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Subsurface layers are preserved in polar regions on Mars, which are considered to be a record of past climate
changes on Mars. Orbital radar instruments like the SHAllow RADar (SHARAD) on board Mars Reconnaissance
Orbiter (MRO) transmit radar signals to Mars and receive a set of signals returned from interfaces having a
contrast in dielectric properties in the probed subsurface regions. These subsurface layers which are preserved in
the upper � 1 km of the Martian Polar Layered Deposits (PLDs) can be observed in SHARAD radargrams.
Extraction of these layering features is the preliminary work before interpreting and understanding their origins.
In this study, we use a new method based on log-Gabor filtering and Continuous Wavelet Transform (CWT)-based
peak detection to extract subsurface radar reflections and a workflow to remove clutter reflections in order to
reconstruct 3-D subsurface layers. These methods and workflow are then tested on the SHARAD data in the
Promethei Lingula region near the Martian south pole. The results show that following this workflow, the ground
surface and six subsurface interfaces can be reconstructed, which aids in the interpretation of the depositional and
erosional history of this region.
1. Introduction

Radar sounding techniques were proposed in the 1960s for investi-
gating subsurface areas of glaciers on Earth. It is a non-intrusive and
direct imaging technique to obtain subsurface information, which is
different from surface imagery that only provides surface features from
which one may be able to infer subsurface conditions. The radar sounders
transmit waves to the probed regions and record the backscattered sig-
nals. For penetrating the surface, they usually work at low frequency
(several megahertz to hundreds of megahertz). The resultant images
acquired by using the radar sounders are called radargrams, in which the
x-axis represents the geographical locations of the profiles and the y-axis
is the two-way travel (TWT) time. Therefore, a radargram shows a
sounding profile taken along a certain ground track. Each of the TWT
time signals (each column in a radargram) represents a series of radar
reflections, which may indicate changes in the dielectric boundaries
underground.

One important application of the radar sounding data is subsurface
investigations of icy regions, such as Greenland, Antarctica and Martian
poles. Subsurface layers extending within the icy regions provide clues
for inferring depositions and erosions of atmospheric precipitation ma-
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terials, such as snow on Earth and CO2 frost or H2O snow and atmo-
spheric dust on Mars. Studying the stratigraphy of ice sheets allows
building up a relationship between ice age and depths. It reveals ice mass
balance in the past and provides important information to constrain ice
flow models (Vaughan et al., 1999; Waddington et al., 2007). Studying
the stratigraphy of PLDs deepens the understanding of their formation
and relevant past climate changes. Subsurface layers in the upper 1 km of
the Martian PLDs have been imaged by SHAllow RADar (SHARAD) on
board the NASA Mars Reconnaissance Orbiter (MRO) at a vertical reso-
lution of about 15m using the dielectric constant of free space (Seu et al.,
2004, 2007; Flamini et al., 2007). The spatial resolution of the radar-
grams is approximately 450m � 3 km (along track by across track). The
range sampling is 37.5 ns as two-way travel time, corresponding to
5.63m in free space and slightly more than 3m in an icy subsurface
(assuming a dielectric constant of 3.4). It is noteworthy that this repre-
sents nearly a factor of three in oversampling of the inherent range res-
olution of 15m. The SHARAD instrument has been orbiting Mars since
2006 and covers 36.1% of the Martian surface (Global coverage can be
seen at https://sharad.psi.edu/maps/). There is a dense data coverage in
the polar regions due to the polar orbit. Extraction and analysis of sub-
surface layers from these data has recently expanded from traditional
uller).
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manual investigations to the use of 3-D imaged volumes (Foss et al.,
2017). These semi-automated or automated, 2-D or 3-D methods allow
the extraction of relevant information from these data in a more and
more rapid and effective manner, thus facilitating the study of subsurface
features in relation with the geological and climate history.

