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Abstract. Characterization of generalized Schur functions in terms of
their Taylor coefficients was established by M. G. Krein and H. Langer
in [14]. We establich a boundary analog of this characterization.

1. Introduction

Generalized Schur functions are the functions of the form

f(z) =
s(z)
b(z)

, (1.1)

where the numerator s is an analytic function mapping the open unit disk D
into the closed unit disk (i.e., s is a Schur function) and where the denomina-
tor b is a finite Blaschke product. Such functions appeared first in [16] in the
interpolation context and were studied later in [13, 14]. In what follows, we
will write S, GS and FB for the set of Schur functions, the set of generalized
Schur functions and the set of finite Blaschke products, respectively. For-
mula (1.1) is called the Krein-Langer representation of a generalized Schur
function f (see [13]); the entries s and b are defined by f uniquely up to a
unimodular constant provided they have no common zeroes. Via nontangen-
tial boundary limits, the GS-functions can be identified with the functions
from the closed unit ball of L∞(T) which admit meromorphic continuation
inside the unit disk with a finite total pole multiplicity. The class GS can
be alternatively defined as the class of functions f meromorphic on D and
such that the associated kernel

Kf (z, ζ) :=
1− f(z)f(ζ)

1− zζ̄

has finitely many negative squares on ρ(f), the domain of analyticity of f .
A consequence of this characterization is that there exists an integer κ ≥ 0
such that for every choice of an integer n > 0 and a point z ∈ ρ(f), the
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Hermitian matrix

Pf
n(z) =

[
1

`!r!
∂`+r

∂z`∂z̄r

1− |f(z)|2

1− |z|2

∣∣∣∣
z=ζ

]n−1

`,r=0

(1.2)

which will be referred to as to the Schwarz-Pick matrix, has at most κ
negative eigenvalues counted with multiplicities. This number κ turns out
to be equal to the total pole multiplicity of f , i.e., to the degree of the
denominator b in the coprime Krein-Langer representation (1.1). In what
follows, we will denote by π(P ), ν(P ) and δ(P ) respectively the numbers
of positive, negative and zero eigenvalues, counted with multiplicities, of a
Hermitian matrix P . Straightforward differentiation in (1.2) gives explicit
formuals[

Pf
n(z)

]
`,r

=
min{`,r}∑

s=0

(` + r − s)!
(`− s)!s!(r − s)!

zr−sz̄`−s

(1− |z|2)`+r−s+1
(1.3)

−
∑̀
α=0

r∑
β=0

min{α,β}∑
s=0

(α + β − s)!
(α− s)!s!(β − s)!

zβ−s
i z̄α−sf`−α(z)fr−β(z)

(1− |z|2)α+β−s+1

for the entries of Pf
n(z) in terms of Taylor coefficients fj(z) := f (j)(z)/j! and

the uniform bound ν(Pf
n(z)) ≤ κ (with actual equality ν(Pf

n(z)) = κ if n
is large enough) eventually leads to a characterization of generalized Schur
functions in terms of their Taylor coefficients (see [14]). The objective of
this paper is to establish a similar characterization in the boundary context
where the ambient point z is moved to units circle T, the boundary of D,
and where the Taylor coefficients at z are replaced by the boundary limits

fj = lim
z→t0

f (j)(z)
j!

. In contrast to the interior case, the boundary limits fj ’s

may not exist; however, if the limit fj exists, the limits fk also exists for all
k = 0, . . . , j − 1. We therefore, distinguish two cases: the finite (truncated)
problem PN and the infinite problem P∞.

Problem PN : Given a point t0 ∈ T and given N < ∞ complex numbers
f0, . . . , fN , find a function f ∈ GS which admits the asymptotic expansion

f(z) = f0 + f1(z − t0) + . . . + fN (z − t0)N + o(|z − t0|N ) (1.4)

as z tends to t0 nontangentially.

Problem P∞: Given a point t0 ∈ T and given a complex sequence
{fi}i≥0, find a function f ∈ GS which admits asymptotic expansions (1.4)
for every N ≥ 0.

Remark 1.1. It is known that condition (1.4) holds if and only if the first
N + 1 nontangential derivatives of f exist at t0 with values

lim
zc→t0

f (j)(z)
j!

= fj , for j = 0, 1, . . . , N. (1.5)
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Here and in what follows we write z→̂t0 if a point z tends to a boundary
point t0 nontangentially.

To present the answers to the above problems we first introduce some
needed definitions and notation. Given a sequence f = {fi}N

i=0 (with N ≤
∞), we define the lower triangular toeplitz matrix Uf

n and the Hankel matrix
Hf

n by

Uf
n =


f0 0 . . . 0

f1 f0
. . .

...
...

. . . . . . 0
fn−1 . . . f1 f0

 , Hf
n =


f1 f2 . . . fn

f2 f3 . . . fn+1
...

...
...

fn fn+1 . . . f2n−1

 (1.6)

for every appropriate integer n ≥ 1 (i.e., for every n ≤ N + 1 in the first
formula and for every n ≤ (N + 1)/2 in the second). Given a point t0 ∈ T,
we introduce the upper-triangular matrix

Ψn(t0) =


t0 −t20 · · · (−1)n−1

(
n−1

0

)
tn0

0 −t30 · · · (−1)n−1
(
n−1

1

)
tn+1
0

...
. . .

...
0 · · · 0 (−1)n−1

(
n−1
n−1

)
t2n−1
0

 (1.7)

with the entries

Ψj` =

{
0, if j > `,

(−1)`−1
(
`−1
j−1

)
t`+j−1
0 , if j ≤ `,

(j, ` = 1, . . . , n), (1.8)

and finally, for every n ≤ (N + 1)/2, we introduce the structured matrix

Pf
n =

[
pf

ij

]n
i,j=1

= Hf
nΨn(t0)Uf∗

n (1.9)

with the entries (as it follows from (1.6)–(1.8))

pf
ij =

j∑
r=1

(
r∑

`=1

fi+`−1Ψ`r

)
fj−r. (1.10)

Since the factors Ψn(t0) and Uf∗
n in (1.9) are upper-triangular, it follows

that Pf
k is the leading submatrix of Pf

n for every k < n. Although the matrix
Pf

n defined in (1.9) does not have to be Hermitian, it then follows that if it is
Hermitian, then the matrices Pf

k are Hermitian for all k < n. We thus may
introduce the quantity n0 ∈ N ∪ {∞} (the size of the maximal Hermitan
matrix Pf

n) by

n0 =


0, if Pf

1 = f1t0f0 /∈ R,

sup
1≤k≤(N+1)/2

{
k : Pf

k = (Pf
k)
∗
}

, otherwise,
(1.11)
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with the convention that n0 = ∞ if the matrices Pf
k are Hermitian for all

k ≥ 1. We also observe that formula (1.10) defines the numbers pf
ij in terms

of f = {f0, . . . , fN} for every pair of indices (i, j) subject to i+j ≤ N +1. In
particular, if n ≤ N/2, one can define via this formula the numbers pf

n+1,n

and pf
n,n+1 and therefore, the number

γn := t0 ·
(
pf

n+1,n − pf
n,n+1

)
. (1.12)

Two theorems below are the main results of the paper.

