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Abstract

Despite the availability of effective antiretroviral therapies, cognitive impairment (CI) remains 

prevalent in HIV-infected (HIV+) individuals. Evidence from primarily cross-sectional studies, in 

predominantly male samples implicates monocyte and macrophage-driven inflammatory processes 

linked to HIV-associated CI. Thus, peripheral systemic inflammatory markers may be clinically 

useful biomarkers in tracking HIV-associated CI. Given sex differences in immune function, we 

focused here on whether mean and intraindividual variability in inflammatory markers predicted 

CI in HIV+ and HIV− women. Seventy-two HIV+ (36 with CI) and 58 HIV− (29 with CI) 

propensity-matched women participating in the Women’s Interagency HIV Study completed a 
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neuropsychological battery once between 2009–2011 and performance was used to determine CI 

status. Analysis of 13 peripheral immune markers was conducted on stored biospecimens at 3 time 

points (7 and 3.5 years before neuropsychological data collection and concurrent with data 

collection). HIV+ women showed alterations in 8 immune markers compared to HIV− women. 

The strongest predictors of CI across HIV+ and HIV− women were lower mean soluble tumor 

necrosis factor receptor I (sTNFRI) levels, higher mean interleukin (IL)-6 levels, and greater 

variability in C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 (p’s<0.05). 

Stratified by HIV, the only significant predictor of CI was greater variability in CRP for both HIV

+ and HIV− women (p’s<0.05). This variability predicted lower executive function, attention/

working memory, and psychomotor speed in HIV+ but only learning in HIV− women (p’s<0.05). 

Intraindividual variability in CRP levels over time may be a good predictor of CI in predominately 

minority low socioeconomic status midlife women.
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Introduction

HIV-associated cognitive impairment (CI) remains a major clinical issue in HIV care despite 

combination antiretroviral therapy (cART). Although the incidence of dementia has 

markedly decreased in the cART era, 30-60% of individuals living with HIV will exhibit CI 

during their lifetime (Grant, 2008). The pathophysiology of HIV-associated CI in the cART 

era remains incompletely understood and is a high priority issue in HIV research.

HIV-associated CI may result from direct neurotoxic effect of the virus itself or via the 

shedding of viral proteins such as Tat and gp120 (D’Aversa et al, 2005; Haughey and 

Mattson, 2002; Li et al, 2005). There is also compelling evidence that HIV-associated CI 

may result from indirect neurotoxic immunological processes mediated by cells of the 

monocyte/macrophage lineage (Burdo et al, 2013a; Hong and Banks, 2015; Kaul et al, 2001; 

Langford and Masliah, 2001; Valcour et al, 2010). Activated HIV-infected monocytes traffic 

across the blood brain barrier, infecting microglia and macrophages which in turn lead to an 

overexpression of cytokines and chemokines and initiation of an astrocyte-induced 

inflammatory cascade (Eugenin et al, 2011; Kou et al, 2009; Vartak-Sharma et al, 2014; 

Wang et al, 2008). Even with suppressive cART, HIV-induced inflammation can result in 

brain injury (Vera et al, 2016).

The role of neuroinflammation as a major contributor of brain injury has been examined in 

studies where peripheral systemic inflammatory markers are used as indicators of 

neuroinflammation. In neuroimaging studies for example, plasma and CSF inflammatory 

biomarkers are strongly associated with adverse alterations in brain structure and function 

(Ances and Hammoud, 2014; Anderson et al, 2015a; Anderson et al, 2015b; Bora et al, 
2014). The state of the science is primarily based on largely male-dominant samples and 

cross-sectional studies. Given substantial evidence of sex differences in neuroimmune 

activation (Martin et al, 2013; Mathad et al, 2016; Ticona et al, 2015) and cognition (Failde-
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Garrido et al, 2008; Heaton et al, 2015; Robertson et al, 1996; Royal et al, 2016), previous 

findings might not be generalizable to HIV-infected women. Moreover, longitudinal studies 

are needed to enhance our understanding of the time course of CI in relation to altered 

immune function, including whether absolute levels and/or variability in these biomarkers 

over time relate to HIV-associated CI.