The development of automated techniques to extract subsurface
layers from radargrams has not been addressed sufficiently in the liter-
ature. Related studies mainly contribute to the automated analyses of
data acquired by Ground Penetrating Radars (GPRs) showing linear and
hyperbolic returns (Capineri et al., 1998; Delbo et al., 2000; Gamba and
Lossani, 2000; Al-Nuaimy et al., 2001; Pasolli et al., 2009). Few attempts
have been reported in the literature to address the automated detection
of subsurface linear features from Martian radar sounding data. Freeman
et al. used a combination of filters followed by a thresholding operation
to extract subsurface layers from the SHARAD radargrams but this
method does not address the task of labelling layers which are formed in
different ages (Freeman et al., 2010). Ferro et al. proposed an automated
method to extract subsurface layers from radar sounder data acquired in
Martian icy regions (Ferro and Bruzzone, 2013). In their work, a BM3D
filter (Dabov et al., 2007) was followed by a Steger filter (Steger, 1996)
and used to extract lines from radargrams.

As observed in the SHARAD radargrams, the subsurface layers pre-
served in the Martian PLDs share a similarity with fingerprints. Since log-
Gabor filtering has been widely applied to enhance images of finger-
prints, it is likely that this filtering method might also work with the
SHARAD radargrams, although there is no record of any literature
reporting its application to this field. Furthermore, considering the
SHARAD radargrams only show a 2-D profile of the probed region, it is
necessary to combine radargrams from multiple orbits to reconstruct a 3-
D subsurface structure. Foss et al. (2017) first demonstrated the retrieval
of 3-D volumes for both polar regions of Mars. Their 3-D volume imaging
is built from 2-D interpolated images at every time delay position. The
3-D volumes of SHARAD data are available at https://sharad.psi.edu/
3D/.

In this paper, we propose an automated method based on the com-
bination of a log-Gabor filtering and a Continuous Wavelet Transform
(CWT) to extract the subsurface reflections from SHARAD radargrams.
Clutter reflections are simulated and removed from these subsurface
reflections, which are subsequently partitioned into different layers in
2

the 3-D domain by using classification methods. The proposed workflow
for reconstructing the 3-D subsurface layers is introduced in Section 3. To
test the proposed method and workflow, we choose a study area located
in the Promethei Lingula (PL) region over the Martian south pole. In this
region, the subsurface layers extend laterally to hundreds of kilometres,
and at least one angular unconformity is revealed. The 2-D and the
following 3-D processing are tested on SHARAD radargrams covering the
study site, which are introduced in Section 2. The experimental results
are demonstrated and discussed in Sections 4 and 5.

2. Study site and data

The Promethei Lingula is a low-relief plateau at the margin of the
SPLD, as shown in Fig. 1. Together with Ultimi Lobe (UL), it is dissected
and separated by three reentrant canyons, namely Promethei Chasma
(PC), Ultimum Chasma (UC) and Chasma Australe (CA) (Byrne and Iva-
nov, 2004). The Promethei and Ultimum Chasma have rugged floors
exposing Hesperian and Noachian materials. A similarly oriented but
shallower canyon, Australe Sulci, features dense, parallel sets of curvi-
linear grooves, canyon-transecting sinuous ridges and circular and
elongated mounds (Kolb and Tanaka, 2006). Three sequences of layered
deposits have been identified in this region. Between the top and the
second layer sequences, an angular unconformity has been revealed by
analysing high-resolution surface images (Kolb and Tanaka, 2006) and
from analysing manually SHARAD radargrams (Seu et al., 2007; Milko-
vich et al., 2009; Guallini et al., 2018). Although layer exposures can be
found extending the South Polar Layered Deposits (SPLD) in the surface
images, such as from Mars Orbital Camera (MOC) and Thermal Emission
Imaging System (THEMIS) images, the extent of these layer sequences is
observed to be interrupted in the SHARAD radargrams. In SHARAD
radargrams, the subsurface layer sequences are only revealed to be
continuous within the Promethei Lingula region. Guallini et al. postu-
lated that the oscillations in Martian axial obliquity could have controlled
local climate conditions in the past, leading to the current geological
records according to their analyses of the geologic units in the region
(Guallini et al., 2018).

