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Summary

In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to 

the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is 

unclear what this approach might entail, and what form it will take. Irrespective of the therapy that 

ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A 

number of animal models have now been used to identify inflammation as a major underlying 

mechanism of both chronic seizures and the epileptogenic process. These models have 

demonstrated that specific anti-inflammatory treatments can be effective at both suppressing 

chronic seizures and interfering with the process of epileptogenesis. Some of these have already 

been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical 

trials of both “conventional, broad spectrum” anti-inflammatory agents and novel new approaches 

to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A 

summary of some of those approaches appears below, as well as a discussion of the issues facing 

clinical trials in this new domain.
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Anti-inflammatory treatments may add to the therapeutic armamentarium and help to 

suppress seizures in epilepsies that are refractory to conventional antiepileptic drugs 

(AEDs). Although trial methodology for classical AEDs is well established, evaluation of 

anti-inflammatory treatments for epilepsy has to respect a variety of additional factors, and 

trial design may become more complex for reasons that will become clear in the sections 

below. There is expectation and hope that these treatments may even display a true 

antiepileptogenic effect; a trial to prevent poststroke epilepsy will be discussed in this article. 

The anti-inflammatory and antiepileptogenic potential of other compounds already in use, 

like anakinra for rheumatoid arthritis and autoinflammatory diseases and fingolimod for 

multiple sclerosis, is presented here. Steroids are increasingly in use for the treatment of 

some epileptic syndromes where an inflammatory cause is suspected. This article presents 

the rationale behind the administration of these well-known large-spectrum 

immunosuppressant drugs and weighs their expected benefits against their imminent harms. 

Cannabinoids modulate the nervous and immune systems by various pathways that will be 

discussed together with their potential as antiseizure and antiepileptogenic drugs. 

Nonpharmaceutical therapies for refractory epilepsy such as the ketogenic diet or vagus 

nerve stimulation also influence the immune system and exert anti-inflammatory effects, 

which will be addressed in the following chapter.

Clinical Trials of Anti-Inflammatory Agents

(Jacqueline A. French)

Inflammation may be critical to both development and perpetuation of an epileptic focus, 

and the underlying mechanisms for each may differ.1 Thus an anti-inflammatory drug may 

be effective as an antiepileptogenic agent, an anti-ictal agent that suppresses seizures in the 

chronic state, or both. Moreover, the impact may simply be to suppress seizures, or may be 

disease-modifying. Clinical trial design will differ substantially depending on the purpose of 

the trial. Anti-ictal studies are those studies that are performed to determine if the drug can 

reduce or eliminate ongoing seizures in treatment-resistant patients. These would be similar 

to studies performed for anti-ictal drugs with other mechanisms, but there may be some 

special considerations for a drug with anti-inflammatory properties. One issue would be 

patient selection. To date, preclinical studies have suggested that some degree of 

inflammation may be present in all patients with chronic epilepsy. However, it is possible 

that specific etiologies, such as mesial temporal sclerosis (MTS), cortical dysplasia, and 

tuberous sclerosis have a greater component of inflammation driving ictogenesis.2 If this is 

correct, it would be prudent to find patients with these specific etiologies. In addition,, 

inflammation may be more active at some points in the course of epilepsy than in others. It 

may not be simple to identify patients who have active inflammation contributing to 

ictogenesis, and limiting patients to those with specific etiologies may lead to poor 

recruitment. In future studies, it will be critical to enrich the trial population with responders, 

to increase effect size. Identification of imaging and/or blood biomarkers will be critical to 

this effort. Alternative solutions may be “enriched studies” in which patients are initially 

treated in an open-label fashion, and only responders undergo a randomized clinical trial 

(RCT), or adaptive trials, in which nonresponders are discontinued early.
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Because anti-inflammatory therapies might work in a different way than standard AEDs, the 

timing of onset and offset of the effect may also be different. Specifically, an anti-

inflammatory therapy may take time to exert its effect, and may continue to have an effect 

after it is withdrawn. An example is VX-765, an anti-inflammatory drug that specifically 

inhibits interleukin-converting enzyme (ICE), thereby reducing interleukin (IL)-1β 
biosynthesis and high mobility group box 1 (HMGB1) release, two molecules implicated in 

seizure mechanisms in experimental models.1 VX-765 is the only known anti-inflammatory 

agent that has been used for controlled efficacy trials in chronic focal epilepsy, although 

these trials were only preliminary.3 Animal studies showed a delayed start of the antiseizure 

effect of the anti-inflammatory molecule.4 This was ignored when designing the first study, 

which was very short, possibly leading to a failed trial. Only a post hoc analysis showed a 

probable effect, starting 1–2 weeks after drug initiation. There was also a suggestion of a 

delayed return to baseline seizure frequency after the drug was withdrawn. Unfortunately, 

the second study of this drug was terminated after only 10 subjects/arm were enrolled, due 

to change of priorities on the part of the pharmaceutical company that was developing the 

molecule. Nonetheless, some very important lessons were learned that can and should be 

used to inform future trials of anti-inflammatory interventions.

No trials have been done in epilepsy that specifically contain an endpoint to demonstrate 

disease modification. Disease modification trials have been planned and attempted in other 

chronic central nervous system (CNS) diseases such as Alzheimer’s and Parkinson’s 

disease.5,6 Trial design options include those that capitalize on delayed start, continued 

benefit after treatment discontinuation, and active comparison to a non-disease-modifying 

drug with comparison of slope of improvement over time. These trials may not be easy to 

perform, and there will need to be some understanding of time to effect and other drug 

characteristics, to increase the odds of success. Again, biomarkers would be helpful to 

determine improvement along the way, particularly if there might be substantial delay to 

effect.