In a prospective, nested, case-control study, we examine the time course of inflammatory 

and immune biomarkers over a 6-year time period and the extent to which those biomarkers 

predict CI at the 6-year mark. We include four groups of women that differ in HIV serostatus 

(HIV+ versus HIV−) and CI (present or absent at 6 years). The selected biomarkers have 

shown differences by HIV-serostatus, associations with cognitive performance in HIV+ 

individuals, and/or associations with cognitive performance in other individuals (Cohen et 
al, 2011a; Cohen et al, 2011b; Correia et al, 2013a; Koyama et al, 2013; Singh and Newman, 

2011). We hypothesized that regardless of HIV status, mean levels and variability in 

interleukin (IL)-6, IL-10, IL-16, IL-18, tumor necrosis factor (TNF)-α, C-reactive protein 

(CRP), interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein 

(MCP)-1, MCP-9, soluble TNFR(receptor) I&II, and macrophage inflammatory protein 

(MIP)-1β would be predictors of prevalent CI. However, we expected that mean levels and 

variability in IL-6, IL-10, TNF-α, CRP would be stronger predictors of prevalent CI among 

HIV+ women than among HIV- women and that IL-1β and TNF-related apoptosis inducing 

ligand (TRAIL) would be specific predictors of prevalent CI among HIV+ women.

Methods

Study Sample

Participants were enrolled in the WIHS, an ongoing longitudinal, multi-site cohort study of 

HIV+ and socio-demographically similar HIV− women (http://wihshealth.org). For this 

prospective, nested case/control study, we used participants enrolled in the first two waves 

who also subsequently completed baseline neuropsychological (NP) testing between 2009 

and 2011 (for complete information regarding demographics, behavioural, and clinical 

characteristics see (Maki et al, 2015). The first wave of data collection occurred between 

October 1994 and November 1995 and the second between October 2001 and September 

2002 at six sites (Brooklyn, Bronx, Chicago, DC, Los Angeles, and San Francisco). Detailed 

information regarding recruitment procedures, eligibility criteria, and study methods have 

been previous published (Bacon et al, 2005; Barkan et al, 1998).

To determine which cases were selected for analyses (see Supplemental Table 1 for the 

distribution of CI for HIV+ and HIV− women), we used propensity matching which reduces 

case-control selection bias (Walsh et al, 2012). A single logistic regression model was used 

to obtain propensity scores where the outcome was case status and predictors were HIV 

status; age; years of education; Wide Range Achievement Test (WRAT-R) reading subset 

score; race/ethnicity (African-American, Latina, White, Other), HCV status at baseline 

(HCV Ab[antibody]-, HCV Ab+ RNA−, HCV Ab+ RNA unknown, HCV Ab+ RNA+); 

body mass index; current smoker; recent marijuana use; recent crack, cocaine, and/or heroin 

use; alcohol use (none, light (0-7 drinks/week), moderate (7-12 drinks/week), heavy (>12 

drinks/week)); depressive symptoms (Center for Epidemiological Studies Depression Scale 
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(CES-D) 16 cutoff); self-reported antidepressant use; liver fibrosis (Aspartate 

aminotransferase platelet ratio index-APRI); and hepatic fibrosis (FIB-4). The matching was 

implemented separately by HIV status. Using a tolerance of 0.04, HIV+ cases (CI) were 

matched to HIV+ controls (no CI) and HIV− cases (CI) were matched to HIV− controls (no 

CI). The goal of propensity matching was to create 4 groups (HIV+ CI, HIV+ no CI, HIV− 

CI, HIV− no CI) balanced on all covariates included in the matching model which were 

factors known to be or potentially associated with CI.

Prior to propensity matching, cases were included/excluded from possible selection based on 

the following factors. Cases available for study inclusion were: 1) availability of specimens 

at the visit when NP testing occurred (2009–2011) and at one or two earlier visits (2003–

2004 and/or 2006–2007), 2) valid completion of all neuropsychological tests in each of the 7 

domains, and 3) English speaking. A total of 341 HIV+ no CI, 104 HIV+ CI, 202 HIV− no 

