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Relative Pose Estimation From Image
Correspondences Under a Remote Center of

Motion Constraint
Francisco Vasconcelos , Evangelos Mazomentos, John Kelly, Sebastien Ourselin, and Danail Stoyanov

Abstract—This letter proposes an algorithm to estimate the
relative pose between two image view-points assuming that a
camera is moving under a remote center of motion constraint.
This is useful in minimally invasive robotic surgery, where the
motion of a laparoscopic camera is constrained by the keyhole
insertion point. Our method uses point correspondences between
the two images and does not require any knowledge about the
position of the remote center of motion. The pipeline consists
of a 4-point minimal closed-form solver, used within a robust
RANSAC framework to filter outlier correspondences, followed by
a Levenberg–Marquardt refinement step. Our method compares
favorably against the classic relative pose solution for uncon-
strained motion (5-point algorithm) both with synthetic data and
a real footage of endoscopic robotic surgery.

Index Terms—Surgical robotics: laparoscopy, visual-based
navigation.

I. INTRODUCTION

R ELATIVE pose estimation between two image views is
a common way to obtain visual odometry of a moving

camera sensor [1]. It is a basic component of more complex
navigation and 3D reconstruction systems such as Simultane-
ous Localisation and Mapping (SLAM) [2] or Structure-From-
Motion (SfM) [3]. The classic relative pose problem, consid-
ering a six degree-of-freedom unconstrained motion in the 3D
space has been widely validated in computer vision and robotics
applications [4]. When prior knowledge about the camera mo-
tion is available, other formulations have been proposed that
add new constraints to reduce the number of pose parameters
to be estimated [5]–[8]. These algorithms generally outperform
the general relative pose solution in their respective domains.
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Fig. 1. Image guided minimally invasive procedure performed with a surgical
robot. The motion of both the camera and the tools is constrained by the trocar
placement.

In this letter we address the relative pose estimation prob-
lem in the context of image guided minimally invasive surgery.
In this type of procedures, the surgical tools are manipulated
through trocars that are placed on small incisions on the patient
(Fig. 1), and are guided by an endoscopic camera that is also
inserted through a trocar. Due to this set-up the camera motion
is bounded by the trocar placement in a way that is usually
modelled by a remote center of motion constraint [9], i.e., the
endoscope must always intersect the 3D point where the tro-
car is located. This means that the endoscope motion has only
4 degrees of freedom: three rotation parameters and a single
translation component.

Some minimally invasive procedures are currently performed
with a surgical robot (e.g., prostatectomy [10]) that enforces the
trocar motion constraints by assuming a static remote center of
motion[11], [12]. Given that in practice a trocar is not strictly
static due to patient motion or breathing, some approaches pro-
pose a more flexible kinematic control by incorporating force
feedback [13].

There have been previous works on localisation problems
related to a center of motion constraint, including trocar
localisation and detection from the robot kinematics [14], [15],
or tool pose tracking under remote center of motion constraints
[16]. However, to the best of our knowledge, the relative pose
problem between two camera views under a remote center of
motion constraint has not been previously addressed. A solution
to this problem can be useful for tackling multiple problems
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in image guided surgery, including real-time localisation of
the endoscopic camera and the surgical tools, accurate 3D
reconstructions of the anatomical site, as well as 3D registration
with pre-operative imaging.

With a surgical robot, the camera motion can be estimated
through the kinematic chain of the manipulator holding the
camera. However, visual localisation across multiple views is
still necessary for representing both camera and human anatomy
in the same reference frame, or whenever robot hand-eye cali-
bration is challenging in the surgical setting.

An alternative is to estimate the camera motion directly
from the change of perspective of different frames using a
Structure-from-Motion or SLAM approach [17]. This is a very
challenging task, as a reliable motion estimation requires that
a sufficiently descriptive part of the scene remains static across
different frames. This contrasts with the highly dynamic nature
of most surgical scenes that include deformable tissue and mov-
ing tools. In this letter we address this problem by using the
remote center of motion constraints in order to reduce the strict
requirements on both the quantity and the quality of static image
features required to estimate an accurate relative pose between
two views. The contributions of this letter are summarised as
follows:

� A simplified model (aligned axis assumption) for express-
ing the remote center of motion constraints as a single
linear equation in terms of one essential matrix parame-
ter, or by a quadratic equation in terms of translation and
rotation parameters.