Future directions

Trials to demonstrate antiepileptogenic effects would be the most difficult, and would 

require careful preclinical studies demonstrating a strong effect of the compound in animal 

models at relevant doses, duplicated in at least two studies or through a multicenter 

collaboration. Because most epilepsy risk factors (such as traumatic brain injury and stroke) 

cause epilepsy in only a subset of affected individuals (typically 10–25%), and epilepsy does 

not usually develop immediately, trials would need to be long, and would need to recruit a 

large number of patients. The burden of the therapy should match the potential expected risk 

reduction, and the trial would have to be planned in such a way that the population is 

recruitable. Many previous antiepileptogenesis trials have failed due to poor recruitment, or 

other design flaws.7 Availability of biomarkers could substantially increase the likelihood of 

success by either enriching recruitment for patients who will develop epilepsy, or providing 

an early indicator of benefit.
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A Proposal for an Anti-epileptogenesis Trial in Post-stroke Epilepsy

(Matthias Koepp)

Stroke is the third leading cause of death and a major cause of disability in Europe; it affects 

one in six adults with an estimated 3–6 million stroke cases annually.8 Individuals who have 

had a stroke have an increased risk of epilepsy (~10%),9 with most epilepsy cases occurring 

within 24 months after stroke. When unprovoked seizures occur, they further impair an 

already compromised quality of life, worsen the degree of cognitive disability, and are 

associated with an increased risk of subsequent dementia.10 There are no treatments to 

prevent the development of these disabling comorbidities11 and there are only few effective 

pharmacologic interventions that facilitate poststroke recovery.12

Although progress has been made in understanding the cellular and molecular mechanisms 

of ischemic tissue damage, neuroprotective and regenerative treatments that could improve 

outcome in patients recovering from stroke are lacking. Stroke induces a complex cascade of 

different inflammatory mediators and cytokines, and aging, a risk factor for stroke, further 

exacerbates neuroinflammatory responses. There is increasing evidence that inflammatory 

changes in the brain after stroke also promote the development of epilepsy, that is, 

epileptogenesis, among many other changes through processes triggered by the pro-

inflammatory cytokine interleukin (IL)-1β and inhibited by the endogenous IL-1 receptor 

antagonist (IL-1ra).1,13,14 Because epileptogenesis is variable and only a minority of patients 

develop epilepsy following stroke,15 clinical trials of potentially disease-modifying 

treatments would benefit greatly from the ability to identify reliably those individuals who 

are most likely to develop epilepsy after stroke.

Rationale for repurposing an anti-inflammatory compound

Major advances have been made in understanding basic mechanisms of epileptogenesis and 

epilepsy in a variety of animal models. Among etiologies of epilepsy, which are readily 

detectable and could permit early interventions, stroke stands out prominently, particularly 

because patients at-risk and associated epileptogenic mechanisms can be identified within a 

reasonable time from the insult. One mechanism that has emerged as having primary 

importance for recovery from stroke and epileptogenesis, is brain inflammation. The 

available preclinical data support the hypothesis that brain inflammation can play a crucial 

role not only in promoting epileptogenesis after stroke, but also in sustaining recurrence of 

seizures once an epileptic condition has become established.16

There is evidence indicating that centrally active anti-inflammatory agents can exert 

neuroprotective effects in animal models of seizure-related cell damage: administration of 

the human recombinant IL-1ra (anakinra) for 7 days after pilocarpine- or electrically 

induced status epilepticus (ElectrSE) yielded therapeutic drug levels in brain, and decreased 

both IL-1β expression in astrocytes and cell loss in rat forebrain.17 Anakinra given in 

combination with VX-765, a specific inhibitor of the biosynthetic enzyme of IL-1β, afforded 

significant neuroprotection in the ElectrSE rat model when given as an intravenous bolus (33 

mg/kg, 10 mg/200 μL) followed by sustained subcutaneous infusion with osmotic 

minipumps (24 mg/day; 80 mg/kg/day) for 1 week starting 3 h after the onset of status 
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epilepticus. Anakinra treatment was based on previous evidence of neuroprotection in rat 

and human stroke.18 Immunohistochemical analysis of brain sections at the end of treatment 

showed reduction in IL-1β expression in glial cells concomitant with neuroprotection in 

forebrain areas. However, onset of epilepsy and frequency and duration of seizures assessed 

3 months after ElectrSE were not significantly modified. In subsequent studies, however, the 

combination of anakinra with a cyclooxygenase-2 (COX-2) inhibitor, or with BoxA, a 

peptide blocking the effects of the inflammatory molecule HMGB1, administered at the time 

of status epilepticus induction, was able to significantly decrease spontaneous seizures in 

rats.

Therefore, there is a clear rationale for conducting a proof-of-concept study to test the ability 

of IL-1 antagonists to inhibit brain inflammation in stroke patients. Demonstration of a 

central anti-inflammatory action of IL-1 antagonists in the relevant human population is the 

prerequisite for the design and execution of a randomized controlled trial to determine 

whether these agents are also effective in achieving inhibition of epileptogenesis, and 

functional recovery after insult.

Objectives for antiepileptogenesis trial

The development of new, potentially antiepileptogenic therapies has been stagnating, partly 

due to lack of clinically validated biomarkers to reliably predict who is most likely to 

develop epilepsy in a short time frame. In fact, currently available tools (e.g., routine 

magnetic resonance imaging [MRI] and electroencephalography [EEG]), are not accurate 

predictors for the risk of future seizures, or for the need to start antiepileptic drug treatment 

after a first unprovoked seizure.

Thus specific objectives for an antiepileptogenesis trial are the following:

1. To evaluate the efficacy of a novel therapeutic strategy in patients following 

stroke who are at highest risk of developing epilepsy.

As a first step, it is important to measure the development of a hyperexcitable 

state following an initial epileptogenic lesion, which underpins the process 

leading to the occurrence of late unprovoked seizures. Because it is 

inconceivable to test putative antiepileptogenic drugs over long periods in 

populations with a very low (<10% over 2 years) risk of a seizure, the challenge 

is to identify an enriched population of patients with the highest risk of 

developing epilepsy after stroke. Stroke patients who develop one or more acute 

symptomatic seizures represent a potentially adequate population for such a trial, 

as their risk of subsequently developing unprovoked seizures, that is, epilepsy, is 

about 30% over 2 years.19

2. To quantitate the response to anti-inflammatory treatment using imaging, 

electrophysiologic, and circulating biomarkers.