CI, and 45 HIV− CI met these criteria. Cases excluded from study inclusion were: 1) 

seroconverters and other rare phenotypes (ART-naïve HAART initiator, long-term non-

progressor (CD4 > 500cells/mm3 for ≥5 years, no ART), elite controller (viral load <80 

cp/ml for ≥1.5 years, no ART), registry-confirmed incident cancer), 2) CD4 <200 cells/

mm3, 3) self-report of a physician diagnosis of dementia, 4) self-reported CVA/stroke, 5) 

self-reported use of antipsychotic or Alzheimer’s medications, 6) visual or health-related 

issues that could impact performance on the cognitive test battery, 7) staff note indicating 

that the participant was under the influence of drugs during testing, and 8) women self-

reporting neuropathy or complaints of arthritis or damaged fingers which would invalidate 

performance on grooved pegboard. After exclusion criteria were applied, we were able to 

select from 167 HIV+ no CI, 36 HIV+ CI, 149 HIV− no CI, and 30 HIV− CI for propensity 

matching.

Measures

Multiplex cytokine and chemokine analysis

Serum samples were assayed for 2 or 3 longitudinal time points at approximately 3-year 

intervals using the standard-sensitivity Milliplex Map kit (Millipore) for IL-10, IL-1β, IL-6, 

IP-10, MCP-1, MIP-1β, and TNF-α, standard-sensitivity Panel II kit (Millipore) for IL-16 

and TRAIL, Soluble Receptors kit (Millipore) for soluble TNF receptor type I (sTNFRI) and 

II (sTNFRII), Matrix Metalloproteinase panel Luminex (Millipore) for MMP-9, R&D 

Quantikine ELISA for CRP, and MBL international ELISA for IL-18. Standards and 

samples were tested in duplicate. Beads were acquired on a Labscan analyzer (Luminex) 

using Bio-Plex manager 6.1 software (Bio-Rad). ELISA was read on a Molecular Devices 

Emax plate reader and acquired on Softmax Pro (version 5.4). High CV% between repeat 

samples were flagged and repeated for analyses (Keating et al, 2011). To avoid confounding 

of batch with time and group, all longitudinal samples were run on the same plate, with an 

equal proportion of the four groups (ratio 2:1 HIV+ to HIV−). The same two controls were 

run on every plate to evaluate the reliability of values across plates. Values that were 

determined to be out of range low were assigned 0.5, the lowest standard. The proportion of 

undetectable values for cytokines was: IL-1β (56%), IL-6 (45%), IL-10 (20%), IL-16 (9%), 

CRP (2%), MIP-1β (1%), and TRAIL (1%). Values that were extrapolated beyond the 
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standard curve were accepted as that value. All immune markers were log transformed and 

winsorized (<1% of values changed to be equal to the highest or lowest value that was 

within 3SD of the interquartile range) to normalize distributions.

Primary Outcome

CI status, the primary outcome variable, was based on a neuropsychological test battery 

completed once between 2009 and 2011. The battery included 8 tests: Hopkins Verbal 

Learning Test-Revised (HVLT-R), Letter-Number Sequencing, Trail Making (TMT) Stroop 

Test, Symbol Digit Modalities Test (SDMT), Controlled Oral Word Association Test 

(COWAT), Category Fluency Test (Animals), and Grooved Pegboard (GPEG). Seven 

domains were assessed using these tests: learning (outcome=total learning across HVLR-T 

trials), memory (outcome=delayed free recall on HVLT-R), attention/working memory 
(outcomes=total correct on LNS control and experimental conditions), psychomotor speed 
(outcomes=total correct on SDMT, time to completion on Stroop Trial 2), executive 
function (outcomes =time to completion on TMT Part B and Stroop Trial 3), fluency 
(outcomes=total correct on COWAT and category fluency), and motor skills 
(outcomes=total time to completion for each hand on GPEG). Timed outcomes were log 

transformed to normalize distributions and reverse scored so higher values equated to better 

performance.

Consistent with previous large-scale HIV cohorts (Cysique et al, 2014; Heaton et al, 2004; 

Sacktor et al, 2016) including WIHS (Maki et al, 2015; Rubin et al, 2015; Rubin et al, 
2016), demographically adjusted T-scores were derived for each outcome and these T-scores 

were used to create domain scores (Supplemental Materials). CI was defined as scoring 

below the expected level of performance (T-score <40) in at least 3 of 7 domains. Although 

only two domains of CI are typically required for a diagnosis of HIV-Associated 

Neurocognitive Disorder (HAND) (Antinori et al, 2007), we chose a more stringent 

definition because at the time we did not have measures necessary to determine HAND, 

including instrumental activities of daily living.

