Assured PNT Through Multiple Diverse Technologies

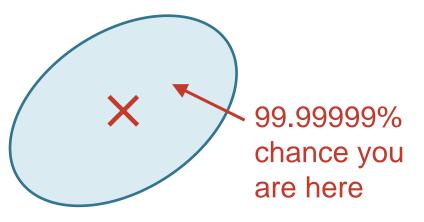
Dr Paul D Groves

Space Geodesy & Navigation Laboratory University College London (p.groves@ucl.ac.uk)

ION GNSS+ 2016 14 September 2016

Introduction

"Panelists will have the opportunity to expound upon their vision of how **ubiquitous**, **high-integrity PNT** might be achieved"


Ubiquitous means

- Works in different environments
- Works for different user behaviours
- You always have a PNT solution

CONFLICT

High-integrity means

 You can always trust the PNT solution

No solution is better than an untrustworthy solution

No Positioning Technology is Reliable

GNSS and Other Radio Signals:

Jamming Spoofing Interference

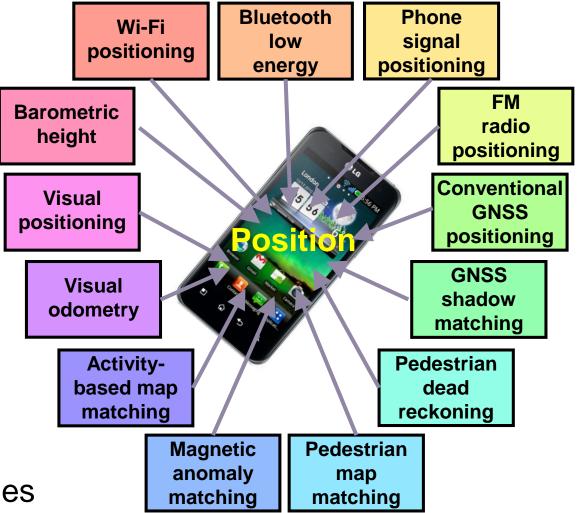
Signals not always available

Visual Navigation: Landmarks are not available everywhere

Dead Reckoning: Errors grow with time

Things Break:

Reliability Means Multiple Techniques


Different navigation and positioning techniques must fail under different conditions

- Most radio positioning techniques perform poorly indoors
- Wi-Fi positioning works better indoors
- Low-frequency radio signals are difficult to jam or spoof
- LF signals also suffer from large propagation errors that must be calibrated
- Only dead-reckoning techniques provide continuous positioning
- **Dead-reckoning** position errors grow with time

What Do We Use When?

- ≥ 13 smartphone
 pedestrian
 positioning
 techniques
- Other platforms use other techniques

Focus processing resources on the most viable techniques

What Do We Use When?

It depends on the Context

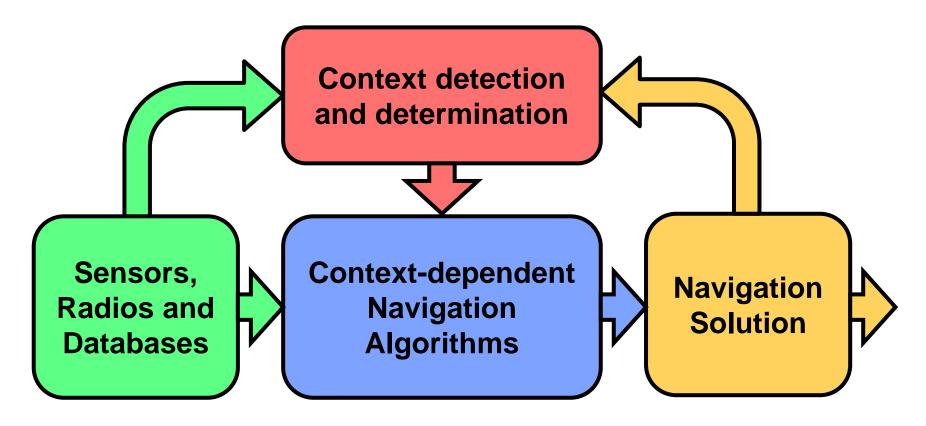
Environment

Open: Standard GNSS works well

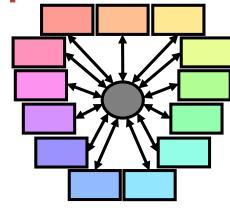
Behaviour

Urban: Use 3Dmapping aided GNSS

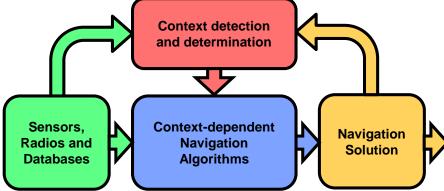
Indoor: Wi-Fi generally best


Pedestrians and Vehicles

- Different map matching
- Different motion constraints
- Step detection only works for pedestrians