Theorem 1.2. Let t0 ∈ T and f = {f0, . . . , fN} (1 ≤ N < ∞) be given.
Let the integer n0 be defined as in (1.11) and, in case 0 < n0 ≤ N/2, let γn0

be given by (1.12). The problem PN has a solution if and only if one of the
following holds:

(1) |f0| < 1;
(2) |f0| = 1, n0 = (N + 1)/2;
(3) |f0| = 1, n0 = N/2, γn0 ≥ 0:
(4) |f0| = 1, 0 < n0 < N/2, γn0 > 0.

Whenever the problem is solvable, it has infinitely many rational solutions.

Theorem 1.3. Let t0 ∈ T and f = {fi}i≥0 be given. Let n0 be defined as in
(1.11) and, in case 0 < n0 < ∞, let γn0 be the number given by (1.12). The
problem P∞ has a solution if and only if one of the following holds:

(1) |f0| < 1;
(2) |f0| = 1, n0 < ∞, γn0 > 0.
(3) |f0| = 1, n0 = ∞, ν(Pf

n) = κ for all large n and some κ < ∞.
The problem may have a unique solution only in case (3).

The paper is organized as follows. In Section 2 we present the proof of
Theorem 1.2 based on recent results [5] on Schur-class interpolation. The
proof of Theorem 1.3 is given in Section 3, at the end of which we also
discuss the possible determinacy of the problem.

2. The truncated problem

Since the boundary values of generalized Schur functions cannot exceed
one in modulus, the condition |f0| ≤ 1 is necessary for the problem PN to
have a solution. On the other hand, the condition |f0| < 1 is sufficient: in
this case there are infinitely many Schur functions solving the problem (see
e.g., [2]). It remains to consider a more subtle case where f0 is unimodular.

Since every function f ∈ GS can be written in the form (1.1) and since
the denominator b ∈ FB is analytic on D, it is readily seen that the limits
in (1.5) exist if and only if the similar limits for the numerator s exist and
satisfy the convolution equalities

lim
zc→t0

s(j)(z)
j!

= sj :=
j∑

`=0

b`fj−` for j = 0, . . . , N. (2.1)
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Here we have set

bj :=
b(j)(t0)

j!
(2.2)

to be the Taylor coefficients of product b ∈ FB at the given boundary point
t0 ∈ T. For any fixed b ∈ FB we can calculate the sequence s = {s0, . . . , sN}
via the second equality in (2.1), and if this sequence satisfies the first equality
in (2.1) for some s ∈ S, then the problem Pn has a solution: namely, f = s/b.
On the other hand, if f is such that for every b ∈ FB, the interpolation
conditions (2.1) are satisfied by no Schur function, then the problem PN

has no solutions. This simple idea allows us to reduce the problem PN to a
similar problem for Schur function the answer for which is known [5].

With any b ∈ FB we may associate the matrices Ub
n, Hb

n and Pb
n con-

structed via formulas (1.6) and (1.9) from the Taylor coefficients (2.3). On
the other hand, for the sequence s = {s0, . . . , sN} obtained from the given
f and a fixed b ∈ FB via convolution formulas (2.1), we may define the
structured matrices

Ps
n =

[
ps

ij

]n
i,j=1

= Hs
nΨn(t0)Us∗

n (2.3)

as in (1.6)–(1.9), with the entries ps
ij defined in the same way as in (1.10).

We also may define the numbers

γs
n := t0 ·

(
ps

n+1,n − ps
n,n+1

)
. (2.4)

for every n ≤ N/2 and the integer

ns
0 =


0, if Ps

1 = s1t0s0 /∈ R,

max
1≤k≤(N+1)/2

{k : Ps
k = (Ps

k)
∗} , otherwise.

(2.5)

Lemma 2.1. Let b ∈ FB and let us assume that the two sequences f =
{f0, . . . , fN} (|f0| = 1) and s = {s0, . . . , sN} are related as in (2.1), Then:

(1) For every n ≥ 1,

Pb
n = Hb

nΨn(t0)Ub∗
n ≥ 0 and Ub>

n Ψn(t0)Ub∗
n = Ψn(t0), (2.6)

where Ub>
n is the transpose of Ub

n.
(2) For every n ≤ (N + 1)/2,

Ps
n := Hs

nΨn(t0)Us∗
n = Uf

nPb
nUf∗

n + Pf
n. (2.7)

(3) The integers n0 and ns
0 defined in (1.11) and (2.5) are equal.

(4) The numbers γn0 and γs
n0

defined in (1.12) and (2.4) are equal.
(5) If b(z) = zm, then Ps

n0
is positive definite for m large enough.

Proof. The proof of the inequality in (2.6) can be found in [7]. The second
equality in (2.6) is a consequence of the identity b(z)b(1/z̄) ≡ 1 (see[9, The-
orem 2.5] for details). To prove (2.7) we first observe that the convolution
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equalities (2.1) are equivalent to the matrix equality Us
n = Uf

nUb
n and imply

that

Hs
n =

 0 f0 f1 · · · fn

. . .
...

... . . .
...

f0 · · · fn−1 fn · · · f2n−1




bn · · · b2n−1
...

...
b1 · · · bn

b0 · · · bn−1

. . .
...

0 b0


= Uf

nHb
n + Hf

nUb>
n .

Making use of the last two identities and of equality (2.6), we get (2.7):

Ps
n = Hs

nΨn(t0)Us∗
n = (Uf

nHb
n + Hf

nUb>
n )Ψn(t0)Ub∗

n Uf∗
n

= Uf
nPb

nUf∗
n + Hf

nΨn(t0)Uf∗
n = Uf

nPb
nUf∗

n + Pf
n

Since Pb
n is Hermitian (by the first relation in (2.6)), it follows from (2.7)

that Ps
n − Pf

n is Hermitian for all n ≥ 1. Statements (3) and (4) are now
immediate.

Since |f0| = 1, the triangular toeplitz matrix Uf
n0

is invertible, which
allows us write (2.7) (for n = n0) equivalently as

(Uf
n0

)−1Ps
n0

(Uf
n0

)−∗ = Pb
n0

+ (Uf
n0

)−1Pf
n0

(Uf
n0

)−∗. (2.8)

The second term on the right is completely determined by the given f .
Theorem 4.1 below gives asymptotics of all eigenvalues of the matrix Pb

n0
for

the particular choice of b(z) = zm. These asymptotics show in particular,
that the minimum eigenvalue of Pb

n0
tends to infinity as m → ∞. Hence,

for sufficiently large m, the matrix on the left hand side of (2.8) is positive
definite and so is Ps

n0
as desired. �

Proof of Theorem 1.2: As we mentioned at the beginning of this sec-
tion, the problem Pn has infinitely many rational Schur function solutions
if |f0| < 1 and has no solutions if |f0| > 1.