The “conditio-sine-qua-non” of an antiepileptogenic treatment targeting 

poststroke brain inflammation is to demonstrate its capacity to reduce 

inflammation in the CNS. This may be possible by measuring inflammatory 

serum biomarkers mirroring brain inflammation, but more specifically by 
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imaging brain inflammatory changes directly using positron emission 

tomography (PET) ligands for translocator protein 18 kDa (TSPO), which 

measure in vivo microglial activation.20 TSPO is normally only lightly expressed 

in the brain, but it is drastically upregulated in response to neuroinflammatory 

stimuli. This upregulation correlates with microglial activation or infiltration of 

macrophages following stroke.21

3. To determine the capacity of biomarkers to predict the development of poststroke 

epilepsy.

An alternative to evaluating the efficacy of the intervention in preventing epilepsy is to 

assess the effect of the intervention on appropriate surrogate biomarkers of epileptogenesis 

with sufficient sensitivity and specificity. Even within the high-risk group, the risk of 

recurrent seizures will remain below 20% at 1 year. Identification of reliable biomarkers for 

epileptogenesis would facilitate and shorten targeted trials of novel antiepileptogenic 

therapies.

Future directions

The quest for appropriate surrogate biomarkers with sufficient sensitivity and specificity is 

essential for evaluating novel interventions during short-term trials, as well as for identifying 

populations at higher risk of developing epilepsy than those who can be currently selected. 

In patients with stroke, the risk of recurrent seizure remains below 10% at 2 years. Thus we 

propose to focus on an enriched population of patient with stroke and an acute symptomatic 

seizure, that is, those with the highest risk (~30%) of developing epilepsy.

Fingolimod (FTY720), Is It a Potential Antiepileptic Drug?

(Yvonne Naegelin)

FTY720 has been developed after being isolated from the fungus Isaria sinclairii. The 

synthetic compound fingolimod (Gilenya, 2-amino-2-(2-(4-octylpheyl)ethyl)propane-1,3-

diol, C19H33NO2) acts mainly over sequestration of circulating lymphocytes to the lymph 

nodes without major alterations of their immune functions. It was meant to prevent allograft 

rejection without inducing a severe immunosuppression but did not show enough 

immunosuppressive effect in the context of tissue transplantation.22 It did so, in the context 

of multiple sclerosis (MS), where it was the first oral drug being approved for relapsing 

remitting forms, reducing the annual relapse rate by roughly 50%.23 Acceleration of homing 

and blocking egress from lymph nodes (over sphingosine 1-phosphate (S1P1) receptor 

downregulation) is thought to be the main mode of action for its efficacy in MS.24

It is well established that inflammation can be a consequence as well as a cause of 

epilepsy.25 In contrast to the pathogenesis of MS, where there is a marked activation of the 

adaptive immune system with infiltrating B and T lymphocytes,26 brain inflammation in 

epilepsy is dominated by innate immunity cells including activated microglia, astrocytes, as 

well as granulocytes and monocytes/macrophages.27 There seems to be a link between the 

innate and adaptive immuneresponse,28,29 possibly explaining why there is some evidence 

of a scarce presence of adaptive immune cells such as T or B cells in nonautoimmune forms 
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of epilepsy such as TLE.27,28,30 In general, the involvement of the adaptive immunity 

appears to be much more related to the autoimmune forms of epilepsy.31

Nevertheless, the two entities might share some common pathways and therefore some 

treatment approaches.

FTY720 is a potent nonselective agonist at S1P1 and S1P3–5 receptors.32 FTY720 has a 

half-life of 6 days and reaches steady-state blood concentrations after 1–2 months of daily 

dosing. It reduces lymphocytes (homing) within hours after first dose administration, an 

effect being fully reversible within 6–8 weeks after stopping treatment.33 Its second most 

relevant and temporary side effect for clinical applications (negative chronotropy) is caused 

by targeting S1P1 and S1P3 receptors on atrial myocytes. FTY720 crosses the blood-brain 

barrier (BBB)34 to bind S1P receptors located on neural cells in the CNS (S1P1, -3, -5). The 

S1P2 receptor is located on neural cells as well but not targeted by FTY720. The S1P4 

receptor is located only on lymphocytes, but the major effect on lymphocytes is induced by 

targeting S1P1 receptors on those cells. FTY720 is phosphorylated by sphingosine kinases 

to FTY720-P.35 This probably is taking place within the CNS: after oral administration of 

FTY720, the brain concentrations of FTY720 are 10–27-fold higher than peripheral 

concentrations.34 Within the brain, FTY720 and FTY720-P reach nearly the same 

concentrations.34

S1P receptors are also enriched on astrocytes, and these cells are key players in the 

generation and perpetuation of brain inflammation both in MS and epilepsy as well as in the 

formation and preservation of the BBB.36 FTY720-P mediates anti-inflammatory effects on 

astrocytes as well as extracellular-signal regulated kinase (ERK) phosphorylation by 

activation of S1P1.37 The ERK cascade regulates many distinct processes such as 

proliferation, differentiation, survival, as well as apoptosis of cells. Some data do link ERK 

activation to epilepsy, but its involvement is still not fully understood. In vitro experiments 

show a beneficial effect by FTY720-P and FTY720 on endothelial cells, and S1P 

modulation seems to reduce transmigration of peripheral blood mononuclear cells through 

the BBB.38

In summary, there are various direct effects of FTY720 on the CNS resident cells that go far 

beyond the homing of peripheral lymphocytes, and most of them are thought to be receptor 

mediated.39 These effects may contribute to the therapeutic actions of this drug.

