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Abstract. Gravity-induced non-Gaussianity can provide important clues to Modified Grav-
ity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum

(IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the
IB, we include redshift-space distortions to study a class of (parametrised) MG theories that
include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions
from redshift-space distortions are derived in a transparent manner, and squeezed contri-
butions from these terms are derived separately. Results are obtained using the Zel’dovich
Approximation (ZA). Results are also presented for projected surveys (2D). We use the
Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for col-
lapsed objects that can readily be extended to peak-theory based approaches. The cumulant

correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed con-
figurations of higher order correlation functions. We generalise the concept of CCs to halos
of different masses. We also introduce a generating function based approach to analyse more
general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum,
or the kurt-spctra are discussed in this context. The results are relevant for the study of the
Minkowski Functionals (MF) of collapsed tracers in redshift-space.
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1 Introduction

Ongoing and recently completed CMB experiments Planck1, ACT2, SPT3. have provided us
with a standard cosmological model. However, many questions regarding the nature of the
dark matter or dark energy or, equivalently, possible modification of General Relativity (GR)
remain unanswered.

While, a finely tuned cosmological constant can explain the accelerated expansion of
the Universe [1, 2], modifying the laws of gravity remains another possibility [3, 4]. The
rules of gravity are highly constrained at solar system [5], as well as, at astrophysical scales
[6]. However at cosmological scales modifications of gravity are poorly constrained. The
background cosmological evolution in MG theories can be difficult to distinguish from that
in many dark energy scenarios. Evolution of perturbations at low redshift can however
provide a useful diagnostic to differentiate between these two scenarios.

Large-scale structure (LSS) surveys constrain cosmology with ever higher precision (e.g.
[7] and references therein). Over the past decade or so there has been a major progress in
mapping the galaxy distribution using spectroscopic as well as photometric redshifts (BOSS4

[8] Wiggle5 [9] DES6 [10] EUCLID7 [11]). The resulting maps and their analysis have al-
ready revolutionised cosmology by putting the most stringent constraints on the growth of
structures as well as expansion history of the Universe.

1Planck: http://www.cosmos.esa.int/web/planck/
2ACT: http://www.physics.princeton.edu/act/
3SPT: http://pole.uchicago.edu/
4Baryon Oscillator Spectroscopic Survey: http://www.sdss3.org/surveys/boss.php
5Dark Energy Survey : http://wigglez.swin.edu.au/
6Dark Energy Survey: http://www.darkenergysurvey.org/
7EUCLID: http://www.euclid-ec.org/
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Traditionally, the two-point correlation function in real space, or, equivalently, the power
spectrum, has always been used to analyse the galaxy clustering [12]. Modelling the evo-
lution of the power spectrum in MG theories have done using many different extensions of
perturbative techniques at large scales and halo model prescriptions at small scale [13, 14].
Techniques based on resummation methods [15] coupled to an eikonal approximation have
also been developed [16]. Numerical simulations are often used to test and validate such
approaches [17–19].

The problem of estimation of the power spectrum from galaxy surveys has been dealt
with using a flat-sky approach as well as using an all-sky formalism. While most initial
estimations were performed in projection (2D)[20, 21] and an inversion technique was sub-
sequently employed to reconstruct the 3D power spectrum [22]; with the improvement in
data quality, the recent spectroscopic surveys allow data to be analysed in three dimensions
(3D) [23, 24]. However, measured galaxy power spectrum is a biased tracer of the underly-
ing matter power-spectrum and the degeneracy between the parameters describing growth,
normalisation and bias (denoted as f, σ8, b) can not be broken by power spectrum alone.

Gravity-induced higher order correlation functions or their Fourier representations, the
so called higher order polyspectra, can provide important clues to structure formation scenar-
ios by breaking the above-mentioned degeneracy (see Ref.[25] for a review) thus motivating
a flurry of recent activity in developing estimators for secondary non-Gaussianity. Due to
the rapid progress in large scale surveys, it is now possible to estimate the higher order cor-
relation functions [26]. Analytical modelling of evolution of bispectrum in MG theories is
more difficult [14]. Modelling clustering of galaxies involves several different but related steps
including modelling the dark matter clustering [15, 27–30] using e.g. semi-analytic prescrip-
tion. To relate the clustering of galaxies to clustering of underlying dark matter distribution
typically a well motivated biasing scheme is used that can reproduce the simulation results
[31–34]. In our study we will use the bias computed using the halo model based approach
of Ref.[35]. We also consider the approach described in Ref.[32]. Many recent studies have
recently focused on how to relate the real space clustering and the observed redshift-space
distribution of galaxies [36–38]. We will consider the impact of modifying gravity on the
squeezed configuration of galaxy bispectrum in redshift-space.

[[ Many authors have worked out in great detail the predictions for gravity induced
bispectrum in MG theories [39–44]. Indeed it can be argued that even in models where the
power spectrum deviates from the ΛCDM predictions, it is difficult to construct consistent
MG theories in which the bispectrum will show strong departure from the ΛCDM scenario or
display specific signature that can be used to rule them out. However, currently discovered
consistency relations may help to improve the situation. These hierarchy of consistency
relations can be used to constraint not only MG theories but also many scenarios with
primordial non-Gaussianity. The consistency relations can be used as a set of important null
test in ruling out any departure from GR (see e.g. [45] and references therein). The integrated
Bispectrum or IB (to be introduced later) is related to the bispectrum in its squeezed limit
and is thus directly linked to the lowest order consistency relation. By computing the IB
in MG theories in this paper we quantify the departure from GR in a transparent manner
beyond what can be achieved from a null test using the lowest order consistency relation.
We have chosen the γ models [39] for their simplicity and also due to the fact that the same
parametrization can be used to study few other important class of MG theories (e.g. the
results can be gneralised to cubic Galileon cosmologies [43] and Horndeski gravity theories
[44] in a straight forward manner.) ]]

– 2 –



The bispectrum represents the lowest order in non-Gaussinaity and is defined as a
function of three wave-vectors that describes a triangular configuration in the harmonic
domain. Estimation of the bispectrum for each possible triangular configuration from data is
far more demanding than the estimation of power spectrum in the presence of a complicated
survey geometry and anisotropic noise [46]. This has motivated the development of estimators
which are sensitive to collapsed configurations of the bispectrum. The cumulant correlators
(CCs) are a natural generalisation of the one-point cumulants. They represent higher order
correlation functions collapsed to two-points and provide an alternative route to the study of
higher order correlation hierarchy and are well studied in the literature in the perturbative
regime [47], as well as, in the highly nonlinear regime using the hierarchical ansatz (HA)
[48]. The Fourier representation of optimised lower order CCs i.e. the skew-spectrum (third
order)[49] and kurt-spectrum (fourth order) [50] were shown as an important form of data
compression in 2D as well as in 3D.

In recent years it has been realised that the measurements of the power spectrum in a
sub-volume of the survey is statistically correlated to the average density contrast in that
subvolume. This correlation of the position-dependent power spectrum and the average den-
sity contrast was recently used to define an estimator for the bispectrum (see Ref.[51] for a
complete list of references). Such an estimator is sensitive to the squeezed configuration of
the bispectrum. Mathematical structure of the CCs and how their Fourier representation is
related to the position-dependent power spectrum was underlined recently in Ref.[52]. The
primary aim of this paper is to extend the concept of IB to redshift-space for a class of
MG theories, as well as in projection (2D). Generalising Ref.[35] we also derive the CCs for
collapsed objects. We also employ the generating function formalism to relate the CCs of
collapsed objects to that of underlying mass distribution.

