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Confidence is the ‘feeling of knowing’ that accompanies decision making and guides 

processes such as learning, error detection, and inter-personal communication. 

Bayesian theory proposes that confidence is a function of the probability that a 

decision is correct given the evidence.  Empirical research has shown, however, that 

humans tend to report confidence in very different ways. This idiosyncratic behaviour 

suggests that different individuals may perform different computations to estimate 

confidence from uncertain evidence. We tested this hypothesis by collecting 

confidence reports from healthy adults making decisions under either visual or 

numerical uncertainty. We found that for most individuals, confidence did indeed reflect 

the perceived probability of being correct. However, in approximately half of them, 

confidence also reflected a different probabilistic quantity: the observed Fisher 

information. We isolated the influence of each of these two quantities on confidence, 

and found that this decomposition is stable across weeks, and consistent across tasks 

involving uncertainty in both perceptual and cognitive domains. Our findings provide, 

for the first time, a mechanistic interpretation of individual differences in the human 

sense of confidence.  
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Introduction 

Understanding the computational basis of individual differences in human cognition has 

fundamental implications for medical and biological sciences as well as for economics and 

social sciences. A prime example is confidence, which plays a key role in a wide range of 

aspects in life, including learning to make better decisions1, monitoring our actions2, 

cooperating effectively with others3, 4, and displaying good political judgment5. One of the most 

intriguing features of confidence is that humans tend to communicate this feeling in a largely 

idiosyncratic way: although confidence reports are typically stable within each person, they 

tend to be variable across the population6, 7. For instance, different individuals performing the 

same task generate distributions of confidence ratings with different mean and shape7. In 

addition, the correlation between confidence and objective performance varies for different 

people, and is related to individual variations in brain structure8 and connectivity9, 10. While a 

vast literature has focused on the biological correlates of individual differences in human 

confidence8-10, the computational roots of this phenomenon remain unclear.  

Previous research in sensory psychophysics8, 11 and value-based decision making10, 

assumed that confidence is a function solely of the perceived probability of being correct. This 

assumption is reasonable: confidence should only reflect this subjective probability12-14. 

However, based on this normative framework, previous studies explained differences between 

people as measurement noise15, or as individual differences in the ability to reflect the 

probability of being correct8, 9. This may have been an oversimplification: there is extensive 

literature showing that confidence can be influenced by factors other than the probability of 

being correct16, such as the reliability of sensory stimuli2, 13, the magnitude of sensory data11, 

post-decisional biases17, and even personality traits7. 

Here we set out to determine what probabilistic quantities, besides perceived 

probability of being correct, contribute to individual differences in human confidence. We 

focused on a categorical task, in which subjects had to decide whether the average of a set 

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/102269doi: bioRxiv preprint first posted online Jan. 22, 2017; 

http://dx.doi.org/10.1101/102269


4 
 

of items was above or below a decision boundary, and then report their confidence. For about 

half of the subjects, confidence did depend solely on the perceived probability that they were 

correct. However, for the other half, confidence also depended on a different statistical 

quantity: the inverse variance, which we refer to as the observed Fisher information18, 19 (to 

avoid ambiguity associated with other terms used previously such as “certainty”14 or 

“precision”1). Moreover, the dependence of confidence on the perceived probability of being 

correct and the Fisher information was stable across experiments performed weeks apart. 

Finally, we show that the dependence of confidence on the perceived probability of being 

correct was stable across tasks involving uncertainty in the perceptual and cognitive domain, 

but the dependence on Fisher information was not. This is consistent with the predictions of a 

recent theoretical account arguing that Fisher information is encoded by domain-specific 

neural populations14. Overall, these findings provide a mechanistic interpretation of individual 

differences in the human sense of confidence.  

Results 

In the perceptual task (Experiment 1), participants observed a sequence of 30 tilted Gabor 

patches presented at the fovea in rapid (4 Hz) serial visual presentation (Fig.1a). At the end 

of the sequence, participants decided whether the mean orientation of the patches was 

clockwise or counter-clockwise relative to vertical. Participants then reported how confident 

they were in their decision on a scale from 1 to 6. To manipulate uncertainty, we pseudo-

randomly drew the orientation samples from uniform distributions with exactly the same mean 

(+3 degrees or -3 degrees) but different variances on different trials (Fig. 1b). Participants 

performed better as variance decreased (Fig. 1c, one-way repeated measures ANOVA, 

F(3,29)=231.4, p<10-10).  

To fit the choices of each participant, we assumed that they keep track of the mean 

orientation, which they update after each stimulus presentation. To update their estimate of 
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      [1] 

the mean, we considered a model in which participants combine a noisy estimate of the current 

sample with their previous estimate of the mean,  

𝜇𝑖 = (1 − 𝜆) 𝜇𝑖−1 + 𝜆 𝜃𝑖 + 𝛾 𝜃𝑖𝜉𝑖  

where 𝜇𝑖 is the estimate of the mean after 𝑖 samples (𝜇0 = 0), 0 < 𝜆 < 1 determines the 

relative weighting of recent versus more distant samples, 𝜃𝑖 is the actual orientation of the 𝑖𝑡ℎ 

sample in the sequence,  𝜉𝑖 is sampled from the standard normal distribution, and 𝛾 is a free 

parameter indicating the strength of the noise. The multiplicative nature of the noise ensures 

that the uncertainty in the update of the estimate scales with the size of the observed sample, 

𝜃𝑖, as has been observed in numerous domains, including visual perception20, numerical 

cognition21, and the perception of time22. At the end of the sequence, choice is determined by 

the sign of the final value of the mean (𝜇30): the agent chooses clockwise if 𝜇30 is positive, and 

counter-clockwise if 𝜇30 is negative.  

We also tested an alternative model that tracks the mean of the sequence in a 

deterministic way, and then makes stochastic decisions. This model, however, failed to explain 

the trend in Fig. 1c, which shows that performance increases as variance decreases (see 

Supplementary Fig. 1 for details and model comparison).  