� Formulation of the relative camera pose problem with re-
mote center of motion constraints, leading to a minimal
solution that requires only 4 point correspondences be-
tween two images.

� Comparison between our algorithm and the classic 5-point
relative pose solution for unconstrained motion [4]. Our
solution outperforms the 5-point algorithm with both syn-
thetic data and real video footage from a radical prosta-
tectomy procedure performed with the da Vinci surgical
robot [18].

� Robustness evaluation of our algorithm when the aligned
axis assumption is not strictly verified. In simulation, our
solution shows no signals of degradation for moderate de-
viations to the aligned axis assumption, considering mo-
tions where there is a sufficient field of view overlap be-
tween two views. With real data, our model is a sufficiently
good approximation to make our 4-point solution work,
even though a stereo camera that does not conform to the
aligned axis assumption is used.

II. NOTATION

Scalars are represented by plain letters, e.g., λ, vectors are
indicated by bold symbols, e.g., t, and matrices are denoted by
letters in sans serif font, e.g., T. 2D points and lines are expressed
in homogeneous coordinates as 3 × 1 vectors. The operator [v]×
designates the 3 × 3 skew symmetric matrix of a 3 × 1 vector v,
such that [v]×x = v × x.

Fig. 2. Remote center of motion formulation under the aligned axis assump-
tion.

III. PROBLEM FORMULATION

Consider a rigid endoscopic camera with known intrinsic pa-
rameters being inserted into a patient through a keyhole incision
point O (Fig. 2). We aim at estimating the relative pose with
rotation R and translation t

T = T1T−1
2 =

(
R t
0 1

)
(1)

when the endoscope moves between the world-to-camera trans-
formations T1 and T2 , given a set of pairwise point correspon-
dences (xi ,x′

i) between the two views. We start by briefly re-
viewing the classic relative pose estimation with unconstrained
motion, and then we introduce the remote center of motion
constraint defined by point O.

A. Unconstrained Relative Pose

Two image point correspondences xi , x′
i that represent the

same 3D point X under two different calibrated views are related
by the epipolar constraint

x′T
i Exi = 0 (2)

where the essential matrix [19]

E = [t]×R (3)

must verify the following cubic relations

EETE − 1
2

trace(EET)E = 0, det E = 0 (4)

The essential matrix E has 5 degrees of freedom, and can be
estimated from a minimum of 5 point correspondences [4]. Al-
though multiple 5-point algorithm implementations exist, they
typically proceed as follows: first, a 4-dimensional linear solu-
tion subspace for E is generated from 5 or more instances of
(2); then, the 4 remaining unknown parameters are determined
by solving a cubic system of ten equations (4). This procedure
generates up to 10 algebraic solutions for the matrix E, which
can only be disambiguated by verifying the epipolar consistency
(2) of at least 6 correspondences. Finally a rotation R and an
up-to-scale translation t can be uniquely factorised from E [19].

Additionally, the performance of this 5-point algorithm is
greatly enhanced by using it within a RANSAC framework
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[20] for outlier filtering, followed by an iterative Levenberg-
Marquardt refinement step that minimises the re-projection
error of inlier correspondences.

B. Remote Center of Motion Constraint

Consider now that the endoscope motion is constrained such
that it must go through the remote center of motion O. To model
this constraint we work under the following assumption: for any
possible camera pose, the optical axis of the endoscopic camera
intersects the remote center of motion O (Fig. 2). In the context
of this letter we designate this as the aligned axis assumption.
Note that this assumption might not be strictly verified in prac-
tice with a real endoscope, however, we leave the discussion of
its validity for later sections.

The remote center of motion constraint under the aligned axis
assumption is a generalisation of the spherical camera motion
as modelled in [5] for the case of a varying sphere radius. There-
fore, we follow an analogous strategy to this work in order to
derive our formulation.