A Carthéodory-Julia type theorem for generalized Schur functions (see [9,
Theorem 4.2]) asserts that whenever a function f ∈ GS admits the boundary
limits

f0 = lim
zc→t0

f(z) and f1 = lim
zc→t0

f ′(z)

and |f0| = 1, then necessarily t0f1f0 ∈ R. Therefore, in case |f0| = 1 and
n0 = 0 (that is , if t0f1f0 6∈ R), the problem Pn has no solutions.

In case |f0| = 1 and n0 > 0, we fix a finite Blaschke product b and
construct the sequence s = {s0, . . . , sN} by the convolution formula (2.1).
No matter what b we take, we will have |s0| = 1 (since s0 = b0f0), ns

0 = n0

and γs
n0

= γn0 . By Theorem 2.3 in [5], if γs
n0

< 0 (in case n0 = N/2) or
if γs

n0
≤ 0 (in case 0 < n0 < N/2), there is no Schur function s subject to
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equalities (2.1). Thus, there is no function f of the form (1.1) with s ∈ S
and b ∈ FB satisfying conditions (1.5). In other words, the problem PN has
no solutions in the two following cases:

(1) n0 = N/2 and γn0 < 0; (2) 0 < n0 < N/2 and γn0 ≤ 0.

On the other hand, upon choosing b(z) = zm with m sufficiently large,
we can guarantee that the structured matrix Ps

n0
associated with the se-

quence s = {s0, . . . , sN} constructed as in (2.1) is positive definite. In case
n0 = (N +1)/2, this is enough to guarantee the existence of infinitely many
rational functions s ∈ S satisfying conditions (2.1) (see [2] or [8]). The exis-
tence of such functions in two remaining cases where n0 = N/2 and γn0 ≥ 0
or where 0 < n0 < N/2 and γn0 > 0 is guaranteed by Theorem 2.3 in [5].
For every such s, the function f(z) = s(z)/zm solves the problem PN . This
proves the sufficiency of the case (2)–(4) in Theorem 1.2 which together with
the sufficiency of the first case completes the proof of the “if” part of the
theorem. Since we have examined all possible cases and shown that in all
other cases the proble has no solutions, the “only if” part follows. �

Remark 2.2. We showed that whenever the problem PN has a solution,
it has a solution of the form f(z) = s(z)/zm (in case |f0| < 1, we can let
m = 0).

3. The Infinite Case

Comparing the formulations of Theorems 1.2 and 1.3 we can see that
only the third case in Theorem 1.3 is essentially infinite. The proof of its
sufficiency requires some preliminary work which will be done below. First
we will prove the rest in Theorem 1.3.

3.1. Beginning of the proof of Theorem 1.3. As in the finite case, a
necessary condition for problem P∞ to have a solution is that |f0| ≤ 1. If
|f0| < 1, then there are infintely many functions f ∈ S subject to conditions
(1.5); see [11, Theorem 2.2] for the proof.

It is obvious that if the truncated problem PN has no solutions for some
N < ∞, the infinite problem P∞ has no solutions either. Thus, the absense
of solutions in some cases follows from Theorem 1.2. In particular, the
problem P∞ has no solutions if |f0| = 1 and n0 = 0. Also, the problem
P∞ has no solutions if 0 < n0 < ∞ and γn0 ≤ 0 (recall that n0 and γn are
defined in (1.11) and (1.12), respectively). On the other hand, if

|f0| = 1, 0 < n0 < ∞ and γn0 > 0, (3.1)

then the problem P∞ has infinitely many solutions of the form f(z) =
s(z)/zm. Indeed, under assumptions (3.1), we may use the function b(z) =
zm to define the infinite sequence s = {sj}j≥0 via convolution equalities
(2.1). We then have

|s0| = |tm0 f0| = 1, ns
0 = n0 < ∞, γs

n0
= γn0 > 0, Ps

n0
> 0, (3.2)
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where the first equality is obvious and the next two equalities and the pos-
itivity of the structured matrix Ps

n0
for a sufficiently large m follow from

Lemma 2.1. By Theorem 1.2 in [11], conditions (3.2) are sufficient for the
existence of infinitely many fucntions s ∈ S such that

lim
zc→t0

s(j)(z)
j!

= sj :=
j∑

`=0

b`fj−` for j = 0, 1, . . .

For each such s, the function f(z) = s(z)/zm solves the problem P∞.
It remains to consider the case where |f0| = 1 and n0 = ∞; the latter

means that the structured matrices Pf
n are Hermitian for all n ≥ 1. Let

us show that in this case, uniform boundedness of the negative inertia of
matrices Pf

n is necessary for the problem PN to have solution. To this end,
we first recall a result from [9] (see Theorem 1.5 there).

Theorem 3.1. Let f be analytic in a neighborhood {z ∈ D : |z − t0| < ε}
of t0 ∈ T and let us assume that the nontangential boundary limits

fj = lim
zc→t0

f (j)(z)
j!

exist for j = 0, . . . 2n− 1

and are such that |f0| = 1 and the structured matrix Pf
n constructed from

these limits as in (1.9), is Hermitian. Then the Schwarz-Pick matrix Pf
n(z)

(see (1.2)) converges as z→̂t0 and moreover lim
zc→t0

Pf
n(z) = Pf

n.

Note that in Theorem 3.1 the function f is not assumed to be in GS. We
now assume that f belongs to GS and satisfies conditions (1.5) for all j ≥ 0.
Then all the assumptions in Theorem 3.1 are met and we conclude that

lim
zc→t0

Pf
n(z) = Pf

n for all n ≥ 1. (3.3)

Let us denote by κ the total pole mutiplicity of f , i.e., the degree of the
Blaschke product b in the coprime Krein-Langer representation (1.1) for f .
By a result of Krein and Langer, the Schwarz-Pick matrix Pf

n(z) given by
formula (1.2) has at most κ negative eigenvalues for every z ∈ ρ(f) and for
all n ≥ 1. Then we conclude from (3.3) that ν(Pf

n) ≤ ν(Pf
n(z)) ≤ κ for all

n ≥ 1.

To complete the proof of Theorem 1.3 it remains to justify the sufficiency
of the case (3), which will be done at the end of this section, after some
needed preliminaries. For the three next subsections we assume that

|f0| = 1, Pf
n = Pf∗

n and ν(Pf
n) ≤ κ for all n ≥ 1. (3.4)

By the third condition in (3.4), we may assume without loss of generality
that Pf

n has exactly κ negative eigenvalues if n is large enough:

ν(Pf
n) = κ for all n ≥ n1. (3.5)

For the technical convenience we assume that t0 6= 1 which we also can do
without loss of generality.
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3.2. Schur complements and Stein identities. If |f0| = 1 and the struc-
tured matricx Pf

n is Hermitian, then (see [8, Section 3]) it satisfies the Stein
identity

Pf
n − TnPf

nT ∗n = EnE∗
n −MnM∗

n, (3.6)
where Tn ∈ Cn×n and En, Mn ∈ Cn×1 are given by

Tn =


t0 0 · · · 0

1 t0
. . .