 

 

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/102269doi: bioRxiv preprint first posted online Jan. 22, 2017; 

http://dx.doi.org/10.1101/102269


6 
 

 

 

Figure 1. Tracking mean evidence in rapid serial visual presentations. (a) 30 tilted Gabor patches were serially 

flashed at the fovea, updated at 4 Hz. Participants made a binary decision about whether the mean in the sequence 

was tilted to the right or left, followed by a confidence rating. Full details of the task are available in Online Methods. 

(b) The samples were drawn from a uniform distribution with mean, m, set to either exactly +3 degrees or exactly 

-3 degrees. The dashed line shows m=+3. The endpoints of the uniform distributions were m±v, with v = 10, 14, 

24, or 45 degrees, yielding four conditions with four different variances. (c) Performance increased with decreasing 

variance. Dots show the grand-average performance, and vertical lines depict the s.e.m. The solid black curve 

shows the best fit of the stochastic updating model (Equations [1] and [2]). (d) Confidence reports averaged over 

all subjects. Vertical lines show s.e.m. At the population level, confidence in incorrect trials remains approximately 

constant as a function of variance. 
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      [2] 

Computation of confidence 

To compute confidence, participants need to have an estimate of the variance of 𝜇30. We 

assumed that they are able to compute the true variance associated with Equation [1]. Thus, 

perceived variance, denoted 𝜎30
2 , is given by 

𝜎30
2 = 𝛾2 ∑(1 − 𝜆)2(30−𝑖)

30

𝑖=1

𝜃𝑖
2. 

The model described by Equations [1] and [2], which we call the stochastic updating model, is 

illustrated in the left two panels of Fig. 2a. Given 𝜇30 and 𝜎30
2 , subjects can compute, on each 

trial, the perceived probability of being correct, 𝑝̂(correct) (shaded area under the Gaussian 

distribution in Fig. 2a). Participants can also compute the Fisher information using 𝜎30
2  (top 

right panel in Fig. 2a).  

Using this model, we estimated the expected values of 𝑝̂(correct) and Fisher 

information for different variance conditions, separated by correct and incorrect trials (see 

Online Methods, Equation [9], and Fig. 2b,c). On correct trials, both quantities increase with 

decreasing variance (solid grey lines in Figs. 2b and 2c), as does confidence (Fig. 1d). If we 

had access only to correct trials, we would not know whether confidence was influenced by 

perceived probability of being correct or Fisher information. However, on error trials, these two 

quantities show opposite trends: 𝑝̂(correct) decreases with decreasing variance while Fisher 

information increases (dashed black lines in Figs. 2b and 2c). Confidence in errors, on the 

other hand, was relatively independent of variance (F(3,29)=0.57, p=0.63). One explanation of 

this phenomenon is that participants base confidence on both their perceived probability of 

being correct and, as a heuristic, the observed Fisher information. If confidence were an 

increasing function of both 𝑝̂(correct) and Fisher information, and subjects weighted them 

approximately equally, confidence could be a relatively flat function of variance on incorrect 

trials (Fig. 1d), and at the same time could increase with decreasing variance on correct trials. 
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Figure 2. Estimating confidence. (a) Each trial consists of 30 presentations of tilted Gabor patches. At each 

presentation (𝜃𝑖) the mean (𝜇𝑖) is updated by combining the estimate on the previous sample with a noisy version 

of the current Gabor patch. The black line represents one realisation of the model. At the end of the sequence, the 

subject makes a decision based on the sign of 𝜇30. The subjective probability of being correct and the observed 

Fisher information are then computed according to the equations shown in the right panel; see Online Methods for 

full details. (b) The perceived probability of being correct, 𝑝̂(correct), averaged over variance condition for correct 

trials (solid grey line) and incorrect trials (dashed black line), and also averaged across participants. For correct 

trials, this quantity increases with decreasing variance (solid grey line); for incorrect trials it shows the opposite 

pattern (dashed black line). (c) Observed Fisher information increases both for correct and incorrect trials (same 

markers as panel b).  
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The analysis presented so far is based on population-averaged data (Fig. 1d), so it is 

uninformative about differences among individuals. To determine whether, and how, 

𝑝̂(correct) and Fisher information influence confidence within subjects, we looked at the data 

of each individual. As expected6, 7, we observed substantial inter-individual differences (Fig. 

3). Some subjects did indeed base confidence solely on 𝑝̂(correct). However, in approximately 

half of them, confidence appeared to be influenced – at least to some degree – by Fisher 

information. To quantify this, we regressed23 confidence reports against model-based 

estimates of 𝑝̂(correct) and information. Fig. 3 shows a scatter plot of the regression weights 

for 𝑝̂(correct) and Fisher information. In 13 out of the 30 participants, confidence significantly 

reflected 𝑝̂(correct) but not information. In 14 other participants, however, confidence 

significantly reflected both 𝑝̂(correct) and information. One participant’s confidence conveyed 

only information but not 𝑝̂(correct), and finally, for two participants, confidence did not reflect 

either of the two quantities.  
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Figure 3. Analysis of confidence across individuals. The main panel in the lower left shows regression weights on 

confidence for different individuals. x-axis: weight of the probability of being correct (𝛽𝑝); y-axis: weight of 

information (𝛽𝐼). Each dot is a different participant, and the colour codes for significance (at the 0.05 level) as 

follows: dark green, only 𝛽𝑝 was significant; light green, both 𝛽𝑝 and 𝛽𝐼 were significant; yellow, only 𝛽𝐼 was 

significant; grey, neither was significant. Insets along the top and right margins show average confidence and 

confidence distributions for four representative participants. Left plots: mean confidence across different variance 

conditions, split by correct (solid grey line) and incorrect (dashed black line) trials. Right plots: probability distribution 

over confidence. For participant #19 (yellow dot), confidence reflected only information: confidence increased with 

variance for incorrect trials. For participant #16 (dark green dot), confidence reflected only the perceived probability 

of being correct: confidence in error trials decreased with increasing variance. For participant #27 (light green dot), 

confidence reflected a mixture of both computations. For participant #24 (grey dot), confidence was not modulated 

by either of these quantities.  
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Stability across time 

The regression model identified seven parameters for each individual (see Online Methods, 