Statistical analysis

A series of conditional logistic regression models were conducted in SAS (version 9.4, Cary, 

NC) to assess whether average or fluctuation (standard deviation) in inflammatory 

biomarkers over all time points tested predicted CI in general (using overall sample) or 

whether they differentially predicted HIV-associated CI (stratified by HIV-serostatus). 

Conditional logistic regression models were selected to handle the nested propensity-

matched pair design (65 pairs). Unadjusted models were first conducted to examine the 

association of primary predictor variables to CI. Primary predictor variables were average 

levels and variability (standard deviation) of the 13 inflammatory markers from all time 

points. Based on these models, all predictors associated with the outcome at p<0.10 were 

included in a stepwise model. The study design prohibited the inclusion of HIV status in 

models for the overall sample; the proportion of cases was exactly 50% in both HIV+ and 

HIV− women. Variables were retained in the stepwise models if p<0.10. Odds ratios (ORs) 

and 95% CIs were calculated using maximum likelihood estimates from the conditional 

logistic regression models. When inflammatory markers were predictive of CI among HIV+ 
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women, models were rerun including HIV-specific covariates (viral load, current and nadir 

CD4 count, and CD4/CD8 ratio). Additionally, when inflammatory markers were predictive 

of CI in either group, exploratory correlational analyses using Spearman’s Rho were 

conducted to determine the specific domains contributing to the global effect. Because 

exploratory analyses were performed for heuristic purposes to examine the potential clinical 

significance for future larger scale studies, we did not correct for multiple comparisons. 

However, given the small sample sizes, when correlations were observed (p<0.10), 

bootstrapping of the correlation coefficient (based on 1000 samples) was conducted to 

determine the strength of the associations and to ensure findings were not driven by outliers. 

The 95%CI from the bootstrapping procedure was used to determine statistical significance 

(95%CI does not include 0).

Results

Sample Characteristics

The overall sample of 130 women was 67% African-American, non-Hispanic and 20% 

Hispanic and ranged in age from 25-70 years (mean=43.9, SD=9.6) which is comparable to 

previously published large-scale WIHS studies (Maki et al, 2015; Rubin et al, 2016). The 

four groups were comparable across a range of sociodemographic, behavioral, and clinical 

characteristics (Table 1). Among those with CI, there was a similar prevalence of CI across 

all domains except psychomotor speed which was more prevalent among HIV+ compared to 

HIV− women (p=0.03, Supplemental Table 2)

Serum Immune biomarkers

Table 2 provides the average of each individual’s mean and intra-individual variability (SD) 

from the two (27 women contributed 54 observations) or three (103 women contributed 309 

observations) time points of immune marker levels as a function of HIV status. There were 

no significant differences in immune marker levels (mean or SD) as a function of having two 

or three time points. Compared to HIV− women, HIV+ women showed higher mean levels 

of IL-18, sTNFRII, MCP-1, IP-10, TNF-α, and TRAIL and lower mean levels of IL1-β and 

IL-6 (p’s<0.05). After controlling the false discovery rate (FDR) using the Benjamini-

Hochberg procedure only two markers did not remain significant: TRAIL and IL1-β. HIV+ 

women also showed greater individual variability in sTNFRII and TRAIL compared HIV− 

women (p<0.05); however, these differences did not remain after controlling the FDR. 

Similar results were seen when comparing women with HIV RNA<80cp/ml and HIV− 

women. Of the markers showing HIV-serostatus differences, higher viral load was associated 

with lower mean levels of TRAIL (rs=−0.28, p=0.02) and sTNFRII (rs=−0.24, p=0.04). 

Lower CD4/CD8 ratio was associated with higher mean levels of TNF-α (rs=−0.42, 

p<0.0001), IL1-β (rs=−0.32, p=0.007), IL-6 (rs=−0.32, p=0.007), and TRAIL (rs=−0.27, 

p=0.03). These markers were not significantly associated with current or nadir CD4 count 

(p’s>0.07).

