Keddie, S;
Parker, T;
Lachmann, HJ;
Ginsberg, L;
(2018)
Cryopyrin-Associated Periodic Fever Syndrome and the Nervous System.
Current Treatment Options in Neurology
, 20
(10)
, Article 43. 10.1007/s11940-018-0526-1.
Preview |
Text
Keddie2018_Article_Cryopyrin-AssociatedPeriodicFe.pdf - Published Version Download (1MB) | Preview |
Abstract
PURPOSE OF REVIEW: The purpose of this review is to highlight the molecular and clinical characteristics of the cryopyrin-associated periodic fever syndrome (CAPS) and its management. CAPS is an autosomal dominantly inherited autoinflammatory disorder associated with mutations in the NLRP3 gene, which ultimately lead to excessive production of interleukin-1β (IL-1β) and systemic inflammation. Typical systemic features include fever, urticarial rash and arthralgia, and ultimately amyloidosis. There are also multiple neurological manifestations including, but not restricted to, headache, sensorineural hearing loss, aseptic meningitis, myalgia and optic nerve involvement. RECENT FINDINGS: Since the recognition of CAPS as a single disease entity and discovery of the underlying causative gene, there has been a major breakthrough in terms of its treatment by pharmacological IL-1β inhibition. Highly targeted therapies against IL-1 have been shown to be remarkably effective in the treatment of CAPS and make early diagnosis of this condition crucial. It is hoped that starting pharmacological intervention in a timely manner will prove neuroprotective. There are three drugs licensed for treatment of CAPS; canakinumab, anakinra and rilonacept. The former two are widely used: canakinumab is a fully humanised anti-IL-1β monoclonal antibody administered as a subcutaneous injection once every 8 weeks starting at a dose of 150 mg in patients weighing more than 40 kg. Anakinra is a recombinant form of the IL-1 receptor antagonist and the adult daily dose is 100 mg subcutaneously. CAPS is a highly debilitating disorder characterised by unregulated IL-1β production driven by autosomal dominantly inherited mutations in the NLRP3 gene. Effective therapies targeted against IL-1 are now available and are vital to prevent long-term complications.
Archive Staff Only
View Item |