Equation [10]): a weight for 𝑝̂(correct), denoted 𝛽𝑝; a weight for information, denoted 𝛽𝐼; and 

five parameters 𝛼𝑗 (𝑗 = 1, … ,5). The latter are the average log odds of observing a confidence 

rating greater than 𝑗; from these we selected the mid-value, 𝛼3, which is based on splitting the 

confidence scale in halves. The parameter 𝛼3 was correlated with the average confidence 

across the entire experiment (r=0.84, p<10-8), and so indicates how under- or overconfident a 

given participant is; we thus refer to 𝛼3 as the average confidence. We confirmed that 

individual differences in these parameters (𝛽𝑝,𝛽𝐼, and 𝛼3) are not simply explained by how well 

our model fit decisions (see Online Methods). The regression weights, 𝛽𝑝 and 𝛽𝐼, were 

correlated with measures of confidence used in previous studies: 𝛽𝑝 was correlated with how 

well confidence predicted accuracy, and 𝛽𝐼 was correlated with the subjects’ ability to 

discriminate different variances (see Online Methods). The three selected variables were 

uncorrelated with each other across the population (r<0.35, p>0.1 for all pairwise comparisons 

between 𝛽𝑝, 𝛽𝐼, and 𝛼3).  

This analysis would be no more than a model-fitting exercise if a different profile – that 

is, a different relationship between confidence, 𝑝̂(correct), and Fisher information – emerged 

when the same participants were retested. To test for stability, in Experiment 2 we retested 

14 of the participants from Experiment 1 approximately one month later. We observed that the 

three variables (𝛽𝑝,𝛽𝐼,𝛼3) were correlated across experiments (Fig. 4), indicating that this 

decomposition is stable across time and informative of the identity of the participants. To 

further validate this observation, we found that the distance in the 3-dimensional space defined 

by (𝛽𝑝,𝛽𝐼,𝛼3) within participants (across the two experiments) was smaller than the distance 

between different participants within an experiment (Wilcoxon rank sum test, z=4.0, p<10-4).  
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Figure 4. Stability across time. 14 participants of Experiment 1 were retested about a month later (35.2±2.4 days; 

range = 23-49 days). We probed stability by asking how much our three parameters (𝛽𝑝, 𝛽𝐼 and 𝛼3) changed across 

experiments. (a-c) Correlation across experiments for 𝛽𝑝 (a), 𝛽𝐼 (b), and 𝛼3 (c). Each square is a different 

participant, the dotted line is the identity, and the value of r given in each box is the Pearson correlation coefficient. 

The three variables were significantly correlated across experiments, suggesting that this decomposition is stable 

across time. A non-parametric method to measure rank correlation across experiments yielded similar results 

(Spearman’s rank correlation, rs=0.82, p<0.001 for 𝛽𝑝, rs=0.54, p<0.05 for 𝛽𝐼, and rs=0.55, p<0.05 for 𝛼3). 

 

Consistency across tasks  

To determine whether subjects compute confidence the same way across tasks – that is, 

whether they give the same weight to 𝑝̂(correct) and Fisher information, and have the same 

average confidence – we repeated our experiments on a cognitive task: averaging a sequence 

of numbers. In Experiment 3, a new group of 20 participants performed, in counterbalanced 

order, the visual task described above and a numerical averaging task (Fig. 5). In the 

numerical task, we presented two-digit numbers, updated at the same rate as in Experiment 

1 (4 Hz). The task was to decide whether the mean of the sequence was greater or smaller 

than 50. Uncertainty was manipulated in the same way as in Experiment 1, but using different 

ranges to ensure comparable performance across tasks (see Online Methods for details).  

In both tasks, accuracy increased with decreasing variance (Fig. 5a,b). A two-way 

repeated measures ANOVA with factors “variance” and “task” showed a significant main effect 
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of variance (F(3,19)=194.3, p<10-10) but a non-significant effect of task (F(1,19)=2.5, p=0.13) or 

interaction (F(3,19)=0.84, p=0.47). Importantly, replicating Experiment 1, variance did not 

modulate confidence in error decisions (F(3,19)=0.2, p=0.89 for the visual task; F(3,19)=1.1, p=0.4 

for the numerical task). Confidence in the visual task was not statistically different from 

confidence in the numerical task (F(1,19)=1.58, p=0.22, Fig. 5c,d). Decisions in both tasks were 

better fit by the stochastic updating model (Equations [1] and [2]) than the same alternative 

model we considered in the visual task (log-likelihood of the difference against zero: t(19)=5.2, 

p<10-4 for the cognitive task; t(19)=6.4, p<10-5 for the perceptual task), and our model-based 

analysis of confidence found similar results to Experiment 1 (see Supplementary Figs. 2 and 

3).  

 

 

Figure 5. Decisions and confidence in Experiment 3 (N=20). (a,c): Visual task (replication of Experiment 1 with 

different participants; panel a corresponds to Fig. 1c and panel c to Fig. 1d). (b) Same as (a), but for the numerical 

task. (d) Same as (c), but for the numerical task. The similarity between panels a and b, and between panels c 

and d, indicate that, at least on average, the visual and numerical tasks lead to remarkably similar behaviour, 

despite the fact that one is perceptual and the other is cognitive.  
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We asked if our three regressors were consistent across the numerical and visual 

tasks. The within-participants distance in the 3-dimensional space was smaller than the 

between-participants distance (Wilcoxon rank sum test, z=3.3, p<0.001). The contribution of 

𝑝̂(correct), 𝛽𝑝 (r=0.74, p<0.001) and trait confidence 𝛼3 (r=0.63, p<0.01) were significantly 

correlated across tasks. However, the weights of information, 𝛽𝐼, were uncorrelated across 

tasks (r=0.20, p=0.37), indicating that Fisher information has quantitatively different effects on 

confidence in visual and numerical tasks (Fig. 6). This result is in agreement with a recent 

theoretical account arguing that the inverse variance is represented by domain-specific neural 

populations14 (see Discussion).  

 

 

Figure 6. Consistency across tasks involving uncertainty in the perceptual and cognitive domain. 20 participants 

that were not tested in Experiments 1 or 2 performed one visual and one numerical task (Experiment 3). As in Fig. 