...
. . . . . . 0

0 1 t0

 , En =


1
0
...
0

 , Mn =


f0

f1
...

fn−1

 . (3.7)

For every positive integer d < n we write conformal block decompositions

Pf
n =

[
Pf

d B∗

B C

]
, Tn =

[
Td 0
R Tn−d

]
, En =

[
Ed

0

]
, Mn =

[
Md

M̃

]
, (3.8)

where Td, Tn−d, Ed, Md are defined accordingly to (3.7) and where

R =


0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

 ∈ C(n−d)×d, M̃ =

 fd
...

fn−1

 ∈ C(n−d)×1.

Substituting block decompositions (3.8) into (3.6) and comparing the cor-
responding blocks we get the following three equalities:

Pf
d − TdPf

dT
∗
d = EdE

∗
d −MdM

∗
d ,

B − Tn−dBT ∗d −RPdT
∗
d = −M̃M∗

d , (3.9)

C − Tn−dCT ∗n−d −RPf
dR

∗ − Tn−dBR∗ −RB∗T ∗n−d = −M̃M̃∗.

Assuming that det (Pf
d) 6= 0, we define the Schur complement of Pf

d in Pf
n as

Sn−d = C −B(Pf
d)
−1B∗.

Proposition 3.2. Let Pf
d be an invertible leading submatrix of Pf

n. Then its
Schur complement Sn−d satisfies the Stein identity

Sn−d − Tn−dSn−dT
∗
n−d = Gn−dG

∗
n−d − Yn−dY

∗
n−d, (3.10)

where Gn−d and Yn−d are defined in terms of the decomposition (3.8) as

Gn−d = (R− (I − Tn−d)B(Pf
d)
−1)(I − Td)−1Ed,

Yn−d = M̃ + (R− (I − Tn−d)B(Pf
d)
−1)(I − Td)−1Md.

(3.11)

For the proof, it suffices to multiply both sides of (3.6) by
[
−B(Pf

d)
−1 I

]
on the left and its adjoint on the right and then to invoke equalities (3.9).
Equality (3.10) was proved in [10] for the interior case t0 ∈ D, but the
proof does not rely on this assumption, so we refer to [10, Theorem 2.5] for
computational details.
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Let us denote by gj and yj the entries in the columns (3.11) so that
Gn−d =

[
g0 · · · gn−d−1

]> and Yn−d =
[
y0 · · · yn−d−1

]>. Explicit
formulas for gj and yj are easily derived from (3.10):

g0 = (ed − (1− t0)B(Pf
d)
−1)(I − Td)−1Ed,

y0 = fd + (ed − (1− t0)B(Pf
d)
−1)(I − Td)−1Md,

(3.12)

where ed =
[
0 · · · 0 1

]
∈ C1×d, and

gj = Uj(Pf
d)
−1(I − Td)−1Ed,

yj = fj+d + Uj(Pf
d)
−1)(I − Td)−1Md for j ≥ 1.

(3.13)

where Uj is defined in terms of numbers (1.10) as follows:

Uj = (t0 − 1) ·
[
pf

j+d+1,1 . . . pf
j+d+1,d

]
+
[
pf

j+d,1 . . . pf
j+d,d

]
.

Formulas (3.13) enable us to define gj and yj for every j ≥ 1. Being com-
bined with (1.10), they also show that the numbers xj are completely de-
termined by t0 and f0, f1, . . . , f2d+j for every fixed j ≥ 0. Observe that
the term R in (3.11) affects only the top entries g0 and y0 making formulas
(3.12) and (3.13) slightly different.

Lemma 3.3. For g0 and y0 defined as in (3.12), |g0| = |y0| 6= 0.

Proof: Since |t0| = 1, by examining the top-left entries on both sides of
(3.10), we get 0 = |g0|2 − |y0|2 so that |g0| = |y0|. It will be shown below
that

g0E
∗ − y0M

∗ =
(
ed + B(Pf

d)
−1(t0I − Td)

)
(I − Td)−1Pf

d(I − T ∗d ). (3.14)

Since the matrix (I − Td)−1Pf
d(I − T ∗d ) is invertible (recall that t0 6= 1) and

since the rightmost entry in the row-vector ed + B(Pf
d)
−1(t0I − Td) is 1, it

follows that the row-vector on the right hand side of (3.14) is not the zero
and thus g0 and y0 cannot both be zero.

It remains to verify (3.14). We have from (3.12)

g0E
∗
d − y0M

∗
d = −fdM

∗
d (3.15)

+ (ed − (1− t0)B(Pf
d)
−1)(I − Td)−1(EdE

∗
d−MdM

∗
d ).

Due to the first equation in (3.9) we have

(I − Td)−1(EdE
∗
d−MdM

∗
d ) = (I − Td)−1Pf

d(1− T ∗d ) + Pf
dT

∗
d , (3.16)

while by equating the top rows on both sides of (3.9)) we get

−fdM
∗
d = B − edPf

dT
∗
d − t0BT ∗d .
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Substituting the two last identities into the right hand side of (3.15) gives

g0E
∗
d − y0M

∗
d = B − edPf

dT
∗
d − t0BT ∗d

+ (ed − (1− t0)B(Pf
d)
−1)

(
(I − Td)−1Pf

d(1− T ∗d ) + Pf
dT

∗
d

)
= B(I − T ∗d ) + ed(Pf

d)
−1(I − Td)−1Pf

d(1− T ∗d )

− (1− t0)B(Pf
d)
−1(I − Td)−1Pf

d(1− T ∗d )

which is clearly equivalent to (3.14). This completes the proof. �

The next theorem is the main result of this subsection.