Consider that O is the origin of the world reference frame W.
From the aligned axis assumption, it follows that any transfor-
mation Ti between W and the camera reference frame can be
represented as

Ti =
(

Ri zi

0 1

)
(5)

where the translation zi = (0 0 zi )T has only one degree of
freedom and represents the distance between O and the principal
point of the camera.

Consider now a camera motion between transformations T1
and T2 (Fig. 2). Assume that, without loss of generality,

T1 =
(
I z1
0 1

)
, T2 =

(
RT z2
0 1

)
(6)

with z1 = ( 0 0 z1 )T, z2 = ( 0 0 z2 )T, and I being the
3 × 3 identity matrix. The relative pose T between the two views
becomes

T = T1T−1
2 =

(
R z1 − Rz2
0 1

)
(7)

By substituting this into (3), the essential matrix under the
remote center of motion constraint has the following format

E = [z1 − Rz2 ]×R = [z1 ]×R − R[z2 ]× (8)

=

⎛
⎝−r1,2z2 − r2,1z1 r1,1z2 − r2,2z1 −r2,3z1

r1,1z1 − r2,2z2 r1,2z1 + r2,1z2 r1,3z1
−r3,2z2 r3,1z2 0

⎞
⎠ (9)

where, ri,j is the element from ith row and jth column of R.
From this follows that the remote center of motion, under the
aligned axis assumption, is constrained by

e3,3 = 0 (10)

where e3,3 is the element from the third row and third column of
E. Additionally, this constraint can also be represented in terms
of translation and rotation as

r2,3t1 − r1,2t2 = 0 (11)

where t1 and t2 are the first and second components of the
relative translation t.

IV. 4-POINT MINIMAL SOLUTION

The constraint from (10) eliminates one degree of freedom
for the essential matrix E, and thus it can now be estimated min-
imally from 4 point correspondences instead of the 5 required
for unconstrained motion. Given the simplicity of the remote
center of motion constraint, we propose a 4-point relative pose
algorithm that is extremely similar to its 5-point counterpart.
Given a set of N >= 4 correspondences (xi ,x′

i), up to 10 al-
gebraic solutions for the relative pose solutions can be obtained
as follows

1) Build a linear system by stacking 4 or more instances of
(2) in terms of the 8 up-to-scale unknown parameters of
the essential matrix (ei,j ):

⎛
⎜⎝

x1
Tx′

1,1 x1
Tx′

1,2 x1,1x
′
1,3 x1,2x

′
1,3

x2
Tx′

2,1 x2
Tx′

2,2 x2,1x
′
2,3 x2,2x

′
2,3

...
...

...
...

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1,1
e2,1
e3,1
e1,2
e2,2
e3,2
e1,3
e2,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

(12)
2) Determine a 4-dimensional linear solution subspace to

(12) using SVD decomposition. This defines

E = aE1 + bE2 + cE3 + E4 (13)

where {E1 , E2 , E3 , E4} is the linear base for the solution
and a, b, c are unknown parameters.

3) Substitute (13) into the cubic constraints of (4), forming a
polynomial system of 10 equations in 3 unknowns a, b, c.

4) Solve the polynomial system using the action matrix
method [21]

5) Factorise E into rotation R and translation t [19]

V. RELATIVE POSE ESTIMATION PIPELINE

Our relative pose estimation pipeline follows the same struc-
ture as the traditional pipeline for unconstrained motion that
uses the 5-point algorithm [4]. The 4-point minimal solution
is used within a RANSAC framework to remove outlier corre-
spondences. Considering a camera with known intrinsics K, the
result is then refined with Levenberg-Marquardt non-linear op-
timisation by minimising the distances ri , r′i in pixels, between
image point correspondences (x,x′

i) and their corresponding
epipolar lines (li = ETx′

i , l
′
i = Exi). The epipolar distances ri ,

r′i are equivalent to the residue of (2) when normalised to the
pixel units of each camera view.