[[ Many different optimal as well as sub-optimal estimators have been designed to con-
starin gravity induced bispectrum: sub-optimal skew-spectrum and the skew-spectrum as-
sociated with Minkowski Functionals [53], optimised skew-spectrum [54] as well as the mul-
tipolar expansion [55]. The IB statistics is linked to the skew-spectrum estimator that was
introduced in Ref.[49] in the analysis of non-Gaussianity of Cosmic Microwave Background
(CMB). The skew-spectrum statistics has been extended in Ref.[53] for galaxy distributions
in 3D. More recently it has been extended in Ref.[54] to take into account redshift space
distrotion in an optimum way. While skew-spectrum statistics takes contribution from all
possible triangular configurations that represent the bispectrum the integrated bispectrum
is primarily sensitive to the squeezed configuration. However, the work presented here should
be seen in the context of recently introduced consistency relations which are only valid in
the squeezed limit. We also explain their relation with the existing CCs in many different
models of bias. ]]

This article is arranged as follows. In §2 we introduce the CCs for the collapsed objects
of halo model. We also show how the CCs of high density peaks can also be computed using
this approach. In §3 we recapitulate the recently introduced concept of integrated bispectrum
and trispectrum and compute these quantities for collapsed objects. Different models of non-
local bias are considered in §4. The effect of redshift space distortion is analysed in §5. The
specific γ models are briefly introduced in §6. The integrated bispectrum is introduced in
§7. The projected integrated bispectrum is presented in §8. Finally in §9 we summarize the
results and present our conclusions.
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Figure 1. The first three bias parameters b1, b2 and b3 are shown as a function of halo mass. The
bias parameters are defined in Eq.(2.29)-Eq.(2.31). We have used a ST (thick lines) and PS (thin
lines) mass function defined in Eq(2.26). The plots from left to right correspond respectively to z = 0,
z = 1 and z = 4.

2 Cumulant Correlators of Collapsed Objects

We will compute the cumulants and CCs for the halos following Ref.[56] and for peak Ref.[57]
and relate them to the underlying cumulants of density distribution. The density contrast
of halos at a comoving coordinate x will be denoted by δ(h)(x, a), and is related to the
underlying density contrast of matter distribution δ(x, a) through a generic local, nonlinear
and deterministic bias δ(h)(x, a) = b[δ(x, a)]. The results will be extended to the case of non-
local bias in §4; inclusion of stochastic bias can also be done in a straight-forward manner.
We will assume that the halo overdensity can be expanded in a Taylor series in terms of the
underlying density contrast δ:

δ(h)(x) ≡ b[δ(x)] =
∑

k

bk
k!

[δ(x)]k . (2.1)

The cumulants Sn and CCs Cpq for the underlying dark matter distribution are defined in
terms of the following expressions:

〈[δ(x, a)]p〉c = Sn〈[δ(x, a)]2〉p−1
c ; (2.2)

〈[δ(x1, a)]
p[δ(x2, a)]

q〉c = Cpq〈[δ(x, a)]2〉p+q−2
c 〈δ(x1, a)δ(x2, a)〉c. (2.3)

The corresponding cumulants S
(h)
n and CCs C

(h)
pq for halos are defined using similar expres-

sions:

〈[δ(h)(x, a)]p〉c = S
(h)
n 〈[δ(h)(x, a)]2〉p−1

c ; (2.4)

〈[δ(h)(x1, a)]
p[δ(h)(x2, a)]

q〉c = C
(h)
pq 〈[δ(h)(x, a)]2〉p+q−2

c 〈δ(h)(x1, a)δ
(h)(x2, a)〉c. (2.5)

Our aim here is to express the cumulants and CCs of halos in terms of their underlying
dark matter counterparts. We will use the generating function formalism developed in Ref.[58]
to construct the CCs of the biased tracers (halos or peaks) and express them in terms of the
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CCs of the underlying mass distribution. The results are relevant for perturbative regime.
The n-th order of perturbative expansion of an arbitrary field F (x, a) defined as F (n)(x, a)
with respect to δ(x, a) is defined as follows [58]:

〈F (n)〉c =
∫

〈F (n)(x, a)δ(1)(x1, a) · · · δ(1)(xn, a)〉c d3x d3x1 · · · d3xn
(
∫

〈δ(1)(x, a) δ(1)(x′, a)〉d3x d3x′)n
. (2.6)

Here δ(1)(x, a) is the linear approximation for δ(x, a), and only connected diagrams are
taken into account, which explains the subscript c. Throughout we will assume that the
initial density field δ is Gaussian, though it is possible to incorporate non-Gaussian initial
conditions.

For two arbitrary fields A(x) and B(x), we have the following properties for the gener-
ating functions [58]:

GA+B(τ) = GA(τ) + GB(τ); GAB(τ) = GA(τ)GB(τ); (2.7)

G∂iA ∂iB(τ) = 0; G∂i∂jA ∂j∂iB(τ) =
1

3
G△A△B(τ). (2.8)

Here τ represents the conformal time. The generating function GF (τ) for the vertices for any
random field F (x, a) is given by:

GF (τ) =
∞
∑

n=1

〈F (n)〉c
n!

τn. (2.9)

We will denote the generating function of underlying density by Gδ(τ) =
∑∞

n=1 [νn/n!] τ
n;

νn = 〈δ(n)〉c. Similarly, we will denote the corresponding function for the divergence of
velocity θ as: Gθ(τ) =

∑∞
n=1 [µn/n!] τ

n where µn = 〈θ(n)〉c. Similar expressions for halos will
be defined below and we will denote them with the superscript (h). Using the generating
function formalism of Ref.[58] which ensures that Gδq (τ) = [Gδ(τ)]q we can prove G(h)(τ) =
b[Gδ(τ)] as follows:

G(h)(τ) =
∞
∑

n=1

ν
(h)
n

n!
τn =

∞
∑

k

bk
k!
[G(τ)]k = b[G(τ)]. (2.10)

Using Eq.(2.10) the first few halo vertices ν
(h)
k can be expressed in terms of the underlying

vertices νk and the parameters bk as follows:

ν
(h)
1 = b1; (2.11)

ν
(h)
2 = (b2 + b1ν2); (2.12)

ν
(h)
3 = (b3 + 3b2ν2 + b1ν3); (2.13)

ν
(h)
4 = (b4 + 6b3ν2 + 3b2ν

2
2 + 4b2ν3 + b1ν4). (2.14)

At this stage the bias parameters bk are left completely arbitrary. However, we will use the
PS (ST) mass functions to compute these parameters. Results will be also valid for peaks
where the bias functions can be replaced with the bias functions for peaks beyond a threshold.

The cumulants S
(h)
n are defined in terms of the vertices ν

(h)
n [58, 59]:

S
(h)
3 = 3ν

(h)
2 ; (2.15)

S
(h)
4 = 4ν

(h)
3 + 12[ν

(h)
2 ]2; (2.16)

S
(h)
5 = 5ν

(h)
4 + 60[ν

(h)
2 ][ν

(h)
3 ] + 60[ν

(h)
2 ]3. (2.17)
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Figure 2. We plot the normalised cumulants S
(h)
3 and S

(h)
4 defined respectively in Eq.(2.35) and

Eq.(2.36) for halos as function of the bias of the halos b1 (defined in Eq.(2.29)). From left to right
the panels correspond respectively to redshifts z = 0, z = 1 and z = 4. The solid (dashed) lines

correspond to PS (ST) formalism. The halo cumulants S
(h)
n depend on underlying density cumulants

Sn Eq.(2.18)-Eq.(2.19). We have assumed a locally power-law power law with neff = −1.5 to evaluate
the parameter γ1.