Table 3 provides the results from the unadjusted conditional logistic regression models 

across HIV+ and HIV− groups to assess general predictors of CI as well as stratified by 

serostatus to assess for specific predictors of HIV-associated CI. In unadjusted analyses, the 
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strongest predictors of CI in the overall sample were lower mean levels of sTNFRI 

(p=0.009) and greater variability in CRP (p=0.003), with trends for higher mean levels of 

IL-6 (p=0.08) and greater variability in MMP-9 (p=0.08). In adjusted analyses, all four of 

these biomarkers were significant predictors of CI: mean levels of sTNFRI (OR 0.07 95%CI 

0.01-0.46, p=0.006), mean levels of IL-6 (OR 1.54, 95%CI 1.09-2.18, p=0.01), variability in 

CRP (OR 4.66, 95%CI 1.52-14.24, p=0.007), and variability in MMP-9 (OR 16.85, 95%CI 

1.98-143, p=0.009). In unadjusted analyses in HIV+ women only, the only significant 

predictor of CI was increased variability in CRP levels (p=0.04). CRP remained significant 

(p=0.04) after adjusting for viral load, CD4 count (current and nadir), and the CD4/CD8 

ratio (p’s NS). In unadjusted analyses in HIV− women, the strongest predictors of CI were 

lower mean levels of sTNFRI (p=0.04) and increased variability in CRP (p=0.03), but only 

increased variability in CRP remained significant in adjusted analyses (OR 4.21, 95%CI 

1.14-15.49).

Follow-up exploratory analyses in the overall sample indicated that lower mean level of 

sTNFRI was associated with lower performance in psychomotor speed (rs=0.18, p=0.04, 

95%CI 0.01 to 0.35), attention/working memory (rs=0.25, p=0.005, 95%CI 0.10-0.41), and 

fluency (rs=0.28 p=0.001, 95%CI 0.11 to 0.44). Greater variability in MMP-9 levels were 

associated with lower performance on fluency (rs=−0.18, p=0.04, 95%CI −0.37 to −0.01) 

whereas greater variability in CRP levels was associated with worse executive function 

(95%CI −0.41 to −0.07), psychomotor speed (95%CI −0.38 to −0.07), attention/working 

memory (95%CI −0.37 to −0.04), and learning (95%CI −0.36 to −0.04) (Fig 1). Greater 

variability in CRP levels was the strongest correlate of psychomotor speed, attention/

working memory, and executive function in HIV+ (p’s<0.05; 95%CI <−0.01) and learning in 

HIV− women (p=0.04, 95%CI −0.51 to −0.02)(Fig 1). Similar results were seen among HIV

+ women after adjusting for viral load and CD4 count (current and nadir) (p’s NS).

Discussion

Extending previous cross-sectional studies in predominantly male samples, we conducted a 

prospective, nested case-control study to determine if peripheral inflammatory markers over 

time predict CI in HIV+ women and HIV– women. Our conclusions support the finding of 

consistent immune alterations despite ART. Consistent with previous studies, serum levels of 

cytokines (IL-6, IL-18, TNF-α, IL-1β) and their receptors (sTNFRII, TRAIL) as well as 

chemokines (MCP-1, IP- 10) differed between a sample of predominately cART treated 

(96%) and virologically supressed (93%) HIV+ women and HIV− women (Cohen et al, 
2011a; Correia et al, 2013b; Deeks et al, 2013; Neuhaus et al, 2010; Ronsholt et al, 2013). 

Importantly, there was no bias in which group contributed two or three samples. We found 

more robust HIV-serostatus differences when examining mean levels of immune markers but 

also found differences when examining intra-individual variability in immune markers 

(sTNFRII, TRAIL; CRP and IL-18 trends) a metric that can only be examined with multiple 

measurements.