The rotation is parametrised as a quaternion q while the trans-
lation by only two of its components t2 , t3 . The missing trans-
lation component t1 is implicitly defined by the remote center
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Fig. 3. Remote center of motion configurations that do not verify the aligned
axis assumption, due to translation and rotation offsets. Within a broad range of
motions, two views are still close to having intersecting optical axes at a given
point (red dots). Offsets are exaggerated for visualisation purposes.

of motion constraint (11).

min
q,t2 ,t3

N∑
i=1

||ri ||2 + ||r′i ||2 (14)

with

ri = Kdi
|xi

Tli |
||I2×3 li || , r′i = Kd′

i

|x′T
i l′i |

||I2×3 l′i ||
(15)

where di and d′
i are unit 2D homogenous vectors orthogonal to

the epipolar lines li and l′i respectively. To ensure valid rotations,
the rotation quaternion is scaled to a unit norm each time the
epipolar distances are computed.

VI. COMMENTS ON THE ALIGNED AXIS ASSUMPTION

In this section we discuss the limits of the aligned axis as-
sumption and its impact on the applicability of our 4-point al-
gorithm.

First we should note that since we do not make any assumption
on the location of the remote center of motion and consider only
two frames. Therefore our problem is equivalent to estimating
the relative pose between any two cameras whose optical axes
intersect. Note that a pure translation between two camera views
(parallel optical axes) can also be estimated with our algorithm,
since they intersect at infinity in the projective space and the
correspondent essential matrix has the format

E = [t]× =

⎛
⎝ 0 −t3 t2

t3 0 −t1
−t2 t1 0

⎞
⎠ (16)

which verifies (10).
On the other hand, pure rotation motions are degenerate con-

figurations due to the elements of the essential matrix being all
close to zero.

We now consider the remote center of motion constraint in
cases where the aligned axis assumption is not verified. When
there is a translation offset (Fig. 3(a)), the camera axis is always
tangent to a spherical surface with radius equal to the distance
between the optical axis and the remote centre of motion. When
there is a rotation offset (Fig. 3(b)), the camera axis goes through
a sphere whose radius is defined by the maximum or minimum

Fig. 4. Minimal solver simulation results for 100 trials, using minimal data and
no noise. Both 4-point and 5-point algorithms pure matlab implementations. The
computation times were obtained on a Macbook Pro (Mid 2015) with a 2.5 GHz
Intel Core i7.

depth allowed by the surgical setup. Finally we can also observe
that two camera views that share a significant field of view over-
lap (and thus are broadly facing the same direction) generally
have optical axis that are very close to intersect at a certain point
(displayed in red in Fig. 3). In the experimental section we vali-
date our algorithm using a stereo camera pair with a baseline of
approximately 5 mm, and therefore both cameras correspond to
a configuration similar to Fig. 3(a).

VII. EXPERIMENTAL RESULTS

We compare our 4-point algorithm against the 5-point algo-
rithm for unconstrained motion. Although there are publicly
available versions, we implemented the 5-point algorithm using
the action matrix method [21] in order to use the same method-
ology as our 4-point implementation. Both algorithms are tested
on synthetic data and real video footage from a radical prostate-
ctomy. We also validate the robustness of our method when the
aligned axis assumption is not verified.

A. Simulation

A simulator was designed to approximate the imaging con-
ditions of a surgical robot. We consider a pinhole camera with
resolution 1920 × 1080, with intrinsic parameters

K =

⎛
⎝1500 0.01 800

0 1400 600
0 0 1

⎞
⎠ (17)

A set of 3D points is randomly generated within a 60 mm cube.
The remote center of motion is set at a distance of 200 mm from
the center of mass of the scene 3D points. Camera poses are
randomly generated within a distance interval between 40 and
80 mm to the remote center of motion, while the rotation is
generated within the maximum range that allows all 3D points
to be visible in the images.

We start by analysing the behaviour of the minimal 4-point
solver with noise-free data in 100 random trials. Fig. 4(a) dis-
plays the epipolar error, as defined in (15), while Fig. 4(b)
displays the computational time.