3, we decomposed confidence in terms of the weight of 𝑝̂(correct) (𝛽𝑝), the weight of information (𝛽𝐼), and the 

average confidence (𝛼3). (a-c) Correlation across tasks for 𝛽𝑝 (a), 𝛽𝐼 (b), and 𝛼3 (c). Each square is a different 

participant, the dotted line is the identity, and the value of r given in each box indicates the Pearson correlation 

coefficient. 𝛽𝑐 and 𝛼3 were positively correlated across tasks; however, the weights of Fisher information, 𝛽𝐼, were 

uncorrelated across tasks. A non-parametric method to measure the correlation across experiments yielded similar 

results (rs=0.68, p<0.01 for 𝛽𝑝, rs=0.22, p=0.35 for 𝛽𝐼, and rs=0.62, p<0.01 for 𝛼3). 
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Discussion 

The computations underlying confidence have attracted considerable attention over the last 

several years, in part due to recent developments in model-based approaches12-14 combined 

with neurophysiological recordings in non-human animals24-26 and neuroimaging in humans8-

10, 27. The standard approach consists of fitting a model to the entire population and treating 

inter-individual variability as noise11, 15. However, if such individual differences are robust over 

time, and consistent across tasks7, then treating them as noise limits our understanding of the 

computational processes underlying confidence. Here we found that inter-individual 

differences in confidence ratings are meaningful in terms of their underlying computations. In 

particular, we found that different individuals used different weightings for two probabilistic 

quantities: their perceived probability of being correct, and their certainty in their estimate of 

the task-relevant variable14, the latter quantified by the observed Fisher information18, 19. We 

isolated the contribution of each of these two quantities to confidence, and measured, for each 

individual: 1) the influence of the perceived probability of being correct on confidence (𝛽𝑝), 2) 

the influence of Fisher information on confidence (𝛽𝐼), and 3) the participants’ average 

confidence (𝛼3). All three variables were stable across several weeks (Fig. 4), and two of them 

(𝛽𝑝 and 𝛼3) were stable across different tasks – one in the perceptual domain; the other in the 

cognitive domain (Fig. 6).  

Previous research has shown reliable individual differences in the mean and shape of 

the distribution of confidence ratings6, 7, and in the extent to which confidence predicts 

behavioural accuracy7, 8.  These properties are believed to be idiosyncratic and correlate with 

individual variations in personality trait7, brain structure8, and resting-state functional 

connectivity9. For example, individual differences in the correlation between confidence and 

accuracy were systematically linked to a frontal network including the anterior prefrontal 

cortex, ventro-medial prefrontal cortex, and rostro-lateral prefrontal cortex8, 10, 28, 29. These 

findings were based on decisions in a wide range of contexts, including visual8 and value-
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based10 choices. Although these studies provided interesting insights about the brain regions 

that correlate with individual differences in confidence, none of them explicitly asked what 

probabilistic quantities influence this variability. In parallel, theoretical accounts have 

formalised a definition of confidence as the perceived probability of being correct12-15, but 

without looking at individual differences. Here, we provide the first empirical evidence that the 

idiosyncratic nature of confidence is due to differences in the computation of confidence; more 

specifically, different individuals place different weighting on the perceived probability of being 

correct and the observed Fisher information. 

In categorical tasks like ours, confidence should depend solely on the probability of 

being correct. So why does Fisher information affect confidence? We speculate that Fisher 

information, which is a useful measure of uncertainty in continuous quantities1, 2, 13, could serve 

as a mental shortcut that provides a proxy for the probability of being correct. This shortcut is 

reasonable, as Fisher information correlates with performance accuracy in our experiments 

(Figs. 1c and 2c). Previous research in our group showed that interacting dyads do take 

shortcuts: they communicate a confidence signal that is close to, yet different from, the 

probability of being correct3. Similarly, we previously found that confidence can reflect the 

magnitude of sensory data11, a choice-independent quantity that also correlates with 

behavioural performance. Our finding that a heuristic, such as Fisher information, modulates 

confidence judgements about categorical decisions is in line with these studies. 

Predictions for neural data 

Because the probability of being correct is a dimensionless quantity, and is universal across 

different sources of uncertainty, it could be encoded by a domain-general circuitry – for 

instance, by neurons in the prefrontal cortex8, 10, 28, 29. In contrast, Fisher information is a 

quantity with dimension, and so is presumably encoded by domain-specific populations14. For 

example, in the case of the visual task, certainty could be represented by neurons in primary 

visual cortex that are tuned to orientation30; and indeed, sensory uncertainty can be decoded 

from activity in the visual cortex31. In the same manner, numerical certainty could be 
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represented by neurons in the parietal cortex tuned to different numerical quantities32, 

although this has not yet been tested.  

An implication of our findings is that neurons representing confidence should receive 

input both from populations encoding the perceived probability of being correct and from 

populations encoding Fisher information. Consequently, because of differences in functional 

connectivity (which are likely to arise during learning and development) different individuals 

should have different weightings for the perceived probability of being correct and Fisher 

information on confidence. This is exactly what we saw in Fig. 3. In addition, because the 

perceived probability of being correct is encoded by domain-independent populations and 

Fisher information by domain-specific ones, the influence of perceived probability of being 

correct on confidence should be stable across domains, while the influence of Fisher 

information should be domain specific. This is exactly what we saw n in Figs. 6a and 6b, 

respectively. Based on these observations, we can make a strong prediction, one that could 

be tested with neuroimaging studies: the larger the influence of Fisher information on 

confidence, the stronger the correlation between activity in domain-specific areas and 

confidence. 

Conclusion 

The value of investigating individual differences in human behaviour and cognition was first 

recognised in the psychological sciences, with a special interest in high-level aspects such as 

intelligence33 and personality34. More recently, technical advances in magnetic resonance 

imaging have made it possible to develop a cognitive neuroscience of individual differences35, 

36. Findings include neural correlates of individual differences in motor behaviour37, visual 

perception38, mood39, social network size40, and confidence8-10. While these studies provide 

valuable insights into the neural basis of inter-individual differences in human cognition, the 

mechanisms responsible for such differences remain unknown. To overcome this limitation, 

the next challenge is to build a computational neuroscience of individual differences. A first 

step in this direction is to understand the computations performed by healthy adults leading to 
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inter-individual variability in behaviour. Our study represents the first effort to model 

differences in human confidence, paving the way towards finding how these computations 

change under development41, aging42, and psychiatric disorders43. 