Theorem 3.4. Given f = {fj}j≥0 let us assume that conditions (3.4) are
met and thet the matrix Pf

d is invertible. Define the sequence x = {xj}j≥0

as a (unique) solution of the infinite linear system
j∑

k=0

xkgj−k = yk j = 0, 1, . . . , (3.17)

where gj and yj are defined in (3.12), (3.13). Then

|x0| = 1, Px
n = Px∗

n and ν(Px
n) ≤ κ− ν(Pf

d) for all n ≥ 1. (3.18)

Proof: Letting j = 0 in (3.17) we get x0g0 = y0; therefore, |x0| = 1, by
Lemma 3.3. For every fixed n > d, let Gn−d denote the lower triangular
toeplitz (n − d) × (n − d) matrix with the leftmost column equal Gn−d, so
that Gn−dEn−d = Gn−d. By Lemma 3.3, g0 6= 0, hence the matrix Gn−d is
invertible. The column Xn−d =

[
x0 x1 · · · xn−d−1

]> satisfies

Xn−d =
[
x0 x1 · · · xn−d−1

]> = G−1
n−dYn−d (3.19)

due to (3.17). Let us introduce the matrix

P̃n−d = G−1
n−dSn−dG−∗

n−d = G−1
n−d(C −B(Pf

d)
−1B∗)G−∗

n−d. (3.20)

By a well-known property of the Schur complement, ν(Pf
n) = ν(Pf

d) +
ν(Sn−d). Since P̃n−d is congruent to Sn−d, it follows that

ν(P̃n−d) = ν(Sn−d) = ν(Pf
n)− ν(Pf

d). (3.21)

Since the matrix G−1
n−d is lower triangular, it also follows from (3.20) that

P̃k is a leading principal submatrix of P̃n for every k < n.
Multiplying both sides of (3.10) by G−1

n−d on the left, by its adjoint on
the right, commuting G−1

n−d and Tn−d and making use of (3.19), (3.20) we
obtain the Stein identity

P̃n−d − Tn−dP̃n−dT
∗
n−d = En−dE

∗
n−d −Xn−dX

∗
n−d.

Since the latter identity holds for every n > d, we conclude that

P̃n − TnP̃nT ∗n = EnE∗
n −XnX∗

n for all n ≥ 1. (3.22)
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By Theorem 10.5 in [6], a necessary and sufficient condition for the Stein
equation

A− TnAT ∗n = EnE∗
n −XnX∗

n (3.23)
to have a solution A ∈ Cn×n is that

Ux>
n Ψn(t0)Ux∗

n = Ψn(t0) (3.24)

where Ux
n and Ψn(t0) are defined via formulas (1.6) and (1.7). Thus, equality

(3.24) holds for all n ≥ 1. By Theorem 2.5 in [9], the double-sized equality

Ux>
2n Ψ2n(t0)Ux∗

2n = Ψ2n(t0)

guarantees that the structured matrix Px
n is Hermitian (which proves the

second equality in (3.18)) and therefore, it satisfies the same Stein equation
(3.23) as P̃n. It is known that the Stein equation (3.23) uniquely determines
the entries aij (for 2 ≤ i + j ≤ n) of its solution A = [aij ]

n
i,j=1 (see [6, [p.

77]). Therefore, the (i, j)-entry in P̃n is equal to the corresponding entry
in Px

n for all (i, j) subject to 2 ≤ i + j ≤ n. Since P̃n and Px
n are leading

submatrices of respectively P̃m and Px
m for all m > n, we may increase n to

conclude that Px
n = P̃n for all n ≥ 1. Now the last relation in (3.18) follows

from (3.21). �

By our assumption (3.5), ν(Pf
d) = κ if d is large enough. For such d we

would conclude from the third relation in (3.18) that ν(Px
n) = 0, that is,

that the matrix Px
n is positive semidefinite for all n ≥ 1. The question is

whether exists an invertible matrix Pf
d which captures the maximally possible

negative inertia. The next lemma shows that such d always exists.

Lemma 3.5. Let us assume that conditions (3.4) and (3.5) are in force.
Then there exists an integer d ≥ 1 such that Pf

d is invertible and ν(Pf
d) = κ.

Proof: Let us define ñ = sup{n ∈ N : det Pf
n 6= 0}. If ñ = ∞, the

statement of the lemma is obvious due to (3.5). If ñ < ∞, we can take
d = ñ, since for this choice of d, as we will show below, ν(Pf

d) = κ. Indeed,
since Pf

d is invertible, we can define the sequence x = {xj}j≥0 as in (3.17).
By the proof of Theorem 3.4, the structured matrix Px

m is congruent to the
Schur complement Sm of Pf

d in Pf
d+m for every m ≥ 1. The definition of

d = ñ tells us that det Pf
d+m = 0 for every m ≥ 1 so that Px

m is singular
for every m ≥ 1. Due to the structure (1.9) of Px

m = Hx
mΨm(t0)Ux∗

m and
since the matrices Ψm(t0) and Ux∗

m are invertible (recall that |x0| = 1, by
Theorem 3.4), it follows that the Hankel matrix Hx

m = [xi+j−1]
m
i,j=1 is

singular for every m ≥ 1. The latter implies that xj = 0 for every j ≥ 1.
Therefore Px

m = 0 and hence ν(Pf
d+m) = ν(Pf

d) + ν(Px
m) = ν(Pf

d) for all
m ≥ 1. Combining this with (3.5) leads us to ν(Pf

d) = κ which completes
the proof of the lemma. �

Remark 3.6. Let us assume that Pf
d is invertible and ν(Pf

d) = κ. Then
either rank Pf

m = d for all m ≥ d or Pf
m is invertible for all m ≥ d.
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Proof: The Schur complement of Pf
d in Pf

n is congruent to Px
n−d. Hence

rank Pf
n = rank Pf

d + rank Px
n−d, (3.25)

and the matrix Px
n−d is positive semidefinite, by the rightmost inequality

in (3.18). It is known for positive semidefinite structured matrices (1.9)
that either they are invertible for all n or their rank stabilizes as n goes
to infinity. If the rank of Px

n−d stabilizes, then the rank of Pf
n stabilizes as

well and thus, there exists the maximal invertible matrix Px
d . By the proof

of Lemma 3.5, Px
n = 0 which along with (3.25) implies rank Pf

n = rank Pf
d .

Otherwise, the matrix Px
n−d is invertible for every n > d and (3.25) implies

that Pf
n is invertible as well. �

3.3. The matrix-function Θ. Still assuming that t0 6= 1, |f0| = 1 and the
matrix Pf

d is Hermitian and invertible, let us introduce the 2 × 2 matrix-
valued function

Θ(z) = I + (z − 1)
[

E∗
d

M∗
d

]
(I − zT ∗d )−1(Pf

d)
−1(I − Td)−1

[
Ed −Md

]
. (3.26)

and let

Θ̃(z) =

[
θ̃11(z) θ̃12(z)
θ̃21(z) θ̃22(z)

]
:= (z − t0)d ·Θ(z). (3.27)

Since (I − zT ∗d )−1 the upper-triangular toeplitz matrix with the top row
equal to

[
(1− zt0)−1 z(1− zt0)−2 . . . zd−1(1− zt0)−d

]
; therefore Θ is a

rational function with the only pole of multiplicity d at t0 whereas Θ̃ is a
matrix polynomial. It is not hard to see from (3.26), (3.27) and (3.7) that

Θ̃(t0) = (−1)dt2d−1
0 (t0 − 1)

[
1
f̄0

]
ed(Pf

d)
−1(I − Td)−1

[
Ed −Md

]
, (3.28)

where ed is the row-vector introduced just before Lemma 3.3. The next
lemma establishes several equalities needed for the subsequent analysis.

