factorisation of Φc(ξ, s) = s − ψ(ξ). In order to understand the error

convergence we must consider the way that the function behaves for large values of |ξ|.
The characteristic exponents of the processes listed in Table 4.1 will take very high negative

values which will dominate Φc(ξ, s) so that as |ξ| → ∞ we can approximate s − ψ(ξ) ≈
−ψ(ξ). The function to be decomposed in the factorisation stage is therefore ≈ log[−ψ(ξ)].

This function increases in magnitude in |ξ|, so the bounds for the truncation error of the

sinc-based Hilbert transform (Feng and Linetsky, 2008, Theorems 6.4–6.6) cannot be used.

Moreover, if we consider the truncation errors from Eq. (2.101) for positive and negative

values of k individually, we obtain two infinite summations that do not converge. However,

Table 4.1 shows that as |ξ| → ∞ the values of ψ(ξ) and ψ(−ξ) will become increasingly

similar. We can exploit this similarity to find a bound by combining the positive and
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negative truncations. The truncation error of f(ξ) = H[log Φc(ξ, s)] is bounded as

|f∆ξ(ξ)− f∆ξ,M (ξ)| =∆ξ

∣∣∣∣∣∣
∑

k<−M/2

log Φc(k∆ξ, s)
1− cos

(
π ξ−k∆ξ

∆ξ

)
π(ξ − k∆ξ)

+
∑

k>M/2

log Φc(k∆ξ, s)
1− cos

(
π ξ−k∆ξ

∆ξ

)
π(ξ − k∆ξ)

∣∣∣∣∣∣
<∆ξ

∑
k>M/2

∣∣∣∣ log Φc(k∆ξ, s)

π(ξ − k∆ξ)

(
1− cos

(
π
ξ − k∆ξ

∆ξ

))

+
log Φc(−k∆ξ, s)

π(ξ + k∆ξ)

(
1− cos

(
π
ξ + k∆ξ

∆ξ

))∣∣∣∣
≤2∆ξ

π

∑
k>M/2

∣∣∣∣∣ξ
(

log Φc(k∆ξ, s) + log Φc(−k∆ξ, s)
)

ξ2 − k2∆ξ 2

+
k∆ξ

(
log Φc(k∆ξ, s)− log Φc(−k∆ξ, s)

)
ξ2 − k2∆ξ2

∣∣∣∣∣ , (4.11)

where f∆ξ(ξ) is the value of the infinite summation shown in Eq. (2.100) and f∆ξ,M (ξ) is

the result of the truncated summation in Eq. (2.101). The two cosines are equal because

the difference of their arguments is 2kπ; thus |1− cos(.)| ≤ 2 can be factored out.

The next step in bounding the error convergence is to show that the expression in

Eq. (4.11) is dominated by the first sum as M → ∞. As ψ(k∆ξ) ∼ ψ(−k∆ξ) for k →
∞, log Φc(k∆ξ, s) − log Φc(−k∆ξ, s) → 0 as k → ∞. However, k∆ξ is also present in

the numerator and increases linearly with k. By determining the rate of decrease of

log Φc(k∆ξ, s)− log Φc(−k∆ξ, s), we show that the second term is bounded as O(1/k2)

and therefore the first term dominates Eq. (4.11). We then calculate a bound for the error

based on the first summation term in Eq. (4.11). These steps are carried out in a slightly

different way depending on the form of the characteristic exponents shown in Table 4.1.

4.3.1.1 Normal, Merton and Kou processes

For the normal, Merton and Kou processes, when k → ∞, Φc(k∆ξ) becomes dominated

by σ(k∆ξ)2 − iµk∆ξ as shown in Table 4.1. The parameters µ and σ are specific to the

distribution. We can therefore approximate the second expression in the summation by

k∆ξ
(

log Φc(k∆ξ, s)− log Φc(−k∆ξ, s)
)

ξ2 − k2∆ξ2
=

k∆ξ

ξ2 − k2∆ξ2
log

Φc(k∆ξ, s)

Φc(−k∆ξ, s)

≈ k∆ξ

ξ2 − k2∆ξ2
log

σ2(k∆ξ)2/2 + iµ(k∆ξ)

σ2(k∆ξ)2/2− iµ(k∆ξ)

=
k∆ξ

ξ2 − k2∆ξ2
log

1 + 2iµ/(σ2k∆ξ)

1− 2iµ/(σ2k∆ξ)
(4.12)
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The logarithm in Eq. (4.12) is of the form log 1+x
1−x where x = 2iµ

σ2k∆ξ
. For x→ 0, log 1+x

1−x ∼
2x, thus

k∆ξ

ξ2 − k2∆ξ2
log

1 + 2iµ/(σ2k∆ξ)

1− 2iµ/(σ2k∆ξ)
≈ k∆ξ

ξ2 − k2∆ξ2

i4µ

σ2k∆ξ
=

i4µ

σ2(ξ2 − k2∆ξ2)
(4.13)

gives an approximation for the second term in Eq. (4.11). Due to the denominator, this is

O(1/k2). Thus, as log Φc(k∆ξ, s)+log Φc(−k∆ξ, s) is increasing in k, the error is indeed

dominated by the first term in Eq. (4.11).

For the normal, Kou and Merton processes, Φc(k∆ξ, s) and Φc(−k∆ξ, s)→ 2 log |k∆ξ|
as k→∞. Therefore, the error bound is

|f∆ξ(ξ)− f∆ξ,M (ξ)| < c1∆ξ

π

∑
k>M/2

∣∣∣∣ log Φc(k∆ξ, s)

ξ2 − k2∆ξ2

∣∣∣∣
< c2∆ξ

∑
k>M/2

log(k2∆ξ2)

k2∆ξ2
, (4.14)

Here, as Eq. (4.14) gives the error at fixed values of ξ, i.e. the chosen grid points, the ξ can

be absorbed into c. However, as M increases, our range of ξ values increases. Therefore, as

there is a linear dependence of the error bound on ξ, we should consider the effect of errors

at large values of ξ on the error of the final solution. In doing this we can take account

of the shape of the output from the factorisation Φc±(ξ, s) which decays as |ξ| → ∞ and

the use of a filter on the input to the next step as described in Section 4.3.2. These effects

combine to mean that the error as a proportion of the value of Φc±(ξ, s) at high |ξ| is

less significant to the error of the overall solution than the relationship between the value

of M and the error in Φc±(ξ, s) for low values of |ξ|. Approximating the summation in

Eq. (4.14) by an integral with M ′ = M/2, we obtain

|f∆ξ(ξ)− f∆ξ,M (ξ)| < c3

∫ +∞

M∆ξ/2

log ξk
ξ2
k

dξk

= c3

[
log ξk
ξk

+
1

ξk

]M∆ξ/2

+∞

= c3

(
log(M∆ξ/2)

M∆ξ/2
+

1

M∆ξ/2

)
. (4.15)

Having applied the sinc-based discrete Hilbert transform, we can calculate the positive

and negative functions using the Plemelj-Sokhotsky relations and then exponentiate the

results to obtain the Wiener-Hopf factors. Therefore, using the expression in Eq. (4.15),

we can bound the truncation error of the Wiener-Hopf factors, and by extension the total

error as the truncation error dominates, as∣∣∣∣Φ∆ξ,c±(ξ)− Φ∆ξ,M ′,c±(ξ)

Φ∆ξ,c±(ξ)

∣∣∣∣ < ∣∣∣1− (eM ′∆ξ)
κ

M′∆ξ

∣∣∣ , (4.16)
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Figure 4.4: Right-hand side of Eq. (4.16) plotted for different values of κ (left: positive
values; right: negative values) to show the estimate of the error bound on the sinc-based
numerical factorisation of Φc(ξ, s). Notice that the predicted error bound from the fac-
torisation has a decay that increases in slope as M∆ξ increases and is slightly shallower
than O(1/M) for the values of M which we are using. Sections 4.3.1.1, 4.3.1.2 and 4.3.1.3
show that this bound applies for the normal, NIG, Kou, Merton and VG processes.

where κ is some constant. Here, Φ∆ξ,c±(ξ) denotes the (theoretical) Wiener-Hopf fac-

tors generated using the infinite summation in Eq. (2.100) and Φ∆ξ,M ′,c±(ξ) denotes the

Wiener-Hopf factors calculated using the truncated summation in Eq. (2.101).

Figure 4.4 shows Eq. (4.16) plotted against M∆ξ for different values of κ. This demon-

strates that the predicted error bound from the factorisation has a decay that increases in

slope as M∆ξ increases and is slightly shallower than O(1/M) for the values of M which

we are using.

4.3.1.2 NIG process

In the case of the NIG process the characteristic exponent is

ψ(ξ) = δ(
√
α2 − (β + iξ)2 −

√
α2 − β2). (4.17)

The presence of a square root around the iξ and ξ2 terms means that as |k| → ∞, the

equivalent expression to the logarithm in Eq. (4.12) is 1
2 log 1+i2β/(k∆ξ)

1−i2β/(k∆ξ) . Furthermore,

Φc(k∆ξ, s) and Φc(−k∆ξ, s) become dominated by log |k∆ξ| as |k| → ∞. Therefore the

only difference between the truncation error bound for the NIG process and the result in

Eq. (4.15) is the size of the constants.
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4.3.1.3 VG process

The characteristic exponent of the VG process is

ψ(ξ) = −1

ν
log
(
1− iξθν + 0.5νσ2ξ2

)
. (4.18)

This has a significantly different form to the other characteristic exponents that we have

considered, being a log of a polynomial. Similarly to the previous methods we show that

the rate of decrease of log Φc(k∆ξ,s)
Φc(−k∆ξ,s) as k →∞ is at least O(1/k). As k →∞ it holds

log
Φc(k∆ξ, s)

Φc(−k∆ξ, s)
≈ log

log(−ik∆ξθν + νσ2(k∆ξ)2/2)

log (ik∆ξθν + νσ2(k∆ξ)2/2)

= log
log
(

1− 2ik∆ξθν
νσ2(k∆ξ)2

)
+ log(νσ2(k∆ξ)2/2)

log
(

1 + 2ik∆ξθν
νσ2(k∆ξ)2

)
+ log (νσ2(k∆ξ)2/2)

≈ log
− 2ik∆ξθν
νσ2(k∆ξ)2 + log(νσ2(k∆ξ)2/2)

2ik∆ξθν
νσ2(k∆ξ)2 + log (νσ2(k∆ξ)2/2)

= log
1− 2iθ

σ2k∆ξ log(νσ2(k∆ξ)2/2)

1 + 2iθ
σ2k∆ξ log(νσ2(k∆ξ)2/2)

≈ −4iθ

σ2k∆ξ log (νσ2(k∆ξ)2/2)
. (4.19)

This decreases quicker than O(1/k) and thus Eq. (4.11) is dominated by the first term.

The equivalent expression to Eq. (4.14) for the VG process is

|f∆ξ − f∆ξ,M | < c
∑

k>M/2

∆ξ

π

log Φc(k∆ξ, s)

ξ2 − k2∆ξ2
,

< c1∆ξ
∑

k>M/2

log log(k2∆ξ2)

k2∆ξ2
. (4.20)

As | log log(x)| is bounded by | log x| as x → ∞, the factorisation error with the VG

process is also bounded by Eq. (4.16).

4.3.2 Decomposition error

The output of the factorisation is shown in Figure 4.5. The next step in the calculation is

to find the positive part of Pc(ξ, s) = e−ilξ

Φc	(ξ,s) . We can attempt to bound the truncation

error of this calculation by combining the errors from the positive and negative truncations
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Figure 4.5: Example plot of the real and imaginary parts of Φc⊕(ξ, s) plotted against ξ
with s chosen as A/2t, as specified for the Abate and Whitt inverse Laplace transform.
Notice that although the value of |Φc⊕(ξ, s)| is bounded by a constant as |ξ| → ∞, the
rate of decay is very slow and we have not been able to determine a decreasing bound.

as before:

|f∆ξ(ξ)− f∆ξ,M (ξ)| = ∆ξ

π

∣∣∣∣∣∣
∑

k>M/2

Pc(k∆ξ)

ξ − k∆ξ
+

∑
k<−M/2

Pc(k∆ξ)

ξ − k∆ξ

∣∣∣∣∣∣
=

∆ξ

π

∣∣∣∣∣∣
∑

k>M/2

Pc(k∆ξ)

ξ − k∆ξ
+
Pc(−k∆ξ)

ξ + k∆ξ

∣∣∣∣∣∣
=

∆ξ

π

∣∣∣∣∣∣
∑

k>M/2

ξ[Pc(k∆ξ) + Pc(−k∆ξ)]

ξ2 − (k∆ξ)2
+
k∆ξ[Pc(k∆ξ)− Pc(−k∆ξ)]

ξ2 − (k∆ξ)2

∣∣∣∣∣∣ .
(4.21)

Figure 4.5 shows that for high |ξ|, |Pc(ξ)− Pc(−ξ)| is bounded from above by a constant.

However, we do not have a decreasing bound for |Pc(ξ)− Pc(−ξ)|. Therefore we can only

bound the second term in Eq. (4.21) as

∑
k>M/2

k∆ξ[Pc(k∆ξ)− Pc(−k∆ξ)]

ξ2 − (k∆ξ)2
< c

∑
k>M/2

k∆ξ

ξ2 − (k∆ξ)2
(4.22)

where c is some positive constant, this does not converge. We can compare this with the

discretely monitored version from Fusai et al. (2016), which we modified in Chapter 3,

where the first and last dates are taken out of the scheme. They are then applied by

convolution which means that the function undergoing decomposition is multiplied with

the characteristic function. For processes other than VG, this restores the exponential

slope of the function for high values of ξ which again means that the truncation error of
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the sinc-based discrete Hilbert transform is exponentially bounded. In Section 3.2.5 we

described how we can remove the first and last dates from the discrete pricing pricing

procedure by replacing the characteristic function with a spectral filter. For continuous

monitoring, we use the exponential filter which we used with discretely monitored options

in Chapter 3 and has previously achieved good results in other option pricing applications

(Ruijter et al., 2015; Cui et al., 2017). The filter is described by Eq. (3.8) and its shape

is shown in Figure 3.2. Numerical tests have shown that the use of this filter improves

the error of the decomposition step so that it no longer limits the error convergence of the

pricing scheme. However, the overall error of the pricing procedure will be continue to

be limited by the error from the initial factorisation step as described in Eq. (4.16) and

shown in Figure 4.4.

4.4 Results

We present results for the Spitzer based pricing procedure for continuously monitored

single and double-barrier options for the NIG, Kou and VG processes. We also show that

the error convergence represents a limiting case of the performance of the FGM method

for discretely monitored options as N → ∞ and ∆t → 0, where N is the number of

monitoring dates and ∆t is the time step between them.