References  

1. Meyniel, F., Schlunegger, D. & Dehaene, S. The Sense of Confidence during Probabilistic 
Learning: A Normative Account. PLoS Comput. Biol. 11, e1004305 (2015).  

2. Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and 
error monitoring. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1310-1321 (2012).  

3. Bahrami, B. et al. Optimally interacting minds. Science 329, 1081-1085 (2010).  

4. Bahrami, B. et al. What failure in collective decision-making tells us about metacognition. 
Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1350-1365 (2012).  

5. Tetlock, P. in Expert political judgment: How good is it? How can we know? (Princeton 
University Press, 2005).  

6. Graziano, M. & Sigman, M. The Spatial and Temporal Construction of Confidence in the 
Visual Scene. Plos One 4, e4909 (2009).  

7. Ais, J., Zylberberg, A., Barttfeld, P. & Sigman, M. Individual consistency in the accuracy and 
distribution of confidence judgments. Cognition 146, 377-386 (2016).  

8. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J. & Rees, G. Relating introspective 
accuracy to individual differences in brain structure. Science 329, 1541-1543 (2010).  

9. Barttfeld, P. et al. Distinct patterns of functional brain connectivity correlate with objective 
performance and subjective beliefs. Proc. Natl. Acad. Sci. U. S. A. 110, 11577-11582 (2013).  

10. De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based 
choice. Nat. Neurosci. 16, 105-110 (2013).  

11. Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. Doubly Bayesian Analysis of 
Confidence in Perceptual Decision-Making. PLoS computational biology 11 (2015).  

12. Kepecs, A. & Mainen, Z. F. A computational framework for the study of confidence in 
humans and animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1322-1337 (2012).  

13. Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as Bayesian Probability: From Neural 
Origins to Behavior. Neuron 88, 78-92 (2015).  

14. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic 
quantities for different goals. Nat. Neurosci. 19, 366-374 (2016).  

15. Sanders, J., Hangya, B. & Kepecs, A. Signatures of a Statistical Computation in the Human 
Sense of Confidence. Neuron 90, 499-506 (2016).  

16. Tversky, A. & Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 
185, 1124-1131 (1974).  

17. Navajas, J., Bahrami, B. & Latham, P. E. Post-decisional accounts of biases in confidence. 
Current Opinion in Behavioral Sciences 11, 55-60 (2016).  

18. Pouget, A., Deneve, S. & Latham, P. E. in Visual attention and cortical circuits (eds Braun, 
J., Koch, C. & Davis, J.) 265-283 (MIT Press, Cambridge, 2001).  

19. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410-1417 
(2014).  

20. van der Helm, Peter A. Weber-Fechner behavior in symmetry perception? Attention, 
Perception, & Psychophysics 72, 1854-1864 (2010).  

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/102269doi: bioRxiv preprint first posted online Jan. 22, 2017; 

http://dx.doi.org/10.1101/102269


19 
 

21. Dehaene, S. The neural basis of the Weber–Fechner law: a logarithmic mental number 
line. Trends Cogn. Sci. 7, 145-147 (2003).  

22. Leon, M. I. & Shadlen, M. N. Representation of time by neurons in the posterior parietal 
cortex of the macaque. Neuron 38, 317-327 (2003).  

23. McCullagh, P. Regression models for ordinal data. J Roy Statist Soc B 42, 109-142 (1980).  

24. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation 
and behavioural impact of decision confidence. Nature 455, 227-231 (2008).  

25. Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision 
confidence. Neuron 84, 190-201 (2014).  

26. Kiani, R. & Shadlen, M. N. Representation of Confidence Associated with a Decision by 
Neurons in the Parietal Cortex. Science 324 (2009).  

27. van den Berg, R. et al. A common mechanism underlies changes of mind about decisions 
and confidence. Elife 5, 10.7554/eLife.12192 (2016).  

28. Fleming, S. M., Dolan, R. J. & Frith, C. D. Metacognition: computation, biology and 
function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1280-1286 (2012).  

29. Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. Domain-specific impairment in 
metacognitive accuracy following anterior prefrontal lesions. Brain 137, 2811-2822 (2014).  

30. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and 
unknowns. Nat. Neurosci. 16, 1170-1178 (2013).  

31. van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. Sensory uncertainty decoded 
from visual cortex predicts behavior. Nat. Neurosci. (2015).  

32. Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 
32, 185-208 (2009).  

33. Neisser, U. et al. Intelligence: knowns and unknowns. Am. Psychol. 51, 77 (1996).  

34. Goldberg, L. R. The structure of phenotypic personality traits. Am. Psychol. 48, 26 (1993).  

35. Kanai, R. & Rees, G. The structural basis of inter-individual differences in human 
behaviour and cognition. Nature Reviews Neuroscience 12, 231-242 (2011).  

36. Dubois, J. & Adolphs, R. Building a Science of Individual Differences from fMRI. Trends 
Cogn. Sci. (Regul. Ed. ) 20, 425-443 (2016).  

37. van Gaal, S., Scholte, H. S., Lamme, V. A., Fahrenfort, J. J. & Ridderinkhof, K. R. Pre-
SMA gray-matter density predicts individual differences in action selection in the face of 
conscious and unconscious response conflict. J. Cogn. Neurosci. 23, 382-390 (2011).  

38. Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the 
subjective experience of object size. Nat. Neurosci. 14, 28-30 (2011).  

39. Smith, S. M. et al. A positive-negative mode of population covariation links brain 
connectivity, demographics and behavior. Nat. Neurosci. 18, 1565-1567 (2015).  

40. Kanai, R., Bahrami, B., Roylance, R. & Rees, G. Online social network size is reflected in 
human brain structure. Proc. Biol. Sci. 279, 1327-1334 (2012).  

41. Weil, L. G. et al. The development of metacognitive ability in adolescence. Conscious. 
Cogn. 22, 264-271 (2013).  

42. Palmer, E. C., David, A. S. & Fleming, S. M. Effects of age on metacognitive efficiency. 
Conscious. Cogn. 28, 151-160 (2014).  

43. David, A. S., Bedford, N., Wiffen, B. & Gilleen, J. Failures of metacognition and lack of 
insight in neuropsychiatric disorders. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1379-1390 
(2012).  