The study site is selected within the Promethei Lingula as the white
rectangle shown in Fig. 1, within which the elevation of the angular
unconformity has been interpolated from manual delineation on
Fig. 1. The coverage of the study site is
denoted by the white rectangle in the Prom-
ethei Lingula (PL) region, under which is the
Mars Orbiter Laser Altimeter (MOLA) DTM
(MEGDR at 512 pixels/degree or �115m/
pixel, the elevation is here referred to the
Martian centre of mass). The black polygon
indicates a scene of HRSC DTM (Product id is
h2165). The yellow lines show the footprints
within the PL region of the SHARAD radar-
grams from orbits 2202 and 6651. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the Web version of this article.)
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SHARAD radargrams by Guallini et al. (2018). In this study, 146
SHARAD radargrams are used. In addition, a High Resolution Stereo
Camera (HRSC) Digital Terrain Model (DTM) (product id: h2165)
covering a large part of this region is created and used for simulating the
clutter reflections. The HRSC DTM was produced using the methods
developed by Kim and Muller (2009) who use the open source VICAR
programme together with photogrammetry software from DLR (Deut-
schen Zentrums fr Luft-und Raumfahrt) with image matching based on
the GOTCHA (Gruen-Otto-Chau) algorithm (Putri et al., under review).

3. Methods

In this study, a 3-D reconstruction of subsurface layers is obtained by
using the SHARAD radargrams in four steps, the first three of which are
carried out in the 2-D raster domain on the radargrams. Firstly, the
original radargram is enhanced by applying a log-Gabor filtering which
improves the contrast of the angular linear features. Secondly, a CWT-
based peak detection method is applied to the filtered radargram to
extract the subsurface reflections. Thirdly, an external DTM is used to
simulate the clutter reflections which are then compared to the subsur-
face reflections to eliminate any false detections. Finally, after the
detection of subsurface reflections from all radargrams located within the
study area, the 3-D coordinates of the extracted reflection positions are
treated as a point cloud, to which clustering methods are applied to
distinguish the subsurface layers. The overall processing flow is shown in
Fig. 2.
Fig. 2. The processing workflow for extracting subsurface layers and reconstructing
yellow highlight with dashed borders is the 2-D raster processing applied to each SH
references to colour in this figure legend, the reader is referred to the Web version

3

3.1. Radargram enhancement

The SHARAD radargrams usually show low Signal to Noise Ratio
(SNR), which is probably related to the low transmitted power (10W) of
SHARAD. Therefore, an image enhancement is beneficial to suppress the
noise and to improve the contrast of linear features. Image denoising
methods, include such techniques as the Block-Matching and 3D (BM3D)
(Papari and Petkov, 2011), Bilateral filtering (Tomasi and Manduchi,
1998), wavelet shrinkage denoising (Chen and Qian, 2011) etc. Among
these methods, the log-Gabor filtering was found to be most effective in
enhancing the contrast of the linear features.

The denoising method using log-Gabor functions was proposed by
(Kovesi, 1999), as shown in Equation (1). This enables one to calculate
the amplitude and phase of the input image for a given frequency, f and
orientation, θ, of the filtering kernels. f0 and θ0 are the central frequency
and orientation of the filtering kernels. σf and σθ are the bandwidth
parameter and width parameter of the orientation, which are usually set
to be constant to maintain the same shape of the filter while adjusting the
frequency and orientation. To extract angular features at different di-
rections and frequencies, a set of radial filters and a set of angular filters
are combined. For example, f and θ are chosen exhaustively from the f 2
ðf1; f2;…; fNÞ and θ 2 ðθ1;θ2;…;θNÞ.

Gðf ; θÞ ¼ exp

 
� ðlogðf =f0ÞÞ2
2
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log
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(1)
their 3-D structures. The blue rectangles show the four primary steps and the
ARAD radargram. The Hsat is the height of satellite. (For interpretation of the

of this article.)
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The phase preserved denoising keeps the phase unchanged while
shrinks the amplitude with a threshold, which is determined by using the
Rayleigh distribution as it is when the signal is purely Gaussian white
noise. A threshold, T, is determined from the amplitude response as
expressed in Equation (2), where μr and σr describe the Rayleigh distri-
bution of the filter response and k is typically in the range of 2–3. The μr
and σr can be calculated from the standard deviation, σg , of the amplitude
response as shown in Equation (3). A detailed description of the
threshold determination is described in Kovesi (1999).