Although most studies report HIV-serostatus differences in immune markers, the patterns 

and markers themselves are not always consistent across studies. Compared to HIV− 

women, HIV+ women in the present study showed lower levels of IL-6 and IL-1β and 
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higher levels of IL-18, TNF-α, sTNFRII, TRAIL, MCP-1, and IP-10. These findings are 

partially consistent with previous studies (Cohen et al, 2011a; Correia et al, 2013b; Neuhaus 

et al, 2010; Ronsholt et al, 2013). For example, Neuhaus et al. (2010) found that ART-

treated men and women had approximately 40 to 60% higher IL-6 levels compared to 

controls. Others have reported lower levels of TNF-α in HIV+ compared to HIV− 

individuals, no differences in TRAIL, and elevated levels of MIP-1β (Cohen et al, 2011a; 

Correia et al, 2013b). Inconsistencies across studies could be due to a numerous factors such 

as the examination of mixed samples of men and women, using a single measurement versus 

our use of average levels across multiple time points, or the inclusion of individuals co-

infected with HCV. This study includes individuals co-infected with HCV, albeit a similar 

proportion across the 4 groups.

Our findings also provide support for the role of inflammation in CI in HIV− individuals. In 

the overall sample, IL-6, CRP, sTNFRI, and MMP-9 predicted CI. Among population 

studies of aging, IL-6, CRP, and TNF-α are among the most studied markers of adverse 

outcomes including cognitive decline (see Singh and Newman, 2011, for review). Many, but 

not all studies, demonstrate associations between these general markers of systemic low-

grade inflammation and cognitive performance and/or decline as well as all-cause dementia. 

For example, findings from the Northern Manhattan Study, a large community-based 

prospective cohort of older HIV-uninfected socioeconomically and ethnically diverse sample 

of men and women, demonstrated that elevated IL-6 levels were associated with lower 

cognitive performance (Wright et al, 2006) and greater cognitive decline (Economos et al, 
2013).

Our strongest effects of predictors of prevalent CI were with variability in CRP levels. While 

Economos et al. (2013) did not demonstrate an association between CRP and cognitive 

decline, others have demonstrated this association with absolute levels of CRP (Noble et al, 
2010; Puzianowska-Kuznicka et al, 2016; Roberts et al, 2009; Yaffe et al, 2003) and with 

variability in CRP levels (Metti et al, 2014). In a meta-analysis, CRP was associated with a 

45% increase in all-cause dementia and IL-6 was associated with a 32% increase (Koyama 

et al, 2013). Variability in CRP has been observed in other settings (Bogaty et al, 2013) and 

might be related to the presence of and variability in inflammation and immune status, 

weight gain, physical activity, vascular and metabolic conditions, and/or psychological 

symptoms (Metti et al, 2014) as CRP is associated with each of these comorbidities 

(DeGoma et al, 2012; Koenig et al, 2003; Ladwig et al, 2005; Puzianowska-Kuznicka et al, 
2016). Larger longitudinal studies with more frequent measurements are needed to identify 

any particularly meaningful pattern in variability in CRP and any mediators (e.g., vascular) 

of these associations. As with other biomarkers shown to predict HIV-related CI (e.g., 

neuroimaging biomarkers), CRP may have limited clinical utility. Rather, the value of these 

findings is in identifying the mechanisms contributing to HIV− associated CI so that they 

can be targeted through appropriate interventions.

Greater variability in MMP-9 levels was also a significant predictor of CI in the overall 

sample. MMP-9, a major secretion product of macrophages, is implicated in the breakdown 

and remodelling of the extracellular matrix in normal and pathological inflammatory 

processes (Klein and Bischoff, 2011). HIV can both downregulate and upregulate MMP-9 
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production (Ciborowski et al, 2004; Muratori et al, 2007). Neurotoxic viral proteins gp120 

and Tat increase expression of MMP-9 and consequently induce blood brain barrier 

permeability by degrading vascular tight junction proteins in endothelial cells (Louboutin et 
al, 2010; Xu et al, 2012). Thus, MMP-9-related disruption of the blood brain barrier may 

play a critical role in CI generally and in the pathogenesis of HAND (Avison et al, 2004).

In stratified analyses only variability in CRP levels remained a significant predictor of CI in 

HIV+ and HIV- women. In exploratory analyses in HIV+ women, greater variability in CRP 

was associated with lower performance on a broad range of cognitive abilities including 

psychomotor speed, attention/working memory, and executive function. Conversely, in HIV

− women, greater CRP variability was associated only with lower learning. CRP may 

influence cognitive performance differently in HIV+ compared with HIV− individuals. The 

robustness of these differences and the mechanisms leading to different patterns warrant 

further investigation.