Apart from those receptor-mediated effects, FTY720-P directly binds to histone deacetylase 

(HDAC), thereby possibly having a direct effect on epigenetic gene regulation.40 In addition, 

there seems to be an interaction with other lipids, an inhibition of the cannabinoid receptor 

CB1, and of phospholipase A2 activity in mast cells.41

FTY720 has also been shown to increase brain-derived neurotrophic factor (BDNF) levels 

and ameliorates symptoms in methyl CpG binding protein 2 (MECP2)-null mice, a model of 

Rett syndrome.42 Whether this effect is S1P-mediated is not completely understood. BDNF 

is upregulated by seizures in animal models, and in brain specimens and blood serum from 

human pharmacoresistant epilepsy.43 The current understanding is that BDNF can 

significantly impact seizures, with either beneficial44 or detrimental effects being reported. 
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One recent study has shown both anti-inflammatory and antiepileptogenic effects of FTY720 

in a lithium-pilocarpine model of epilepsy in rats.45

Because FTY720 ameliorates symptoms of MECP2-null mice,42 we are performing a 

clinical study to assess safety and efficacy of oral FTY720 in children with Rett syndrome 

(FINGORETT). The study (phase I–II) has a focus on safety and was not designed for 

detecting therapeutic effects on seizures of FTY720 in those children. Nevertheless, 

information about seizure frequencies before, under, and after treatment are being collected, 

and EEG studies are recorded on a regular base within the study. The final results will be 

available in spring of 2017.

Future directions

FTY720 by its multiple modes of action on the immune system, the epigenetic machinery 

and BDNF signaling may be an interesting candidate as an anti-inflammatory and disease-

modifying drug for the treatment of refractory epilepsy. The good penetration across the 

BBB is another advantage of this drug. Approval and large clinical experience in patients 

with MS should facilitate and speed up the planning of a clinical trial.

Large Spectrum Anti-inflammatory Treatments: Friend or Foe?

(Federico Vigevano)

The evidence of neuroinflammation and immune mechanism involvement in the genesis of 

epilepsy is growing,1,25,46 thus opening the way to immune therapies for treating epilepsy. 

Immunotherapies are now routinely used in severe epilepsies with potential immune-

mediated pathogenesis, such as Rasmussen encephalitis, anti-NMDAR (N-methyl-D-

aspartate), anti-GAD (glutamic acid decarboxylase) or anti-VGKC (voltage gated potassium 

channel) complex encephalitis and fever-induced refractory epileptic encephalopathy in 

school-aged children.47,48 Beyond these clinical entities, drugs with anti-inflammatory and 

immunomodulatory actions are considered also in epileptic disorders lacking specific 

immunologic markers.49

Adrenocorticotropic hormone (ACTH) and corticosteroids (prednisone, prednisolone, and 

hydrocortisone) are widely used in some forms of epilepsies. ACTH and corticosteroids are 

mostly administered to treat patients with epileptic encephalopathy (EE), a group of severe 

clinical entities with heterogeneous clinical presentations and variable causes.50 EE includes 

prenatal causes like brain malformations, chromosomal or genetic abnormalities and 

neurocutaneous diseases, perinatal causes such as hypoxic ischemic injuries, and postnatal 

causes such as vascular or infectious insults.51 In EE, interictal epileptiform EEG 

abnormalities play a significant role in generating progressive deterioration in neurologic 

function.52 Thus the aim of treatment is not limited to seizure control; more often, the 

greatest challenge is to improve the child’s psychomotor development, a goal that requires 

suppression or reduction of interictal EEG discharges. With few exceptions, ACTH and 

corticosteroids are considered first-line agents in all cases of infantile spasms.53 Therapeutic 

efficacy has been also reported in other epileptic EE such as Lennox-Gastaut syndrome, 
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Landau-Kleffner syndrome, continuous spike and wave during sleep (CSWS), and other 

forms of epilepsy resistant to conventional AEDs.50

Little is known on the mechanism of the antiepileptic action of ACTH and corticosteroids, as 

well as on the pathogenesis of EE. However, various hypotheses have been put forward. At 

present the most accredited hypothesis is that ACTH and corticosteroids exert their actions 

through modulation of the hypothalamic-pituitary-adrenal axis. However, the possibility of 

direct effects on the immune system is also considered. In vitro, ACTH and corticosteroids 

stimulate the growth of neuroblasts, a property that might be relevant for the treatment of EE 

occurring in the first year of life. ACTH and corticosteroids may also modulate various 

neurotransmitter systems and voltage- or receptor-gated ion channels. In particular, ACTH 

downregulates serotonin 5HT2 receptors in the cerebral cortex, and modulates GABA and 

dopamine receptors, an effect that, in animal models, is age-dependent.54

In the last few years, increasing evidence has accumulated that certain forms of severe 

epilepsy could have an inflammatory and/or immunologic basis. Hence, the antiseizure 

effects of ACTH and corticosteroids, as well as immunoglobulins, may depend on their well-

known anti-inflammatory and immunosuppressant effects.55

ACTH and corticosteroids may cause significant adverse effects. In about two thirds of 

patients, a transient cerebral atrophy has been described, detectable by brain MRI. This 

finding may sometimes be a confounding factor in the diagnostic process. Transient 

dyskinesia with hyperkinetic movements involving face and limbs was observed during 

treatment with corticosteroids or ACTH. ACTH represents the first-line agent for the 

treatment of infantile spasms, except for spasms associated with tuberous sclerosis.56 

However, conclusive data supporting the long-term efficacy of ACTH are still lacking in the 

literature. There are also inadequate data on the optimal dosage and duration of therapy, 

although short duration and low dose are preferable. The issue of possible efficacy 

differences between natural and synthetic ACTH is also an object of debate.57

Future directions

Immunotherapy trials for the treatment of drug-resistant epilepsy represent a future 

therapeutic aim. This requires a better definition of how etiopathogenetic immune 

mechanisms are involved in the mechanisms of epileptogenesis.