T ¼ μr þ kσr (2)

μr ¼ σg

ffiffiffi
π
2

r
; σr ¼ σg

ffiffiffiffiffiffiffiffiffiffiffi
4� π
2

r
(3)

3.2. Extraction of subsurface reflections

The radargram is a combination of a series of time signals at every
footprint. In each column of the radargram, one dielectric boundary is
recorded as one peak. Therefore, detecting linear features from radar-
grams can be resolved by detecting the peaks from each column in the
enhanced radargram. The CWT-based peak detection can be used for
detecting these peaks along each column in the radargrams (Du et al.,
2006; Xiong et al., 2017). It is realised by applying the CWT to each
column of the radargram, xðtÞ, to obtain the wavelet coefficients, Cða;bÞ,
which are calculated using Equation (4). The a is the wavelet scale and b
is the transitional value which is set to 1 in this case as the wavelet is
moving along the column. Then a threshold is determined as the
maximum value of the wavelet coefficient above surface reflections
which can be detected using the method proposed by Mouginot et al.
(2010). The peaks having a wavelet coefficient larger than this threshold
are extracted as strong radar reflections.

Cða; bÞ ¼ 1ffiffiffi
a

p
Z ∞

�∞
xðtÞψ

�
t � b
a

�
dt (4)

ψmexhðtÞ ¼
2ffiffiffi
3

p
π1=4

�
1� t2

�
e�t2=2 (5)

The Mexican hat (Ricker) wavelet (Torrence and Compo, 1998) as
expressed in Equation (5) is used in this study. If several scales are
applied to the CWT, a scalogram can be derived representing the wavelet
response to all scales. At each scale, the peaks are detected by using the
threshold obtained at this scale. The peaks detected over all scales are
combined into the final detected peaks. The larger the scale is, the fewer
but more reliable the peaks are detected.

3.3. Removal of clutter reflections

Due to the nadir-looking geometry of SHARAD and the large Field of
View (FOV) of the radar beams, it is possible that reflections from fea-
tures beyond the nadir point of the flight track arrive earlier at the
receiver than the subsurface reflections at the nadir of the SHARAD.
These interfering reflections come from off-nadir surface reflections or
off-nadir subsurface reflections rather than the nadir subsurface
reflections.

The off-nadir reflections are termed clutter reflections and can be
simulated by using an external DTM. In this study, the simulation method
proposed by Ferro and Bruzzone (2013) is used for simulating clutter
reflections which can then be removed from extracted reflections from
the filtered radargrams. This simple model described in Equation (6)
considers no local information, such as local incidence angle and surface
roughness.

ξSði; tÞ ¼ K �
X

ðx;yÞ2Aði;tÞ

½t � 2Rðx; yÞ�
Rðx; yÞ4 (6)
4

where Rðx; yÞ is the distance from the planar position ðx; yÞ of a reflector
in the cluttergram to the SHARAD antenna, i denotes the column number
of the cluttergram and t denotes the time delay of reflection which can be
converted to pixel coordinates by assuming a single dielectric constant.
Aði;tÞ is the area in which every planar position ðx; yÞ can be converted to
the same position ði; tÞ in the cluttergram.

The SHARAD radargrams have been co-registered by US SHARAD
team to the Mars Orbiter Laser Altimetry (MOLA) DTM. The elevations of
the surface reflections should be the same as those from the MOLA DTM
when there is no clutter reflection. However, when there are clutter re-
flections, the surface reflections in the radargrams may not be caused by
the actual surface as measured in the MOLA DTM. During the simulation
of the cluttergram by using the DTM, the locations of nadir surface re-
flections can be identified, which should have the shortest time delay
compared with other nadir subsurface reflections. The identified nadir
surface reflections can be transformed to image coordinates, thus delin-
eated in the radargrams to limit the surface boundary.