Limitations of the present study include the relatively small sample size and unknown 

cognitive status of participants before 2009. Most likely we are examining prevalent and not 

incident cases of CI. No peripheral monocyte-driven immune activation markers such as 

soluble CD163 and CD14 were studied but have shown associations with CI (Burdo et al, 
2013b; Royal et al, 2016) including in the WIHS (Imp et al, 2017). While the use of 

propensity matching yielded four groups that were balanced on a number of 

sociodemographic, clinical, and behavioural characteristics know to be associated with 

cognitive impairment, this approach controls only for measured confounders and 

unmeasured factors can still bias results. Finally, the standard sensitivity assay measured 

most of the analytes required for this analysis but can cause loss of values at the lower end 

of detection; however, this did not greatly impact the significant markers found in this study 

to predict prevalent CI. Sensitivity was more of an issue for IL-1β, IL-6, IL-10, and IL-16 in 

the present study. A deeper investigation impact of low levels of these cytokines on CI will 

need to be conducted using more sensitive assays.

In sum, our longitudinal findings in women provide further support for the adverse role of 

persistent residual immune activation despite cART in HIV+ individuals. Alterations in 

immune processes predicted CI among both HIV+ and HIV− women. Although variability 

in CRP, a more general marker of low-grade systemic inflammation, was the strongest 

predictor in both HIV+ and HIV− women, the specific cognitive correlates of CRP differed 

across the groups with much broader associations in HIV+ women. Findings warrant further 

study into possible peripheral immune signatures examined over a longer duration that may 

differentially predict the patterns of CI over time generally and in HIV+ individuals 

specifically.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mean Variability in log CRP levels predict cognitive performance.

Note. WM=working memory. Mean variability in log CRP levels predicted performance on 

all of these domains in the overall sample (p’s<0.05). CRP is the strongest predictor of 

attention/working memory, executive function, and psychomotor speed for HIV+ women 

whereas for HIV- women CRP is the strongest predictor of learning.
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Table 2

Comparison of mean levels and variability in levels of immune markers over time for HIV+ and HIV− women.

Log levels
HIV+

M (SE)
HIV−

M (SE) p-value

Mean

 IL1-β −1.6 (0.15) −1.1 (0.22) 0.04

 IL-18 5.4 (0.06) 4.8 (0.08) <0.001†

 sTNFRII 8.6 (0.03) 8.4 (0.04) 0.006†

 sTNFRI 7.1 (0.04) 7.1 (0.04) 0.31

 MCP-1 4.9 (0.05) 4.7 (0.05) 0.008†

 IP-10 5.8 (0.09) 5.3 (0.09) <0.001†

 TNF-α 1.7 (0.05) 1.6 (0.06) 0.01†

 TRAIL 3.3 (0.05) 3.1 (0.06) 0.03

 MIP-1β 3.3 (0.04) 3.4 (0.05) 0.23

 IL-6 −1.4 (0.14) −0.8 (0.20) 0.01†

 IL-16 2.7 (0.08) 2.8 (0.09) 0.37

 IL-10 −0.1 (0.15) −0.3 (0.20) 0.44

 MMP-9 9.7 (0.06) 9.8 (0.07) 0.53

 CRP 7.2 (0.16) 7.3 (0.17) 0.51

Standard deviation

 IL1-β 0.9 (0.08) 0.8 (0.12) 0.87

 IL-18 0.3 (0.02) 0.2 (0.02) 0.05

 sTNFRII 0.2 (0.01) 0.1 (0.01) 0.004†

 sTNFRI 0.1 (0.01) 0.1 (0.01) 0.44

 MCP-1 0.2 (0.02) 0.3 (0.02) 0.41

 IP-10 0.4 (0.03) 0.4 (0.04) 0.24

 TNF-α 0.3 (0.03) 0.3 (0.03) 0.44

 TRAIL 0.3 (0.02) 0.2 (0.02) 0.04

 MIP-1β 0.3 (0.02) 0.3 (0.02) 0.38

 IL-6 0.9 (0.10) 0.9 (0.10) 0.94

 IL-16 0.4 (0.03) 0.3 (0.03) 0.15

 IL-10 0.9 (0.08) 1.0 (0.10) 0.62

 MMP-9 0.4 (0.03) 0.4 (0.03) 0.99

 CRP 0.6 (0.05) 0.8 (0.08) 0.07

Note. Bold are significant based on independent t-tests; bold and italic are trends at p<0.10.