4.4.1 Results for Spitzer-Laplace method for continuously moni-

tored options

The error convergence for single-barrier down-and-out options is shown in Figure 4.6,

the results with the NIG and VG processes conform very closely to the calculated error

bound. The results with the Kou process deviate from this slightly for lower values of M

but show the typical sub-polynomial error convergence for higher values of M . Figure 4.7

shows the results for double-barrier options, the absolute error is worse than that for the

single-barrier option but the speed of the error convergence conforms very closely to the

calculated error bound. The computed prices are given in Tables 4.2 and 4.3 for single

and double-barrier options respectively. Although the absolute error is worse for double-

barrier options, the speed of error convergence is very similar for all cases and is slightly

worse than O(1/M) which concurs with the simulated results for the factorisation error

shown in Figure 4.4. The details of the contract and underlying processes are shown in

Table A.2 in Appendix A.
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Figure 4.6: Error convergence for a continuously monitored single-barrier option. The
results with the NIG and VG processes conform very closely to the calculated error bound.
The results with the Kou process deviate from this slightly for lower values of M but show
the typical sub-polynomial error convergence for higher values of M .
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Figure 4.7: Error convergence for a continuously monitored double-barrier option. The
absolute error is worse than that for a single-barrier option but the speed of the error
convergence conforms very closely to the calculated error bound.

4.4.2 Comparison with the error convergence of Spitzer based pric-

ing methods for discretely monitored options

In Section 2.1.8.1 we described the relationship between the Fourier-Laplace based method

for continuously monitored options and the FGM method, based in the Fourier-z domain,

for discretely monitored options. The latter method, as measured for single-barrier options

in Fusai et al. (2016) and double-barrier options in Chapter 3, with the number of moni-

toring dates up to ≈ 103, is exponentially convergent with the number of grid points for

the NIG and Kou processes and better than second order polynomially convergent for the

VG process. Therefore we investigate the performance of the discretely monitored method

with a very high number of dates (i.e. ∆t → 0), to better understand the difference in

performance between the two pricing schemes.

In Green et al. (2010) and Broadie et al. (1997) the error between the discretely and

continuously monitored prices was shown to be bounded as O(1/
√
N), where N is the
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Process Price

NIG 4.77403523401E-2
Kou 4.32042632202E-2
VG 4.70627023105E-2

Table 4.2: Prices calculated for single-barrier options with the contract details and process
parameters described in Table A.2 in Appendix A and M = 217.

Process Price

NIG 2.78787488E-2
Kou 3.30368034E-2
VG 2.82666693E-2

Table 4.3: Prices calculated for double-barrier options with the contract details and process
parameters described in Table A.2 in Appendix A and M = 217.

number of monitoring dates. We therefore also consider whether lower errors might be

achieved by approximating the price for a continuously monitored option with the price

for a discretely monitored option with a very high number of monitoring dates.

We use the same implementation as the one described in Fusai et al. (2016) for single-

barrier options and Chapter 3 for double-barrier options, although the maximum number

of monitoring dates is far higher than would ever be used for discretely monitored options

in practice. Due to the O(1/
√
N) error bound between the prices for continuously and dis-

cretely monitored options, we must select a very large number of monitoring dates in order

for this effect to be less significant than the error from the continuously monitored pricing

method. The error convergence of the discrete pricing method as N →∞ (or ∆t→ 0) is

shown in Figures 4.9 and 4.10. The results show that as ∆t→ 0, the error convergence for

discrete monitoring degrades until it approaches that of continuously monitored options.

Moreover, it demonstrates that, rather than being an anomaly, the error convergence of

the continuously monitored method is consistent with that of the discretely monitored

method as ∆t→ 0. In simple terms this can be understood by considering how Ψ(ξ,∆t)

changes with ∆t for the discrete example. As ∆t→ 0, Ψ(ξ,∆t) = eψ(ξ)∆t decays to 0 more

and more slowly as |ξ| → ∞. Therefore the error convergence of the pricing technique

for continuously monitored barrier options can be intuitively considered as a limit of the

error convergence for the discrete case as ∆t → 0. The relationship between the error

convergence of the methods with discrete and continuous monitoring is examined in more

detail in Section 4.4.2.2 below.

Computed prices for continuously and discretely monitored options are plotted against

M in Figures 4.11 and 4.12. In addition, computation times for the pricing methods for the

discrete and continuously monitored methods are shown in Tables 4.4 and 4.5. Figures

4.11 and 4.12 show that, as expected, the larger the number of monitoring dates the

closer the price is to the continuously monitored price. However, they also show that
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the direction of convergence depends on the type of option and the process being used.

Therefore, in order to obtain the CPU times in Tables 4.4 and 4.5 we take the lowest time

where the convergence error for the discretely monitored method is significantly (about

ten times) lower than the error compared to the price for the continuously monitored case

with maximum M . This shows that for relatively high errors, ≈ 10−4 for single-barrier and

≈ 10−2 for double-barrier, the discretely monitored method is slightly quicker. However,

the discretely monitored method is unable to achieve the lower errors, ≈ 10−6 for single-

barrier and ≈ 10−4 for double-barrier, which are attained by the continuously monitored

method and therefore is not a sufficiently accurate approximation.

However, it should be considered whether we can achieve a better approximation of

the continuous method by increasing the number of monitoring dates further. Previous

literature, e.g. Green et al. (2010), has shown the convergence of the discrete method to the

continuous method with increasing monitoring dates to be O(1/
√
N). From Figure 4.8,

which displays the difference between the prices for discrete and continuous monitoring at

the maximum grid size of 217, we can observe that although the discrete method with the

Kou process does indeed have this rate of convergence, it achieves approximately O(1/N)

with the NIG and VG processes. Therefore, if we wished to decrease the error of the

discrete approximation so that it is significantly (i.e. ten times) less than the continuous

case then we would have to increase the maximum number of monitoring dates in Tables

4.4 and 4.5 by 100 times for the NIG and VG processes and by 2002 times for the Kou

process. Figures 4.9 and 4.10 show the error for each N (including continuous monitoring)

calculated against the price for the same number of dates with 218 grid points. These

results demonstrate that at M = 217 the discrete methods with these numbers of dates

have an error which is worse than the required accuracy of ten times better than the

continuous method. Moreover, Figures 4.9 and 4.10 also illustrate the fact that as ∆t→ 0

the slope of the error convergence of the discretely monitored scheme approaches that

of the continuously monitored scheme. Thus the only possibility to improve the error of

the discrete method would be to also increase M , and by extension the CPU time of the

discrete monitoring method, causing its computational cost to be greater than that for

continuous monitoring.
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Figure 4.8: Error for discretely monitored barrier options used as an approximation of
the price for the continuously monitored case, plotted as a function of the number of
monitoring dates. The error is calculated as the difference between the prices for discrete
and continuous monitoring at the maximum grid size of 217. Results for single and double-
barrier options are displayed on the left and right-hand plots respectively. Notice that the
error for the Kou process converges as O(1/

√
N), whereas the error for the NIG and VG

processes converges a rate of approximately O(1/N).
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Figure 4.9: Error as a function of the grid size M for continuously monitored single-
barrier options compared to discretely monitored options as the number of monitoring
dates N increases. The error for each number of dates (including continuous monitoring)
is calculated against the price for the same number of dates with 218 grid points. For all
processes, as ∆t→ 0 the slope of the error convergence of the discretely monitored scheme
approaches that of the continuously monitored scheme.
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Process Dates Error Time M

NIG

cont 3.21E-04 0.07 1024
1008 1.60E-04 0.07 4096
cont 1.86E-04 0.13 2048
cont 5.74E-05 0.50 8192
cont 1.69E-05 2.03 32768

VG

252 2.31E-04 0.04 2048
cont 2.57E-04 0.06 1024
504 1.13E-04 0.11 4096

cont 1.49E-04 0.17 2048
1008 5.29E-05 0.14 8192
cont 4.74E-05 0.49 8192
cont 1.43E-05 2.01 32768
cont 4.19E-06 11.52 131072

Kou

252 3.02E-04 0.01 512
cont 1.57E-04 0.02 256
504 2.03E-04 0.01 512

cont 1.57E-04 0.02 256
1008 1.47E-04 0.02 1024
cont 1.57E-04 0.02 256
cont 6.69E-05 0.12 2048
cont 2.35E-05 0.49 8192
cont 7.36E-06 2.07 32768

Table 4.4: CPU times and errors for the continuously monitored method and the discretely
monitored method as an approximation to continuous monitoring for the single-barrier
case. The CPU times for the discretely monitored price are chosen for the grid size M
which gives the lowest CPU time where the convergence error is significantly (about ten
times) lower than the error compared to the continuously monitored price.
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Figure 4.10: Error as a function of the grid size M for continuously monitored double-
barrier options compared to discretely monitored options as the number of monitoring
dates N increases. The error for each number of dates (including continuous monitoring)
is calculated against the price for the same number of dates with 218 grid points. For all
processes, as ∆t→ 0 the slope of the error convergence of the discretely monitored scheme
approaches that of the continuously monitored scheme.
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Process Dates Error Time M

NIG

252 2.35E-02 0.16 4096
cont 2.38E-02 0.11 512
504 1.32E-02 0.14 4096

cont 1.48E-02 0.24 1024
1008 7.24E-03 0.29 8192
cont 8.78E-03 0.54 2048
cont 1.58E-03 5.03 16384
cont 4.69E-04 20.94 65536

VG

252 5.10E-03 0.08 2048
cont 6.86E-03 0.24 1024
504 2.51E-03 0.13 4096

cont 2.40E-03 1.15 4096
1008 1.15E-03 0.29 8192
cont 1.36E-03 2.44 8192
cont 7.56E-04 5.16 16384
cont 2.25E-04 21.21 65536

Kou

252 4.90E-02 0.03 1024
cont 3.54E-02 0.07 256
504 3.51E-02 0.07 2048

cont 3.54E-02 0.07 256
1008 2.47E-02 0.04 1024
cont 2.84E-02 0.14 512
cont 7.23E-03 1.19 4096
cont 2.33E-03 5.30 16384
cont 7.03E-04 21.05 65536

Table 4.5: CPU times and errors for the continuously monitored method and the discretely
monitored method as an approximation to continuous monitoring for the double-barrier
case. The CPU times for the discretely monitored price are chosen for the grid size M
which gives the lowest CPU time where the convergence error is significantly (about ten
times) lower than the error compared to the continuously monitored price.
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Figure 4.11: Price plotted against the grid size M for continuously monitored single-barrier
options compared to discretely monitored options as the number of monitoring dates N
increases. Note that the larger the value of N , the closer the price is to the continuously
monitored option price.
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Figure 4.12: Price plotted against grid size M for continuously monitored double-barrier
options compared to discretely monitored options as the number of monitoring dates N
increases. Note that the larger the value of N , the closer the price is to the continuously
monitored option price.

4.4.2.1 Effect of a spectral filter on the error convergence

The numerical method described in the main paper has three main stages of calculation:

an initial factorisation, a fixed-point algorithm to solve a pair of coupled integral equations

with decompositions, and the final stage where the product of the Fourier transforms of

the probability density and payoff functions is transformed back into the log-price domain.

As described in Section 4.3.2 we use require filtering on the decomposition step and

we apply a filter before the final inverse Fourier transform. Using the variance gamma

(VG) process as an example, Figure 4.13 shows results with no filtering, filtering only one

of the two stages, and filtering on both stages. The results show that a filter improves the

convergence of the fixed-point algorithm and of the final step, so that the error convergence

becomes dominated by the initial factorisation and follows the bound for the latter as

described in Section 3.1 of the main paper. Specifically, a filter improves convergence for

low values of the grid size M , but this effect fades away for larger numbers of grid points;

moreover a filter changes the direction of convergence, so that the convergence of the price

and of the error on M is now monotonic rather than oscillating.
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Figure 4.13: Effect of a spectral filter for the variance gamma process. The results show
that a filter improves the convergence of the fixed-point algorithm and of the final step,
so that the error convergence becomes dominated by the initial factorisation.

4.4.2.2 Detailed comparison of the error convergence with continuous and

discrete monitoring

Substituting q = e−s∆t in Φ(ξ, q) = 1 − qΨ(ξ,∆t) to exploit the conformal mapping

between the z domain and the Laplace domain, the function factorised in the discretely

monitored scheme becomes

Φd(ξ, s) = 1− e−s∆tΨ(ξ,∆t) = 1− e(ψ(ξ)−s)∆t, (4.23)

where ψ(ξ) = 1
∆t log Ψ(ξ,∆t) is the characteristic exponent of the Lévy process.

To factorise Φd(ξ, s), we decompose

log Φd(ξ, s) = log
{

1− e[ψ(ξ)−s]∆t
}

(4.24)

and exponentiate the result. Figure 4.14 shows how, As ∆t becomes smaller, the shape of

| log Φd(ξ, s)| changes in two significant ways. Firstly the value of | log Φd(0, s)| increases

and secondly the gradient of | log Φd(ξ, s)| as |ξ| → ∞ becomes shallower. At the limit

∆t = 0,

∀ ξ | log Φd(ξ, s)| =∞, (4.25)

so the function cannot be decomposed.

Although the factorisation for ∆t = 0 cannot be performed using Φd(ξ, s) directly,

when we apply the Laplace transform we multiply 1/Φd(ξ, s) by ∆t, which recovers a

well defined function Φc(ξ, s) = s− ψ(ξ). However, this affects the shape of the function

under decomposition, i.e. log Φc(ξ, s), and we can understand this further comparing the
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Figure 4.14: Plot of | log Φd(ξ, s)| versus ξ for maturity T = 1 and different numbers of
monitoring dates N . As ∆t = T/N decreases, the value of the function at ξ = 0 increases
and the slope of the function becomes shallower.

functions log Φd(ξ, s) and − log ∆t
Φd(ξ,s) with discrete monitoring. As |ξ| → ∞, Φd(ξ, s)→ 1,

so clearly log Φd(ξ, s) → 0; however as |ξ| → ∞, ∆t
Φd(ξ,s) → ∆t, so rather than decreasing

to 0, − log ∆t
Φd(ξ,s) instead increases to − log ∆t. Clearly log Φc(ξ, s) represents the limit of

this for ∆t→ 0 and thus increases to − log 0 = +∞ as |ξ| → ∞.

As described by Stenger (1993) and Feng and Linetsky (2008), the shape of the function

to be decomposed determines the truncation error with the sinc-based discrete Hilbert

transform. Section 3.1, showed that | log Φd(ξ, s)| decreases with ξ and that the speed

of error convergence is determined by the rate of decrease. Moreover, Figure 4.14 shows

that the slope of | log Φd(ξ, s)| becomes shallower with increasing number of dates N , so

we would expect the convergence to become slower with decreasing ∆t, which is indeed

observed in Figures 4.9–4.12. In contrast
∣∣∣log ∆t

Φd(ξ,s)

∣∣∣ and | log(s−ψ(ξ))| are both increasing

functions of |ξ| and so we must use the error calculations in Section 4.3, which again match

the error results above.

4.5 Conclusions

We showed that the numerical method for calculating the discretely monitored Spitzer

identities described by Fusai et al. (2016), and improved with spectral filtering in Chapter

3, can be modified for continuous monitoring by using the Fourier-Laplace domain instead

of the Fourier-z domain. We implemented this with the inverse Laplace transform by Abate

and Whitt (1992a, 1995) which can achieve an accuracy of approximately 10−11, sufficient

for our chosen application of pricing barrier options. We presented results showing that

the conversion from discrete to continuous monitoring means that exponential convergence
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is no longer achieved, but instead the error convergence becomes sub-polynomial due to

the performance of the Wiener-Hopf factorisation. By examining the effect of truncating

the sinc-based discrete Hilbert transform, we were able to provide an error bound which is

well matched to the observed accuracy of the pricing procedure for continuously monitored

options.