 

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/102269doi: bioRxiv preprint first posted online Jan. 22, 2017; 

http://dx.doi.org/10.1101/102269


20 
 

Online Methods 

Participants 

50 healthy adults (aged 18-45, 43 right-handed, 31 female) with normal or corrected-to-normal 

vision participated in this study. All participants were recruited through advertisement at 

University College London, and gave written informed consent. We collected data from 84 

experimental sessions lasting approximately 90 minutes each. Participants were paid £10 per 

hour. All experimental procedures were approved by the research ethics committee at 

University College London. 

Display  

Stimuli were generated using the Cogent Toolbox (http://www.vislab.ucl.ac.uk/cogent.php) for 

MATLAB (Mathworks Inc). Participants observed an LCD display (21-inches monitor; refresh 

rate: 60 Hz; resolution: 1024 × 768 pixels) at a viewing distance of approximately 60 cm.  

Experiment 1: Visual task 

30 participants performed Experiment 1, which consisted of an orientation averaging task (Fig. 

1). Observers viewed a sequence of 30 tilted Gabor patches over a middle grey background 

(standard deviation of the Gaussian envelope: 0.63 deg; spatial frequency: 1.57 cycles deg-1; 

contrast: 25%) flashed in rapid succession at the centre of the screen. Each patch was 

presented for 200 ms with an inter-stimulus interval of 50 ms, resulting in an update rate of 4 

Hz. Once the sequence finished, the participant was asked to judge whether the mean 

orientation of the patches was tilted clockwise or counter-clockwise relative to the vertical. The 

response alternatives consisted of two tilted lines presented in the left and right visual field 

(size: 2.2 deg, location: 11.3 deg left or right to the centre of the screen). The position of the 

response alternatives was randomly assigned and counter-balanced across trials. To select 

the option displayed in the left, participants pressed the ‘Q’ button of a QWERTY keyboard 

using the left hand; to select the option on the right, they pressed the ‘P’ button. Participants 
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were then asked to report their confidence on a rating scale from 1 to 6. A horizontal line was 

presented at the centre of the screen (length: 18.9 deg) with 6 equally-spaced marks signalling 

different levels of confidence. Participants moved a cursor to the left or right of the scale by 

pressing the ‘Q’ or ‘P’ buttons respectively. The initial point in the scale was randomly chosen 

on a trial-by-trial basis. Once the participants selected a confidence rating, they pressed the 

space bar to continue. After an inter-trial interval (which was uniformly distributed between 0.7 

and 0.9 seconds), a new trial began.  

The orientations of the patches were drawn from uniform distributions with mean m 

and endpoints m±v. We used distributions with two different means (m = +3 or -3 degrees) 

and four different variances (given by their different endpoints: v = 10, 14, 24, or 45 degrees). 

Uniform distributions were pseudo-randomly sampled such that the mean was exactly ±3 

degrees on every trial. Orientations were randomly shuffled to define the presentation order. 

The experiment consisted of 400 trials: 50 trials for each of the eight distributions. Blocked 

feedback was given every 20 trials by a message displaying the number of correct trials in that 

block. Each block comprised 5 trials of each variance condition presented in random order. 

Therefore, performance for different variance conditions could not be learned from feedback. 

Experiment 2: Stability across time 

All participants of Experiment 1 were invited to perform the visual task a second time, 

approximately one month later. 14 participants accepted the invitation and were re-tested. 

Experiment 2 was performed 35.2±2.4 days after Experiment 1 (range: 23-49 days). 

Experimenters were blind to the results of Experiment 1 when testing participants in 

Experiment 2.   

Experiment 3: Stability across the perceptual and cognitive domain 

20 healthy adults who did not participate in Experiment 1 or 2 performed Experiment 3. 

Participants performed two sessions: the visual task described in Experiment 1 and a 

numerical averaging task. Half of the participants performed the visual task first. The second 
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session was performed 9.7±2.9 days (range: 1-27 days) after the first one. Experimenters 

were blind to the results of the first session when testing the participants in the second session. 

The numerical task was identical in structure to the visual task but, instead of Gabor 

patches, two-digit numbers (size: 3.8 deg; font: Arial) were presented. The colour of the 

numbers (black or white over a middle grey background) was randomly chosen at each 

presentation. Participants were instructed to decide whether the mean of the sequence was 

greater or smaller than 50. Numbers were sampled from uniform distributions with mean m = 

47 or m = 53, and endpoints m±v were defined by v = 8, 11, 16 or 22. These values were 

chosen, through pilot experiments with a different set of participants, to obtain performances 

similar to that observed in Experiment 1. Uniform distributions were pseudo-randomly sampled 

such that the mean of the sequence was exactly m on each trial. Decisions were collected in 

the same way as in Experiment 1: a response screen with two options (“smaller” and “greater”) 

was presented on both sides of the visual field. Participants gave their answer, and indicated 

confidence, using the same keys as in the visual task.  

Model fitting 

To fit the stochastic updating model (Equations [1] and [2]) to the participants’ decisions, we 

find, for each individual, the parameters 𝜆 and 𝛾 that maximise the log likelihood, 

log 𝐿 = ∑
1 + 𝑑𝑘

2
 log Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
) +

1 − 𝑑𝑘

2
 log [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)]

𝑁𝑡𝑟

𝑘=1

 

where Φ is the standard cumulative normal function, 𝑑𝑘 is the decision on trial 𝑘 (+1 if 

clockwise, -1 if counter-clockwise), 𝜎30,𝑘(𝜆, 𝛾) is obtained from Equation [2], and  

 

𝜇̅30,𝑘(𝜆) =  𝜆 ∑(1 − 𝜆)30−𝑖

30

𝑖=1

𝜃𝑖,𝑘  [4] 

 [3] 
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is the mean value of 𝜇30 on trial 𝑘. (A minor technical point: Equation [4] describes the visual 

task; the cognitive task is the same except that the mean is offset by 50.) 