We also compare both algorithms in the presence of point
correspondences with 1 pixel variance Gaussian noise and
non-minimal data. In this case we use the complete relative
pose pipeline including RANSAC and Levenberg-Marquardt
optimisation. A threshold of 1 pixel is used to filter outliers
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Fig. 5. Simulation results: distributions are Matlab boxplots, where the center mark is the medium, the box limits are the 1st and 3rd quartiles, the whisker
limits are minimum and maximum values, and cross marks are outliers. (a) Sample simulated camera motion under aligned axis assumption. (b) Sample simulated
camera motion with an axis offset (in both rotation and translation) that makes the aligned axis assumption not true (zoomed in detail). (c), (d) Translation
and rotation errors under the aligned axis assumption for a varying number of point correspondences and 1 pixel noise. Translation error is the angle between
groundtruth and estimated vectors. (e) Simulated distances between optical axes when the aligned axis assumption is not verified, the distance between optical axes
is the orthogonal euclidean distance between lines in 3D space. (f) Simulated residues for the value of e3 ,3 (10) when the aligned axis assumption is not verified.
(g), (h) Translation and rotation errors for a varying axis offset (i.e., aligned axis assumption not true) in both translation and rotation, using 15 point correspondences
with 1 pixel variance Gaussian noise.

in RANSAC. We start by considering that the aligned axis
assumption holds true (Fig. 5(a)). Note that due to the fact
that translations are estimated up-to-scale, we use the angle
between estimated and groundtruth translation vectors as the
error metric. Our algorithm is consistently more accurate
both in terms of rotation and translation (Fig. 5(c) and
(d)). For 15 correspondences, it obtains median translation
and rotation errors of 2.22 and 0.44 degrees respectively,
while the 5-point solution reaches median errors of 2.91 and
0.64 degrees.

Finally, we add an offset rotation and translation with increas-
ing magnitude to the simulated camera views so that the aligned

Fig. 6. Stereo motion experiment. Left and right camera trajectories are esti-
mated independently, except for the translation scale factor, which is obtained
using a point cloud obtained from sparse stereo triangulation. The trajectories
are compared by measuring their consistency with the fixed and known stereo
extrinsic calibration.
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Fig. 7. Prostate stereo dataset captured with da Vinci. (a)–(i) results for the same forward motion trajectory when estimated using different frame steps: 2, 5, and
10 respectively for each row. (j)–(l) results for a circular motion trajectory. Left and right camera motions are estimated independently except for the translation
scale. Only point matches between consecutive frames are considered, and no global refinement is performed. The stereo translation and rotation distributions
represent the different transformations between left/right cameras obtained from the two independent trajectory estimations, while the green line represents the
stereo transformation obtained from an independent offline stereo camera calibration.

axis assumption is not true any more (Fig. 5(b)). The maximum
tested offset of 2.5 mm corresponds to the expected scenario in
our real experiment using data from a stereo camera with 5 mm
baseline between left and right cameras. Fig. 5(e) and (f) quan-
tify how this offset affects the aligned axis assumption. Fig. 5(e)
displays the distance between the optical axes of both views. In

line with our observations in Section VI, after an offset is ap-
plied, the optical axes are still relatively close to intersecting.
E.g., an offset of 2.5 mm and 0.5 degrees corresponds to a me-
dian distance between optical axes below 0.2 mm, and a max-
imum distance around 1 mm. Since our simulation guarantees
that there is a sufficient overlap in the fields of view of both cam-
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eras, the motions are strictly restricted to a small working space,
where the camera axes of both cameras are still close to inter-
secting. We expect this to be the case with a real scenario where
point matches can be extablished between two views. Fig. 5(f)
represents the groundtruth value of e3,3 (10) after normalising
the essential matrix to a unit Frobenius norm. Fig. 5(g) and
(h) represent the translation and rotation errors of the 4-point
and 5-point algorithms in these conditions. The 4-point algo-
rithm does not degrade in performance for an increasing offset,
15 point correspondences and 1 pixel variance Gaussian noise.

B. Real Data

We compare the performance of 4-point and 5-point algo-
rithms when estimating a camera trajectory on video sequences
from a radical prostatectomy performed with the da Vinci Si sur-
gical robot. The camera is a stereo laparoscope, an interesting
case for two reasons: 1) it allows us to test the robustness of our
algorithm in a scenario where the aligned axis assumption is not
verified by design of the scope; 2) in the absence of groundtruth
motion data, we can evaluate the relative pose algorithms indi-
rectly by measuring the discrepancy between left/right trajectory
estimations in terms of the left-to-right stereo transformation
changes along the estimated trajectories.