Context-Adaptive Navigation

We detect the environmental and behavioural context. We select the appropriate navigation techniques

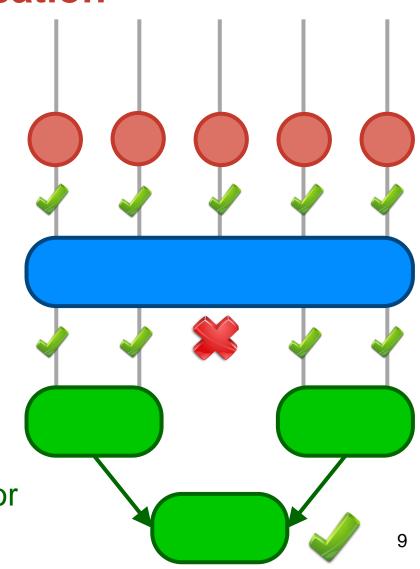


What Can We Trust?

Multisensor Navigation can ensure that something will always work

Context-Adaptive Navigation ensures we select suitable techniques according to the environment and user behaviour

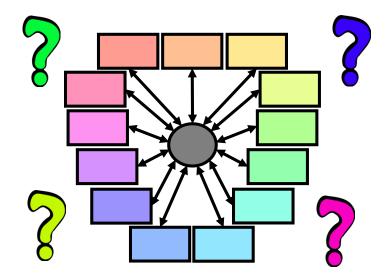
BUT how do we know whether our position solution is right?


We Need Solution Verification

Measurements

Individual quality checks

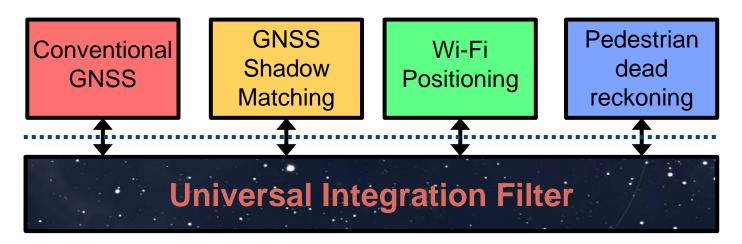
Consistency checks – Does each measurement agree with a prediction made by the others?


Compute two independent solutions – Do they agree? Can compare absolute position or change in position

The Complexity Challenge

To **combine** and **compare** different navigation technologies we need to **understand** them

- Accuracy?
- Error characteristics?
- Correlation times?
- Failure modes?



How do we obtain **expertise** on **all** of the **different** subsystems?

- Difficult to find in one organization
- Essential information may be proprietary
- Full error characteristics may not be known

The Plug 'N' Play Solution

- Accepts several standard measurement types
- Configures automatically based on measurements received with sensor specifications

How do we trust the sensor specifications? Certification Process? Expensive and time consuming Learning Algorithms? Can we trust these?

Is a Standard Interface Realistic?

How do we persuade everyone to conform to it?

Businesses compete to sell products and services

- Is there a big enough market for ubiquitous positioning and high integrity?
- Is it lucrative enough for them to share information with competitors?

Governments promote technologies that:

- Potentially create jobs
- Look good, e.g. satellite systems and "quantum" technology
 BUT Are they interested in more reliable PNT?

Conclusions

"Panelists will have the opportunity to expound upon their vision of how **ubiquitous**, **high-integrity PNT** might be achieved"

It is achievable **technically**:

- 1. Multiple PNT technologies with **different** failure modes
- 2. Context adaptivity
- 3. Multi-layered consistency-based verification
- 4. Plug 'n' Play integration with a **standard** interface

But, is it achievable politically?

Ubiquitous, high-integrity PNT needs cooperation