The simulated radargram is here called a cluttergram. Foss et al.
(2017) found the radargrams are misaligned with each other due to re-
sidual, along-track-variable delays introduced by the Martian iono-
sphere. Therefore, there may be a resultant slight offset between the
surfaces of the radargram and cluttergram even when there are no oc-
currences of clutter reflections. However, the surface of the radargram
should be congruent with the surface of cluttergram and the surface
inverted from nadir elevations (nadir surface) if no off-nadir reflection
arrives earlier than the nadir reflection. In this study, the surface of the
radargram is detected and aligned with the surface of the cluttergram
(detected in the same way as the radargram surface) when the offset is
not too large (a threshold needs to be set for the allowed offset). Mean-
while, in each column of the cluttergram, a threshold (0.5 * value of
surface return) is applied to pick up the suspected pixels as clutter re-
flections. Subsequently, the reflections in the radargrams are removed if
they are near one suspected clutter reflection (below or above it to within
5 pixels). If the offset exceeds the threshold, then all the reflections along
this column are regarded as clutter. After the removal of the clutter re-
flections, all remaining subsurface reflections are preserved. Their x-,
y-coordinates, heights (that are referenced to the MOLA sphere radius of
3396 km) and radar amplitude are then output for further 3-D processing.
3.4. Three-dimensional(3-D) processing

The 3-D coordinates, namely geographical x and y coordinates and
elevations, are extracted at all points which have been detected in the
previous steps. Subsurface isochrones can then be generated by clus-
tering all the points into several layer groups.

In this study, we use the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) (Ester et al., 1996) to initially classify the
points. The DBSCAN algorithm classifies data according to their density
distribution. However, during the clustering, point groups with a small
number of points can also be formed. Since the subsurface layers are
generally distinguishable in the vertical direction, a hierarchical clus-
tering is applied to agglomerate the pre-classified groups by the DBSCAN
algorithm given a desired cluster number.

4. Results

4.1. The enhancement of SHARAD radargrams

The SHARAD radargram from orbit 2202, which is shown in Fig. 3(a),
is here used to illustrate the results of the log-Gabor filtering. The traces
from 3718 to 3896 of this radargram shown in white rectangle in
Fig. 3(a) are used as test data since it contains extensive layered features.
The log-Gabor filtering is applied to this subset radargram and the result
is shown in Fig. 3(b), along with filtering results by BM3D (Fig. 3c) and
Bilateral filtering (Fig. 3d). Fig. 3(e) shows one profile from column 3800



Fig. 3. (A) The subset of a SHARAD radargram from orbit 2202. The vertical scale bar of 500m is the vertical range when using the dielectric constant of free space;
the filtered radargrams after (b) log-Gabor filtering; (c) BM3D filtering; (d) Bilateral filtering; (e) column 3800 in the SHARAD radargram (orbit 2202).
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of the unfiltered and filtered radargrams. The log-Gabor filtering per-
forms the best in enhancing the contrast between the signals representing
linear features and noise amongst the three methods.

In the log-Gabor filtering algorithm, two parameters, namely the
number of frequencies and the multiplication frequency factor define the
set of frequencies while the number of orientations defines the set of
orientation angles, which are described in Section 3.1. The comparison of
filtered radargrams resulting from different input parameters is shown in
Fig. 4. The more frequency components are included, the less contrast the
linear features have. The contrast of linear features relative to the
background is reduced as their width becomes thinner when fewer fre-
quency components are included, such as Fig. 4(b) and (e). The number
of orientations has less effect on the filtered results, which is probably
Fig. 4. (A-f) Comparison of different input parameters for log-Gabor filtering. The
factor and number of orientation angles. The signals along the column of 3800 of the fi
normalized to [0,1].

5

due to less curvature of individual layers. The signals along the column of
3800 (white lines in each subfigure of Fig. 4) of filtered radargrams are
plotted. Signals above the surface return and lower down the radargrams
vary around zero and the filtered signal follows the trend of the original
one when the number of frequencies is 5 and the multiplication factor of
the frequency is 3. To preserve the information of subsurface features as
far as possible, the parameters of Fig. 4(b) are chosen as the input pa-
rameters for enhancing the radargrams. The parameters of Fig. 4(a) are
the same as those for producing the Fig. 3(b).