It is notable that the discretely monitored case achieves exponential convergence as

seen for the single-barrier case in Fusai et al. (2016) and for the double-barrier case in

Chapter 3, but the continuous case described here does not. However, we demonstrate

that, as the number of monitoring dates increases and ∆t→ 0, the error convergence for

the discretely monitored case degrades and approaches that of the continuously monitored

case. Thus, the performance of the pricing technique for continuously monitored barrier

options is consistent with previous results, being a limit of the error convergence for the

discretely monitored case.

Furthermore we have compared the error vs. computational time of the continuously

monitored scheme with that of an approximate solution generated by the discretely mon-

itored scheme with a high number of monitoring dates. We show that, for higher errors,

the discrete scheme may produce a rapidly calculated approximation to the continuously

monitored scheme, but when lower errors are required the continuously monitored scheme

must be used.
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Chapter 5

Methods for other exotic options

Following the pricing of barrier options in Chapters 3 and 4, we describe here the use of

the Spitzer identity formulation by Green (2009) in order to price other exotic options.

We look at quantile options with discrete and continuous monitoring and perpetual early

exercise options, also with discrete and continuous monitoring, i.e. options of Bermudan

and American type.

The pricing of quantile options is based on the Dassios-Port-Wendel identity in Eq. (2.88)

and uses Green’s formulation for hindsight options which were implemented for general

Lévy processes by Fusai et al. (2016) in order to price fixed-strike Lookback options. We

use two methods for pricing perpetual Bermudan and American options, one by Green

(2009) which is based on residue theorem and another which is based on the fluctuation

identities for pricing barrier options in Chapters 3 and 4 and includes a novel method of

calculating the optimal exercise barrier.

5.1 Quantile options

The α-quantile of a random process X(t) (Xα) is the value which it is below α% of the

time; α-quantile options have a payoff which is calculated as a function of this value. They

were first designed by Miura (1992) as a variation on lookback options which would be

less susceptible to the effects of very large, but short lived, swings in the price of the

underlying asset. They are considered to be more resistant to market manipulation as it

is easier to cause a brief peak or trough in an asset price compared to a longer term price

movement. We propose a pricing method for α-quantile options with general exponential

Lévy processes.
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5.1.1 Pricing discretely monitored quantile options

For α-quantile options the form of the payoff is the same as in Eq. (2.91), i.e.

φ(x) = eαdxS0(θ(ex − ekS ))+1[l,u](x), (5.1)

but in this case it is calculated as a function of x = Xα rather than the value at expiry,

x = X(T ). Therefore, if we have the characteristic function of Xα then we can price an

α-quantile option in the Fourier domain using the Plancherel relation in Eq. (2.93) with

the Fourier transform of the damped payoff function φ̂(ξ) from Eq. (2.92).

The Dassios-Port-Wendel identity states that the α-quantile of a Brownian motion

over T has the same distribution as the sum of the infimum of a Brownian motion over

time (1−α)T and the supremum of an independent Brownian motion over time αT . That

is if Xm = mint∈[0,(1−α)T ]X1(t) and XM = maxt∈[0,αT ]X2(t), where X1(t) and X2(t) are

independent Brownian motions, then

Xα
d
= Xm +XM , (5.2)

where Xα is the α-quantile of the Brownian motion.

We can understand the link between the value of Xα and the supremum and infimum

quite intuitively. Firstly, if a process is split into a section for t ∈ [0, αT ] and one for t ∈
(αT, T ] then, by the property of independent increments, they represent two independent

processes over t ∈ [0, αT ] and t ∈ (0, (1 − α)T ]. Moreover, the supremum of X1(t) is the

value that the process has spent αT time below and conversely the infimum of X2(t) is the

value which this process has spent (1− α)T time above. Although the basic idea behind

the relationship in Eq. (5.2) is quite clear, the mathematical proof is quite involved and

we refer the interested reader to the original paper by Dassios (1995) for the details. A

note by Dassios (2006) also showed that this identity could also be extended (although

not uniquely) to general Lévy processes.

Green et al. (2010) devised Spitzer-based formulations for the probability distributions

of the maximum and minimum of a process which were used by Fusai et al. (2016) to price

fixed-strike lookback options with exponential error convergence. These are defined in the

Fourier-z domain as

˜̂pXM (ξ, q) =
1

Φ⊕(ξ, q)Φ	(0, q)
, (5.3)

˜̂pXm(ξ, q) =
1

Φ⊕(0, q)Φ	(ξ, q)
, (5.4)

where Φ⊕(ξ, q) and Φ	(ξ, q) are the Wiener-Hopf factors of 1− qΨ(ξ,∆t) as described in
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Section 2.1.8. The inverse z-transform can be applied to obtain

p̂XM (ξ, j) = Z−1
q→j [

˜̂pXM (ξ, q)], (5.5)

p̂Xm(ξ,N − j) = Z−1
q→N−j [

˜̂pXm(ξ, q)], (5.6)

in the Fourier-domain, where N is the number of discrete monitoring dates and j = αN

to the nearest integer,. As XM and Xm are the supremum and infimum of mutually

independent processes it is clear that XM and Xm are independent random variables. It

is a basic result in probability theory that the PDF of the sum of two independent random

variables is equal to the convolution of their respective PDFs, i.e.

pXα(x) =

∫ +∞

−∞
pXM (x′)pXm(x− x′)dx′. (5.7)

Therefore, by convolution theorem, we can multiply them point-wise in the Fourier domain,

as described in Section 2.1.1, i.e.

p̂Xα(ξ) = p̂XM (ξ, j)p̂Xm(ξ,N − j). (5.8)

The option price can then be calculated using the Plancherel relation in Eq. (2.93).

The calculations for discretely monitored price for loopback options as used by Fusai

et al. (2016) are based on a distribution of the maximum (or minimum) of the process at

t > 0. Similarly to the schemes for barrier options described in Section 2.3.4, the first date

is taken out of the Spitzer-based scheme and the result for N − 1 dates is multiplied by

the characteristic function. This gives a smooth probability distribution, i.e. pXM′ ∈ C
∞,

as illustrated on the left-hand plot of Figure 5.1, where XM ′ is used to denote that we

are using the maximum for t > 0. As shown by Ruijter et al. (2015), Fourier based

pricing methods using this PDF will therefore not be negatively affected by the Gibbs

phenomenon and can thus achieve exponential convergence with the number of log-price

grid points.

However, for the α-quantile options we price in this chapter, we require the distribution

for the maximum (minimum) for t ≥ 0. As all Lévy processes have the property that

X(0) = 0, the value of the maximum for t ≥ 0 cannot go below 0. Therefore obtaining

pXM (x) using the Spitzer-based scheme with the full number of dates alters the PDF so

that it now has an abrupt discontinuity and a large spike at t = 0 as shown on the right-

hand side of Figure 5.1. The large spike corresponds to a single probability mass equal

to
∫ 0
−∞ pX′M (x)dx. We also note that the introduction of the discontinuity and spike has

caused oscillations in the plot of the pdf via the Gibbs phenomenon.

The existence of the discontinuity means that, as described by Boyd (2001) and Got-

tlieb and Shu (1997) for example, we would no longer obtain exponential error convergence

with grid size using these distributions to price options. We therefore use spectral filtering
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Figure 5.1: PDF of the maximum of a discretely monitored Brownian motion for t > 0
(left-hand side) and t ≥ 0 (right-hand side) for 50 monitoring dates over 1 year, σ=0.4,
risk free rate r = 0.05.

as successfully implemented in Chapter 3 to improve the error convergence for double-

barrier options.

5.1.2 Numerical procedure for discretely monitored α-quantile op-

tions

In order to calculate the price of discretely monitored α-quantile options using the Fourier-

z transform, we must express the time for the two independent random processes in terms

of the number of monitoring dates. For N monitoring dates we calculate j = αN to the

nearest integer. The pricing procedure is then

1. Compute the characteristic function Ψ(ξ + iαd,∆T ) of the underlying transition

density, where αd is the damping parameter introduced in Section 2.2.3, Eq. (2.91)

and ∆T = T/N .

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φ(ξ, q) := 1− qσ
(

ξ

ξmax

)
Ψ(ξ + iαd,∆t) = Φ⊕(ξ, q)Φ	(ξ, q), (5.9)

where σ(η) is an exponential filter of order 12, as defined in Eq. (3.7) and q is

selected according to the criteria specified by Abate and Whitt (1992b) for the

inverse z-transform.

3. Calculate

˜̂pXM (ξ, q) =
1

Φ⊕(ξ, q)Φ	(0, q)
(5.10)

˜̂pXm(ξ, q) =
1

Φ⊕(0, q)Φ	(ξ, q)
(5.11)
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4. Apply the inverse z-transform for j and N − j dates respectively

p̂XM (ξ, j) = Z−1
q→j

[ ˜̂pXM (ξ, q)
]

(5.12)

p̂Xm(ξ,N − j) = Z−1
q→N−j

[ ˜̂pXm(ξ, q)
]

(5.13)

5. Calculate the Fourier transform of the required probability distributions for XM and

Xm by obtaining the real parts of p̂XM (ξ, j) and p̂Xm(ξ,N−j) directly in the Fourier

domain using

p̂<XM (ξ, j) =
1

2
[p̂XM (ξ, j) + p̂XM

∗(−ξ, j)] (5.14)

p̂<Xm(ξ,N − j) =
1

2
[p̂Xm(ξ,N − j) + p̂Xm

∗(−ξ,N − j)] (5.15)

where ·∗ denotes the complex conjugate.

6. Calculate the Fourier transform of the probability distribution for Xα over N moni-

toring dates as

p̂Xα(ξ,N) = p̂<XM (ξ, j)p̂<Xm(ξ,N − j) (5.16)

7. Calculate the price of the discretely monitored α-quantile option as

v(0, 0) = F−1
ξ→x

[
σ

(
ξ

ξmax

)
p̂Xα(ξ,N)φ̂∗(ξ)

]
(0) (5.17)

where σ(η) is an exponential filter of order 12, as defined in Eq. (3.7).

5.1.3 Comparison of results with Monte Carlo results

In Chapter 3, the results from the FL method from Feng and Linetsky (2008) and the

FGM method from Fusai et al. (2016) provide a benchmark for each other. However, here

we do not either have closed-form results or a highly accurate numerical method to provide

a comparison.

We therefore use Monte Carlo pricing procedures with underlying assets driven by

Gaussian, VG and Merton jump-diffusion processes as these have paths which can be

simply constructed using the built-in Matlab commands for standard normal, gamma and

Poisson random variables. Indeed, the ease of construction of these paths is the reason

for selecting these processes which are different to the ones used in the work in Chapters

3 and 4 and which were selected due to their use by Fusai et al. (2016).

In all cases the risk neutral drift was calculated using µRN = ψ(−i), as described by

Feng and Linetsky (2008), where ψ(ξ) is the characteristic exponent of the Lévy process.
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VG process. A single step over time ∆t for the VG process was simulated using the

following procedure:

1. Calculate the gamma distributed random variable dG which has a probability dis-

tribution Γ( 1
ν∆t , ν).

2. Calculate the process step:

dX = µRN∆t+ θdG+ σ
√
dGζ (5.18)

where ζ is a standard normal random variable.

Merton jump-diffusion process. A single step over time ∆t for the Merton jump-

diffusion process was simulated using the following procedure

1. Calculate the Poisson distributed random variable NP with parameter ∆tλ.

2. Calculate the process step:

dX = µRN∆t+ σ
√
dtζ1 + µJNP + σJ

√
NPζ2 (5.19)

where ζ1 and ζ2 are independent standard normal random variables.

We used two methods to calculate the value for the α-quantile. For the first we

simulated a path of N points and then found the jth smallest value. For the second we

combined the Dassios-Port-Wendel identity with the Monte Carlo method as in Ballotta

and Kyprianou (2001). Two independent paths of length αN and (1 − α)N dates are

simulated and the sum of their respective infimum and supremum are calculated to provide

an estimate of the α-quantile.

5.1.4 Results for discretely monitored α-quantile options

Figures 5.2–5.4 show results for α = 0.75 for N of 52, 252 and 1008 for the Gaussian,

NIG, VG and Kou processes. In Table 5.1 we show the variation of the price with α for

252 monitoring dates and compare the results with that for the Monte Carlo method; this

shows that we are within two standard deviations (corresponding to an approximate 95%

confidence interval).

The error convergence for this method is extremely fast; we were able to achieve a CPU

time of 2 × 10−2 or better for an error of 10−8 using the Gaussian process and Merton

processes, and and 10−6 using the VG processes. When assessing the results, the error

floor of 10−11 caused by the inverse z-transform means that there are too few data points

above the noise floor to allow us to assess whether the error convergence is exponential or

high order polynomial. This is not a concern for using the method in practice. However,
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Figure 5.2: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a Gaussian process.
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Figure 5.3: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a VG process.

a z-transform with a lower noise floor would allow us to understand the convergence of

the techniques better. Table 5.1 shows that we are within two standard deviations for all

test cases.
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Figure 5.4: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a Merton process.

Gaussian

Spitzer Monte Carlo Monte Carlo + DWP

α price price 2σ difference price 2σ difference
2
3 0.20847 0.20863 0.00044 -0.00016 0.20874 0.00046 0.00027
3
4 0.24346 0.24365 0.00059 -0.00019 0.24338 0.00058 7.8E-05
5
6 0.28541 0.2850 0.00057 0.00037 0.28520 0.00058 0.00021

VG

Spitzer Monte Carlo Monte Carlo + DWP

α price price 2σ difference price 2σ difference
2
3 0.15894 0.15888 0.00021 5.8E-05 0.15886 0.00022 7.4E-05
3
4 0.17649 0.17656 0.00024 -6.8E-05 0.17658 0.00023 -9.5E-05
5
6 0.19604 0.19589 0.00025 0.00015 0.19596 0.00025 8.5E-05

Merton jump-diffusion

Spitzer Monte Carlo Monte Carlo + DWP

α price price 2σ difference price 2σ difference
2
3 0.15957 0.15960 0.00022 -3.3E-05 0.15971 0.00024 -0.00014
3
4 0.17757 0.17762 0.00027 -4.5E-05 0.17757 0.00025 4.7E-07
5
6 0.19777 0.19779 0.00027 -1.9E-05 0.19778 0.00027 -1.8E-05

Table 5.1: Comparison between the value of a α-quantile option with 252 dates and
216 price grid points compared with the value for the same contract using a Monte-Carlo
approximation and a Monte-Carlo approximation combined with the Dassios-Port-Wendel
identity. Notice that the prices calculated using the Spitzer-based method are within two
standard deviations of the Monte-Carlo price.