The more precise concepts of how inflammation and the immune system may cause epilepsy 

and/or influence the course of disease will help to refine clinical trials involving the steroids 

as a class of anti-inflammatory drugs displaying broad effects on the immune system. These 

trials should also aim at identifying those steroid compounds that may be more effective and 

have a better adverse event profile.

Anti-Inflammatory Aspects of the Ketogenic Diet and PUFAs

(Stéphane Auvin, Jong M. Rho)

The ketogenic diet (KD) is a high-fat, low-carbohydrate diet characterized by ketonemia, 

relative hypoglycemia, and high fatty acids levels. The KD is an established treatment for 
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pharmacoresistant epilepsy, including some inflammation-induced epileptic 

encephalopathies such as febrile infection-related epilepsy syndrome (FIRES). Although the 

antiseizure mechanism(s) remain(s) unclear, new potential clinical applications for the KD 

are rapidly emerging, principally on the basis of its broad neuroprotective actions in various 

experimental models of neurologic disease, importantly those that significantly involve 

aberrant inflammatory responses.58

Although the KD has been investigated in multiple seizure and epilepsy models, variations 

on this metabolism-based treatment have also been administered in experimental models of 

pain, MS, Alzheimer’s and Parkinson’s diseases, neurotrauma, Autism Spectrum Disorder 

(ASD), and even malignant brain cancer (Table 1). Furthermore, there is now abundant 

evidence that the KD possesses anti-inflammatory properties, and specifically, this diet has 

been shown to decrease proinflammatory cytokine levels after an immune challenge.59 

Although the precise mechanisms underlying such effects in these models remain unclear, 

there are likely multiple, parallel, and synergistic processes and molecular targets, similar to 

what has been proposed for epilepsy.58 For example, polyunsaturated fatty acids (PUFAs), 

dietary lipids that contain more than one double bond, may play an important mechanistic 

role in KD action. Systemic PUFA levels rise in response to KD treatment, and have been 

reported to block epileptiform activity in models in vitro as well as in acutely provoked 

seizures in rodents. There are two groups of PUFAs: the omega-3 (n-3) and the omega-6 

(n-6) PUFAs. This nomenclature refers to the position of the double bond relative to the 

methyl terminal of the molecule.60 N-3 PUFAs can decrease the production of inflammatory 

eicosanoids, cytokines, and reactive oxygen species, and the expression of adhesion 

molecules. In addition,, n-3 PUFAs act both directly (by replacing arachidonic acid as an 

eicosanoid substrate and inhibiting arachidonic acid metabolism) and indirectly (by altering 

the expression of inflammatory genes through effects on transcription factor activation). In 

addition,, n-3 PUFAs, particularly eicosapentaenoic acid (EPA; 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3), also exert anti-inflammatory actions, primarily 

through their hydroxylated metabolites, which include resolvins and docosanoids.61 

Furthermore, PUFAs can bind to and activate peroxisome proliferator-activated receptors 

(PPARs), including both PPARα and PPARγ. It is notable that synthetic PPARs agonists 

have been shown to reduce experimentally induced inflammation. This effect is the result of 

the inhibition of pro-inflammatory pathways involving nuclear factor kappa B (NF-κB), 

signal transduction and transcription-1, and nuclear factor of activated T cells.62

Another KD-related mechanism involved in neuroinflammation is ketone-induced disruption 

of inflammasome assembly, and ketones such as β-hydroxybutyrate may modulate 

inflammation through actions on mitochondrial targets.63 Clearly, with growing evidence 

that the KD affords anti-inflammatory activity in a variety of animal models and human 

epileptic conditions (such as FIRES), the concept that inflammation as both a cause of and 

therapeutic target for epilepsy (and other neurologic conditions) is becoming more valid and 

worthy of further investigation.58,64
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Future directions

Preclinical studies should further characterize the mechanisms underlying the anti-

inflammatory effects of the KD and its substrates/mediators, not only for epilepsy but also 

for other neurologic disorders. One intriguing aspect is the potential inflammatory basis of 

comorbid conditions such as epilepsy and ASD. There is some preliminary clinical59 and 

growing experimental evidence65 that the KD is effective in mitigating core symptoms of 

ASD, and although the mechanisms underlying such behavioral benefits remain unclear, one 

intriguing possibility is diet-induced alterations in the gut microbiota, resulting in an anti-

microbial-like effect and comparable shifts in specific bacterial abundance seen in humans 

with autism.66 Clearly, the KD appears to render beneficial effects in both epilepsy and 

ASD. Further studies would provide a stronger scientific rationale for much-needed clinical 

trials for testing unique and complementary treatment approaches for affected patients.

Endocannabinoid System, CBIR/CB2Rs, and Inflammation

(Orrin Devinsky)

Δ9-THC modulates the endocannabinoid system, an endogenous signaling system with 

hydrophobic ligands N-arachidonoyl ethanolamide (anandamide, AEA)71 and 2-

arachidonoyl-glycerol (2-AG).72 These compounds are produced from postsynaptic 

membrane phospholipid precursors and released in an activity-dependent, “on-demand” 

manner. Hydrolysis of endocannabinoids produces arachidonic acid, a precursor for COX-2-

mediated production of inflammatory prostaglandins.73 AEA is degraded by the enzyme 

fatty acid amide hydrolase (FAAH) into arachidonic acid and ethanolamide,74,75 and 2-AG 

is catabolized by monoacylglycerol lipase (MAGL) and α/β-hydrolase domain containing 6 

(ABHD6)76 into arachidonic acid and glycerol.75–77 Inhibition of the degradative enzymes 

of AEA and 2-AG shunts lipid mediators away from proinflammatory prostaglandin 

mediators and toward anti-inflammatory endocannabinoids,68 thereby reducing neuropathic 

pain,78,79 Aβ-mediated inflammation, and oligodendrocyte excitotoxicity.81 In addition, 2-