4.2. Clutter simulation and removal of clutter reflections

Clutter reflections are simulated using an external DTM. Fig. 5 shows
parameters in brackets are the number of frequencies, multiplication frequency
ltered radargrams are demonstrated in the plots, the signals are radar amplitude



Fig. 5. Interpolated DTMs used to simulate clut-
tergrams for a subset (column 3718 to 4012) of
SHARAD radargram from orbit 2202: (a) The
filtered radargram; Interpolated (b) HRSC DTM
and (c) MOLA DTM along the SHARAD track;
Cluttergrams simulated using (d) HRSC and (e)
MOLA DTM. The yellow lines in (d) and (e) show
the locations inverted from surface DTM at nadir
footprints. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the Web version of this article.)
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two cluttergrams which are simulated by HRSC and MOLA DTMs
respectively for one part (from 3718 to 4012 columns) of the whole
radargram from orbit 2202. The footprints of the partial radargram is
shown in Fig. 1. The 50m HRSC DTM has higher resolution than the
corresponding MOLA DTM, which leads to a detailed simulated clutter-
gram shown in Fig. 5(d). Therefore, the HRSC DTM is selected as the
external DTM to simulate the cluttergrams. In areas where there is no
Fig. 6. (A) Surface reflections and surface of cluttergrams from the HRSC DTM; (b) Si
cluttergram and (d) detected clutter reflections from the HRSC cluttergram.

6

coverage of HRSC DTM, MOLA DTM is used for simulating the clutter
reflection.

To investigate the relationship between the radargram and the clut-
tergram, a subset (rows from 1370 to 1470) of the SHARAD radargrams
from orbit 2202 is studied in detail. Fig. 6(a) shows the filtered radar-
gram from which an offset between the radargram surface (black line)
and nadir surface (yellow line) can be observed. The signal along column
gnals along column 22 of the filtered radargram and HRSC cluttergram; (c) HRSC
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22 (white vertical line in Fig. 6(a)) is shown in Fig. 6(b), the first high
response represents the surface while the second one represents the
clutter reflection which can be observed in both the radargram and
cluttergram. Fig. 6(c) demonstrates detected cluttergram surface (red
line) and the nadir surface (yellow line) on the HRSC cluttergram. Here
we can also observe an offset between these two surfaces. Fig. 6(d) shows
the detection of clutter reflections (including the surface returns) from
the cluttergram, which can be later used for removing the clutter re-
flections from the detected subsurface reflections by aligning with the
surface responses indicated by the black arrows shown in Fig. 6(b).

4.3. Extraction of subsurface reflections

After the log-Gabor filtering, the CWT-based peak detection is applied
to the filtered radargram. Firstly, a set of wavelet scales (1–15) is applied
to detect the peaks to examine which scale is proper for peak detection
for SHARAD radargrams over this study site. Fig. 7 shows peak detection
results along columns 22, 60, and 160 of the subset radargram shown in
the white rectangle in Fig. 3(a). From Fig. 7(a–c), we can see that the high
amplitude peaks represent prominent layers or wide peaks. The high
wavelet coefficients may result from a sequence of layers rather than a
specific layer. Fig. 7(d–f) show the peak numbers detected at each scale
from 1 to 15, which indicates that the informative scales are limited
within the scale of about 13. Therefore, a scale of 13 is chosen as a limit of
the wavelet scale and the Mexican Hat function is selected as the wavelet
in the CWT transform over this study site.

By applying this CWT-peak detection to all columns of the radargram,
the subsurface reflections can be detected and laid over the original
radargrams. Fig. 8 shows two sets of extracted subsurface reflections
from SHARAD radargrams for orbits 2202 and 6651. The white dots in
Fig. 8(a) and (c) show the detected peaks when using the scales from 1 to
13 while the black dots represent the extracted peaks when using the
single scale of 13. When using a single scale of 13, only the prominent
reflections are detected while faint reflections are detected when smaller
scales are included. To figure out the primary subsurface structures, the
single scale 13 is set to extract subsurface reflections for an initial
reconstruction though in some areas the detected reflections are not as
dense as those detected with the scale range of 1–13. The detected sub-
surface reflections before and after removal of clutter reflections can be
Fig. 7. The CWT-based peak detection
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seen in Fig. 8(b) and (d).