In the perturbative regime following relations hold [58, 60]:

S3 =
34

7
+ γ1; (2.18)

S4 =
60712

1323
+

62

3
γ1 +

7

3
γ21 +

2

3
γ2. (2.19)

The CCs take the following form:

C
(h)
21 = 2ν

(h)
2 ; (2.20)

C
(h)
31 = 3ν

(h)
3 + 6ν

(h)
2 ; (2.21)

C
(h)
41 = 4ν

(h)
4 + 36[ν

(h)
2 ][ν

(h)
3 ] + 24[ν

(h)
2 ]3. (2.22)

The CCs satisfy a factorisation property in the large-separation limit [ξ12(|x1−x2|) < σ2(R0)]:

C
(h)
pq = C

(h)
p1 C

(h)
q1 . Here, σ

2(R0) is the variance of the smoothed density field, and ξ2(|x1 −x2|
represents the two-point correlation function. A tophat smoothing window with a radius R0

is assumed (to be introduced later in Eq.(2.28)). In the quasilinear regime with a tophat
smoothing window the CCs have the following expressions [47]:

C21 =
68

21
+
γ1
3
; (2.23)

C31 =
11710

441
+

61

7
γ1 +

2

3
γ31 +

γ2
3
. (2.24)

C41 = 353.1 + 205.1γ1 + 38.67γ21 + 2.33γ31 + 12.03γ2 + 2.22γ1γ2 − 0.22γ3 (2.25)

where γp = [dp log σ2(R0)/d(logR0)
p]. For a power-law power spectrum P (k) ∝ kneff , we

have γ1 = −(neff +3) and γp = 0 for p > 1. The perturbative results are valid at scales where
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σ2(R0) ≤ 1. Results based on hierarchical ansatz (HA) have been used in highly nonlinear
regime with limited success [61]. The generating function Gδ(τ) in the quasilinear regime can
be computed analytically using the Euler-Continuity-Poisson system. The effect of smoothing
can also be incorporated analytically in case of tophat window. For diagrammatic technique
based results on computation of CCs using HA see Ref.[62]. In recent years there has been
progress in deriving the cumulants using the large-deviation statistics Ref.[63].

Beyond the perturbative regime, due to its highly nonlinear nature there is no analytical
description of gravitational clustering. The halo model based semi-analytical approaches are
remarkably successful in predicting the distribution of mases and spatial clustering of halos
and the underlying dark matter distribution [65]. Two variants of halo models are more
popular than others. The Sheth-Tormen (ST) and Press-Schechter (PS) mass functions can
both be expressed using the following parametrization (see Ref.[65] for a review):

νf(ν) = A(p)[1 + (qν)−p]
qν

2π
exp (−qν/2) . (2.26)

The normalisation A(p) and ν are defined as follows:

A(p) =
[

1 + 2−pΓ(1/2 − p)/
√
p
]−1

; ν =
δ2sc(z)

σ2L(m)
;

δsc(z)

(1 + z)
≡ 3

5

3π

2

2/3

. (2.27)

For the PS mass function we have p = 0 and q = 1. The ST function corresponds to p = 0.3
and q = 0.75 (See Ref.[66, 67] for “W+” and “Mice” mass functions).

Here, σ2L(m) is the variance in the initial density fluctuation field when smoothed with
a tophat filter of scale R0 = (3m/4πρ̄)1/3 extrapolated to the present epoch using linear
theory; ρ̄ represents the comoving density of the background. For a smoothing radius R0 the
variance σ2L(m) is computed from the linear power spectrum PL(k) using a tophat window
WTH:

σ2L(m) ≡
∫

dk

k

k3PL(k)

2π2
|WTH(kR0)|2; WTH(x) =

3

x3
[sin(x)− x cos(x)] . (2.28)

In all halo models the clustering of halos are described using bias parameters bk(m, z)
that are functions of redshift of formation z1 and the mass of the halo m. The halo bias
parameters depend on parameters ak, which depend on the dynamics of the spherical collapse,
and parameters E′

k = Ek + ek (to be defined below) as follows:

b1(m, z1) = 1 + E′
1; (2.29)

b2(m, z1) = 2(1 + a2)E
′
1 + E′

2; (2.30)

b3(m, z1) = 6(a2 + a3)E
′
1 + 3(1 + 2a2)E

′
2 +E′

3. (2.31)

The ak parameters are given by the following series expansion in the density contrast δ
which describes the spherical collapse as a function of refshift z starting from an initial
density contrast δ0 [60]:

δ0
1 + z

=
∞
∑

k=0

akδ
k = δ − 17

21
δ2 +

341

567
δ3 − 55805

130977
δ4 + · · · (2.32)

The ek parameters are defined as follows [35]:

e1 =
qν − 1

δsc(z1)
; e2 =

qν

δsc(z1)

(

qν − 3

δsc(z1)

)

e3 =
qν

δsc(z1)

(

qν − 3

δsc(z1)

)2

. (2.33)
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Figure 3. We plot the normalised CCs C
(h)
21 and C

(h)
31 defined respectively in Eq.(2.38) and Eq.(2.39)

halos as function of the bias of the halos b1 (defined in Eq.(2.29)). From left to right the panels
correspond respectively to redshifts z = 0, z = 1 and z = 4. The solid (dashed) lines correspond to

the PS (ST) formalism. The halo cumulant correlators C
(h)
pq depend on underlying density cumulants

Cpq defined in Eq.(2.23)-Eq.(2.25). We have assumed a locally power-law power spectrum with a
slope neff = −1.5 to evaluate the parameter γ1.

The first few Ek parameters are listed below [35]:

E1 =
2p/δsc(z1)

(1 + (qν)p)
;

E2

E1
=

1 + 2p

δsc(z1)
+ 2e1;

E3

E1
=

4(p2 − 1) + 6pqν

δ2sc(z1)
+ 3e21. (2.34)

For the PS mass function p = 0, thus all Ek vanishes (also see [66] for related discussion
on non-locally biased tracers in both real and redshift spaces in the context of “Integrated

Perturbation Theory”). The cumulants of the halo distribution denoted as S
(h)
n can now

directly be related to the underlying cumulants Sn [64, 65]:

S
(h)
3 =

1

b1
(S3 + 3r2); (2.35)

S
(h)
4 =

1

b21
(S4 + 12r2S3 + 4r3 + 12r22); (2.36)

S
(h)
5 =

1

b31
(S5 + 20r2S4 + 15r2S

2
3 + (30r3 + 120r22)S3 + 5r4 + 60r3r2 + 60r32). (2.37)

We have introduced the notation rk(m) = bk(m)/b1(m). Normalised cumulants for the halos

S
(h)
n at a given order depend on all lower order cumulants of the underlying density field Sn.

The halo cumulants S
(h)
3 depends on z1 and m through the parameters rk.

For small halos, ν ≪ 1 identified at early times (z1 ≫ 1), b1 ≈ 1 and bk ≈ 0 for all

k > 1, thus S
(h)
n = Sn. For massive halos ν ≫ 1 identified at low redshift bk = bk1 for k > 1.

Thus in this limit, the halos are completely determined by the statistical properties of the
initial density field. Subsequent dynamics of gravitational clustering has no effect on their

clustering. For an initial Gaussian random field S
(h)
n = nn−2. Thus these objects follow a

lognormal distribution [68].
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The primary motivation in this section, however, is to derive the CCs for the halos and
relate them to the IB that will be discussed in the next section. The lower order halo CCs
take the following form:

C
(h)
21 =

1

b1
(C21 + 2r2); (2.38)

C
(h)
31 =

1

b21
(C31 +

7

2
r2C21 + 6r22 + 3r3). (2.39)

[[ To derive the above expressions in Eq.(2.38)-Eq.(2.39) we use Eq.(2.10) to express C
(h)
pq

in terms of νn parameters and the bias parameters bk. Next, we collect the relevant com-

binations of νn that gives Cpq to express C
(h)
pq in terms of Cpq and other terms that depend

on the relevant bias parameters. These expressions generalises their onepoint counterpart in
Eq.(2.35)-Eq.(2.37).]]

The expressions for underlying Cpq are given in Eq.(2.23)-Eq.(2.25). Notice that joint
estimation of C21 and S3 can be used to disentangle b1 and b2. Later we will see that the
CCs for halos and the IB for biased tracers share a similar mathematical structure.

For the peaks the bias parameters bk follow a similar structure [35]:

b1(ν) = 1 +
ν2 + g1

δ
; (2.40)

b2(ν) = 2(1 + a2)
ν2 + g1

δ
+

(ν

δ

)2
(

ν2 − 1 + 2g1 +
2g2
ν21

)

. (2.41)

For the definition of the parameters gk see Ref.[35]. The relevant CCs can be derived using
the expressions Eq.(2.38)-Eq.(2.39). For gk = −1 the results are identical to PS formalism.

Computation of mass functions in MG theories (e.g. in F(R) theories) have been at-
tempted using PS type approach and involve collapse of spherically symmetric perturbations
and can reproduce results from numerical simulations [69]. Extension of such results for bias
parameters computed in parametric MG theories will be presented elsewhere.