AG directly inhibits COX-2 function, potentially via nuclear peroxisome proliferator–

activated receptor gamma (PPARγ) receptor.82

The primary targets for the endocannabinoids are the cannabinoid receptors type-1 (CB1R) 

and -2 (CB2R). CB1R is the primary CNS receptor, particularly in the hippocampal mossy 

cell-granule cell synapses, and to a lesser extent, on microglia, astrocytes, and 

oligodendrocytes.74 Although implicated primarily in peripheral signaling, CB2Rs are also 

expressed in the brain,83 mediating neuronal excitability84 and inflammation in microglia.85 

Kainic acid-induced status epilepticus86 and lipopolysaccharide (LPS)-induced 

inflammation87 upregulate CB1R expression, either as a direct consequence of 

inflammation-induced sequelae or as a potential compensatory mechanism to limit 

prolonged hyperexcitability. Supporting a potential anti-inflammatory role of CB1R/CB2Rs, 

CB2R agonism decreases microglial activation, edema, excitotoxicity, oxidative stress, and 

cell death associated with stroke,88 germinal matrix hemorrhage,89 and traumatic brain 

injury. Furthermore, activation of CB1Rs91 and CB2Rs92 via synthetic agonists reduced 

inflammatory nociception in several animal models.
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Δ9-Tetrahydrocannabinol (Δ9-THC) and inflammation

Both cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) produce net anti-

inflammatory effects, although through different target receptor mechanisms (Table 2). Δ9-

THC acts primarily as a partial agonist at CB1Rs and CB2Rs on microglia, the primary CNS 

immune cells. Δ9-THC reduces LPS-induced inflammation in vitro and in vivo by limiting 

release of the pro-inflammatory cytokines IL-1β, IL-6, IL-17, tumor necrosis factor α 
(TNFα), and interferon β (IFNβ), and elevating anti-inflammatory cytokines such as 

IL-10.88–94 These effects may be age-specific, however, as treating adolescent mice Δ9-THC 

exerts opposite effects when assayed later in life, increasing pro-inflammatory and 

decreasing anti-inflammatory cytokine release.95 In other studies, Δ9-THC limits oxidative 

stress in LPS-triggered inflammation,98 reduces nitrite formation following intravitreal 

NMDA injection,99 and decreases glutamate neurotoxicity and oxidative stress.100 Anti-

oxidative effects of Δ9-THC may be independent from, or only partially mediated by, 

CB1Rs/CB2Rs.100,101 Other proposed anti-inflammatory targets for Δ9-THC (or related 

compound Δ9-tetrahydrocannabivarin, Δ9-THCV) include transient activation and 

desensitization of TRP (transient receptor potential) channels TRPA1, TRPV1–4,102–104 and 

antagonism of TRPM8,103 which may regulate postinflammatory Ca2+ influx. Similar to 

endocannabinoids, Δ9-THC may reduce COX-2 activation via PPARγ,105 although a Δ9-

THC-mediated, CB1R-dependent increase in COX-2 and PGE2
106 may be dose dependent. 

Collectively, Δ9-THC primarily exerts anti-inflammatory properties in animal models of 

inflammation (in vivo) including cerebral artery occlusion–induced ischemia,107,108 acute 

palmar inflammation,109 5XFAD APP transgenic (Alzheimer’s disease model) mice,106 and 

the myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune 

encephalomyelitis model of MS.101

Cannabidiol (CBD) and inflammation

CBD has very low affinity at CBRs,110,111 but acts as an agonist at TRP channels (TRPV1, 

TRPV2, and TRPA1),103,104,110,112 5HT1α receptors,113 and glycine receptors.114 CBD is 

an antagonist at TRPM8 channels,102 T-type voltage-gated calcium channels,115 and the G 

protein-coupled receptor GPR55.116 CBD may have unique effects on inflammation through 

dynamic regulation of intracellular calcium stores via multiple, activity-dependent 

pathways.117 CBD induces a bidirectional change in intracellular calcium levels that 

depends on cellular excitability: slightly increasing intracellular [Ca2+] under normal 

physiologic Ca2+ conditions and reducing intracellular [Ca2+] under high-excitability 

conditions. These changes may be mediated by the mitochondrial Na+/Ca2+ exchanger.117 

CBD also produces biphasic changes in intracellular calcium levels via antagonism of the 

mitochondrial VDAC1 channel.118 Furthermore, CBD is an agonist at PPARγ119 and 

competitive antagonist at the equilibrative nucleotide transporter (ENT-1), reducing 

adenosine uptake at baseline120 and during LPS-induced inflammation in vitro121 and in 

vivo.120

CBD exerts dynamic changes in intracellular signaling to reduce oxidative stress, as assayed 

via genome-wide microarray studies. At baseline, CBD treatment in cell cultures targets 

pathways implicated in oxidative stress and glutathione depletion (e.g., GCN2, PKR, and 

eIF2a) and nuclear oxidative stress response (e.g. Nrf2).122,123 Upon LPS stimulation, CBD 
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triggers Nrf2 activation, inhibits NFκB and AP-1, and activates MAPK, JAK/STAT, and cell 

cycle regulatory pathways, producing net anti-inflammatory effects and 

immunosuppression.94,124 CBD regulates oxidative stress post hypoxic-ischemia107,113,125 

and oxygen-glucose deprivation, in part by reducing LDH efflux, caspase-9 activation, and 

iNOS expression.126 Similar to Δ9-THC, CBD reduces pro-inflammatory cytokines and 

IFNβ/γ and increases anti-inflammatory cytokines such as IL-4 and IL-10 via a CB1R/

CB2R mechanism, potentially through adenosine or PPARγ 
signaling.94,101,113,120,122,126,127 This mechanism also limits Th17 differentiation and 

function, and reduces leukocyte transmigration, partly by downregulating VCAM-1, CCL2, 

and CCL5, in animal models of MS.124,128 In addition, CBD increases cell survival and 

reduces oxidative stress in in vitro and in vivo models of Aβ (1–42)-induced 

inflammation.126–129

Cannabinoids and neuroprotection from seizures

The anti-inflammatory effects of the endocannabinoid system, Δ9-THC, and CBD may help 

to explain the neuroprotective effects of cannabinoids in animal models of seizures. In 

chronic (e.g., pilocarpine-induced) seizure models, synthetic CB1R agonism130 or 

CBD131,132 administered during the chronic phase reduces neuronal damage and oxidative 

stress/autophagy. In acute (e.g., kainic acid) preclinical studies, CB1R activity133 or elevated 

endocannabinoid signaling134,135 provides neuroprotective effects postseizure.