5.1.5 Continuously monitored α-quantile options

We use the same relationship between the Spitzer identities with discrete and continuous

monitoring which we exploited in Chapter 4 to price continuously monitored barrier op-
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tions. Specifically, we utilise the conversion between Φ(ξ, q) in the Fourier-z domain and

Φc(ξ, s) in the Fourier-Laplace domain in Eq. (2.83). We also use the Abate and Whitt

inverse Laplace transform which is described in Section 4.2.

5.1.5.1 Pricing procedure for continuously monitored α-quantile options

We adapt the pricing procedure for discretely monitored options to continuous monitoring

by replacing Steps 1–3 in Section 5.1.2 with

1. Compute the characteristic exponent ψ(ξ+ iαd) of the underlying transition density,

where αd is the damping parameter introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φc(ξ, s) := s− ψ(ξ + iαd) = Φc⊕(ξ, s)Φc	(ξ, s), (5.20)

where s is selected according to the criteria specified by Abate and Whitt (1995) for

the inverse Laplace transform.

3. Calculate

˜̂pXM (ξ, s) =
1

Φc⊕(ξ, s)Φc	(0, s)
, (5.21)

˜̂pXm(ξ, s) =
1

Φc⊕(0, s)Φc	(ξ, s)
. (5.22)

The pricing procedure then continues as before with the inverse z-transform in Step 4

replaced by the inverse Laplace transform. Note that because | log Φc(ξ, s)| is increasing

in |ξ|, unlike log Φ(ξ, q) which is decreasing, similarly to the work in Chapter 4, a filter

cannot be used for the factorisation in Step 1.

5.2 Results for continuously monitored α-quantile op-

tions

Figures 5.5–5.7 show results for a time to expiry of T = 1 and α = 0.75 for the Gaussian,

variance gamma and Merton processes.

The error convergence for this method is considerably inferior to that of the discretely

monitored method. The convergence is approximately O(1/M), with the rate increasing

with M ; this is consistent with the error convergence bounds for the factorisation of

Φc(ξ, s) in Chapter 4, although the absolute error is much higher as discussed further

in Section 5.5.2. We must therefore revisit the question of whether it is better to use a

discretely monitored scheme with a very small monitoring interval.
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Figure 5.5: Results for the pricing error vs. M (left), pricing error vs. CPU time (centre)
and price vs. M (right) with an underlying asset driven by a Gaussian process. Notice the
convergence is approximately O(1/M), with the rate increasing with M ; this is consistent
with the error convergence bounds for the factorisation of Φc(ξ, s) in Chapter 4.
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Figure 5.6: Results for the pricing error vs. M (left), pricing error vs. CPU time (centre)
and price vs. M (right) with an underlying asset driven by a VG process. Notice the
convergence is approximately O(1/M), with the rate increasing with M ; this is consistent
with the error convergence bounds for the factorisation of Φc(ξ, s) in Chapter 4.

5.2.1 Comparison of the discretely monitored scheme with the con-

tinuously monitored pricing scheme

We perform a similar analysis to the one for barrier options in Section 4.4.2 to determine

whether it is preferable to use a discrete pricing scheme with a high number of monitoring

dates to approximate the continuously monitored pricing scheme. Figure 5.8 shows how

the scheme converges with the number of monitoring dates for the Gaussian, NIG, VG

and Kou processes. It can be seen that the convergence is approximately O(1/N) for

all these processes. As, in this case, the error for continuous monitoring is so high, we

can achieve better results for the discretely monitored scheme with approximately 1000

monitoring dates for the Gaussian process and 300 monitoring dates for the other processes

we consider. This is far lower than for barrier options where the performance of the method
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Figure 5.7: Results for the pricing error vs. M (left), pricing error vs. CPU time (centre)
and price vs. M (right) with an underlying asset driven by a Merton process. Notice the
convergence is approximately O(1/M), with the rate increasing with M ; this is consistent
with the error convergence bounds for the factorisation of Φc(ξ, s) in Chapter 4.
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Figure 5.8: Convergence of the method for discrete monitoring to the result for continuous
monitoring with an increasing number of monitoring dates for the Gaussian, NIG, VG and
Kou processes. It can be seen that the convergence is approximately O(1/N).

for continuous monitoring means that extremely high numbers of monitoring dates must

be considered.

We can refer to the results in Figures 5.5–5.7 which show that the error with a CPU

time of around 10−2s is already far lower than both the error between the discrete and

continuous methods and the continuous method itself. Therefore in this case it is preferable

to use the method for discrete monitoring with a high number of dates as an approximation

to the continuous case.
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5.3 Perpetual Bermudan options

Bermudan options have the same payoff as European options but they can be exercised

at a discrete set of dates rather than simply at a single expiry date. They can also be

thought of a discrete version of American options and, indeed, the prices for Bermudan

options are often used as a proxy for the value of American options (see e.g Feng and Lin,

2013). Perpetual Bermudan and American options have no expiry date and are therefore

“live” until they are exercised. Pricing perpetual options is an easier problem than the

valuation of those with a fixed expiry date as the infinite time horizon means that the

optimal exercise boundary is constant rather than a function of time. Indeed, closed-form

formulas exist for perpetual American options with simple processes, whereas there are

none for finite expiry options.

We look at two methods for pricing perpetual Bermudan options. Firstly we implement

the method by Green (2009) which uses residue calculus. We also implement a new method

which uses Spitzer identities and show a novel way to calculate the optimal exercise barrier.

New numerical truncation bounds for the log-price domain are specified; these are required

due to the infinite time horizon.

For pricing single-barrier options in Chapters 3 and 4, we used the version of the Spitzer

identity in Eq. (2.74) for x ≥ l. In contrast, both the methods for pricing Bermudan

options described here require the version of the identity for x < l. That is we require

the distribution of X(tn) subject to tn being the first time it has crossed the discretely

monitored barrier l. This is illustrated in Figure 5.9 for a process with 10 monitoring

dates and a barrier of −0.2. The value of X(t10) for paths 1 and 2 would contribute to

the distribution as they stay above l for monitoring dates 0–9 but go below l at the 10th

monitoring date. Note that path 1 is acceptable as, even though its path does go below l

between dates 3 and 4, it is above l at the actual monitoring dates. Path 3 does not count

towards the distribution as it is above l at the 10th monitoring date and path 4 does not

count as it goes below l at an earlier monitoring date.

Therefore, in the numerical procedures described below, we use ˜̂pl−(ξ, q) := Pl−(ξ, q)

Φ	(ξ, q) instead of ˜̂pl(ξ, q) :=
Pl+(ξ,q)
Φ⊕(ξ,q) , where ˜̂pl−(ξ, q) is used to distinguish the identity

for x < l.

5.3.1 Green’s residue method

This Spitzer identity for ˜̂pl−(ξ, q) is important for Green’s pricing scheme for a perpetual

Bermudan put option as this method is based on a combination of a first touch option which

pays K−D the first time the underlying price crosses a barrier D and an overshoot option

which pays the difference between the barrier D and the underlying asset S(t) = eX(t),

the first time the barrier is crossed. The advantage of using this formulation, as Green

(2009) showed, is that these pricing formula can be written in such a way that the inverse
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Figure 5.9: Examples of discretely monitored continuous random paths with 10 monitoring
dates. Notice that only paths 1 and 2 would contribute to the calculated distribution.

Fourier and inverse z-transforms are no longer required.

A first touch option requires the probability that the first time the underlying asset

crosses the barrier l is time n, as shown in Eq. (2.82), is

P [τl = n] =

∫ l

−∞
pl−(x, n)dx. (5.23)

Substituting ˜̂pl−(ξ, q) into this we get

P [τl = n] =

∫ l

−∞
Z−1
q→n

[
F−1
ξ→x

[ ˜̂pl−(ξ, q)
]]
dx. (5.24)

However it is also true that F−1
ξ→x

˜̂pl−(ξ, q) is, by definition, “−” with respect to l and so

we can extend the integral to the entire range of x, i.e.

P [τl = n] = Z−1
q→n

∫ +∞

−∞
F−1
ξ→x

[ ˜̂pl−(ξ, q)
]
dx. (5.25)

Moreover, it is straightforward to see that the integral of the entire range of x of a function

is the same as its Fourier transform at ξ = 0, i.e.
∫ +∞
−∞ f(x)dx =

∫ +∞
−∞ eix0f(x)dx =

Fx→ξ[f(x)](0) so we now have

P [τl = n] = Z−1
q→n

[ ˜̂pl−(0, q)
]
. (5.26)

Green (2009) then obtained the price of the option as the expectation of the discounted
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payoff at n = 0 as

vF(0, 0) = (K −D)

∞∑
n=1

e−r∆tnZ−1
q→n

[ ˜̂pl−(0, q)
]
, (5.27)

where ∆t is the time step between monitoring dates. The next insight by Green (2009)

is that we can remove the summation and inverse z-transform, if we use e−r∆t as our

z-transform parameter because the summation is the same as a forward z-transform. (We

know that there is no payoff at the current date, i.e. n = 0, so we start the summation at

n = 1). Then the price for a first touch option is

vF(0, 0) = (K −D) ˜̂pl− (0, e−r∆t) = (K −D)Pl−
(
0, e−r∆t

)
Φ	
(
0, e−r∆t

)
. (5.28)

The value of the payoff of an overshoot option at time n is the expected overshoot

D − S(tn) conditional on n being the first time that the underlying asset process falls

below l, τl and can be calculated as

E[e−rτl(D − S(τl))|τl = n∆t] = e−rn∆t

∫ l

−∞
(D − S0e

x)pl−(x, n)dx. (5.29)

We can calculate the option value by using tower property to take the expectation over

all discrete monitoring dates to obtain

vO(0, 0) =
∞∑
n=1

e−rn∆t

∫ l

−∞
(D − S0e

x)pl−(x, n)dx. (5.30)

Once again, we can substitute ˜̂pl−(ξ, q) into this for

vO(0, 0) =
∞∑
n=1

e−rn∆t

∫ l

−∞
(D − S0e

x)Z−1
q→nF−1

ξ→x
˜̂pl−(ξ, q)dx. (5.31)

By setting q = e−r∆t, the summation and the inverse z-transform cancel each other as

before and we extend the range of the integral to ±∞

vO(0, 0) =

∫ +∞

−∞
(D − S0e

x)+F−1
ξ→x

˜̂pl−(ξ, e−r∆t)dx. (5.32)

By using the Plancherel relation we can can express this as

vO(0, 0) =
1

2π

∫ +∞

−∞
φ̂(−ξ) ˜̂pl−(ξ, e−r∆t)dx. (5.33)

If we use Eq. (2.92) for φ̂(ξ) for a put option with a = −∞, b = l, k = l, αd > 0 and
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substituting ˜̂pl−(ξ, q) := Pl−(ξ, q)Φ	(ξ, q) then this can be simplified as

vO(0, 0) =
1

2π

∫ +∞

−∞
−DPl−(ξ, e−r∆t)Φ	(ξ, e−r∆t)

ξ2 + iξ
dx. (5.34)

Using the residue method the integral can be solved to give

vO(0, 0) = DPl−(0, e−r∆t)Φ	(0, e−r∆t)−DPl−(−i, e−r∆t)Φ	(−i, e−r∆t). (5.35)

As the price of a perpetual Bermudan option is the sum of a first touch option with payoff

(K −D) from Eq. (5.28) and the price of an overshoot option from Eq. (5.35) we have

vB(0, 0) = vF(0, 0) + vO(0, 0)

= KPl−(0, e−r∆t)Φ	(0, e−r∆t)−DPl−(−i, e−r∆t)Φ	(−i, e−r∆t). (5.36)

Green (2009) showed that, using the idea that the optimal exercise barrier gives a maxi-

mum price, differentiating Eq. (5.36) and solving for D when the gradient is zero gives

Dopt = K
Φ	(0, e−r∆t)

Φ	(−i, e−r∆t)
(5.37)

for the optimal exercise barrier. Note that the optimal exercise barrier must be calculated

first as this provides the value of l which P (ξ, e−r∆t) must be decomposed around. Then

vB(0, 0) = KΦ	(0, e−r∆t)[Pl−(0, e−r∆t)− Pl−(−i, e−r∆t)]. (5.38)

gives the price for a perpetual Bermudan option.

5.3.2 New formulation based on Spitzer identities

Due to the success of the methods for pricing barrier options described in Chapter 3 we

devised an alternate method for pricing perpetual Bermudan options, including a new way

of calculating the optimal exercise boundary.

We first recognise that the expected return from exercising a perpetual Bermudan

put (subject to us being below the optimal exercise barrier) at monitoring date n can be

expressed as

E[e−rn∆t(K − S(tn))+] = e−rn∆t

∫ l

−∞
(K − S0e

x)pl−(x, n)dx. (5.39)

To obtain the value of the option we sum over all monitoring dates and we can also
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substitute ˜̂pl−(ξ, q) := Pl−(ξ, q)Φ	(ξ, q) for the probability distribution pl−(x, n)

vB(0, 0) =
∞∑
n=1

e−rn∆t

∫ l

−∞
(K − S0e

x)Z−1
q→nF−1

ξ→x
˜̂pl−(ξ, q)dx. (5.40)

We can again use the trick by Green (2009) of using q = e−r∆t so that the summation

cancels with the inverse z-transform to give

vB(0, 0) =

∫ l

−∞
(K − S0e

x)F−1
ξ→x

˜̂pl−(ξ, e−r∆t)dx. (5.41)

This integral can then be expressed in the Fourier domain using the Plancherel relation

vB(0, 0) =
1

2π

∫ +∞

−∞
φ̂∗(ξ) ˜̂pl−(ξ, e−r∆t)dx = F−1

ξ→x

[
φ̂∗(ξ) ˜̂pl−(ξ, e−r∆t)

]
(0), (5.42)

where φ(ξ) is the damped payoff for a put option from Eq. (2.92) with l being the optimal

exercise boundary in the log-price domain.

5.3.2.1 Optimal exercise boundary Calculation

For this method, the calculation of the optimal exercise boundary is based on the idea that

if the underlying asset is exactly at the optimal exercise boundary, i.e. S0 = S(0) = Dopt,

then the value of the payoff from exercising the option is equal to the expected value from

continuing to hold the option. Furthermore, the boundary used to calculate pl−(x, n)

via ˜̂pl−(ξ, q) := Pl−(ξ, q)Φ	(ξ, q) is l = log(Dopt/S0)) and so l = 0 and therefore we can

rewrite Eq. (5.39) as

vB,S0=D(0, 0) =

∫ 0

−∞
(K − S0e

x)F−1
ξ→xP0−(ξ, e−r∆t)Φ	(ξ, e−r∆t)dx

= F−1
ξ→x

[
φ̂∗(ξ)P0−(ξ, e−r∆t)Φ	(ξ, e−r∆t)

]
(0). (5.43)

If we differentiate the expression on the first line of Eq. (5.43) with respect to S0, we

obtain

∂vB,S0=D(0, 0)

∂S0
= −

∫ 0

−∞
exF−1

ξ→xP0−(ξ, e−r∆t)Φ	(ξ, e−r∆t)dx (5.44)

which is constant. Therefore, if we were to plot Eq. (5.43) against S0 we obtain a straight

line and the point where that line crosses the payoff function (K − S0) represents the

optimal exercise barrier. This is illustrated in Figure 5.10. Therefore, by calculating

Eq. 5.43 for two values of S0 (D1 and D2) we can obtain the corresponding straight line

equation with gradient m and y-axis intercept c. We can then calculate the optimal
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used to calculate the optimal exercise boundary Dopt.

exercise boundary Dopt, corresponding to the point where the lines cross, as

Dopt =
K − c
m+ 1

. (5.45)

We can also speed up the computational time by noting that if we set D1 = 0 in Eq. (5.43)

we obtain a price of

vB,S0=D1(0, 0) =

∫ 0

−∞
KF−1

ξ→xP0−(ξ, e−r∆t)Φ	(ξ, e−r∆t)dx = KP0−(0, e−r∆t)Φ	(0, e−r∆t)

(5.46)

which means that we only need to perform the inverse Fourier transform for the other

calibration point(D2). To avoid computational errors, rather than calculating the Spitzer

identity with l = 0 we select l = lε, where lε is the log-price domain grid step size spacing.