For early work on estimation of CCs from the APM galaxy survey see Ref.[20]. Possible
extensions of CCs beyond the two-point function is discussed in Ref.[48].

In Figure-1 the first three bias parameters b1, b2 and b3, defined in Eq.(2.29)-Eq.(2.31),
are shown as a function of halo massm. We have used the ST (thick lines) and PS (thin lines)
mass functions defined in Eq.(2.26). The plots from left to right correspond respectively to

redshifts z = 0, 1 and 4. In Figure-2 we plot the normalised cumulants S
(h)
3 and S

(h)
4 defined

in Eq.(2.35) and Eq.(2.36) for halos of different mass as a function of the halo bias b1. From
left to right, the panels correspond respectively to the redshifts z = 0, 1 and z = 4. The halo

cumulants S
(h)
n depend on the underlying density cumulants Sn Eq.(2.15). We have assumed

a locally power-law power law with neff = −1.5 to evaluate the γ1 parameter. We plot the

normalised CCs C
(h)
21 and C

(h)
31 defined in Eq.(2.38) and Eq.(2.39) for halos as a function of

the bias of the halos b1 in Figure-3. In addition to the bias parameters, the halo cumulant

correlators C
(h)
pq depend on underlying density cumulants Cpq Eq.(2.23)-Eq.(2.25) We have

used neff = −1.5 to evaluate the γ1 parameter. [[ The SN and Cpq parameters are not sensitive
to the cosmological parameters. We have used the cosmological parameters from the 2015
Planck data release [70]. ]]
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Figure 4. IB of collapsed objects are plotted as a function the wave number k for objects with mass
1011M⊙, 10

12M⊙, 10
13M⊙ and 1014M⊙. The panels from left to right correspond to z = 0, z = 1 and

z = 4 respectively. We use the expression in Eq.(3.5). The bias parameters bk(m) were computed
using the ST mass function Eq.(2.29)-Eq.(2.31). We use halo model based approach to compute the
power spectrum.

3 Integrated Bispectrum for Biased Tracers in Real Space

The coupling of large and small scale density fluctuations is captured at the lowest order by
the bispectrum in its squeezed limit. The bispctrum is described as a triangular configuration
of three wave vectors. In the squeezed limit on of the wave number is much smaller than
the other two k1 ≪ k2 ≈ k3. In this limit the bispectrum is effectively collapsed to a power
spectrum and can be estimated by cross-correlating local density contrast δ and estimates
of local power spectrum Pδ(k) from survey subvolume. Such cross-correlation effectively by-
passes many complications involved in estimation of the bispectrum (see Ref.[52] for relevant
discussion and a more complete list of references). We will derive the squeezed limit of the
halo model predicted bispectrum. Later we will extend the discussion to redshift-space in §5.

The power spectrum Ph(k) and bispectrum Bh(k1,k2,k3) for the biased tracers are
defined as:

〈δh(k1)δh(k2)〉c = (2π)3δ3D (k1 + k2)Ph(k1); (3.1)

〈δh(k1)δh(k2)δh(k3)〉c = (2π)3δ3D(k1 + k2 + k3)Bh(k1,k2,k3). (3.2)

Here δ3D represents 3D Dirac delta function and enforces translational invariance in real
space (equivalently momentum conservation in Fourier domain). Using the bias parameters
predicted by the halo model Eq.(2.1), the power spectrum and bispectrum of halos of a given
mass can be expressed at tree level in terms of the underlying power and bispectrum [65]:

Ph(k) = b21(m)Pδ(k) (3.3)

Bh(k1,k2,k3) = b31(m)Bδ(k1,k2,k3) + b2(m)b21(m)[Pδ(k1)Pδ(k2) + cyc.perm.] (3.4)

We have suppressed the redshift z dependence. The expressions for bk are defined in Eq.(2.29)-
Eq.(2.31) for the halo model. The peak theory based bias functions are given in Eq.(2.40)-
Eq.(2.41). The above expression can be generalised to bispectrum of three different types of
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Figure 5. Same as Figure-4 but for the PS mass function.

collapsed objects having different mass in halo model or peak height in peak theory. It can
be shown that the integrated bispectrum for collapsed objects has the following expression:

lim
q1,q3→0

Bh(k− qa,−k+ qa + qb,−qb)

sq
=

1

b1(m)

[

68

21
− d ln k3Pδ(k)

d ln k
+ 2 r2(m)

]

Ph(k)Ph(qb). (3.5)

Here “sq” denotes the squeezed limit in which the bispectrum is being evaluated. For more
discussion on parametrization and derivation of the squeezed limit in Eq.(3.5) see Ref.[52].
Notice the formal similarity of the expression in Eq.(3.5) and that in Eq.(2.23). The ex-
pression in Eq.(3.5) consists of two different parts. The first contribution comes from the
underlying mass distribution with an additional multiplicative factor that depends on linear
order bias b1(m). The second contribution has a hierarchical nature which depends on the
second order bias coefficient b2(m). For b1 = 1 and r2 = 0 the expression reduces to that for
underlying mass distribution, as expected.

[[ Generalisation of the Eq.(3.3)-Eq.(3.4) for three different halo population (character-
sied by different masses) is possible and the final expression takes the following form:

lim
q1,q3→0

Bh(k− qa,−k+ qa + qb,−qb | m1,m2,m3)

sq
=

1

b1(m3)

[

68

21
− d ln k3Pδ(k)

d ln k
+ r2(m1) + r2(m2)

]

Ph(k|m1,m2)Ph(q3|m3). (3.6)

We have used the follwoing expressions for the cross-spectra and mixed bispectrum above:

〈δh(k1|m1)δh(k2|m2)〉c = (2π)3δ3D (k1 + k2)Ph(k1|m1,m2); (3.7)

〈δh(k1|m1)δh(k2|m2)δh(k3|m3)〉c = (2π)3δ3D(k1 + k2 + k3)Bh(k1,k2,k3|m1,m2,m2).

(3.8)

Their expressions interms of halo parameters generalise Eq.(3.3)- Eq.(3.4) derived before:

Bh(k1,k2,k3|m1,m2,m3) = b1(m1)b1(m2)b1(m3)Bδ(k1,k2,k3)

+ [b1(m1)b1(m2)b2(m3)Pδ(k1)Pδ(k2) + cyc.perm.] (3.9)

Ph(k|m1,m2) = b1(m1)b1(m2)Pδ(k); Ph(q3|m3) = b21(m3)Pδ(k). (3.10)
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Thus, Ph(k|m1,m2) is the cross-spectra of two different halo populations. The expression is
also valid when the bias functions are evaluated at different redshifts. ]]

In Figure-4 and Figure-5 we display the result of numerical computation of the IB as
a function of wavenumber k. The results in Figure-4 correspond to the ST model and the
ones in Figure-5 correspond to the PS model. The panels from left to right correspond to
respectively z = 0, 1 and z = 4. Collapsed objects with mass 1011M⊙, 10

12M⊙, 10
13M⊙ and

1014M⊙ are considered. The expression in Eq.(3.5) is used to compute the bias. The bias
parameters bk(m) were computed using the ST(PS) mass function and Eq.(2.29)-Eq.(2.31).

4 Beyond the halo model: Non-local Eulerian bias

The need for more generic biasing model beyond what is predicted by halo model was re-
cently investigated in [32]. It was argued that effect of redshift-space distortions aimed at
constraining dark energy or MG theories or neutrino mass will require a more rigorous ap-
proach beyond the halo model as the signatures they leave on the power spectrum are less
distinct than the more pronounced Baryonic Acoustic Osscilations (BAO) signatures. Modi-
fication of local deterministic bias predicted by the halo model can be made to include terms
that are stochastic, non-local terms. In this section, we extend the generating function based
approach introduced in §2 to more general biasing schemes.

