UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Li-Ion Batteries

Zou, R; Liu, Q; He, G; Yuen, MF; Xu, K; Hu, J; Parkin, IP; ... Zhang, W; + view all (2017) Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Li-Ion Batteries. Advanced Energy Materials , 7 (2) , Article 1601363. 10.1002/aenm.201601363. Green open access

[thumbnail of He 2528_template.pdf]
Preview
Text
He 2528_template.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Nanostructured V2O5 is emerging as a new cathode material for lithium ion batteries for its distinctly high theoretic capacity over the current commercial cathodes. The main challenges associated with nanostructured V2O5 cathodes are structural degradation, instability of the solid‐electrolyte interface layer, and poor electron conductance, which lead to low capacity and rapid decay of cyclic stability. Here, a novel composite structure of V2O5 nanoparticles encapsulated in 3D networked porous carbon matrix coated on carbon fibers (V2O5/3DC‐CFs) is reported that effectively addresses the mentioned problems. Remarkably, the V2O5/3DC‐CF electrode exhibits excellent overall lithium‐storage performance, including high Coulombic efficiency, excellent specific capacity, outstanding cycling stability and rate property. A reversible capacity of ≈183 mA h g−1 is obtained at a high current density of 10 C, and the battery retains 185 mA h g−1 after 5000 cycles, which shows the best cycling stability reported to date among all reported cathodes of lithium ion batteries as per the knowledge. The outstanding overall properties of the V2O5/3DC‐CF composite make it a promising cathode material of lithium ion batteries for the power‐intensive energy storage applications.

Type: Article
Title: Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Li-Ion Batteries
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/aenm.201601363
Publisher version: https://doi.org/10.1002/aenm.201601363
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Physical Sciences, Technology, Chemistry, Physical, Energy & Fuels, Materials Science, Multidisciplinary, Physics, Applied, Physics, Condensed Matter, Chemistry, Materials Science, Physics, 3D networked porous carbon matrix, cathodes, cycling stability, solid-electrolyte interface, V2O5 nanoparticles, VANADIUM-OXIDE, ULTRALONG-LIFE, LITHIUM BATTERIES, PERFORMANCE, ANODES, ELECTRODES, INTERCALATION, NANOWIRES, SILICON, STORAGE
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10056352
Downloads since deposit
212Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item