Future directions

CBDs are potentially promising anti-inflammatory drugs. Yet the specific nature, extent, and 

specificity of their immunomodulatory and immunosuppressive effects remain to be 

determined. The role of cannabinoids as therapeutic agents against inflammatory and 

autoimmune disorders, including selected epilepsy syndromes, deserves further study.

Anti-Inflammatory Mechanisms of Vagus Nerve Stimulation

(Peder S. Olofsson)

Accumulating evidence suggests that inflammation and immune system activation may play 

a role in epileptogenesis and lowering seizure threshold, and that anti-inflammatory 

treatments improve the disease outcomes.136–139 Discoveries in bioelectronic medicine, 

which is the convergence of neuroscience, engineering, computing, and clinical medicine, 

have revealed that nerve stimulation has the capacity to regulate inflammation, cytokine 

release, and other immune system functions.140–143 It is becoming increasingly clear that the 

immune system no longer can be regarded as fully autonomous, because it is regulated by 

neural reflex circuits.

The best characterized neural reflex that regulates cytokine release in inflammation is the so 

called “inflammatory reflex,” in which the vagus nerve plays a key role. Electrical vagus 

nerve stimulation has been used for treatment of drug-resistant epilepsy since the 1990s144 

and for refractory depression for more than a decade.145 Vagus nerve stimulators have been 

implanted in tens of thousands of patients, and few significant adverse effects have been 

reported.146–148 The neurophysiologic and molecular mechanisms that underlie the 
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therapeutic effect of vagus nerve stimulation in epilepsy and depression are, however, not 

well understood.

Electrical stimulation of the cervical vagus nerve reduces inflammation in a number of 

experimental inflammatory diseases, ranging from sepsis, over ischemia-reperfusion injury, 

to experimental arthritis.141,149 The bridging of neuroscience and immunology has revealed 

specific molecular targets of neural reflex signals in inflammation.150 Neurophysiologic and 

molecular mapping of the efferent arc of the inflammatory reflex has demonstrated that 

electrical activation of the left cervical vagus nerve triggers signals in the efferent vagus 

nerve that reach the celiac ganglion where the splenic nerve arises.151,152 The splenic nerve 

is required for relaying the signals to the spleen, where choline acetyl-transferase (ChAT)+ T 

cells, “CD4 TChAT,” which appear in close apposition of splenic nerve endings, release 

acetylcholine in response to norepinephrine.153 Acetylcholine subsequently activates α7 

nicotinic acetylcholine receptors (α7nAChRs) on innate immune cells, including splenic 

macrophages, which significantly reduce release of proinflammatory cytokines such as 

TNF-α in experimental systemic inflammation.144,154 Vagus nerve stimulation also reduces 

infiltration of leukocytes in local inflammation,155 inhibits macrophage activation,156 and 

promotes a reparative phenotype of macrophages at sites of injury.157

Intriguingly, the discovery that CD4 TChAT relay neural signals afford a mechanism for 

providing cholinergic signals to tissues devoid of cholinergic innervation. As an example, 

most blood vessels are devoid of cholinergic innervation, but vascular endothelial cells 

express cholinergic receptors. Activation of endothelial cholinergic receptors promotes 

release of nitric oxide that reduces blood pressure by relaxing vascular smooth muscle 

cells.158 CD4 TChAT are found in murine blood, and mice deficient in CD4 TChAT show 

significantly increased blood pressure and their cardiovascular physiology is consistent with 

an increased systemic vascular resistance.159 These observations indicate that CD4 TChAT 

regulates blood pressure by providing a cholinergic signal to vascular endothelial cells, and 

it is conceivable that neurotransmitter-releasing immune cells may interact with nerves and 

organs to regulate physiology in additional ways not yet discovered.

The new insights on reflex control of inflammation and, in particular, on the inflammatory 

reflex, have spawned clinical trials for treatment of chronic human inflammatory diseases 

using an implantable vagus nerve stimulator developed originally for treatment of 

epilepsy.142 The first reports on its effects in rheumatoid arthritis and inflammatory bowel 

disease are encouraging, with improved clinical scores and attenuated release of pro-

inflammatory cytokines.160,161 The study population sizes were, however, limited, and 

results from larger clinical trials that may improve our understanding of the usefulness of 

vagus nerve stimulation in treatment inflammatory diseases are eagerly awaited.

In light of the accumulating evidence that inflammation plays a role in epileptogenesis and 

seizure threshold reduction, and the anti-inflammatory effects of vagus nerve stimulation, it 

is tempting to speculate that one mechanism that underlies the therapeutic effect of vagus 

nerve stimulation in epilepsy involves attenuation of inflammation. In a recent study, Varvel 

et al. observed that infiltrating monocytes exacerbate neuronal damage and increase 

morbidity after status epilepticus.28 Spleen can deploy a significant portion of the monocytes 
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recruited to sites of inflammation.158,162 Vagus nerve stimulation reduces cytokine release 

from innate immune cells in spleen and may shift macrophage phenotype from pro-

inflammatory to reparative.143 It would be interesting to investigate whether vagus nerve 

stimulation can reduce epileptogenesis by reducing local neuroinflammation perhaps by 

local direct effects in the CNS and/or by reducing the pro-inflammatory activity of 

infiltrating immune cells.