“Non-local Eulerian bias” was proposed in Ref.[32] and was recently investigated in
Ref.[26], semi-analytical modelling or a combination of both. It generalises the deterministic
local halo bias presented in Eq.(2.1):

δh = bδδ +
1

2!
bδ2(δ

2 − 〈δ2〉) + 1

2!
bs2

(

s2 − 〈s2〉
)

+
1

3!
bδ3δ

3 +
1

2!
bδs2δs

2 + bψψ + bstst+
1

3!
bs3s

3 + · · · . (4.1)

The notations introduced in Eq.(4.1) are defined below:

sij(x) ≡ ∂i∂jΦ(x)−
1

3
δKijδ(x); △Φ = δ; (4.2)

sij ≡ γijδ(x); tij(x) ≡ γijη(x); η = θ(x)− δ(x); (4.3)

ψ(x) ≡ η(x)− 2

7
s2(x) +

4

21
δ2(x); γij =

[

∂i∂j∇−2 − 1

3
δij

]

. (4.4)

[[ This particular parametrization of non-local Eulerian bias can also be used in MG the-
ories by appropriate change in the bias parameters i.e. {bδ, bδ2 , bs2 , · · · } to study possible
degeneracy in MG theories and biasing schemes.]]

Here, Φ represents the gravitational field, s the tidal tensor, θ the divergence of velocity
and δKij denotes the Kronecker delta function. The difference variables η and t are only at
second order. The variable ψ is non-zero only at third order and thus do not contribute at the
level of bispectrum. By construction, the tensors s and t are traceless. We have introduced
the following short-hand notations above :

s2(x) ≡ sij(x)sij(x); s3(x) ≡ sij(x)sjk(x)ski(x); st ≡ sij(x)tji(x). (4.5)

Summation over the repeated indices is assumed.
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The parameters bδ, bδ2 , bs2 , · · · will be left arbitrary. In this section we will show that
such generic biasing scheme can also be handled using the generating function approach
introduced in §2. We will also compute the IB for such a biasing scheme.

Gravitational collapse introduces non-locality and non-linearity. The above model in-
corporates both non-linear term involving δ2(x) and the non-local s2(x) ≡ sij(x)s

ij(x) terms
(s(x) represents the tidal tensor defined in Eq.(4.2) above)[32]. The presence of terms 〈δ2〉
and 〈s2〉 ensures 〈δh〉 = 0. These term contribute to power spectrum at one-loop level but
make tree-level contributions to the bispectrum and hence need to be included even when
analysing large scale data using perturbative results.

Using the properties of the generating function listed in Eq.(2.7) we can relate the
generating function Gδh of galaxies to generating functions Gδ,Gs, · · · :

Gδh = bδGδ +
1

2!
bδ2G2

δ +
1

2!
bs2Gs2

+
1

3!
bδ3G3

δ +
1

2!
bδs2GδGs2 + bψGψ +

1

3
bstGst +

1

3!
bs3Gs3 + · · · . (4.6)

Taylor expanding Gδh can provide us the relations that will generalise Eq.(2.11)-Eq.(2.14) to
arbitrary order.

Using Eq.(4.2)-Eq.(4.4) various generating functions that appear in Eq.(4.6) can be
expressed in terms of the generating functions Gδ and Gθ.

Gs2(τ) = 0; G△Φ(τ) = Gδ(τ); Gη(τ) = Gδ(τ)− Gθ(τ); Gψ(τ) = Gη −
4

21
G2
δ . (4.7)

Thus, Gh depends only on the bias coefficients and the generating functions Gδ,Gθ. This
implies that the halo moments, at all order, in such biasing models, can be expressed in
terms of the δ and θ moments. Indeed, Gs2(τ) = 0 implies the Eq.(2.38) derived for halo
models, using a local biasing scheme in Eulerian space, remains unchanged. Similar results
will hold for the skewness paramter Eq.(2.35). However the power spectrum will change due
to loop-level corrections [71].

Assuming galaxy bias to be local in Lagrangian space it is possible to express the non-
local bias term in terms of the linear bias e.g. bs2 = −4/7(bδ − 1) [72, 73]. Similar results
exist relating e.g bδ3 and bδ [74]. The bispectrum depends only on the parameters bδ, bδ2 and
bs2 at the tree-level. In recent studies the second order bias parameter bδ2 was found to be
sensitive to the truncation effect due to the presence of higher order terms. In many studies,
it is also considered to be a nuisance parameter [75].

With this replacement in Eq.(2.11)-Eq.(2.14), the resulting ν s can be used in Eq.(2.15)-
Eq.(2.17) to compute the Sn parameters in this model. For CCs the relevant equations are
Eq.(2.38)-Eq.(2.39).

Next, to compute the IB we use the following model of the bispectrum [26]:

Ph(k) = b2δP (k); (4.8)

Bh(k1,k2,k3) = b3δBδ(k1,k2,k3) +

b2δ [bδ2Pδ(k1)Pδ(k2) + bs2Pδ(k1)Pδ(k2)S2(k1,k2) + cyc.perm.] ; (4.9)

S2(k1,k2) ≡
(k1 · k2)

2

(k1k2)2
− 1

3
. (4.10)

Here Pδ(k1) and Bδ(k1,k2,k3) are matter power spectrum and bispectrum respectively while
S2(k1,k2) represents the kernel that is used to express the Fourier transform of s2(x) defined
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in Eq.(4.5):

s2(k) =

∫

d3k′

(2π)3
S2(k

′,k− k′)δ(k′)δ(k − k′). (4.11)

It can be shown that in the squeezed limit S2(k1,k2) vanishes and the final results are
independent of bs2 :

lim
qa,qb→0

Bh(k− qa,−k+ qa + qb,−qb)

sq
=

1

bδ

[(

68

21
− 1

3
(neff + 3)

)

+ 2
bδ2

bδ

]

Ph(k)Ph(qb). (4.12)

We have assumed a power spectrum that can be approximated as a power law Pδ(k) ∝
kneff . The bispectrum is assumed to be a tree-level bispectrum. Its performance beyond the
perturbative regime can substantially be improved by substituting the kernel F2(k1,k2) with
an effective kernel which depend on parameters that are calibrated using N-body simulation;
e.g. Ref.[75] introduced a set of nine parameters each for the kernels F2(k1,k2) and G2(k1,k2)
that defines the bispectrum of δ(x, a) and θ(x, a) respectively (to be defined later in §5 in
Eq.(5.2)).

5 The Bispectrum and Redshift-Space Distortion

Many authors have contributed to the development of the theory galaxy bispectrum [76–81]
and its estimation from survey data [82–87].

Using the Eulerian perturbation theory (EPT), the density contrast δ(x, τ) and the di-
vergence of velocity θ(x, τ) are expressed as a sum of perturbative terms δ(x, τ) =

∑

δ(n)(x, τ)
and θ(x, τ) =

∑

θ(n)(x, τ). In our notation v = dx/dτ is the peculiar velocity in comoving
coordiantes x w.r.t. conformal time τ and θ ≡ ∇ · v is the comoving velocity divergence. In
the Fourier domain, the nth order perturbative expressions for the density contrast δ(n)(k, τ)
can be expressed in terms of convolution of kernel, Fn(k1, · · · ,kn) or Gn(k1, · · · ,kn), and the
linear density contrast δ(1)(ki) (see Ref.[25] for detailed derivations and related discussions):

δ(k, τ) =

∞
∑

n=1

Dn
+(τ) [δD]n

∫

d3k1 · · ·
∫

d3kn Fn(k1, · · · ,kn) δ(1)(k1) · · · δ(1)(kn). (5.1)

Similar expression holds for the Fourier transform of the divergence of velocity θ(k, τ). The
corresponding kernel will be denoted as Gn(k1, · · · ,kn). In our notation, D+(τ) is the linear
growth factor.