Lemma 3.7. Let Θ and Θ̃ be defined as in (3.26), (3.27) and let Gn−d,
Yn−d be the columns given in (3.11) with the top entries g0, y0 displayed in
(3.12). Then

θ̃21(t0)ḡ0 + θ̃22(t0)ȳ0 =
(−1)dt2d−1

0 (t0 − 1)f̄0

1− t̄0
. (3.29)

Furthermore, if for some n > d, the numbers f2d, . . . , f2n−1 are such that
the matrix Pf

n is Hermitian, then

(zI − Tn)−1
[
En −Mn

]
Θ(z) =

[
0

(zI − Tn−d)−1
[
Gn−d −Yn−d

]]+ Φ(z),

(3.30)
where Φ(z) is defined in terms of decompositions (3.8) as follows:

Φ(z) =
[
Pf

d
B

]
(I − zT ∗d )−1(Pf

d)
−1(I − Td)−1

[
Ed −Md

]
. (3.31)



14 VLADIMIR BOLOTNIKOV, TENGYAO WANG, AND JOSHUA M. WEISS

Finally, det Θ̃(z) = (z− t0)2d for all z ∈ C and |θ̃21(t0)| = |θ̃22(t0)| 6= 0 .

Proof: Tt follows from (3.28) that

θ̃21(t0)ḡ0 + θ̃22(t0)ȳ0 = (−1)dt2d−1
0 (t0 − 1)f̄0ed(Pf

d)
−1(I − Td)−1

× (Edḡ0 −Mdȳ0). (3.32)

Taking adjoints on both sides of (3.9) we see that

ed(Pf
d)
−1(I − Td)−1(Edḡ0 −Mdȳ0)

= ed(I − T ∗d )−1
{
e∗d + ((t̄0 − T ∗d )Pf

d)
−1B∗

}
=

1
1− t̄0

, (3.33)

where the last equality holds true since ed(I − T ∗d )−1(t̄0 − T ∗d ) = 0. Substi-
tuting (3.33) into (3.32) gives (3.29).

Since |f0| = 1 and since we assume that P f
n is Hermitian, it follows that

the Stein identity (3.6) holds (we again refer to [8] for the proof) which
is equivalent to three identities in (3.9). To verify (3.30), it suffices to
plug in the formula (3.26) for Θ, decompositions (3.8) and the conformal
decomposition

(zI − Tn)−1 =
[

(zI − Td)−1 0
(zI − Tn−d)−1R(zI − Td)−1 (zI − Tn−d)−1

]
into the left side of (3.30) and then to invoke the two top identities in (3.9).
The calculations are straightforward and will be omitted.

To prove the formula for det Θ̃(z) we use a well known determinantal
equality det(I + AB) = det(I + BA) along with the explicit formula (3.26)
and the Stein identity from (3.9):

det Θ(z) = det
(

I + (z − 1)(I − zT ∗d )−1(Pf
d)
−1(I − Td)−1

[
Ed −Md

][E∗
d

M∗
d

])
= det

(
I + (z − 1)(I − zT ∗d )−1(Pf

d)
−1(I − Td)−1

(
Pf

d − TdPf
dT

∗
d

))
= det

(
(I − zT ∗d )−1(Pf

d)
−1(I − Td)−1(zI − Td)Pf

d(I − T ∗d )
)

=
det(zI − Td) · det(I − T ∗d )
det(I − zT ∗d ) · det(I − Td)

= 1 (z 6= t0)

where the last equality follows from the special structure (3.7) of Td. The
desired formula det Θ̃(z) = (z − t0)2d follows from (3.27).

Finally, we have from (3.28) and (3.16)

|θ̃21(t0)|2 − |θ̃21(t0)|2

= |t0 − 1|2 · ed(Pf
d)
−1(I − Td)−1 (EdE

∗
d −MdM

∗
d ) (I − T ∗d )−1(Pf

d)
−1e∗d

= |t0 − 1|2ed

(
(Pf

d)
−1(I − Td)−1 + T ∗d (I − T ∗d )−1(Pf

d)
−1
)
e∗d, (3.34)
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where the first equality follows from (3.28) and the second equality is a
consequence of (3.16). Due to the special form of Td and ed, we have

(I − Td)−1e∗d =
1

1− t0
e∗d. edT

∗
d (I − T ∗d )−1 =

t̄0
1− t̄0

ed =
1

t0 − 1
ed,

which being substituted in (3.34) gives |θ̃21(t0)|2 − |θ̃21(t0)|2 = 0. Since
by (3.29), θ̃21(t0) and θ̃22(t0) cannot be both equal zero, it follows that
|θ̃21(t0)| = |θ̃22(t0)| 6= 0 which completes the proof. �

3.4. The Schur reduction. The idea going back to I. Schur [15] is to
reduce a given interpolation problem to a similar one but with fewer inter-
polation conditions.

Theorem 3.8. Let us assume that t0 6= 1, |f0| = 1 and that the matrix Pf
d =

Pf∗
d is invertible. Let Θ̃ be defined as in (3.27), (3.26). Then a function f

belongs to GS, has ν(Pf
d) poles inside D and admits the boundary asymptotic

f(z) = f0 + f1(z − t0) + . . . + f2d−1(z − t0)2d−1 + O(|z − t0|2d) (3.35)

as z→̂t0 if and only if it is of the form

f =
θ̃11h + θ̃12

θ̃21h + θ̃22

(3.36)

for some h ∈ S such that the boundary limit h0 = lim
zc→t0

h(z) either does not

exist or satisfies
θ̃21(t0)h0 + θ̃22(t0) 6= 0. (3.37)

The proof is given in [2] (see also [1], [3]) for rational functions (in which
case h0 = h(t0) always exists and the nontangential approach to the bound-
ary can be replaced by evaluation at t9), but all the arguments go through
in the general meromorphic setting. We remark, however, that in the gen-
eral setting, condition (3.35) is not equivalent to the condition with the
additional term of the form o(|z − t0|2d−1) as in the problem P2d−1.

We now use Theorem 3.8 to carry out the Schur reduction.

Theorem 3.9. Given f = {fj}j≥0, let us assume that conditions (3.4),
(3.5) are met and thet the matrix Pf

d is invertible. Let x = {xj}j≥0 be the
sequence defined in (3.17). A function f is a solution to the problem P∞
and has κ poles inside D if and only if it is of the form (3.36) for some
h ∈ S such that

lim
zc→t0

h(j)(z)
j!

= xj for all j ≥ 0. (3.38)

Proof: Let us assume f is a solution to the problem P∞ and has κ
poles inside D. In particular, f satisfies condition (3.35) and therefore, it
can be represented in the form (3.36) for some Schur function h ∈ S. Since
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θ̃22(t0) 6= 0 (by Lemma 3.7), the Schur function s ≡ 0 meets condition (3.37)

and therefore. the rational function a =
θ̃11s + θ̃12

θ̃21s + θ̃22

=
θ̃12

θ̃22

satisfies condition

(3.35), by Theorem 3.8. We have

f =
θ̃11h + θ̃12

θ̃21h + θ̃22

= a +
det Θ̃ · h

θ̃22(θ̃21h + θ̃22)
.