We select two sequences from the procedure where there is
significant camera motion. The first one is a forward motion
(55 frames), and the second is a circular motion (86 frames).
Both videos contain two static surgical tools and a live tissue
background presenting slight deformations over time.

We use SIFT descriptors [22] to establish image point corre-
spondences between different frames. The camera trajectories
are estimated by successively applying a relative pose algo-
rithm between frames at regular intervals. Note, however, that
monocular relative pose algorithms addressed in this letter only
provide an up-to-scale translation. In order to find the correct
scale we compare 3D point reconstructions from a stereo pair
with the correct baseline against 3D point clouds obtained from
two consecutive frames. The scale estimation is the only step
where stereo information is used. The consecutive up-to-scale
relative poses are estimated independently for the left and right
cameras. The complete pipeline for the stereo sequence exper-
iment is summarised in Fig. 6. Although better trajectory es-
timations could obviously be obtained by incorporating stereo
information during the relative pose estimation step, our main
goal is to establish unbiased consistency metrics to compare the
performance between the 5-point and 4-point algorithms.

An aspect that must be taken into account in this experiment is
that relative pose estimation degenerates for very small transla-
tions [19]. This affects both the classic 5-point algorithm and our
4-point algorithm. To evaluate their breaking points we compare
both algorithms on the forward motion sequence using different
frame steps. We can observe that by estimating the relative pose
every two frames (Fig. 7(c)), both the 5-point and the 4-point
algorithms perform badly, although the 4-point is able to hold an
accurate trajectory for a longer period. Estimating the relative
pose every five frames (Fig. 7(f)) represents the threshold when
our 4-point method starts working with greater stability, while

Fig. 8. Circular motion trajectory represented in the same reference frame as
a 3D stereo reconstruction of the scene.

the 5-point algorithm still fails at some frames. Finally, using
every ten frames (Fig. 7(i)) both the 5-point and 4-point are
able to estimate consistent trajectories, with our method taking
a slight advantage.

The circular motion is faster, and thus our 4-point algorithm
is able to recover a consistent trajectory estimate for the whole
duration of the sequence by estimating a relative pose every two
frames (Fig. 7(l)). The 5-point algorithm, however, presents a
significant discrepancy in terms of the stereo transformation
between the two trajectories. In Fig. 8 we represent the circular
trajectory with respect to the 3D scene as reconstructed from a
stereo view.

VIII. CONCLUSIONS

We propose a new algorithm for estimating the relative pose
between two camera views under a remote center of motion
constraint. We use the aligned axis assumption to greatly sim-
plify the formulation, making our algorithm extremely simple to
implement. Although the aligned axis assumption is not strictly
verified in practice, in all our tests this did not stop our al-
gorithm from outperforming the classic 5-point solution for
unconstrained motion estimation.

Although our current formulation enforces a remote center of
motion constraint between two views, it does not enforce it to be
at a known position, nor to be the same point for different pairs
of frames. Therefore, our method can be used for any problem
where two consecutive views have intersecting camera axes. A
trivial example is the planar 2D motion of a ground vehicle
equipped with a non-tilted camera. Although it is possible that
enforcing a fixed remote center over more than 2 frames could
improve the estimation of motion sequences, it is yet unclear if
the current flexibility of our formulation is able to cope better
with moderate RCM motions. This trade-off requires further
experiments to be properly evaluated.



VASCONCELOS et al.: RELATIVE POSE ESTIMATION FROM IMAGE CORRESPONDENCES 2661

A complete motion estimation pipeline for endoscopy cannot
be built solely using a relative pose solution, since estimating the
relative pose using the the essential matrix is not adequate for
motions with very small translations. As observed in Fig. 7(c), it
is very challenging for our method (as well as the 5-point algo-
rithm) to work reliably in video sequences with high frame rates.
The next step is therefore to extend the remote center of motion
constraint to other components of SfM/SLAM systems, such as
the ressectioning (pnp) problem [23], the relative pose between
stereo pairs [24], and multi-view bundle adjustment [25].
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