For the computation of integrated bispectra we will only require the following sym-

metrized second order kernels F2(k1,k2) and G2(k1,k2) that have the following forms [52]:

F2(k1,k2) =
1

2
(1 + ǫ) +

1

2
µ12

(

k1
k2

+
k2
k1

)

+
1

2
(1− ǫ)µ212; µ12 = k̂1 · k̂2. (5.2)

The symmetrized kernels are constructed by taking the mean of all possible permutations
of the unsymmetrized kernels. Here [δD]n = δ3D(k − k1 · · · − kn) represents the momentum
conserving Dirac delta function in three dimensions (3D). The parameter takes the value
ǫ = 3/7 for an Einstein de-Sitter Universe. The kernel G2(k1,k2) has similar functional form.
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We will use a different parameter ǫ′ to avoid confusion for θ with ǫ′ = −1/7. For the first
order Lagrangian Perturbation Theory (LPT), also known as the Zel’dovich Approximation
(ZA; see e.g. Ref.[88, 89]), the parameter takes the value ǫ = 0.

Redshift-space distortions are result of peculiar velocities of galaxies which arise due to
gravitational clustering. These distortions are a known source of complication in interpreta-
tion of clustering from spectroscopic surveys. The redshift-space density contrast δh,s of halos
can be expressed in terms of redshift-space kernels Zn(k1, · · · ,kn) and the bias parameters
bk:

δh,s(k, τ) =
∞
∑

n=1

Dn
+(τ)[δD]n

∫

d3k1 · · ·
∫

d3kn Zn(k1, · · · ,kn)δL(k1) · · · δL(kn). (5.3)

The lower order kernels Z1(k1) and Z2(k1,k2) in redshift-space are given by the following
expressions [90]:

Z1(ki) ≡ (b1 + fµ2i ) (5.4)

Z2(k1,k2) ≡ b1

[

F2(k1,k2) +
1

2
fµk

(

µ1
k1

+
µ2
k2

)]

+ fµ2G2(k1,k2)

+
1

2
fµkµ1µ2

(

µ1
k1

+
µ2
k2

)

+
b2
2

+
bs2

2
S2(k1,k2). (5.5)

Here, f = d lnD+/d ln a is the logarithmic growth rate and a is the scale factor. The kernel
Z2(k1,k2) defined in Eq.(5.5) depends on both F2(k1,k2) and G2(k1,k2) which implies that
the squeezed limit of redshift space bispectrum will depend on the squeezed limits of δ and
θ bisepctrum. To relate the real-space density contrast of halos δh to the underlying density
contrast δ we use a deterministic bias: δh =

∑

k bkδ
k/k!.

The FoG effect arises as a result of random peculiar velocities of galaxies within virialised
collapsed objects. The effect of peculiar velocity is an incoherent contribution and results
in a suppression of the clustering amplitude at high k [91]. Throughout, we have used the
following expressions:

µ = x̂‖ · k̂; µi = x̂‖ · k̂i; (5.6)

k = k1 + k2; µk ≡ (µ1k1 + µ2k2); k2 = (k1 + k2)
2. (5.7)

The hats represent unit vectors i.e. k̂ = k/|k| and k̂i = ki/|k|. The comoving separation
separated into components that are parallel and perpendicular to the line of sight x = x‖+x⊥

and x̂‖ = x‖/|x‖| is the unit vector along the line-of-sight. In the redshift-space the halo
power spectrum takes the following form [25]:

〈δh,s(k1)δh,s(k2)〉 ≡ Ph,s(k1)δ3D(k1 + k2); (5.8)

Ph,s(k) = b21(1 + b−1
1 fµ2k)

2 Pδ(k). (5.9)

The halo bispectrum in redshift-space has the following expression [90]:

〈δh,s(k1)δh,s(k2)δh,s(k3)〉c ≡ δ3D(k1 + k2 + k3)Bh,s(k1,k2,k3); (5.10)

Bh,s(k1,k2,k3) = DFoG[2P (k1)Z1(k1)P (k2)Z1(k2)Z2(k1,k2) + cyc.perm.]. (5.11)

The contribution from the finger-of-god (FoG) appears as a multiplicative factor:

DFoG(k1, k2, k3, σFoG[z]) = (1 + [k21µ
2
1 + k22µ

2
2 + k23µ

2
3]
2σ2FoG[z]/2)

2. (5.12)
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The various configurations to the bispectrum in Eq.(5.11) can be grouped into the
following categories [92]:

B = BSQ1
+BSQ2

+BNLB +BFoG; (5.13)

BSQ1 = b31

3
∑

i=1

βi−1BSQ1i ; BSQ2
= b31β

3
∑

i=1

βi−1BSQ2i ; (5.14)

BNLB = b21b2β

3
∑

i=1

βi−1BNLBi
; (5.15)

BFoG = b41β[BFoG1
+ β(BFoG2

+BFoG3
) + β2(BFoG4

+BFoG5
) + β3BFoG6

]. (5.16)

Here, β = f/b1. The contributions BSQ1
represents linear squashing and depends on the

kernel F2(k1,k2) also known as the linear Kaiser effect [93] which represents the coherent
distortion of the peculiar velocity along the LoS. Its effect is controlled by the linear growth
rate. At the level of power spectrum it leads to an enhancement of the power spectrum ampli-
tude at small k. The second order squashing terms BSQ2

depends on the kernel G2(k1,k2).
Nonlinear biasing is represented by the BNLB terms and finally BFOG represents the FoG
effect. The squeezed limits of these contributions will be presented in §7.

To recover the real-space expressions we need to take the limit f → 0 in Eq.(5.4)-
Eq.(5.5). The above expressions are valid in the flat-sky approximation. Future surveys
will probe a considerable fraction of the sky. A 3D approach has been developed that uses
spherical-Bessel transform has been used recently the redshift power spectrum [12, 94, 95].

6 Bispectrum in Parametrized Modified Gravity Theories : γ Models

To illustrate our approach we will compute the IB for a class phenomenological models of
MG theories developed in Ref.[39] - the so called γ models. These particular set of models
were constructed by modifying the Euler equation of the Continuity-Euler-Poisson system.
For these parametrization described in Ref.[39] the ǫ and ǫ′ defining the kernels F2(k1,k2)
and G2(k1,k2) can be expressed in terms of time dependent parameters ν2 and µ2:

ǫ =
3

2
ν2 − 2; ǫ′ =

3

2
µ2 − 2. (6.1)

The parameters ν̂2 and µ̂2 are defined through the following fitting formulae [39]:

ν2(γ) = νGR
2 − 10

273
(γ − γGR)(1 − ΩM)Ωγ

GR−1
M ; (6.2)

µ2(γ) = µGR
2 − 50

273
(γ − γGR)(1 −ΩM)Ωγ

GR−1
M . (6.3)

where the parameters νGR
2 and µGR

2 are defined by the following relations [39]:

νGR
2 =

4

3
+

2

7
Ω
−1/143
M ; µGR

2 = − 4

21
+

10

7
Ω
−1/143
M ; (6.4)

For GR and Ω = 1 we have, νGR
2 = 34/21 and µGR

2 = 26/21. Using Eq.(6.1) we recover
ǫ = 3/7 and ǫ′ = −1/7. The growth factor in these models scales as: f = d lnD+/d ln a ≈ ΩγM
with γGR = 6/11 ≈ 0.55 for GR and for DGP braneworld models γ = 0.67. The method
developed below can be extended to other parametric MG theories.

Notice that the unsmoothed skewness parameter S3 = 3ν2 and T3 ≡ 〈θ3〉/c〈θ2〉2c = 3µ2.
The lowest order CC, C21, for δ is given by C21 = 2ν2.
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7 Integrated Bispectrum in Modified Gravity Theories

In a squeezed configuration, the bispectrum effectively describes the effect of long wavelength
modes on small scale structures. This corresponds to the lowest order coupling of small and
long wavelength modes and has been studied in the literature by many authors recently ( see
[92] and [52] the references therein).