This value does not depend on D and so the calculation of the gradient in Eq. (5.44)

still returns a constant. The option price can then be calculated using Eq. (5.42) with

l = Dopt/S0.

5.3.3 Truncation limits

For the Fourier based methods used for finite expiry boundary options, the range of the

log-price domain grid for the numerical calculations was based on the cumulants of the

distribution over a single time step and, for the parameters used in Chapters 3 and 4,

were calculated as approximately ±2. However, for perpetual options we must consider

the shape of the probability distribution far in the future. This is especially true when the

risk-free rate r is low as the contribution from future dates is discounted away extremely

slowly. Therefore, the truncation limits used for finite expiry options are far too narrow

103



CHAPTER 5. METHODS FOR OTHER EXOTIC OPTIONS

for this application. We base our calculation of the new bounds on the idea that the we

should truncate the log-price domain at the value where the discount factor means any

distortion of the distribution of the underlying asset process will have negligible effect on

the final price calculation. We select a value that we wish the error to be below, i.e. 10−λ,

and calculate the time it will take for the discount factor to be below this value

Tbound = λ log(10)/r. (5.47)

We then approximate the standard deviation of the underlying process at this time with

σbound = σ
√
Tbound, (5.48)

where σ is the volatility of the underlying process, normalised to 1 year. The new bound

for perpetual options is then

b = 6σbound. (5.49)

5.3.4 Numerical procedure for Green’s residue method

1. Compute the characteristic function Ψ(ξ+ iαd) of the underlying transition density,

where αd is the damping parameter introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φ(ξ, q) := 1− e−r∆tσ
(

ξ

ξmax

)
Ψ(ξ + iαd,∆t) = Φ⊕(ξ, e−r∆t)Φ	(ξ, e−r∆t), (5.50)

where σ(η) is an exponential filter of order 12, as defined in Eq. (3.7). From this we

can directly obtain Φ	(0, e−r∆t)

3. Use the shift theorem to calculate Φ	(i, e−r∆t) as

Φ	(i, e−r∆t) := Fx→ξ
[
e−xF−1

ξ→x
[
Φ	(ξ, e−r∆t)

]]
(0) (5.51)

4. Calculate the optimal exercise boundary

Dopt := K
Φ	(0, e−r∆t)

Φ	(i, e−r∆t)
, (5.52)

and compute l = log(Dopt/S0).

5. Decompose P (ξ, e−r∆t) around l

P (ξ, e−r∆t) = Pl+(ξ, e−r∆t) + Pl−(ξ, e−r∆t), (5.53)
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and directly obtain Pl−(0, e−r∆t).

6. Use the shift theorem to calculate Pl−(i, e−r∆t) as

Pl−(i, e−r∆t) := Fxi→ξ
[
e−xF−1

ξ→x
[
Pl−(0, e−r∆t)

]]
(0). (5.54)

7. Calculate the option price as

v(0, 0) = KΦ	(0, e−r∆t)
[
Pl−(0, e−r∆t)− Pl−(i, e−r∆t)

]
. (5.55)

5.3.5 Numerical procedure for new Spitzer based method

1. Compute the characteristic function Ψ(ξ+ iαd), where αd is the damping parameter

introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φ(ξ, q) := 1− e−r∆tσ
(

ξ

ξmax

)
Ψ(ξ + iαd,∆t) = Φ⊕(ξ, e−r∆t)Φ	(ξ, e−r∆t), (5.56)

where σ(η) is an exponential filter of order 12, as defined in Eq. (3.7).

3. Decompose P (ξ, e−r∆t) around lε (the log-price domain grid step)

P (ξ, e−r∆t) = Plε+(ξ, e−r∆t) + Plε−(ξ, e−r∆t). (5.57)

4. Calculate the PDF for the calibration as

p̂lε−(ξ, e−r∆t) = Plε−(ξ, e−r∆t)Φ	(ξ, e−r∆t). (5.58)

5. Setting D1=0 and D2 ∈ (0,K) calculate

vD1(0, 0) = Kp̂lε−(0, e−r∆t), (5.59)

vD2(0, 0) = F−1
ξ→x

[
φ̂∗(ξ)p̂lε−(0, e−r∆t)

]
(0). (5.60)

here, φ̂(ξ) is the Fourier transform of the damped payoff φ(x) where x = log(S(t)/D2).

6. Calculate the optimal exercise barrier as

Dopt =
[K − vD1(0, 0)]D2

vD2(0, 0)− vD1(0, 0) +D2
, (5.61)

and compute l = log(Dopt/S0).
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7. Decompose P (ξ, e−r∆t) around l

P (ξ, e−r∆t) = Pl+(ξ, e−r∆t) + Pl−(ξ, e−r∆t). (5.62)

8. Calculate the PDF for the price as

p̂l−(ξ, e−r∆t) = Pl−(ξ, e−r∆t)Φ	(ξ, e−r∆t) (5.63)

9. Calculate the option price as

v(0, 0) = F−1
ξ→x

[
φ̂∗(ξ)p̂l−(0, e−r∆t)

]
(0). (5.64)

where φ̂(ξ) is the Fourier transform of the damped payoff φ(x) where x = log(S(t)/S0).

5.3.6 Results for perpetual Bermudan options with the Gaussian

process

Figures 5.11–5.16 show results for the two methods for pricing perpetual Bermudan op-

tions. The results labelled “Green’s” are from the residue method described in Section

5.3.1 and those labelled “Spitzer” are from the new method described in Section 5.3.2.

Results are presented for error vs. M and CPU time for risk free rates r of 0.02, 0.05 and

0.1. Using a Gaussian process for the underlying asset means the results as ∆t→ 0 can be

compared with closed-form calculations for perpetual American options. The convergence

of the price for Bermudan options to the continuous case is shown in Tables 5.2 and 5.3

and we discuss the further verification of these results in Section 5.3.8.

Both methods perform well, with polynomial error convergence with grid size M of at

least O(1/M2). Furthermore, as ∆t→ 0, the results approach those for the corresponding

perpetual American option. The new Spitzer based method outperformed Green’s residue

method, achieving an error of 10−7 in approximately one tenth of the CPU time required

for the residue method. In contrast, it is interesting to note that the convergence of the

barrier is slower for the Spitzer based method than Greens residue method at O(1/N)

compared to O(1/N2). Moreover the barriers of both methods converge no faster than

the price so we can see that the barrier error has a limited effect on the price error. This

can be understood by considering Figure 5.10. In this plot (K − S0) represents the value

of exercising the option, whereas v(0, 0) represents the value keeping the option. Close to

the optimal exercise barrier Dopt this difference is extremely small and so a small error in

the calculation of Dopt makes a very small difference to the pricing error.
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Figure 5.11: Results for the pricing error convergence vs. grid sizeM and CPU time with an
underlying asset driven by a Gaussian process with a risk free rate of r = 0.02. Notice that
the error convergence for the new method described in Section 5.3.2, labelled “Spitzer”,
is better than for the residue method described in Section 5.3.1 labelled “Green”.
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Figure 5.12: Results for the pricing error convergence vs. grid sizeM and CPU time with an
underlying asset driven by a Gaussian process with a risk free rate of r = 0.05. Notice that
the error convergence for the new method described in Section 5.3.2, labelled “Spitzer”,
is better than for the residue method described in Section 5.3.1 labelled “Green”.
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Figure 5.13: Results for the pricing error convergence vs. grid sizeM and CPU time with an
underlying asset driven by a Gaussian process with a risk free rate of r = 0.1. Notice that
the error convergence for the new method described in Section 5.3.2, labelled “Spitzer”,
is better than for the residue method described in Section 5.3.1 labelled “Green”.
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∆t r = 0.1 r = 0.05 r = 0.2

1 0.20169919 0.33181098 0.53155442
0.5 0.20737414 0.33522271 0.53328533

0.25 0.21021533 0.33695115 0.53414348
0.1 0.21197983 0.33798846 0.53465453

0.01 0.21305064 0.33861012 0.53495870
American 0.21317038 0.33867902 0.53499224

Table 5.2: Results for the Spitzer based method for perpetual Bermudan options with
M = 220 showing the convergence to the price for a perpetual American option.

∆t r = 0.1 r = 0.05 r = 0.2

1 0.20169919 0.33181098 0.53155362
0.5 0.20737414 0.33522271 0.53328453

0.25 0.21021533 0.33695115 0.53414268
0.1 0.21197984 0.33798846 0.53465373

0.01 0.21305065 0.33861013 0.53495791
American 0.21317038 0.33867902 0.53499224

Table 5.3: Results for Green’s residue method for perpetual Bermudan options with M =
220 showing the convergence to the price for a perpetual American option.
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Figure 5.14: Optimal exercise barrier convergence vs. grid size M with an underlying asset
driven by a Gaussian process with a risk free rate of r = 0.02. Notice that, in contrast
to the pricing error convergence, the error convergence for the new method described in
Section 5.3.2, labelled “Spitzer”, is worse than for the residue method described in Section
5.3.1 labelled “Green”.
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Figure 5.15: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Gaussian process with a risk free rate of r = 0.05. Notice that, in contrast
to the pricing error convergence, the error convergence for the new method described in
Section 5.3.2, labelled “Spitzer”, is worse than for the residue method described in Section
5.3.1 labelled “Green”.
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Figure 5.16: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Gaussian process with a risk free rate of r = 0.1. Notice that, in contrast
to the pricing error convergence, the error convergence for the new method described in
Section 5.3.2, labelled “Spitzer”, is worse than for the residue method described in Section
5.3.1 labelled “Green”.
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∆t r = 0.1 r = 0.05 r = 0.02

1 0.68360194 0.47916587 0.25110359
0.5 0.64678075 0.45056945 0.23520061

0.25 0.62026498 0.43075700 0.22442626
0.1 0.59653531 0.41350275 0.21519240

0.01 0.56851217 0.39363474 0.20472988
American 0.55555556 0.38461538 0.20000000

Table 5.4: Barrier calculated using the new Spitzer based method for perpetual Bermudan
options with M = 220 showing the convergence to the barrier for a perpetual American
option.

∆t r = 0.1 r = 0.05 r = 0.02

1 0.68360124 0.47916517 0.25110066
0.5 0.64678008 0.45056880 0.23519670

0.25 0.62026434 0.43075637 0.22442094
0.1 0.59653469 0.41350214 0.21518427

0.01 0.56851159 0.39363417 0.20470522
American 0.55555556 0.38461538 0.20000000

Table 5.5: Barrier calculated using Green’s residue method for perpetual Bermudan op-
tions with M = 220 showing the convergence to the barrier for a perpetual American
option.

5.3.7 Results for perpetual Bermudan options with other Lévy pro-

cesses

Figures 5.17–5.28 show results for the price and optimal exercise barrier vs. the number

of grid points M and CPU time, with the underlying asset driven by the VG and Merton

processes. It can be seen that, similarly to the performance with a Gaussian process, the

error convergence speed is O(1/M2). The error is calculated as a precision compared to

the result with the maximum number of grid points M and we discuss the verification of

these results in Section 5.3.8.

110



5.3. PERPETUAL BERMUDAN OPTIONS

10
2

10
4

10
6

M

10
-15

10
-10

10
-5

10
0

10
5

A
b
s
o
lu

te
 E

rr
o
r

Spitzer, t=0.1

Green, t=0.1

Spitzer, t=0.25

Green, t=0.25

Spitzer, t=1

Green, t=1

10
-3

10
-2

10
-1

10
0

CPU time/s

10
-10

10
-5

10
0

Spitzer, t=0.1

Green, t=0.1

Spitzer, t=0.25

Green, t=0.25

Spitzer, t=1

Green, t=1

Figure 5.17: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a VG process with a risk free rate of r = 0.02. Notice
that, similarly to the technique with a Gaussian process, the error convergence speed is
O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.18: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a VG process with a risk free rate of r = 0.05. Notice
that, similarly to the technique with a Gaussian process, the error convergence speed is
O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.19: Results for the pricing error convergence vs. grid size M and CPU time
with an underlying asset driven by a VG process with a risk free rate of r = 0.1. Notice
that, similarly to the technique with a Gaussian process, the error convergence speed is
O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.20: Results for the pricing error convergence vs. grid size M and CPU time
with an underlying asset driven by a Merton jump-diffusion process with a risk free rate
of r = 0.02. Notice that, similarly to the technique with a Gaussian process, the error
convergence speed is O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.21: Results for the pricing error convergence vs. grid size M and CPU time
with an underlying asset driven by a Merton jump-diffusion process with a risk free rate
of r = 0.05. Notice that, similarly to the technique with a Gaussian process, the error
convergence speed is O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.22: Results for the pricing error convergence vs. grid size M and CPU time
with an underlying asset driven by a Merton jump-diffusion process with a risk free rate
of r = 0.1. Notice that, similarly to the technique with a Gaussian process, the error
convergence speed is O(1/M2) and the “Spitzer” method has lower errors.
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Figure 5.23: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a VG process with a risk free rate of r = 0.02. Notice that, similarly to the
technique with a Gaussian process, the “Spitzer” method has slower error convergence.
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Figure 5.24: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a VG process with a risk free rate of r = 0.05. Notice that, similarly to the
technique with a Gaussian process, the “Spitzer” method has slower error convergence.
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Figure 5.25: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a VG process with a risk free rate of r = 0.1. Notice that, similarly to the
technique with a Gaussian process, the “Spitzer” method has slower error convergence.
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Figure 5.26: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Merton jump-diffusion process with a risk free rate of r = 0.02. Notice
that, similarly to the technique with a Gaussian process, the “Spitzer” method has slower
error convergence.
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Figure 5.27: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Merton jump-diffusion process with a risk free rate of r = 0.05. Notice
that, similarly to the technique with a Gaussian process, the “Spitzer” method has slower
error convergence.
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Figure 5.28: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Merton jump-diffusion process with a risk free rate of r = 0.1. Notice
that, similarly to the technique with a Gaussian process, the “Spitzer” method has slower
error convergence.
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5.3.8 Comparison of results with Monte Carlo method

In Tables 5.2–5.5 in Section 5.3.6 we showed that that the results with the Gaussian

process converge to the closed-form solution by Merton (1973) as ∆t → 0. However, we

do not have a general closed-form solution for other Lévy processes so, similarly to the

work on α-quantile options, a Monte Carlo method was used as an approximation.