Since both f and a satisfy the same asymptotic equality (3.35) and since f
solves in addition the problem P∞, it follows that

f(z)− a(z) = f2d −
a(2d)(t0)

(2d)!
+ O(|z − t0|2d).

Since det Θ̃(z) = (z − t0)2d (by Lemma 3.7), we may conclude from the two
latter equalities that the limit h0 = lim

zc→t0
h(z) exists and satisfies the equality

f2d −
a(2d)(t0)

(2d)!
=

h0

θ̃22(t0)(θ̃21h0 + θ̃22(t0))
. (3.39)

By Theorem 3.8, h0 satisfies inequality (3.37), although this inequality can
be derived directly from (3.39). Observe the equality

f(z)−
n−1∑
j=0

fj(z− t0)j = (z− t0)n · en(zI −Tn)−1
[
En −Mn

] [f(z)
1

]
(3.40)

where en =
[
0 . . . 0 1

]> ∈ C1×n. Also observe that equality (3.36) can
be written as [

f
1

]
= Θ̃

[
h
1

]
· q, where q = θ̃21h + θ̃22 (3.41)

Substituting (3.41) into (3.40) and making use of (3.31) gives

f(z)−
n−1∑
j=0

fj(z − t0)j

= (z − t0)n · en(zI − Tn)−1
[
En −Mn

]
Θ̃(z)

[
h(z)

1

]
q(z)

= (z − t0)n+d · en

[
0

(zI − Tn−d)−1
[
Gn−d −Yn−d

]] [h(z)
1

]
q(z)

+ (z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z)

= (z − t0)n+d · en−d(zI − Tn−d)−1 (Gn−dh(z)− Yn−d)q(z)

+ (z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z). (3.42)
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Since f solves the problem P∞, we have

f(z)−
n−1∑
j=0

fj(z − t0)j = O(|z − t0|n) (3.43)

for all n ≥ 1 as z→̂t0. Since h is uniformly bounded on D, it follows from
(3.37) and formula (3.31) for Φ that

(z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z) = O(|z − t0|n) for all n ≥ 1.

Now we conclude from (3.42) that

(z − t0)d · en−d(zI − Tn−d)−1 (Gn−dh(z)− Yn−d) = O(1) (3.44)

for all n > d. Of course, the latter relation is trivial and contains no infor-
mation for n = d+1, . . . , 2d. For n > 2d, let us multiply both sides in (3.44)
by (z − t0)n−2d and take into account the structure of Tn−d to get[

1 z − t0 . . . (z − t0)n−2d−1
]
(Gn−dh(z)− Yn−d) = O(|z − t0|n−2d)

or equivalently (in terms of the entries gj and yj defined in (3.12), (3.13))
as

h(z) ·
n−2d−1∑

j=0

gj(z − t0)j −
n−2d−1∑

j=0

yj(z − t0)j = O(|z − t0|n−2d).

Due to convolution relations (3.17) and since g0 6= 0, the latter equality is
equaivalent to

h(z)−
n−2d−1∑

j=0

xj(z − t0)j = O(|z − t0|n−2d)

which in turn, implies equalities (3.38) for j = 0, . . . , n − 2d − 1. Since n
can be chosen arbitrarily large, we get equalities (3.38) for all j ≥ 0.

Conversely, let us assume that h is a Schur function satisfying conditions
(3.38). Since x0 = y0/g0 by the first equation in (3.17) and since x0 is
unimodular (by Lemma 3.3), it follows from (3.29) that

θ̃21(t0)x0 + θ̃22(t0) =
1
y0

(
θ̃21(t0)g0 + θ̃22(t0)y0

)
=

(−1)dt2d−1
0 (t0 − 1)f0

y0(1− t0)

and thus, condition (3.37) is satisfied. By Theorem 3.8, the function f
constructed from h by formula (3.36) has κ poles inside D and satisfies
(3.35), that is the requested boundary derivatives fn at t0 for n = 0, . . . , 2d.
For n > 2d we use calculation (3.42) to conlude that equalities (3.38) for
j = 0, . . . , n−2d−1 for h imply the asymptotic equality (3.43) for f . Letting
n go to infinity we then conclude that f is a solution to the problem P∞. �
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3.5. Completion of the proof of Theorem 1.3. We now complete the
proof of Theorem 1.3 by demonstrating the sufficiency of conditions (3.4),
(3.5). By Lemma 3.5, we can find d ≥ 1 such that Pf

d is invertible and
ν(Pf

d) = κ. Let x be the sequence defined in (3.17). By Theorem 3.9, the
problem P∞ has a solution f ∈ GS with κ poles inside D if ana only if there
exists a Schur function h ∈ S subject to interpolation conditions (3.38).
Since the structured matrices Px

n are positive semidefinite for all n ≥ 0 (by
Theorem 3.4 and since ν(Pf

d) = κ), such a function h does exist (see e.g.,
[12]). Substituting this h into (3.36) results in a solution f to the problem
P∞. �

3.6. Concluding remarks. Since in cases (1) and (2), the problem P∞
is indeterminate, the last statement in Theorem 1.3 need not be proved.
However, we will show that the problem P∞ indeed may be detrminate.

Let us consider the subcase of (3) where there exists the maximal invertible
structured matrix Px

d . Then for the associated sequence x = {xj} we have
xj = 0 for all j ≥ 1 and the only Schur function h satisfying conditions (3.38)
is a unimodular constant function h ≡ x0. Substituting this h into (3.36)
we get a solution f to the problem P∞. This f is rational and has κ poles
inside D (by Theorem 3.8). It is not hard to show that deg f = d and that
f is unimodular on T. Therefore, f is the ratio of two Blaschke products
of respective degrees d − κ and κ. So far, we have shown that P∞ has a
unique solution f ∈ GS with κ poles inside D. Let us assume that f̃ ∈ GS is
another solution to the problem P∞. Take it in the form (1.1), i.e.. f̃ = s/b
for some s ∈ S and b ∈ FB. Then the associated structured matrices Pf

n, Ps
n

and Pb
n are related as in (2.7) for all n ≥ 1. Since rank Pb

n = max{n, deg b}
and since rank Pf

n = d for all n ≥ d, it follows from (2.7) that the rank of
Ps

n stabilizes for large n. Therefore, s is a finite Blaschke product so that
the function f̃ is rational and therefore, it is analytic at t0. Thus, f and f̃
are two rational functions with the same Taylor coefficients at t0. Therefore
f ≡ f̃ which means that the problem P∞ has only one solution in GS.