†
denotes significance after controlling the false discovery rate (FDR) using the Benjamini-Hochberg procedure. The FDR was set at 10%.
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Table 3

Associations between average and standard deviation of immune marker predicting cognitive impairment 

among HIV+ and HIV− women separately as well as in the overall sample.

HIV+ HIV− Overall

Log levels

Impairment
(vs. none)
OR (95%CI)

Impairment(vs. none)
OR (95%CI)

Impairment(vs. none)
OR (95%CI)

Mean

 IL1-β 0.99 (0.68–1.45) 1.03 (0.78–1.36) 1.02 (0.81–1.27)

 IL-18 1.51 (0.60–3.77) 1.30 (0.52–3.24) 1.40 (0.73–2.67)

 sTNFRII 1.18 (0.24–5.93) 0.58 (0.09–3.66) 0.87 (0.26–2.90)

 sTNFRI 0.24 (0.04–1.39) 0.10 (0.01–0.95)* 0.16 (0.04–0.64)**

 MCP-1 1.55 (0.42–5.64) 0.92 (0.27–3.16) 1.18 (0.49–2.87)

 IP-10 1.40 (0.75–2.63) 1.16 (0.54–2.50) 1.30 (0.80–2.11)

 TNF-α 1.36 (0.50–3.69) 0.87 (0.32–2.36) 1.09 (0.54–2.19)

 TRAIL 1.62 (0.46–5.69) 1.69 (0.42–6.84) 1.65 (0.65–4.20)

 MIP-1β 2.78 (0.67–11.24) 1.46 (0.40–5.38) 1.99 (0.77–5.19)

 IL-6 1.31 (0.89–1.93) 1.19 (0.87–1.65) 1.24 (0.97–1.59)T

 IL-16 0.72 (0.36–1.44) 0.67 (0.29–1.54) 0.70 (0.41–1.19)

 IL-10 1.12 (0.76–1.65) 1.13 (0.80–1.59) 1.13 (0.87–1.45)

 MMP-9 0.58 (0.20–1.67) 0.74 (0.27–1.98) 0.66 (0.32–1.36)

 CRP 1.02 (0.71–1.47) 0.70 (0.43–1.16) 0.89 (0.67–1.19)

Standard deviation

 IL1-β 1.13 (0.75–1.71) 1.24 (0.67–2.29) 1.16 (0.83–1.64)

 IL-18 1.38 (0.15–12.72) 0.67 (0.02–28.69) 1.15 (0.17–7.71)

 sTNFRII 0.63 (0.01–29.74) 2.70 (0.01–704) 1.01 (0.04–23.77)

 sTNFRI 42.84 (0.26–999) 0.26 (0.00–39.96) 3.53 (0.11–108.14)

 MCP-1 1.43 (0.07–28.73) 0.92 (0.27–3.16) 5.91 (0.55–63.33)

 IP-10 0.91 (0.20–4.18) 2.26 (0.21–24.27) 1.20 (0.34–4.27)

 TNF-α 3.03 (0.39–23.69) 1.18 (0.12–11.91) 2.02 (0.44–9.26)

 TRAIL 0.41 (0.05–3.16) 0.58 (0.03–11.44) 0.45 (0.09–2.45)

 MIP-1β 1.32 (0.14–12.67) 8.60 (0.32–228) 2.52 (0.40–15.83)

 IL-6 1.09 (0.68–1.73) 1.03 (0.55–1.92) 1.07 (0.73–1.55)

 IL-16 1.09 (0.23–5.18) 7.24 (0.42–124.86) 1.78 (0.46–6.85)

 IL-10 0.88 (0.50–1.53) 1.24 (0.62–2.49) 1.00 (0.65–1.55)

 MMP-9 2.11 (0.28–15.64) 6.37 (0.71–57.11) 3.59 (0.83–15.62)⊤

 CRP 3.78 (1.09–13.17)* 4.21 (1.14–15.49)* 3.99 (1.62–9.79)**

Note.

**
p<0.01.

*
p<0.05.

†
p=0.06.
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⊤
p=0.08. bold is significant at p<0.05; bold and italic is a trend at p<0.09.
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