We wrote Monte Carlo pricing procedures with underlying assets driven by Gaussian,

VG and Merton jump-diffusion processes using the same techniques to simulate the paths

as described in Section 5.1.3.

Although the discrete nature of perpetual Bermudan options is appropriate for a Monte

Carlo simulation, the absence of an expiry date means that a Monte Carlo scheme with

a finite number of dates will not represent the contract accurately. However, we truncate

the Monte Carlo simulation so far in the future that the effect of disregarding these dates

is less than the standard deviation of the Monte Carlo method itself. (Clearly this is

more feasible for high discount factors and large time steps as the effect of future dates

is discounted away more rapidly.) Finding the optimal exercise barrier uses the same

philosophy as the new method described in Section 5.3.2.1, i.e. the price was calculated

with S0 = D1 and S0 = D2 and we found the intersection between the line through these

points and the straight line for the payoff K − S0.

We calculated an approximate 95% confidence interval (corresponding to 2 standard

deviations) for the Monte Carlo methods and Table 5.6 shows that the results for our new

methods described in Sections 5.3.4 and 5.3.5 are within this range for all cases tested.

Furthermore, we can see that the results for Green’s method and the new Spitzer based

method are the same.
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Gaussian

Parameters Monte Carlo Spitzer Green

r ∆t price 2σ price difference price difference

0.05 1 0.331801 8.41E-05 0.331811 -9.98E-06 0.331811 -9.98E-06
0.05 0.5 0.335196 8.92E-05 0.335223 2.671E-05 0.335223 2.671E-05
0.05 0.25 0.336947 9.00E-05 0.336951 -4.15E-06 0.336951 -4.15E-06
0.05 0.1 0.337911 1.66E-04 0.337988 -7.746E-05 0.337988 -7.746E-05

VG

Parameters Monte Carlo Spitzer Green

r ∆t price 2σ price difference price difference

0.05 1 0.120225 2.15E-04 0.120237 -1.15E-05 0.120237 -1.15E-05
0.05 0.5 0.123415 2.52E-04 0.123298 1.16E-04 0.123298 1.16E-04
0.05 0.25 0.124996 2.68E-04 0.124919 7.67E-05 0.124919 7.67E-05
0.05 0.1 0.125775 2.54E-04 0.125959 -1.83E-04 0.125959 -1.83E-04
0.02 1 0.247040 3.54E-04 0.247078 -3.83E-05 0.247078 -3.83E-05
0.02 0.1 0.249747 3.56E-04 0.249756 -9.37E-06 0.249756 -9.37E-06

Merton jump-diffusion

Parameters Monte Carlo Spitzer Green

r ∆t price 2σ price difference price difference

0.05 1 0.119755 2.58E-04 0.119856 -1.01E-04 0.119856 -1.01E-04
0.05 0.5 0.123085 2.39E-04 0.122993 9.21E-05 0.122993 9.21E-05
0.05 0.25 0.124636 2.77E-04 0.124674 -3.82E-05 0.124674 -3.82E-05
0.05 0.1 0.125925 2.39E-04 0.125767 1.58E-04 0.125767 1.58E-04

Table 5.6: Comparison between the value of a perpetual Bermudan option with M = 220

compared with the value for the same contract using a Monte Carlo approximation. Notice
that the prices calculated using the new Spitzer based method and Green’s method are
the same and within two standard deviations of the Monte Carlo price.

5.4 Perpetual American options

Similarly to the work on continuously monitored barrier options in Chapter 4 and quantile

options in Section 5.1.5 of this chapter, the Spitzer based pricing method for perpetual

Bermudan options can be extended to continuous monitoring, i.e. perpetual American

options. Unlike the previous examples for option pricing with continuous monitoring

where the application of option pricing was a motivating example for techniques which

have relevance for other fields, the continuous (i.e. American) case is commonly used in

financial contracts.

Once again, we utilise the conversion between Φ(ξ, q) in the Fourier-z domain and

Φc(ξ, s) in the Fourier-Laplace domain in Eq. (2.83). Here, as q = e−r∆t then s = r. Both

methods described in Sections 5.3.4 and 5.3.5 are converted to continuous monitoring and

we compare the results in Section 5.5.
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5.4.1 Pricing procedure for perpetual American options

For both methods we adapt the pricing procedure for discretely monitored options to

continuous monitoring by replacing Steps 1–2 in the procedures described in Sections

5.3.4 and 5.3.5 with

1. Compute the characteristic exponent ψ(ξ+ iαd) of the underlying transition density,

where αd is the damping parameter introduced in Section 2.2.3, Eq. (2.91).

2. Use the Plemelj-Sokhotsky relations with the sinc-based Hilbert transform to fac-

torise

Φc(ξ, r) := r − ψ(ξ + iαd) = Φc⊕(ξ, r)Φc	(ξ, r), (5.65)

where r is the risk free rate.

We then continue with the calculations in Section 5.3.4 or 5.3.5 as before but with

Φc(ξ, r) in place of Φ(ξ, e−r∆t).

5.5 Results for perpetual American options

Figures 5.29–5.34 show results for both methods with the Gaussian, VG and Merton

jump-diffusion processes.

For assessing the accuracy with the Gaussian process we have the advantage over

Bermudan options that closed-form formulas exist for the calculation of both the barrier

and option price and so the results in Figures 5.29 and 5.32 use the closed-form calcula-

tion from Merton (1973) to calculate the error. For the other process we do not have a

closed-form result, and the continuous nature of American options means that they can-

not be accurately represented using Monte Carlo methods which are inherently discrete.

Therefore the absolute errors displayed in Figures 5.30 - 5.31 and 5.33 - 5.34 are calculated

against the result for the same method with the maximum number of FFT points.

In contrast to the results for perpetual Bermudan options, the performance of the two

methods are very different. Our new Spitzer-based method is far superior giving errors of

≈ 10−6 in 10−2s or less. For the Gaussian and Merton processes, Green’s method fails to

reach an error level of 10−6, and for the VG process it reaches this level about 100 times

slower than our new method. The shape of the error convergence of the two methods with

M is also interesting. For our new method, we see a O(1/M3) error convergence for lower

values of M which then sharply transitions to a convergence of approximately O(1/M)–

O(1/M
3
2 ) for M ≥ 103 − 104. The two distinct shapes are indicative of different error

mechanisms dominating the convergence, depending on the value of M . Moreover, the

shape of the convergence for higher values of M is consistent with the factorisation error

bound calculated for continuously monitored barrier options in Chapter 4. The shape of

117



CHAPTER 5. METHODS FOR OTHER EXOTIC OPTIONS

10
2

10
4

10
6

M

10
-15

10
-10

10
-5

10
0

A
b

s
o

lu
te

 E
rr

o
r

Spitzer, r=0.02

Green, r=0.02

Spitzer, r=0.05

Green, r=0.05

Spitzer, r=0.1

Green, r=0.1

10
-3

10
-2

10
-1

10
0

CPU time/s

10
-10

10
-5

Spitzer, r=0.02

Green, r=0.02

Spitzer, r=0.05

Green, r=0.05

Spitzer, r=0.1

Green, r=0.1

Figure 5.29: Results for the pricing error convergence vs. grid size M and CPU time with
an underlying asset driven by a Gaussian process. The error is calculated vs. the closed-
form expression by Merton, notice that the error convergence for the “Spitzer” method
from Section 5.3.2, is superior to the “Green” method from Section 5.3.1.
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Figure 5.30: Pricing error convergence vs. grid size M and CPU time with an underlying
asset driven by a VG process. The error is calculated vs. the numerical result with the
maximum grid size, notice that the error convergence for the “Spitzer” method from
Section 5.3.2, is superior to the “Green” method from Section 5.3.1.

the error convergence with M shown by Green’s method is also similar to this bound,

although less clearly so due to the non-monotonicity of the error results. We discuss this

further in Section 5.5.2 with reference to both these methods.
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Figure 5.31: Pricing error convergence vs. grid size M and CPU time with an underlying
asset driven by a Merton jump-diffusion process. The error is calculated vs. the numerical
result with the maximum grid size, notice that the error convergence for the “Spitzer”
method from Section 5.3.2, is superior to the “Green” method from Section 5.3.1.
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Figure 5.32: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Gaussian process. The error is calculated vs. the closed-form expression
by Merton, notice that the error convergence for the “Spitzer” method from Section 5.3.2,
is superior to the “Green” method from Section 5.3.1.
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Figure 5.33: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a VG process. The error is calculated vs. the numerical result with the
maximum grid size, notice that the error convergence for the “Spitzer” method from
Section 5.3.2, is superior to the “Green” method from Section 5.3.1.
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Figure 5.34: Optimal exercise barrier error convergence vs. grid size M with an underlying
asset driven by a Merton jump-diffusion process. The error is calculated vs. the numerical
result with the maximum grid size, notice that the error convergence for the “Spitzer”
method from Section 5.3.2, is superior to the “Green” method from Section 5.3.1.

5.5.1 Comparison between American and Bermudan option prices

The performance for the direct calculation of the price of American options is sufficiently

good for practical purposes, with the Spitzer method having an error of 10−6 for a

CPU time of 10−2s. However, it is of academic interest to study the use of the price for

Bermudan options as an approximation to the price for American options, especially as

the Bermudan option price converges faster with M for errors ≤ 10−8.

The left-hand plot in Figure 5.35 shows the price error compared to American options

plotted against ∆t with an underlying asset driven by a Gaussian process and it is clear

that the relationship is linear. By extrapolating this line, we can see that in order to

achieve an error of 10−8 for r = 0.02, a step size of ∆t =0.3E-06 is required. The price

convergence with this step size is shown in Figure 5.35 and we can see that reducing the

step size this low destroys the monotonicity of the convergence and the excellent error

performance that we were seeing for more realistic step sizes.
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Figure 5.35: Convergence of the price of perpetual Bermudan options to the price of
perpetual American options. The left-hand plot shows the convergence as ∆t → 0 with
an underlying asset driven by a Gaussian process. The centre and right-hand side plot
shows the error convergence of the price of a perpetual Bermudan option with r = 0.02
and ∆t =3E-06 with number of grid points M and CPU time.

5.5.2 Factorisation error for continuous monitoring

In Section 4.3 of Chapter 4 we discuss the factorisation error of Φc(ξ, s) in detail and

show that we have sub first order polynomial error caused by the increasing nature of

log Φc(ξ, s). However, whilst we repeatedly observe this shape of convergence experimen-

tally for continuously monitored options, the absolute error varies significantly depending

on the type of option valued. For barrier options, the level of the error convergence meant

that the continuous method performed better than the method with discrete monitoring

with very small step sizes. In contrast, the very high level of absolute error for con-

tinuously monitored α-quantile options means that it is preferable to use the discretely

monitored method with small ∆t as an approximation. A further example is provided by

the new Spitzer based method method for perpetual American options where the abso-

lute error for the factorisation is so low that it does not dominate the error convergence

of the method for errors greater than 10−7. The observation that the error convergence

of Green’s method for perpetual American options is far inferior to the Spitzer method

shows that the absolute error is not dependent on the type of contracts under valuation,

but rather the pricing method. The bound for the factorisation error derived in Chapter

4 is ∣∣∣∣Φc±(ξ, s)− ΦM,c±(ξ, s)

Φc±(ξ, s)

∣∣∣∣ < ∣∣∣1− (eM ′∆ξ)
κ

M′∆ξ

∣∣∣ , (5.66)

where Φc±(ξ, s) is the true value of the Wiener-Hopf factors and ΦM,c±(ξ, s) is the value

calculated numerically with M FFT grid points, κ is some constant. In the derivation

of this bound, many variables are absorbed into κ which depend on the exact form of

Φc(ξ, s) = s−ψ(ξ); this in turn depends on the values of s and ξ being used and the function

for the characteristic exponent ψ(ξ). Furthermore, we observe that the absolute error is

121



CHAPTER 5. METHODS FOR OTHER EXOTIC OPTIONS

higher for methods when we make use of Φc⊕(ξ, 0) or Φc	(ξ, 0) rather than integrating

over the entire range of the function. From Eq. (5.66) we see that the truncation errors

from the factorisation are proportional to the value of the function under factorisation and

the value of Φc⊕(ξ, s) is at a maximum at ξ = 0, we would expect the absolute error to be

higher.

In future it may be an interesting theoretical exercise to determine the absolute error

of κ based on these. However, it has been shown in this thesis that, in confirmation of the

theoretical work by Green et al. (2010) and Fusai et al. (2016), the conversion of a Spitzer-

based method from discrete to continuous monitoring is easy to implement. Therefore it

may be better to confirm the actual level of the factorisation error experimentally rather

than find an expression for κ which is, in any case, likely to require some approximation.

5.6 Conclusion

We implemented new pricing methods based on the Spitzer identities for pricing exotic

options. The scheme for discretely monitored α-quantile option was based on the method

for pricing lookback options by Fusai et al. (2016) but required the addition of filtering

due to the inclusion of t = 0 as a monitoring date. We saw very fast error convergence

with grid size and, by extension, CPU time. Due to the low errors and the presence of the

10−11 error floor in the inverse z-transform, it was not possible to identify whether this

error was exponentially or high order polynomially convergent. The extremely low errors

and computational time make this a highly attractive method as it stands. However, it

would be of academic interest to implement this method using an inverse z-transform with

a lower error floor in order to determine the exact order of convergence which we achieve.

Similarly to the work for continuously monitored barrier options, we implemented

a numerical method for continuously monitored α-quantile options. The shape of the

error convergence was very similar to that for continuously monitored barrier options

but the absolute error was much higher. This higher absolute error combined with the

excellent performance of the discretely monitored method means that that, unlike barrier

options, it is preferable to use the discretely monitored method as an approximation to

the continuously monitored method.

We implemented two methods for pricing perpetual Bermudan options. One of these

was previously designed by Green (2009) but had not yet been implemented numerically.

The other was a new method, also based on the Spitzer identities and the sinc-based

fast Hilbert transform. Both methods performed well with high order polynomial error

convergence of at least O(1/M2), but our new method showed significantly lower errors

and CPU times, with a computational speed 10× faster for an error of 10−7.

These methods were extended to perpetual American options (i.e. with continuous

monitoring) and very different results were observed for the two methods. For Green’s
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method, the factorisation error was very high and dominated the error convergence. How-

ever, for the new Spitzer based method, the factorisation error was much lower and there-

fore the effect only became dominant for errors below approximately 10−7.

For errors greater than 10−7, the new Spitzer-based method for perpetual American

options has errors at least as low as the method for perpetual Bermudan options so we

conclude that, for practical purposes, there is no advantage in using discrete monitoring as

an approximation for continuous monitoring. Comparing the two as an academic exercise

showed that there is as a linear relationship between the size of the time step ∆t with

discrete monitoring and the error compared to continuous monitoring. However, reducing

∆t low enough that the discrete method would be predicted to have a lower error than

the continuous method significantly degraded the error convergence such that there was

no advantage gained from using the discrete method.
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Chapter 6

Numerical solution of the Wiener-

Hopf and Fredholm equations

In Chapter 2 we described how the formulation of the Spitzer identities by Green et al.