Future directions

Despite the convincing physiologic effects of vagus nerve stimulation in experimental 

models of inflammatory diseases and the comprehensive understanding of some of the 

molecular pathways in neural regulation of inflammation, the mechanistic basis for the 

therapeutic effect of vagus nerve stimulation on epilepsy is currently unclear. Further studies 

of the neurophysiology and molecular mechanisms that underlie the neural control of 

immune cell activity both in the periphery and in the CNS are warranted to improve our 

understanding of the pathogenesis of neuroinflammation and epilepsy.

Conclusions and Future Directions

During the past years, it has been recognized that anti-inflammatory mechanisms play an 

important role in the antiseizure effect of established therapies for epilepsy, like the KD and 

vagus nerve stimulation. In addition, a variety of drugs, like CBDs, are under scrutiny for 

their use as antiseizure drugs, which work through a substantial anti-inflammatory 

mechanism and which also may have a potential antiepileptogenic effect. When testing these 

two issues, future trials need to adopt more sophisticated designs with enrollment of 

“enriched” patients. Treatment of therapy-resistant patients with CBDs or specific anti-

inflammatory drugs already approved for other indications, like fingolimod or anakinra, 

needs to adhere to such a protocol. Prevention of epilepsy after stroke or traumatic brain 

injury may be another opportune clinical situation for conducting antiepileptogenesis trials. 

Patterns of adverse events of anti-inflammatory drugs should be closely monitored because 

they are likely to be different from those observed in classic AEDs. Fostering a network of 

experimental and clinical research collaborations from academia, industry, and funding 

institutions is germane for further progress in the translation of preclinical research results 

into clinical studies for the sake of patients at risk of developing the disease or with difficult-

to-treat epilepsy.
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Key Points

• Specific anti-inflammatory treatments have been effective at suppressing 

experimental chronic seizures and interfering with epileptogenesis

• Some of these drugs have already been evaluated in early phase clinical trials 

in pharmacoresistant epilepsies

• Nonpharmaceutical therapies for refractory epilepsy like the ketogenic diet or 

vagus nerve stimulation influence the immune system

• Novel clinical trial design trials should contain an end-point to demonstrate 

disease modification
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Table 1

Examples of utilization of KD as an anti-inflammatory treatment for various pathologic models

References Type of diet Species Model Anti-inflammatory effect of KD

67 6.6:1 KD
3 weeks before Exp.

Rats Subcutaneous injection of 
complete Freund’s adjuvant into 
one hind paw

Decrease both swelling and plasma 
extravasation

68 Made by the lab
2 weeks before Exp.

C57BL/6J Mice MPTP model Decrease of activated microglia
(Iba 1 staining)
Decrease of IL1β, IL-6, TNFα (ELISA of 
SN)

69 6.3:1 KD (Bio-Serv 
F3666 diet)
7 days before Exp.

C57BL/6 mice Experimental autoimmune 
encephalomyelitis
S.C. myelin oligodendrocyte 
glycoprotein (MOG)35–55 
peptide + complete Freund’s 
adjuvant (CFA)
I.V. 20 ng of pertussis toxin

2-2.5-fold reduction in CNS-derived CD4+ 
cells and CD11b+ CD45+ cells (macrophage 
and microglia tendency toward increased 
CD4+ CD25+ Foxp3+ Treg cells
Lymph node & CNS reduction in cytokines 
(IL-1β, IL-6, TNF-α, IL-12, IL-17) and 
chemokines (IFN-γ, MCP-1, MIP-1a, 
MIP-1b)

70 6.3:1 KD (Bio-Serv 
F3666 diet)
4 weeks before Exp.

C57BL/6 mice Liver and white adipose tissue 
(WAT)

Liver: Increase of expression of Tnfα, Il-6, 
Emr1, Cd68, Itgam, Nlrp3
WAT: Decrease of expression of Tnfα, Il-6, 
Emrl, Cd68, Itgam, Nlrp3

58 3:1 KD (Ketocal)
2 weeks before Exp.

Wistar rats Fever model
50 μg/kg of LPS (Escherichia 
coli 055:B5)

Modulate raise of body temperature
Blood: Reduce IL-1β, TNF-α
Brain: Reduce IL-1β mRNA
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Table 2

Potential anti-inflammatory mechanism of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD)

Anti-inflammatory mechanism References

Δ9-THC (1) CB1R/CB2R partial agonist 137

(2) ↓pro-inflammatorycytokines (IL-1β, IL-6, IL-17, TNFα, IFNβ) ↑ anti-inflammatorycytokine (IL-10) 93–97

(3) TRP channels agonist (TRPV1-4, TRPA1), TRPM8 antagonist 102–104

(4) ↓(or↑) COX-2 activation via PPARγ, dose-dependent 105, 106

CBD (1) Regulation of intracellular Ca2+ via mitochondrial Na+/Ca2+ exchanger, or VDAC channel 117, 118

(2) Inhibition of ENT-1 transporter, ↑ adenosine at A2A receptor 120, 121

(3) ↓pro-inflammatory cytokines (IL-Iβ, IL-3, IL-6, IL-12, IL-17, TNFα, IFNβ/γ) ↑ anti-inflammatory 94, 101, 113, 120, 121, 125, 127

cytokines (IL-4, IL-10) 102–104

(4) TRP channels agonist (TRPV1–4, TRPA1), TRPM8 antagonist 116

(5) G-protein-coupled-receptor GPR55 antagonist 105

(6) ↓ COX-2activation via PPARγ 124, 128

(7) ↓ activation of microglial VCAM-I, CCL2, CCL5 transmigration of leukocytes, (mediated in part by 
adenosine A2A receptors)

94, 122–124, 126

(8) ↓ oxidative stress, lipid peroxidation, caspase 3 activation, ROS (iNOS, NO), nuclear stress response 
(Nrf2→ ↓NFκB, ↑STAT3)
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