4.4. The 3-D processing

After all the subsurface reflections are detected, they are aggregated
into a point cloud. Firstly, the DBSCAN algorithm is applied to the point
cloud to classify the points based on their density distribution, and to
remove noisy points which are distributed with a low density between
the clustered groups. After the DBSCAN clustering, all the points are
classified into 138 groups, among which there are seven groups con-
taining point numbers of more than 1000. In the next step, a hierarchical
clustering is applied to the classified groups to further divide the centroid
of the pre-classified 138 groups given the number of primary clusters
which is selected as seven in this case. The final partitioned result of this
point cloud is shown in Fig. 9.

Each cluster of the points are samples from a subsurface DTM, which
can be derived by interpolating the points in this cluster. A Triangulated
Irregular Network (TIN) is used in this study to interpolate the points into
a subsurface DTM. The interpolated surface (S) and subsurface (SS1-6)
DTMs are shown in Fig. 10. These DTMs are provided as supplementary
files with a MATLAB code to show them in a 3-D rendering. The sub-
surface DTMs are then converted to depth maps and shown along with
the surface DTM in Fig. 11. Fig. 11(d) displays a depth map of the
regional discontinuity (named here as AUR1) which is converted from
the AUR1 DTM produced by Guallini et al. (2018). According their study,
the AUR1 should correspond to the SS2 shown in Fig. 11(c). Compared to
the AUR1, the SS2 depth map shows more detailed variation which may
due to the difference in interpolation methods between Kriging and TIN
interpolation. This difference can be also caused by less radargrams used
for interpolating the AUR1 although more than 600 SHARAD radargrams
are inspected in the Promethei Lingula region, which is larger than the
AUR1 extent according to Guallini et al. (2018). Besides, the AUR1 DTM
is derived not only by subtracting depth from MOLA DTM, but also by
further subtracting the average elevation in each SHARAD orbit. Since
the AUR1 DTM has already been interpolated, it is hard to take this into
account in the depth conversion. Therefore, we add back an offset of
6000m to the AUR1 DTM. The difference between depth maps of SS2
and AUR1 can also be caused by the fact that the latter is derived by
subtracting the average elevation in each orbit rather than each footprint.
of SHARAD data from orbit 2202.



Fig. 8. Subsurface reflections detected by
applying CWT-based peak detection method
with a single scale of 13 (black dots) and a
scale range of 1–13 (white dots), to radar-
grams from (a) orbit 2202 and (c) orbit 6651;
Subsurface reflections after removal of clutter
reflections (red dots) (b) for radargram from
orbit 2202 and (d) for the radargram from
orbit 6651. The yellow lines are the nadir
surface and the background image is the
original radargrams. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the Web version of
this article.)

Fig. 9. The clustered 3-D points viewed from azimuth angles of (a) �45� and (b) þ45�.
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5. Discussion

This study developed an automated workflow to reconstruct subsur-
face elevation models from SHARAD radargrams and external DTMs,
such as HRSC and MOLA DTMs. The primary and prominent subsurface
reflections are detected by applying a CWT-based peak detection to the
SHARAD radargrams and the removal of clutter reflections is achieved by
simulation using the external HRSC DTM. By applying clustering algo-
rithms to the extracted points, the subsurface topography can be recon-
structed successfully. Although there is some adjustment of the input
parameters to the workflow, the proposed workflow and corresponding
tools are easily tuned to different applications and are much faster
compared to the manual delineation of subsurface layers. Depending on
howmany layers there are in the study area, several key parameters, such
8

as the wavelet scale and the distance and sample points used within the
DBSCAN clustering, need to be tuned for each area, which usually takes
several iterative trials with each trial usually taking a few minutes to
achieve.

The CWT-based peak detection is effective in picking strong re-
flections when selecting a wavelet scale of 13 in this case. However,
when the scale is selected as a smaller value, more points from subtle
layers can be extracted. By choosing a scale of 13, only the prominent
reflections are extracted, which represent the high responses to the
wavelet by a layer sequence composed of parallel layers. Therefore, the
six subsurface DTMs obtained in this study can be regarded as repre-
sentations of layer sequences. The removal of clutter reflections works
robustly on the strong clutters near the surface. Deeper and weaker
clutters bend the layers and this effect is hard to disentangle from the



Fig. 10. The interpolated surface and subsurface DTMs which are viewed from azimuth angle of (a) �45� and (b) þ45�.