Estimating the Fisher information and the perceived probability of being correct 

Based on the best fitting parameters 𝜆 and 𝛾 derived from the stochastic updating model, we 

estimated, on a trial-by-trial basis, the observed Fisher information and the expected perceived 

probability of being correct. The observed Fisher information is just the inverse variance of the 

participants’ estimate, the latter computed via Equation [2] (Fig. 2a). The expected perceived 

probability of having made a correct decision, 𝑑, is given by 

𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) = ∫ 𝑑𝜇30 𝑝̂(correct|𝜇30, 𝜎30) 𝑝(𝜇30|𝜇̅30, 𝜎30, 𝑑) .

+∞

−∞

 

The first term inside the integral, 𝑝̂(correct|𝜇30, 𝜎30), is the shaded area under the Gaussian in 

Fig. 2a; consequently, it is given by the cumulative normal distribution, 

𝑝̂(correct|𝜇30, 𝜎30) =  Φ (
|𝜇30|

𝜎30
) . 

The second term in the integral, 𝑝(𝜇30|𝜇̅30, 𝜎30, 𝑑), is the probability of observing 𝜇30 given 𝜇̅30, 

𝜎30, and, importantly, the decision, 𝑑. If the decision is clockwise (𝑑 = +1), 𝜇30 must be 

positive, whereas if the decision is counterclockwise (𝑑 = −1), 𝜇30 must be negative. We can 

take these constraints into account using the Heaviside step function, Θ(𝑥) (which is 1 if 𝑥 > 0 

and 0 otherwise), yielding 

𝑝(𝜇30|𝜇̅30, 𝜎30) =  
1

𝑍

𝑒
−(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

Θ(𝜇30𝑑) 

where 𝑍 is the normalisation constant,  

𝑍 = ∫  𝑑𝜇30Θ(𝜇30𝑑)
𝑒

−(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

= Φ (
𝜇̅30 𝑑

𝜎30
).  

+∞

−∞

 

 [5] 

 [6] 

 [7] 

 [8] 
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Combining these two expressions, we have 

𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) =  
1

𝑍
∫ 𝑑𝜇30

𝑒
−(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

Θ(𝜇30𝑑) Φ (
|𝜇30|

𝜎30
)

+∞

−∞

. 

On each trial, 𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) was computed numerically using Matlab. Note that 

the expected perceived probability of being correct (Equation [9]) is dependent on the 

decision, 𝑑, whereas the Fisher information (Equation [2], Fig.2a) is choice-independent. 

Ordinal regression of confidence reports 

We ran for each individual a multivariate ordinal regression23. For each of the five possible 

splits in the rating scale, this regression fits a logistic model with fixed effects and different 

offsets,  

log (
𝑝(𝑐 > 𝑗)

1 − 𝑝(𝑐 > 𝑗)
) = −𝛼𝑗 + 𝛽𝑝𝑍𝑝 + 𝛽𝐼𝑍𝐼 

where 1 ≤ 𝑗 ≤ 5, 𝑐 denotes confidence, and 𝑍𝑝 and 𝑍𝐼 are z-scored estimates of the perceived 

probability of being correct and Fisher information on each trial. The outputs of this regression 

are the offsets 𝛼1, … , 𝛼5, and the weights 𝛽𝑝 and 𝛽𝐼. To summarise the computations 

underlying confidence, we selected 𝛼3 (the offset when splitting the scale in halves, which we 

refer to as the average confidence), 𝛽𝑝 (the weight of the probability of being correct on 

confidence) and 𝛽𝐼 (the weight of information on confidence).  

 

 

 

Does model fitting explain our findings? 

 [10] 

 [9] 
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We asked if individual differences in how well our model fitted decisions could explain inter-

individual variability in the parameters 𝛽𝑝, 𝛽𝐼 , and 𝛼3. To do this, we correlated these values 

with the observed maximum log-likelihood,  

ℒ = max
𝜆,𝛾

 log𝐿, 

where log 𝐿 is obtained using Equation [3].  We observed that ℒ was not significantly 

correlated with 𝛽𝐼 (r=0.27, p=0.15) or 𝛼3 (r=0.26, p=0.15); however, we did observe a positive 

correlation between ℒ and 𝛽𝑝 (r=0.59, p<0.001). This could potentially mean that, for subjects 

with a low 𝛽𝑝, decisions were not well explained by our model (Equation [1]). Alternatively, 

because ℒ is positively correlated with the mean accuracy across the entire session (r=0.71, 

p<10-4), it could reflect that these participants behaved more randomly. To test this possibility, 

we computed the expected log-likelihood under the assumption of a perfect fit, 

〈ℒ〉 = ∑ Φ (
𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
) log [Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] + (1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)) log [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] ,

𝑁𝑡𝑟

𝑘=1

 

and measured the quality of the fit using the deviance, 𝐷 =  −2(ℒ − 〈ℒ〉). All three parameters 

were uncorrelated with 𝐷 (r=0.22, p=0.24 for 𝛽𝑝; r=-0.12, p=0.54 for 𝛽𝐼; r=0.24, p=0.19 for 𝛼3), 

and 𝐷 was uncorrelated with average performance (r=0.22, p=0.23). This indicates that 

individual differences in 𝛽𝑝, 𝛽𝐼 , and 𝛼3 are not explained by inter-individual variability in the 

goodness of the fit. 

Comparison with other measures of confidence 

We measured the ability to discriminate correct from incorrect trials (also known as 

“metacognitive ability”) using an approach inspired by signal detection theory: we computed 

the type-2 area under the receiver operating characteristic curve (AUROC2)44. Given a set of 

confidence ratings from 1 to 6, there are 5 possible “criterions” to classify trials as having “low” 

or “high” confidence. The AUROC2 is constructed by measuring the area under the curve 

defined by the hit rate (i.e., the proportion of correct trials that were reported with high 

 [11] 

 [12] 
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confidence) versus the false alarm rate (i.e., the proportion of incorrect trials that were reported 

with high confidence). 𝛽𝑝 correlated with the AUROC2 (r=0.53, p<0.01). 

We also estimated the participants’ ability to discriminate different conditions. To this 

end, we obtained the distributions of ratings at each variance condition, and computed their 

Jensen-Shannon (JS) divergence11. The JS divergence between two distributions 𝑃 and 𝑄 is 

𝐷JS(𝑃, 𝑄) = 0.5 𝐷KL (𝑃|
𝑃 + 𝑄

2
) + 0.5 𝐷KL (𝑄|

𝑃 + 𝑄
2

) 

where 𝐷KL(𝑃|𝑄) is the Kullback-Leibler45 divergence between 𝑃 and 𝑄, 

𝐷KL(𝑃|𝑄) = ∑ 𝑃𝑗 log
𝑃𝑗

𝑄𝑗
 .