[[ The IB is defined as:

B(k) = 〈Pδ(k, rL)δ̄(rL)〉 =
∫

dΩk
4π

∫

d3qa
4π

∫

d3qb
4π

B(k− qa,−k+ qa + qb,−qb)

×WL(k− qa)WL(−k+ qq + qb,−q3). (7.1)

Here, WL represents the survey window centered around the position rL and the bispectrum
B is defined in Eq.(5.13). Below we list the bispectrum in the squeezed limit and their
angular averages. The d3qb integral can be done independetly. ]]

In the squeezed limit the wave vectors can be parametrize as: k1 = k − qa; k2 =
−k+ qa + qb and k3 = −qb. Taylor expanding the wave-vectors and keeping only the linear
order terms in qa and qb we arrive at:

k1 = k
(

1− µak
qa
k

)

; k2 = k
(

1− µak
qa
k

− µbk
qb
k

)

; k3 = −qb. (7.2)

Taylor expanding the power spectrum and retaining only the linear order in qa and qb:

Pδ(k1) = Pδ(k)

[

1− qaµak
k

d lnPδ(k)

d ln k

]

; (7.3)

Pδ(k2) = Pδ(k)

[

1− 1

k
(qaµak + qbµbk)

d lnPδ(k)

d ln k

]

; Pδ(k3) = Pδ(qb). (7.4)

Following notations are used to represent the cosines of various angles:

µk = k̂ · x̂‖; µa = q̂a · x̂‖; µb = q̂b · x̂‖; µab = q̂a · q̂b;
µak = k̂ · q̂a; µbk = k̂ · q̂b. (7.5)

Where k̂ = k/|k|. The angular variables µi can similarly be expressed as:

µ1 = µk +
1

k
(qaµakµk − qaµa) + · · · ; (7.6)

µ2 = −µk +
1

k
(qaµk + qbµbk − qaµaµk − qbµbµk) + · · · ;

= µ1 +
1

k
(qbµbk − qbµbµk) + · · · ; (7.7)

µ3 = −µb. (7.8)

We have expanded the variables µ1, µ2 and µ3 in Taylor series and kept terms up to linear
order in (qa/k) and (qb/k). In the squeezed limit the perturbative kernel F2(k1,k2), defined
in Eq.(5.2), takes the following form:

F2(k1,k2) = 0; (7.9)

F2(k1,k3) =
1

2
(1 + ǫ)− 1

2qb
(kµbk − qaµab) +

1

2
(1− ǫ)µ2bk; (7.10)

F2(k2,k3) =
ǫ

2
+

1

2qb
(kµbk − qaµab) +

1

2
(1− ǫ)µ2bk. (7.11)
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Figure 6. Various contributions to the IB are displayed as a function of the wavenumber k. The
left panel shows the contributions from the terms Eq.(7.15)-Eq.(7.17) middle panel correspond to
Eq(7.21)-Eq.(7.23). The right panel corresponds to contribution from Eq.(7.27)-Eq.(7.32). The power
spectrum is approximated locally as a power law with a logarithmic slope of n that reduces the
expressions to the form Eq.(7.5) with coefficients given by Eq.(7.34)-Eq.(7.39). Results are shown for
z = 0.

For GR we have ǫ = 3/7, while for the Zel’dovich Approximation (ZA) we have ǫ = 1/2.
Similar results hold for G2 where the parameter with ǫ′ for GR has the numerical value
ǫ′ = −1/7. Indeed for the γ-models of [39] ǫ is independent of k but for more generic class
of models (see e.g. Ref.[13]) this will not be the case; a dedicated analysis will be presented
elsewhere.

We will consider the “linear squashing” terms (SQ1) that depend on the kernel F2(k1,k2)
first [92]:

BSQ11(k1,k2,k3) = 2[F2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]; (7.12)

BSQ12(k1,k2,k3) = 2[(µ21 + µ22)F2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]; (7.13)

BSQ13(k1,k2,k3) = 2[µ21µ
2
2F2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]. (7.14)

For a parametrization similar to defined in Eq.(5.2) we have the following expressions:

BSQ11
sq
=

[

(1 + 2ǫ) + 2(1− ǫ)µ2bk −
d lnPδ(k)

d ln k
µ2bk

]

Pδ(k)Pδ(qb); (7.15)

BSQ12
sq
=

[

(1 + 2ǫ)µ2k + 2(2 − ǫ)µ2bkµ
2
k − 2µbkµkµb + (1 + 2ǫ)µ2b + 2(1− ǫ)µ2bkµ

2
b

−d lnPδ(k)
d ln k

(

µ2bkµ
2
k + µ2bkµ

2
b

)

]

Pδ(k)Pδ(qb); (7.16)

BSQ13
sq
=

[

(1 + 2ǫ)µ2kµ
2
b + 2(2− ǫ)µ2bkµ

2
kµ

2
b − 2µkµkµ

3
b

−d lnPδ(k)
d ln k

µ2bkµ
2
kµ

2
b

]

Pδ(k)Pδ(qb). (7.17)

[[ The notation
sq
= above denotes the fact that the expression on the left is being evaluated

in its squeezed limit. ]]
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The other set of terms are the “second order squashing” terms (SQ2) and depend on
the kernel G2(k1,k2) [92]:

BSQ21 = 2[µ2G2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]; (7.18)

BSQ22 = 2[µ2(µ21 + µ22)G2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]; (7.19)

BSQ23 = 2[µ2µ21µ
2
2G2(k1,k2)Pδ(k1)Pδ(k2) + cyc.perm.]. (7.20)

In the squeezed limit they take the following form:

BSQ21
sq
=

[

(

1 + 2ǫ′
)

µ2k − 2ǫ′µ2bkµ
2
k + 2µbkµkµb −

d lnPδ(k)

d ln k
µ2bkµ

2
kµ

2
b

]

Pδ(k)Pδ(qb);(7.21)

BSQ22
sq
=

[

(1 + 2ǫ′)µ4k + 2(1 − ǫ′)µ2bkµ
4
k + (1 + 2ǫ′)µ2kµ

2
b − 2ǫ′µ2bkµ

2
kµ

2
b + 2µbkµkµ

3
b

−d lnPδ(k)
d ln k

(µ2bkµ
4
b + µ2bkµ

2
kµ

2
b)
]

Pδ(k)Pδ(qb); (7.22)

BSQ23
sq
=

[

(1 + 2ǫ′)µ4kµ
2
b + 2(1 − ǫ′)µ2bkµ

4
kµ

2
b −

d lnPδ(k)

d ln k
µ2bkµ

4
kµ

2
b

]

Pδ(k)Pδ(qb). (7.23)

The following three contributions correspond to the “non-linear bias” (NLB) terms and
are independent of kernels F2(k1,k2) and G2(k1,k2), so do not depend on ǫ or ǫ′. In the
squeezed limit they take the following form [92]:

BNLB1

sq
= 2Pδ(k)Pδ(qb); (7.24)

BNLB2

sq
= 2

[

µ2k + µ2b
]

Pδ(k)Pδ(qb); (7.25)

BNLB3

sq
= 2

[

µ2kµ
2
b

]

Pδ(k)Pδ(qb). (7.26)

The contribution from the “Finger-of-God” (FOG) effect in the squeezed limit [92] are given
by:

BFOG1

sq
=

[

2µ2k + µ2b −
d lnPδ(k)

d ln k
µbkµkµb

]

Pδ(k)Pδ(qb); (7.27)

BFOG2

sq
=

[

4µbkµ
3
kµb + 2µ2kµ

2
b − 2

d lnPδ(k)

d ln k
µbkµ

3
kµb

]

Pδ(k)Pδ(qb); (7.28)

BFOG3

sq
=

[

2µ4k + µ4b −
d lnPδ(k)

d ln k
µbkµkµ

3
b

]

Pδ(k)Pδ(qb); (7.29)

BFOG4

sq
=

[

4µ4kµ
2
b + 4µbkµ

3
kµ

3
b − 2µ2kµ

4
b − 2

d lnPδ(k)

d ln k
µbkµkµb

]

Pδ(k)Pδ(qb); (7.30)

BFOG5

sq
=

[

4µbkµ
5
kµb − 3µ4kµ

2
b + 2µ2kµ

4
b −

d lnPδ(k)

d ln k
µbkµ

5
kµb

]

Pδ(k)Pδ(qb); (7.31)

BFOG6

sq
=

[

4µbkµ
5
kµ

3
b − µ4kµ

4
b −

d lnPδ(k)

d ln k
µbkµ

5
kµ

3
b

]

Pδ(k)Pδ(qb). (7.32)

After angular averages of various terms 〈µakµbbµcbk〉 are taken and assuming a power-law
power spectrum P (k) ∝ kneff , the squeezed bispectrum takes the following form:

BXi
=

[

αX
i − βXi (neff + 3))

]

Pδ(k)Pδ(qb). (7.33)
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We deduce the following relations:

BSQ11
sq
=

4

3

[

(2 + ǫ)− 1

3
(neff + 3)

]

Pδ(k)Pδ(qb) (7.34)

BSQ12
sq
=

8

9

[

(2 + ǫ)− 2

9
(neff + 3)

]

Pδ(k)Pδ(qb); (7.35)

BSQ13
sq
=

1

225

[

(72 + 28ǫ)− 11

225
(neff + 3)

]

Pδ(k)Pδ(qb); (7.36)

BSQ21
sq
=

4

9

[

(2 + ǫ′)− 1

9
(neff + 3)

]

Pδ(k)Pδ(qb); (7.37)

BSQ22
sq
=

8

225

[

(26 + 11ǫ′)− 26

225
(neff + 3)

]

Pδ(k)Pδ(qb); (7.38)

BSQ33
sq
=

4

525

[

(47 + 9ǫ′)− 17

225
(neff + 3)

]

Pδ(k)Pδ(qb). (7.39)

We have ignored primordial non-Gaussianity in our derivation (see e.g. Ref.[97] for related
discussion).

Notice that, using data from SDSS-III Baryon Osccilation Spectroscopic Survey (BOSS)
Data Release 10 CMASS sample, a first measurement of position-dependent correlation func-
tion has already detected the three-point correlation function at 7.4σ. Such measurements
are useful in constraining the nonlinear bias of galaxy halos in BOSS CMASS survey [92].

We would like to point out here that the approximations used to simplify a Feldamn-
Kaiser-Peacock (FKP)[98] type estimator that was used in Ref.[75] in their joint analysis of
power spectrum and bispectrum fail in the squeezed limit. Thus, the squeezed limit of the
bispctrum probed by the position-dependent power spectrum can provide the useful missing
information.

In Figure-6 various contributions to the IB are displayed as a function of the wavenumber
k. The left panel shows the contributions from the linear squashing terms of Eq.(7.15)-
Eq.(7.17), the middle panel corresponds to the second order squashing terms of Eq(7.21)-
Eq.(7.23). Finally, the right panel corresponds to the contribution from Eq.(7.27)-Eq.(7.32).
The power spectrum is approximated locally as a power law with a logarithmic slope of n that
reduces the expressions to the form given in Eq.(7.5) with coefficients given by Eq.(7.34)-
Eq.(7.39). Results correspond to redshift z = 0.

8 Angular (Projected) Integrated Bispectrum

Most early studies of galaxy clustering were performed in angular (projected) surveys in
2D. Due to the presence of huge number of galaxies, a projected survey allows more precise
determination of higher order cumulants and CC. As an example, using the data from the
APM survey, which contains more than 1.3 × 106 galaxies, projected cumulants or the sn
parameters were computed up to the ninth order [99] and projected CCs, or the cpq parameters
were computed up to fourth order [20]. Unlike the redshift surveys the angular or projected
surveys do not mix density and velocity fields which can be difficult to disentangle. The main
difficulty with the projects surveys, however, is that they mix different physical scales. A
given angular scale in a projected survey takes contribution from length that are quasilinear
as well as highly nonlinear length scales [100]. The projected cumulants were derived in
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Ref.([101]), and were later extended to CCs in Ref.([102]) and Ref.([103]) in the highly
nonlinear regime using HA.

In 2D using the kernel defined in Eq.(5.2) we have the following results:

B2D =

[

(3 + ǫ)− 1

2
(n+ 2)

]

Pδ(qb⊥)Pδ(k⊥). (8.1)

For ǫ = 3/7 we recover B̄δ(k⊥) = [(24/7)− (n+2)/2]Pδ(qq⊥)Pδ(k⊥). See Ref.[52] for detailed
derivation as well as a survey specific prefactor. Here k⊥ is the component of the wavevector
orthogonal to the line-of-sight direction, i.e., k = k‖ + k⊥; k⊥ = |k⊥| and similarly for qb.
The corresponding CCs are computed in Ref.([104]). Using the expression for ǫ from Eq.(6.1)
will allow us to compute the IB in 2D for γ models.

9 Discussion and Conclusions

Complete characterisation of the bispectrum can be a challenging task as it is a function of
three wavevectors and the shape of the triangle they form. Several techniques have been
investigated recently in real or Fourier space to reduce the dimensionality of the problem.
In this paper we have studied the well-known CCs in real space and the position-dependent
power spectrum in Fourier domain.

Generalising the cumulants of biased tracers we introduce the CCs for the biased tracers
in §2. We have combined the halo model predictions and prescriptions from the perturba-
tion theory to compute the CCs for collapsed objects Eq.(2.38)-Eq.(2.39). In doing so, we
have computed the bias parameters bk from halo models. Combining the cumulants for
the collapsed objects given in Eq.(2.38)-Eq.(2.39) with the CCs can be helpful constructing
independent estimates of the bias parameters bk from simulations and observations. The par-
ticular results that are presented here are for PS and ST mass functions but replacing these
bk with predictions from other theories can be done in a straight forward manner. The results
are derived for the collapsed objects but using the bk for peaks using Eq.(2.40)-Eq.(2.41) can
similarly provides the results for peaks. Our results for the CCs extend the results of Ref.[35]
derived for the cumulants.

Gravitational clustering induces non-linearity as well as non-locality - bias predicted by
the halo model is a local model. In §4 Eq.(4.1) we take the phenomenological model proposed
in Ref.[32]. In addition to parameters (bs2 , bs3 , · · · ), this model depends on an infinite set of
parameters (bδ, bδ2 , · · · ) and makes the density contrast of collapsed objects a function not
only of underlying density contrast δ(x, a) but also of the tidal tensor s. The amplitudes of
these contributions are kept arbitrary. Combining with generating function approach, in the
perturbative regime, we show that the generating function of collapsed objects Gh can be
completely specified only by the generating functions Gδ and Gθ of δ(x, a) and θ(x, a) once
the bias parameters are known.

In §5 we have considered the IB in the redshift-space. We have studied the impact of
modifying gravity on the redshift-space IB. We have considered a class of MG theories that
were proposed in [39]. In §6 a class of MG theories were introduced. These include DGP
brane world models. In §7 we investigated the redshift-space IB in a class of MG theories.
The results presented can be generalised to any parametric theories of gravity.

The individual terms that make contributions to the redshift bispectrum are dealt with
in §7. These include the linear and non-linear squashing terms. The other terms are the
non-linear bias terms as well as the Finger-of-God (FOG) terms. The linear and non-linear
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squashing terms depend respectively on the bispectrum associated with δ and θ. The squeezed
contribution of these terms are derived independently. These terms are the only terms that
directly depend on the MG theories. After angular averaging the IB depends only on the
parameters ǫ and ǫ′. These parameters can be computed using the specific parametrization
introduced in §6. However, in generic MG theories the bispectrum can take more complicated
(k, a) dependence and the squeezed limits will have to be handled in a case by case manner.
Indeed accurate theoretical modelling of the bispectrum can be demanding even for ΛCDM
and may require many more parameters than are typically employed [26]. In §8 projected IB
is investigated.

Various other forms of data compression for the study of bispectrum have also been
developed e.g. skew-spectrum associated with the gravity induced bispectrum was studied
in [53]. A optimised version of this skew-spectrum has recently been introduced in [107].
Modal estimators were also introduced to study the gravity induced non-Gaussianity [105,
106]. Though the IB statistics studied here are sub-optimal it is comparatively simpler to
implement and optimisation is possible. Morphological estimators provide alternate routes
to probe non-Gaussianity [53]. Minkowski Functionals were studied in redshift-space for the
specific model we have studied here [96]. For a self-consistent way to tackle bias, redshift-
space distortion and non-Gaussianity in MG theories an approach similar to what has been
developed in Ref.[108] is required. Combining the generating function approach with such
techniques can provide interesting clues to statistics of collapsed halos in MG theories.
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