(2010) require the solution of a Wiener-Hopf type equation. The work described in Chap-

ters 3–4 developed an accurate numerical method for solving these equations and produced

new bounds for its error performance under different conditions. In this chapter we exam-

ine whether the use of these methods can be expanded to the general case and describe

the error performance.

6.1 Test cases

As we present a general solution to the Fredholm equation, rather than one limited to a

particular application we provide several test cases for solving

λf(x)−
∫ b

a
k(x− x′)f(x′)dx′ = g(x), x ∈ (a, b), (6.1)

for f(x). Solutions to Eq. (6.1) with simple closed-form expressions for f(x), g(x) and

k(x) are not readily available. However, if we limit the requirement for simplicity to f(x)

and k(x), closed-form expressions for g(x) in Eq. (6.1) can be calculated. Then g(x) and

k(x) can be used as inputs to our numerical method and the accuracy of the method can

be measured by comparing the result with f(x). We selected k(x) and f(x) to have closed-

form expressions for g(x) and also to have Fourier transforms which are easily calculable.

Three possible solutions have been derived, k(x) and f(x) both double exponential, k(x)

and f(x) both Gaussian, and k(x) and f(x) both Cauchy. The derivation of g(x) is

described in the following sections.
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FREDHOLM EQUATIONS

6.1.1 Cauchy

We use f(x) = k(x) = 1
π(x2+1)

. The first step in the calculation of g(x) is to find the

solution to the integral in Eq. (6.2), i.e.

gint(x) =
1

π2

∫ b

a

1

y2 + 1

1

(x− y)2 + 1
dy. (6.2)

Using partial fractions and integrating:

gint(x) =
1

π2

∫ b

a

1

y2 + 1

1

(x− y)2 + 1
dy

=
1

π2x(x2 + 4)

∫ b

a

2y

y2 + 1
+

x

y2 + 1
− 2(y − x)

(y − x)2 + 1
+

x

(y − x)2 + 1
dy

=
1

π2x(x2 + 4)

[
log(y2 + 1) + x arctan(y)− log[(x− y)2 + 1] + x arctan(y − x)

]b
a

=
1

π2x(x2 + 4)

{
log

[
(b2 + 1)((a− x)2 + 1)

(a2 + 1)((b− x)2 + 1)

]
+

+x [arctan(b)− arctan(a) + arctan(b− x)− arctan(a− x)]} . (6.3)

This gives g(x) in closed-form:

g(x) =
1

π(x2 + 1)
− 1

π2x(x2 + 4)

{
log

[
(b2 + 1)((a− x)2 + 1)

(a2 + 1)((b− x)2 + 1)

]
+

+x [arctan(b)− arctan(a) + arctan(b− x)− arctan(a− x)]} , x ∈ [a, b]. (6.4)

6.1.2 Exponential

We use f(x) = 1
2e
−|x| and k(x) = 1

2e
−|x|. In order to make the calculations of g(x) simpler,

the values of a and b have been restricted so that 0 < a < b < ∞. Then the formula for

g(x) in closed-form is

g(x) =
1

2
e−x − 1

4

∫ b

a
e−|x−y|e−ydy

=
1

2
e−x − 1

4

[∫ b

x
e(x−y)e−ydy +

∫ x

a
e−(x−y)e−ydy

]
=

1

2
e−x − 1

4
ex
[∫ b

x
e−2ydy + e−x

∫ x

a
dy

]
=

1

2
e−x +

1

8
ex
[
e−2y

]b
x
− 1

4
e−x
[
y
]x
a

=
1

2
e−x +

1

8
ex
(
e−2b − e−2x

)
− 1

4
e−x(x− a)

= e−x
[

3

8
+

1

8
e−2(b−x) +

1

4
(a− x)

]
x ∈ [a, b]. (6.5)
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6.1.3 Gaussian

We use f(x) = 1√
π
e−x

2
and k(x) = 1√

π
e−x

2
. The direct expression for g(x) is then

g(x) =
1√
π
e−x

2 − 1

π

∫ b

a
e−(x−y)2

e−y
2
dy

=
1√
π
e−x

2 − 1

π
e−

x2

2

∫ b

a
e−2(y−x

2
)2
dy

=
1√
π
e−x

2 − 1√
2π
e−

x2

2

{
Φ
[
2
(
b− x

2

)]
− Φ

[
2
(
a− x

2

)]}
, x ∈ [a, b], (6.6)

where Φ[·] is the standard normal CDF.

6.2 Results

The following methods were used to recover f(x) and produce the detailed results shown

in this section:

• 4th order quadrature (Press et al., 2007, Eq. (4.1.12)).

• Wiener-Hopf method using sinc-based Hilbert transforms. In order to counteract

the oscillations on the recovered function, we used an exponential filter of order 12

on the fixed-point algorithm and one of order 4 on the final stage. No zero padding

is used. We discuss the use of the sinc-based fast Hilbert transform and spectral

filtering in Section 6.2.1 below

• Wiener-Hopf method using the symmetrical sign function for the Hilbert transform,

i.e. with zeros placed at both ξ = 0 and ξ = − M
2∆ξ , similar to the methods described

by Rino (1970) and Henery (1974), as referenced by Fusai et al. (2016).

It is common in the literature on numerical methods to refer to the number of grid points

as n or N , however to maintain consistency with the option pricing methods described in

Chapters 3–5, where N is used for the number of monitoring dates, we use M .

6.2.1 Sinc-based fast Hilbert transform and spectral filtering

In the financial pricing applications described in Chapters 3–5, and indeed in the existing

literature by Feng and Linetsky (2008) and Fusai et al. (2016) the sinc-based fast Hilbert

transform has shown excellent error convergence, especially when combined with spectral

filtering techniques as in Chapter 3. However when we consider its use for this application

we must take account of several ways in which the requirements differ from its general use

for finding solutions to Wiener-Hopf or Fredholm equations.

Firstly the pricing methods that we implement, as devised by Green et al. (2010), use

the analytic continuation of x, i.e. they give results for values of x both inside and outside
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the barriers (the integration limits of Fredholm equation). This means that there is no

requirement to truncate the functions to the integration limits in the state space. Therefore

the inputs to the Hilbert transform are exponentially convergent (or polynomial in the

case of the VG process) and so excellent error performance is achieved, especially using

spectral filtering to solve the issue with the fixed-point algorithm. By contrast, here we

solve the Fredholm and Wiener-Hopf equations as they were originally formulated, i.e. the

function is only defined for the range of the integration (a, b) and therefore the functions

k(x) and g(x) must be truncated to the ranges of (a − b, b − a) and (a, b) respectively.

This truncation will introduce a jump in the functions which means that their Fourier

transforms now have first order polynomial decay. Therefore the truncation error from

the Hilbert transform will have a first order polynomial convergence unless we can exploit

some symmetry between the of the Fourier domain functions for positive and negative ξ

as in Chapter 4, in which case we may achieve second order polynomial convergence.

Moreover, there is a second important distinction to be made between the general

solution presented here and the work in the previous chapters. For financial applications,

the solutions to the Fredholm equation are used to calculate the expectation of a further

function, in this case the payoff function. Therefore the exact errors in the function for

individual values of x are not particularly important. Rather, the finance literature is

concerned with the average error, weighted according to the shape of the payoff function.

This also has particular importance when we are considering the use of the sinc-based

fast Hilbert transform described in Section 2.3.2 which was instrumental in achieving

exponential error convergence with the number of FFT grid points M in Feng and Linetsky

(2008); Fusai et al. (2016).

In Figures 6.1 and 6.2, we show results using the sinc-based fast Hilbert transform

with no filtering for the Gaussian test case described in Section 6.1.3. It is immediately

obvious that, even for high values of M , oscillations are visible in the numerical solution.
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Figure 6.1: Numerical and analytical f(x) using the sinc-based Hilbert transform with no
filtering. Notice that oscillations are visible in the numerical solution even for high values
of M and that the maximum size of the overshoot is not reduced by increasing this value.

128



6.2. RESULTS

-0.5 0 0.5 1 1.5

x

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

E
rr

o
r

n=9

-0.5 0 0.5 1 1.5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10

-3 n=13

-0.5 0 0.5 1 1.5

x

-2

-1

0

1

2
10

-4 n=17

Figure 6.2: Error in the numerical calculation of f(x) using the sinc-based Hilbert trans-
form with no filtering showing the oscillations in more detail. Notice that they increase
in frequency as M increases.

We can use spectral filtering to overcome the oscillations, however this can have a

negative effect on the accuracy of the numerical method, especially close to the discon-

tinuities in the state space; this is illustrated in Figures 6.3–6.5. Figure 6.4 shows that

the lower order filter gives a shallower slope at the discontinuity, but has a stronger effect

on the oscillations. However, we can see from Figure 6.4 that, regardless of the order of

the filtering, the overshoot at the discontinuity remains approximately the same. Figure

6.5 shows that spectral filtering removes the oscillations away from the discontinuity and

that the best results are achieved with a filter of order 8. Although the behaviour of the

numerical method using the sinc-based fast Hilbert transform is not appropriate for a gen-

eral solution to the Fredholm equation due to the high errors at function discontinuities,

it remains the case that for applications where we are solely interested in a function value

away from any jumps this may be an appropriate method to use.

-0.5 0 0.5 1 1.5

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(
x
)

n=9

f
sinc

 p=4

f
sinc

 p=8

f
sinc

 p=12

f

-0.5 0 0.5 1 1.5

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
n=13

f
sinc

 p=4

f
sinc

 p=8

f
sinc

 p=12

f

-0.5 0 0.5 1 1.5

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
n=17

f
sinc

 p=4

f
sinc

 p=8

f
sinc

 p=12

f

Figure 6.3: Numerical and analytical f(x) using the sinc-based Hilbert transform with
exponential filtering. The parameter p describes the order of the filter.
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Figure 6.4: Numerical and analytical f(x) using the sinc-based Hilbert transform with
exponential filtering, focusing on the discontinuity at x = 0. The parameter p describes
the order of the filter.
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based Hilbert transform with exponential filtering. The parameter p describes the order
of the filter. The scale has been chosen to display the error away from the discontinuities
of f(x). Notice that the oscillations in the centre of the range are removed but the large
error at the discontinuities remain.

6.2.2 FFT method based on the sign function

As an alternative to the sinc-based fast Hilbert transform, we examine the method used by

Henery (1974) and Rino (1970) which was also discussed in Fusai et al. (2016). Simply, we

realise the relationship between the Hilbert transform and the Fourier transform described

in Section 2.1.3, i.e.

H[f̂(ξ)] = −iFξ→x[sgn(x)F−1
ξ→xf̂(ξ)], (6.7)
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where

sgn(x) =


1 x > 0,

0 x = 0,

−1 x < 0.

(6.8)

Notice that Eq. (6.8) is 0 at x = 0 and this is is reflected in our numerical implemen-

tation.

The results for the Gaussian test case are shown in Figures 6.6–6.8, f is the analytic

solution, fsin0 is the output from the numerical calculations using the Wiener-Hopf iterative

method with the Hilbert transform implemented with the sign function. It is immediately

apparent from Figure 6.6 that we no longer suffer from the overshoot that was seen using

the sinc-based Hilbert transform. However, looking at the discontinuity more closely in

Figure 6.7, we can see that we will have a peak error at a single state-space grid point as

the numerical solution increases to the final value of f(x) more slowly than the analytic

function. However, unlike the sinc-based function, where the extent of the oscillations

depends not only on the filtering but also the shape of the function used, we can state

here that as long as the value of x is at least one grid step away from the discontinuity,

the answer will be unaffected by the peak error. It is also interesting to note that the

error is symmetrical around the discontinuity when the iterative Wiener-Hopf method is

used with the sign-based Hilbert transform.

Figure 6.8 displays the error results away from the discontinuity and we can see that,

although there is some variation in the error across x the results are all of the same order of

magnitude and far superior to the error results seen for the sinc-based Hilbert transform.
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Figure 6.6: Numerical and analytical f(x) using the FFT based method with a symmetrical
sign function. Notice that there are no oscillations or overshoot.

Although it is important to observe the functions which are calculated numerically,

when assessing the performance of the numerical methods, the error convergence with
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Figure 6.7: Numerical and analytical f(x) using the FFT based method with a symmetrical
sign function, focusing on the discontinuity at x = 0. Notice that there is an error before
and after the discontinuity due to the size of the grid step size.
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CPU time and number of grid points M is also important. We measured this at 10%,

50% and 90% of the range between a and b; results for the Gaussian test case are shown

in Figures 6.9–6.10. We compare the results for the test cases in Sections 6.1.1–6.1.3

for the iterative Wiener-Hopf method with both the sinc-based and sign-based Hilbert

transform methods, in the figures these are labelled fsinc and fsin0 respectively. An 8th

order exponential function was used with the sinc-based Hilbert transform to counteract

the oscillations, as described in Section 6.2.1. We also include results for the existing

quadrature based method (labelled fq), as described in (Press et al., 2007, Eq. (4.1.12))

and which was the previous state of the art, as a benchmark.

The fastest converging method is our new Wiener-Hopf iterative method using the

sign-based Hilbert transform, achieving a rate of O(1/M2) . The other methods exhibited
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O(1/M) convergence, with the method using the sinc-based Hilbert transform with spec-

tral filtering achieving better absolute error performance vs. M but converging with CPU

time almost identically to the quadrature based method. The O(1/M) convergence for

the sinc-based Hilbert transform is consistent with the error bound described by Stenger

(1993) for a function with a first order discontinuity and the O(1/M2) convergence seen

for the sign-based method is consistent with that reported by Fusai et al. (2016).
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Figure 6.9: Error convergence of the numerical methods vs. M with the Gaussian test
case. Notice that our new FFT based method with a symmetrical sign function converges
twice as quickly as the existing quadrature based method or our new method with the
sinc-based Hilbert transform.
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Figure 6.10: Error convergence of the numerical methods vs. CPU time with the Gaussian
test case. Notice that the new method with a symmetrical sign function has the best
performance.

6.2.3 Results for Cauchy and exponential test cases

Figures 6.11–6.14 show that the results for the Cauchy and exponential test cases are

consistent with those for the Gaussian test case; the use of the sinc-based Hilbert transform

results in an overshoot at the function discontinuities and the symmetrical sign function
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results in a spot error at function discontinuities. We also notice that the quadrature

method has a spot error at the discontinuity but this effects a smaller range of x than for

our new numerical methods. The reason for this smaller range is that the state space for

Fourier-based methods need to be truncated at ± ≥ 4(b−a) in order to avoid wrap-round

effects. In contrast, the range of x for the quadrature method need only be truncated at

the integration limits a and b.
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Figure 6.11: Numerical and analytical f(x) with the exponential test case. Notice that
the results are consistent with the Gaussian test case.
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Figure 6.12: Numerical and analytical f(x) with the exponential test case focusing on the
first discontinuity. Notice that the results are consistent with the Gaussian test case.