Fig. 11. (A) Interpolated surface DTM; (b–c) and (e–h) are six interpolated subsurface depth maps (SS1-SS6) that are calculated from surface DTM; (d) showing the
interpolated AUR1 depth map, in comparison with (c) the depth map of SS2.
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layering phenomenon itself. Since the removal of clutter reflections is
now simply dependent on the threshold that is related to the intensity of
surface returns, the subsurface clutter reflections are not able to be
removed in some cases. However, the subsequent DBSCAN clustering can
largely remove the sparse distributed reflections including parts of the
remaining clutter reflections. DBSCAN is useful to separate the point
cloud into several primary groups, while the following hierarchical
clustering mainly utilises the information of elevation to separate into
different planes, however, the mere dependence on the elevation might
lead to bad performance when the subsurface topography has dramatic
variations. More advanced and intelligent methods for separating the
point clouds into curved layers are needed in the future. The TIN inter-
polation is currently applied directly to all points which are sometimes
very sparsely distributed, so it does not work very well in areas with only
very few or even no sample points, such as the northwest part of SS1 and
the eastern part of SS5. This issue needs to be addressed in future work.

Compared to the three layer sequences reported in the literature (Kolb
and Tanaka, 2006; Milkovich et al., 2009; Guallini et al., 2018), this study
reveals six subsurface depth maps (SS1-6) of the Promethei Lingula region,
which may indicate detailed depositional and erosional processes. In this
region, the subsurface layers are extending into the Chasma Australe while
they gradually disappear to the south and north of this chasma towards
which the top layer sequences become thicker and thicker. The second
layer below the surface (SS2) as shown in Fig. 11(c) corresponds to the
AUR1 (Figure 11(d)) produced by Guallini et al. (2018). Although gener-
ated by different methods, they share a similar depth variation across this
region. Fig. 11(c) and (d) show the same increasing depth away from the
south pole in the southern region of the study site. In addition, more details
can be observed in the SS2 depth map. The two lower subsurface depth
maps (SS3 and SS4) are generally parallel to each other, whilst preserving
subtle differences in depth variation as seen in Fig. 11(e and f). Further
below is the SS5, which has more sample points in the south of the study
site while the sample points are very sparse in the north region. Therefore,
the interpolated depth of the region with x coordinates larger than 424 km
in Fig. 11(g) is probably not very reliable. Observing the left part (x ＜
424 km) of SS5, a trend of decreasing depth can be observed from the
southeast to the northwest of this study area, indicating a convergence
with the upper layers to some point in the northwest region. Although the
SS5 is not very well reconstructed, the subsurface interface below it (SS6)
is reconstructed successfully, which generally follows the depth variation
of the SS3 and SS4. It indicates that the detection of SS5 is not out of the
capability of the SHARAD instrument, however, it is the subsurface of SS5
vanishing or joining to the upper one at some point that leads to the failure
of proper reconstruction.

6. Conclusions

A radar sounding technique has been applied to studying the Martian
subsurface for more than a decade. The utilisation of this radar sounding
data has been transformed from manual interpretation to automatic
processing although many geologic studies still prefer to employ manual
delineation. This study proposes an innovative method for automatically
reconstructing subsurface DTMs of Martian polar region. Taking the
Promethei Lingula region in Martian south pole as an example, the study
shows a processing workflow, by which the surface DTM and six sub-
surface interfaces are reconstructed automatically and successfully.

One of the reconstructed subsurface interfaces correlates with the
angular unconformity revealed in previous studies. In addition, this study
firstly reveals another subsurface interface (SS5) which tends to converge
into the upper layer sequence. It is the first time that a detailed subsurface
stratigraphy is reconstructed by an automated workflow. The proposed
method and workflow are realised by using Python and developed as a
QGIS plugin (SHARAD3d) which is publically available on GitHub
(https://github.com/xiongsiting/SHARAD3d) to the scientific commu-
nity at the time of publication. More areas will be tested in the future
with the SHARAD data.
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