𝑗

 

For each participant, we computed the distribution of confidence ratings at each of the 

four variance levels, and averaged the Jensen-Shannon divergences across all pairs. 𝛽𝐼 was 

correlated with this quantity (r=0.86, p<10-8). 

Statistical analyses 

In Experiment 1, we computed the average performance for each variance condition and each 

participant. These values were submitted to a one-way repeated measures analysis of 

variance (rm-ANOVA) with factor “variance condition” (4 levels) and “participant” (30 levels) 

as repeated measure (Fig. 1). The normality assumption of this test was checked using the 

Lilliefors test (k=0.7, c=0.8, p=0.07). We also computed the average confidence rating for each 

variance condition and each participant, conditioned on correct or incorrect trials, and 

submitted those values to a two-way rm-ANOVA with factors “variance condition” (4 levels), 

“outcome” (2 levels: correct or incorrect), and “participant” (30 levels) as repeated measure 

(Fig. 2c). The normality assumption of this test was checked using the Lilliefors test (k=0.04, 

c=0.06, p>0.5). The goodness of the fit for each model and subject (Supplementary Fig. 1b), 

quantified by the negative log-likelihood (Equation [3]), was submitted to a two-sided paired t-

test (29 degrees of freedom). The normality assumption of this test was checked using the 

Lilliefors test (k=0.08, c=0.11, p>0.5). 

 [13] 

 [14] 
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In Experiment 2, we compared the within-participants distances in the space defined 

by (𝛽𝑝,𝛽𝐼,𝛼3) with the between-subjects distances. Because we have 14 participants, this 

defines 14 within-subjects distances and 14×13/2=91 between-subjects distances. We z-

scored each dimension and used the Euclidean metric to compute distance. The Lilliefors test 

rejected the null hypothesis that these values were normal (k=0.1, c=0.08, p=0.01); therefore, 

we used a non-parametric test, the Wilcoxon ranked sum test. This test is unpaired and the 

reported p-value is two-sided. 

In Experiment 3, we computed the average performance for each variance condition, 

task, and participant (Fig. 5a,b). We submitted these values to a two-way rm-ANOVA with 

factors “variance condition” (4 levels), “task” (2 levels), and “participants” (20 levels) as 

repeated measure. The normality assumption of this test was checked using the Lilliefors test 

(k=0.07, c=0.09, p=0.36). We computed the average confidence rating across all conditions 

and participants and performed the same rm-ANOVA used in Experiment 1 (Fig. 5c,d). As in 

Experiment 1, average confidence was normally distributed (Lilliefors test, k=0.06, c=0.07, 

p=0.17). To evaluate the stability of (𝛽𝑝,𝛽𝐼,𝛼3) across domains, we computed the within- and 

between-subjects distances following the same procedure of Experiment 2, and compared 

these values using the same non-parametric test. 

Data and code availability 

The data and codes that support our findings are available upon request to the corresponding 

author. 
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Supplementary Figure 1. Model fitting results. We fit two probabilistic models that make different assumptions 

about how decisions are made. The stochastic updating (SU) model is described in the main text (Equations [1] 

and [2]). In the stochastic decisions (SD) model, the agent makes deterministic updates, 

𝜇𝑖 = (1 − 𝜆) 𝜇𝑖−1 + 𝜆 𝜃𝑖 

 and then makes a softmax decision,  

𝑝(𝐶𝑊) =
exp(−𝛾 𝜇30)

exp(−𝛾 𝜇30) + exp(𝛾 𝜇30)
  

where 𝑝(𝐶𝑊) is the probability of choosing clockwise and 𝛾 is the inverse temperature of the softmax rule. In this 

model, the agent updates perfectly and uses a stochastic (and thus suboptimal) rule for action selection; errors are 

due to noise in the decisional stage. In the SU model, the updating process is stochastic (Equation [1] in the main 

text), and decisions are optimal based on the perceived estimate; errors are due to uncertainty in the updating 

process. Both models fit two parameters (𝜆 and 𝛾) to the data of each individual. a) The SU model (solid line) but 

not the SD model (dotted line) fits the pattern of increasing performance with decreasing variance. b) Model 

comparison: negative log likelihood of the SU and SD models using the best fitting parameters. Each dot is a 

different participant. The SU model fits the data significantly better than the SD model (t(29)=9.0, p<10-9). c) 

Distribution of best fitting parameters 𝜆 in the SU model across participants. d) Distribution of best fitting parameters 

𝛾 in the SU model across participants.  
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Supplementary Figure 2. Analysis of confidence across domains. The plot shows regression weights on 

confidence for different individuals. x-axis: weight of the probability of being correct (𝛽𝑝); y-axis: weight of 

information (𝛽𝐼). Each marker (circle, diamond, or square) represents one experiment. The colour codes for 

significance (at the 0.05 level) are as follows: dark green, only 𝛽𝑝 was significant; light green, both 𝛽𝑝 and 𝛽𝐼 were 

significant; yellow, only 𝛽𝐼 was significant; grey, neither was significant. Circles: 30 participants performing the 

visual task in Experiment 1. Diamonds: 20 other participants performing the visual task in Experiment 3. Squares: 

the same 20 participants of Experiment 3 performing the numerical averaging task.  
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Supplementary Figure 3. Experiment 3: Stability within each experiment for the visual (a-c) and numerical (d-f) 

task.  For each half of the experiment (200 trials each), we decomposed confidence in terms of the weight of 

𝑝̂(correct) (𝛽𝑝), the weight of information (𝛽𝐼), and the constant term 𝛼3. Correlation across halves for 𝛽𝑝 (a/d), 𝛽𝐼 

(b/e), and 𝛼3 (c/f). Each square is a different participant, the dotted line is the identity, and the value of r given in 

each box is the Pearson correlation coefficient. All three variables are stable within each experiment for both the 

visual and numerical task. 
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