We also measured the error convergence with the Cauchy and exponential test cases and

the results are shown in Figures 6.15–6.18. These confirm the findings with the Gaussian

test case in Section 6.1.3 which showed that the best performing method is the new iterative

solution to the Wiener-Hopf equation with the Hilbert transform implemented using the

FFT with the symmetrical sign function.
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Figure 6.13: Numerical and analytical f(x) with the Cauchy test case. Notice that the
results are consistent with the Gaussian and exponential test cases.
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Figure 6.14: Numerical and analytical f(x) with the Cauchy test case focusing on the first
discontinuity. Notice that the results are consistent with the Gaussian and exponential
test cases.
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Figure 6.15: Error convergence of the numerical methods vs. M with the Cauchy test case.
Notice that the results are consistent with the Gaussian test case.
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Figure 6.16: Error convergence of the numerical methods vs. CPU time with the Cauchy
test case. Notice that the results are consistent with the Gaussian test case.
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Figure 6.17: Error convergence of the numerical methods vs. M with the exponential test
case. Notice that the results are consistent with the Gaussian and Cauchy test cases.
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Figure 6.18: Error convergence of the numerical methods vs. CPU time with the exponen-
tial test case. Notice that the results are consistent with the Gaussian and Cauchy test
cases.
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6.3 Conclusion

We implemented three methods for solving general Fredholm equations of the second kind

and assessed their performance for three test cases with analytical solutions. These meth-

ods comprised of the 4th order quadrature method from (Press et al., 2007, Eq. (4.1.12))

and two iterative methods based on the Wiener-Hopf method with a fixed-point algorithm

to solve the coupled equations, as used to obtain the Spitzer identities in Chapters 3–5.

The latter two methods differed only in their implementation of the Hilbert transform,

with the first using the sinc-based fast Hilbert transform as used so successfully in the

application of option pricing and the second using the combination of the FFT and the

sign function as described by Rino (1970) and Henery (1974).

The difference in requirements between the application of option pricing and the gen-

eral solution of the Fredholm equation mean that the method using the sinc-based fast

Hilbert transform is not particularly optimal, having O(1/M) convergence and high er-

rors close to the function discontinuity. However, the iterative Wiener-Hopf method using

the sign-based Hilbert transform performed much better than both the method with the

sinc-based Hilbert transform and the existing quadrature method, having O(1/M2) con-

vergence and therefore represents a new state of the art in terms of error convergence.

The only other aspect to consider with the Wiener-Hopf method using the sign-FFT

Hilbert transform is the width of the peak error at a discontinuity of f(x) as shown in

Figures 6.12 and 6.14. The peak error at the discontinuity is wider for the Wiener-Hopf

method than for the quadrature method due to the requirement for a wider range of x to

overcome the wrap-round effects which we encounter with Fourier-based methods. There-

fore if we require an accurate answer very close to a discontinuity the quadrature method

could be considered. However, due to the excellent CPU time vs. error performance shown

in Figures 6.10, 6.16 and 6.18 we would instead recommend using the Wiener-Hopf method

with the sign-based Hilbert transform with a larger grid size to take account of the required

accuracy close to the discontinuity
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Chapter 7

Conclusions

The work in this thesis concerns the problem of pricing path-dependent options with

general Lévy processes. To achieve this, we address outstanding issues for the calculation

of fluctuation identities using a numerical implementation of the Wiener-Hopf technique to

calculate the Spitzer identities. Despite using the problem of option pricing as a motivating

example, the work has a much wider application beyond this. The Spitzer identities have

applications in physical, biological, social, actuarial and other sciences and there is also

the wider application of the general numerical method for solving the Wiener-Hopf and

Fredholm equations.

There is a large body of existing literature concerning the numerical pricing of exotic

options, but most particularly we build on the work by Feng and Linetsky (2008), Feng

and Linetsky (2008), Green (2009), Green et al. (2010), Fusai et al. (2006) and Fusai et al.

(2016). Specifically, the work described in Chapters 3 and 4 addressed outstanding issues

for the numerical implementation of the Wiener-Hopf technique to calculate the Spitzer

identities using the problem of barrier option pricing as a motivating example. The work

in Chapter 5 extended the pricing techniques to other exotic options, namely α-quantile

and perpetual Bermudan and American options and for Chapter 6 we looked at applying

the numerical techniques to the general problem of solving the Wiener-Hopf and Fredholm

equations. The original contributions to the literature are described in more detail in the

following paragraphs.

Chapter 3. We investigated the polynomial error performance of the methods for pric-

ing discrete barrier options described by Fusai et al. (2016), and produced new insights

into the use of the fast Hilbert transform within an iterative fixed-point algorithm. This,

in turn, lead to a rigorous examination of the error convergence of the scheme by Fusai

et al. (2016) and the design of a new scheme using spectral filters with exponential error

convergence for general Lévy processes. This is the first exponentially convergence pric-

ing scheme for double-barrier options with general Lévy processes which has a CPU time
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independent of the number of monitoring dates. Moreover, although spectral filters have

been used with general Fourier transform based pricing methods starting with Ruijter

et al. (2015), to our knowledge this is the first time spectral filters have been used with

the sinc-based fast Hilbert transform from Stenger (1993).

Chapter 4. We adapted the method for discretely monitored barrier options to create,

to the best of our knowledge, the first method for the valuation of continuously moni-

tored barrier options which can be used for general Lévy process and is based neither on

approximating the characteristic exponent nor approximating the price with continuous

monitoring with the price for discrete monitoring. The error performance was investigated

and we developed highly accurate error bounds for the pricing procedure which were well

matched by empirical results for the error convergence.

Chapter 5. We extended the pricing methods for discrete and continuously monitored

barrier options to α-quantile hindsight options and perpetual Bermudan and American

options. For discretely monitored α-quantile options, we combined the Spitzer identities

and spectral filtering to present the first pricing method with very fast (either exponential

or very high order polynomial) convergence and a CPU time independent of the number of

monitoring dates. The work on perpetual Bermudan and American options predominantly

contributes to the literature in two ways. Firstly we provide an implementation of the

residue method described in Green (2009). We also present a completely new method for

pricing perpetual options based on the Spitzer identities which also included a novel and

efficient way to calculate the optimal exercise barrier. The success of the implementation

of Green’s method for perpetual Bermudan options is a useful addition to the literature

validating, as it does, the elegant mathematics of Green’s method. However of more value

in practice is the new method we developed based on pricing a put option which not only

showed excellent error convergence for perpetual Bermudan options but also retained very

good error convergence when the technique was converted to the continuous monitoring

case, i.e. perpetual American options.

Chapter 6. The final contribution to the literature is the use of the numerical technique

that was developed for the Spitzer identities to solve general Wiener-Hopf and Fredholm

equations. We found closed-form solutions to allow the testing of the method and com-

pared the technique under various conditions. Although the results show that general

technique does not converge as quickly as the pricing techniques, for reasons which are

discussed in more detail in Chapter 7, the new technique is still state of the art, converging

with M twice as fast as the existing quadrature method.

The Wiener-Hopf methods which were developed by Green (2009); Green et al. (2010)

and Fusai et al. (2016) have been successfully extended to other types of contract and
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refined with the use of spectral filtering. Further developments may be possible with local

stochastic volatility (LSV) models. The pricing scheme with LSV models would require

either the factorisation of a N ×N Wiener-Hopf matrix, where N is the number of points

in the volatility grid, or the extension of the fixed-point algorithm. As the current tech-

niques are designed to work with general Lévy processes the techniques can be extended to

products with underlying assets characterised by diverse probability distributions. Specif-

ically, it would be useful to apply these techniques to options on crypto-currencies whose

probability distributions are very different from the ones used to characterise traditional

financial markets. The novelty of the crypto-currency market, especially in terms of op-

tions contracts, means that there is a requirement to develop robust pricing methods for

these products.

In addition to the extension of the techniques, there are areas where the methods

could benefit from small refinements. The Abate and Whitt inverse z-transform works

well down to an error floor of 10−12 which is, of course, more than sufficient for practical

use. However, using an inverse z-transform with a lower noise floor would be useful for the

theoretical understanding of the techniques, especially for α-quantile options where it is

currently impossible to tell if the convergence is exponential or very high order polynomial.

For the continuously monitored methods, we have comprehensively shown that the noise

floor of the inverse Laplace transform does not limit the error of the numerical methods

which are dominated by the convergence of the factorisation step. However it may be

possible to use a Laplace transform which requires fewer calculations and thus reduces the

computation time for a given error.
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Appendix A

Process and contract parameters

We list the process and contract parameters for the numerical experiments carried out for

this thesis.

A.1 Discretely monitored barrier options

Table A.1 contains all the parameters of the numerical experiments for discretely moni-

tored barrier options, presented in Chapter 3.

Description Symbol Value

Option parameters

Maturity T 1 year
Initial spot price S0 1
Strike K 1.1
Upper barrier (double-barrier) U 1.15
Upper barrier (down-and-out) U +∞
Lower barrier L 0.85
Risk-free rate r 0.05
Dividend rate q 0.02

Model Ψ(ξ, t) Symbol Value

NIG e
−tδ

(√
α2−(β+iξ)2+

√
α2−β2

) α 15
β -5
δ 0.5

Kou e
−t
(
σ2ξ2

2
−λ
(

(1−p)η2
η2+iξ

+
pη1
η1−iξ

−1
))

p 0.3
λ 3
σ 0.1
η1 40
η2 12

VG (1− iνξθ + νσ2ξ2/2)−t/ν
θ 1

9

σ 1
3
√

3

ν 0.25

Table A.1: Parameters for the numerical tests and processes used; Ψ(ξ, t) is the charac-
teristic function of the process that models the log return of the underlying asset.
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A.2 Continuously monitored barrier options

Table A.2 contains all the parameters of the numerical experiments for continuously mon-

itored barrier options, presented in Chapter 4.

Description Symbol Value

Option parameters

Maturity T 1
Initial spot price S0 1
Strike K 1.1
Upper barrier (double barrier) U 1.40
Lower barrier (double barrier) L 0.60
Upper barrier (down-and-out) U +∞
Lower barrier (down-and-out) L 0.80
Risk-free interest rate r 0.05
Dividend rate q 0.02

Model Ψ(ξ, t) Symbol Value

NIG e
−t
(√

α2−(β+iξ)2+
√
α2−β2

) α 15
β -5
δ 0.5

Kou e
−t
(
σ2ξ2

2
−λ
(

(1−p)η2
η2+iξ

+
pη1
η1−iξ

−1
))

p 0.3
λ 3
σ 0.1
η1 40
η2 12

VG (1− iνξθ + νσ2ξ2/2)−t/ν
θ 1

9

σ 1
3
√

3

ν 0.25

Table A.2: Parameters for the numerical tests and processes used; Ψ(ξ, t) is the charac-
teristic function of the process that models the log return of the underlying asset.
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A.3. ALPHA QUANTILE AND EARLY EXERCISE OPTIONS

A.3 Alpha quantile and early exercise options

Table A.3 contains the process parameters used for the α-quantile and early exercise

options described in Chapter 5.

Model Ψ(ξ, t) Symbol Value

Gaussian
e
−t
(
iµξ−σ

2ξ2

2

) µ 0
σ 0.4

VG (1− iνξθ + νσ2ξ2/2)−t/ν
θ 1

9

σ 1
3
√

3

ν 0.25

Merton jump-diffusion e
−t
(

1
2
σ2ξ2+λ(eiαmξ−

1
2 δ

2ξ2−1)

) σ 0.1

λ 3

αm -0.05

δ 0.086

Table A.3: Parameters for the numerical tests and processes used; Ψ(ξ, t) is the charac-
teristic function of the process that models the log return of the underlying asset.
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Appendix B

Results with varying parameters

We provide additional results with varying values of the damping factor αd and the process

parameters to demonstrate that the performance of our pricing methods is robust with

respect to changes in these values.

B.1 Discretely monitored Barrier options with filter-

ing

These additional results relate to the pricing method for discretely monitored barrier

options described in Chapter 4

B.1.1 Variation of the damping parameter αd

The method of selecting the damping parameter αd originates in the paper by Feng and

Linetsky (2008), who specify an acceptable range for αd based on the process parameters.

In Chapter 3, and in line with Fusai et al. (2016), we selected a value of αd at the centre of

this range. For these additional tests we selected a number of values within the calculated

accepted range for αd. We can see from Figures B.1 and B.2 that the performance of the

method is very robust against the variation of this parameter. It is important to note that

the selection of αd is done automatically based on the calculations by Feng and Linetsky

(2008) and does not need to be manually tuned in order to obtain a good performance.

B.1.2 Variation of the process paramters

We tested the method with the NIG and Kou processes using four different parameter

sets shown in Table B.1. We carried out all tests with 52 monitoring dates as the effect of

varying the number of dates is covered in the results in Chaper 3. The results are shown in

Figures B.3 and B.4 and demonstrate that the error convergence varies very little between

the different parameter sets.
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Figure B.1: Results for the pricing error convergence with CPU time for the NIG process
with varying values of the damping parameter αd.
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Figure B.2: Results for the pricing error convergence with CPU time for the Kou process
with varying values of the damping parameter αd.
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B.1. DISCRETELY MONITORED BARRIER OPTIONS WITH FILTERING

Model Ψ(ξ, t) Symbol Set 1 Set 2 Set 3 Set 4

NIG e
−tδ

(√
α2−(β+iξ)2+

√
α2−β2

) α 15 20 18 15
β -5 -8 -12 -8
δ 0.5 0.3 0.4 0.3

Kou e
−t
(
σ2ξ2

2
−λ
(

(1−p)η2
η2+iξ

+
pη1
η1−iξ

−1
))

p 0.5 0.3 0.3 0.5
λ 3 3 7 7
σ 0.2 0.15 0.2 0.15
η1 50 25 50 50
η2 50 25 50 50

Table B.1: Parameter sets for the underlying processes; Ψ(ξ, t) is the characteristic func-
tion of the process that models the log return of the underlying asset.
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Figure B.3: Results for the pricing error convergence with CPU time for the NIG process
with the parameter sets described in Table B.1.
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APPENDIX B. RESULTS WITH VARYING PARAMETERS
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Figure B.4: Results for the pricing error convergence with CPU time for the Kou process
with the parameter sets described in Table B.1.

B.2 Continuously monitored Barrier options

These additional results relate to the pricing method for continuously monitored barrier

options described in Chapter 4

B.2.1 Variation of the damping parameter αd on the results for

double-barrier options

As for discretely monitored barrier options, we set αd as the centre of the range specified

by Feng and Linetsky (2008). These additional results show that our method is robust

with respect to the choice of the value of αd within a wide range. This can be seen from

Figures B.5–B.7, which should be compared with Figure 4.10 in Chapter 4.

162



B.2. CONTINUOUSLY MONITORED BARRIER OPTIONS
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Figure B.5: Results for the error convergence versus CPU time with double barriers and
the NIG process varying the value of the damping parameter αd.
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Figure B.6: Results for the error convergence versus CPU time with double barriers and
the VG process varying the value of the damping parameter αd.
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Figure B.7: Results for the error convergence versus CPU time with double barriers and
the Kou process varying the value of the damping parameter αd.
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