In the complementary subcase of (3) where ν(Pf
d) = κ and det Pf

d 6= 0 for
all n ≥ d (and therefore, all structured matrices Px

n are positive definite),
the problem (3.38) may be indeterminate or determinate depending on the
convergence or divergence of certain positive series (see [12]). In the first
case the problem P∞ is indereminate, since every h ∈ S subject to (3.38)
leads via formula (3.36) to a solution f to the problem P∞ and since the
transformation (3.36) is one-to-one. In the second case, it follows that the
problem P∞ has a unique solution f ∈ GS with κ poles inside D; however
we do not know if it may or may not have solutions in GS with a larger pole
multiplicity. A separate topic in interpolation theory for generalized Schur
functions is to characterize all possible pole multiplicities for solutions of the
problem and to find the minimally possible one. This issue will be addressed
on a separate occasion.
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4. Appendix: Asymptotics for eigenvalues of the matrix Pb
n

Theorem 4.1. Let b(z) = zm and let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues
of the matrix Pb

n. Then

λr =
(n− r)!2(2r − 1)!(2r − 2)!

(r − 1)!2(n + r − 1)!2
m2r−1 + O(m2r−2).

In particular, all eigenvalues tend to infinity as m →∞.

Proof: Recall that Pb
n is constructed via formulas (1.6)–(1.9) from the

parameters

bj =
b(j)(t0)

j!
=
(

m

j

)
tm−j
0 .

Thus, Pb
n =

[
pb

ij

]n
i,j=1

= Hb
nΨn(t0)Ub∗

n and we can compute its entries using

the formula (1.10) (with bj instead of fj) and the explicit formula (1.8) for
the numbers Ψ`r:

pb
ij =

j∑
r=1

(
r∑

`=1

bi+`−1Ψ`r

)
bj−r

=
j∑

r=1

r∑
`=1

(−1)r−1

(
m

i + `− 1

)(
r − 1
`− 1

)(
m

j − r

)
tj−i
0

= tj−i
0

j∑
r=1

(−1)r−1

(
m

i + r − 1

)(
m− r

j − r

)

= tj−i
0 mi+j−1

j∑
r=1

(−1)r−1

(i + r − 1)!(j − r)!
+ O(mi+j−2)

=
tj−i
0 mi+j−1

(i− 1)!(j − 1)!(i + j − 1)
+ O(mi+j−2). (4.1)

For 1 ≤ i1 < i2 < · · · < ir ≤ n, denote Mi1i2···ir the principal minor of the
matrix Pb

n with rows and columns i1, . . . , ir. Then∑
1≤i1<i2<···<ir≤n

λi1λi2 · · ·λir =
∑

1≤i1<i2<···<ir≤n

Mi1i2···ir , (4.2)

If {i1, . . . , ir} 6= {n− r + 1, . . . , n}, then

Mi1i2···ir = O(m(2i1−1)+···+(2ir−1)) = O(mr(2n−r)−1). (4.3)



20 VLADIMIR BOLOTNIKOV, TENGYAO WANG, AND JOSHUA M. WEISS

If {i1, . . . , ir} = {n− r + 1, . . . , n}, we have

Mi1i2···ir = det

[
mi+j−1tj−i

0

(i + j − 1)(i− 1)!(j − 1)!
+ O(mi+j−2)

]n

i,j=n−r+1

= det

[
mi+j−1tj−i

0

(i + j − 1)(i− 1)!(j − 1)!

]n

i,j=n−r+1

+ O(mr(2n−r)−1)

= det
[
mDHn

n−r+1D
∗]+ O(mr(2n−r)−1), (4.4)

where

D = diag
(

t−i+1
0 mi−1

(i− 1)!

)n

i=n−r+1

and Hn
` =

[
1

i + j − 1

]n

i,j=`

.

The matrix Hn
` is a Hilbert-type matrix and it is known that

detHn
` =

(n− `)!!2(n + `− 2)!!2

(2n− 1)!!(2`− 3)!!
, (4.5)

where we use the notation n!! := n!(n − 1)! · · · 1!. Hence, if {i1, . . . , ir} =
{n− r + 1, . . . , n}, we have from (4.4)

Mi1i2···ir = cn,rm
r(2n−r) + O(mr(2n−r)−1), (4.6)

where

cn,r =
(n− r − 1)!!2(r − 1)!!2(2n− r − 1)!!2

(n− 1)!!2(2n− 1)!!(2n− 2r − 1)!!
.

We now claim that for r = 1, . . . , n,

λn−r+1 =
cn,r

cn,r−1
m2n−2r+1 + O(m2n−2r). (4.7)

We prove (4.7) by double induction, first on n, then on r. For all n ≥ 1, if
r = 1, the claim is about the asymptotics of the largest eigenvalue of Pb

n.
From (4.1), the bottom-right entry of Pb

n is pb
n,n = m2n−1

(n−1)!2(2n−1)
+O(m2n−2),

which dominates all other entries. Therefore, the largest eigenvalue of Pb
n

λn =
1

(n− 1)!2(2n− 1)
m2n−1 + O(m2n−2) =

cn,1

cn,0
m2n−1 + O(m2n−2).

Suppose n ≥ 2 and we have proven the claim for all eigenvalues of Pb
n−1. De-

note the eigenvalues of Pb
n−1 in increasing order by λ′0, λ

′
1, . . . , λ

′
n−1, then we

have the asymptotics λ′n−r+1 = cn−1,r

cn−1,r−1
m2n−2r+1+O(m2n−2r). Assume also

that the r−1 largest eigenvalues (r ≥ 1) of Pb
n, namely λn, λn−1, . . . , λn−r+2,

all have asymptotics as described in (4.5). Note that Pb
n−1 is the leading sub-

matrix of Pb
n. So by Interlacing Theorem,

λ1 ≤ λ′1 ≤ λ2 ≤ · · · ≤ λ′n−1 ≤ λn.
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Then for {i1, . . . , ir} 6= {n− r + 1, . . . , n} we have,

λi1λi2 · · ·λir ≤ λn · · ·λn−r+2λn−r ≤ λn · · ·λn−r+2λ
′
n−r = O(mr(2n−r)−2).

(4.8)
Substituting the estimates (4.8), (4.3) and (4.6) into the identity (4.2), we
have

λnλn−1 · · ·λn−r+1 + O(mr(2n−r)−2) = crm
r(2n−r) + O(mr(2n−r)−1).

Divide the above identity through by the asymptotics for λn, . . . , λn−r+2 we
obtain

λn−r+1 =
cn,r

cn,r−1
m2n−2r+1 + O(m2n−2r)

=
(r − 1)!2(2n− 2r)!(2n− 2r + 1)!

(n− r)!2(2n− r)!2
m2n−2r+1 + O(m2n−2r).

which can be rewritten as

λr =
(n− r)!2(2r − 1)!(2r − 2)!

(r − 1)!2(n + r − 1)!2
m2r−1 + O(m2r−2).

This completes the proof. �
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Carathéodory-Pick matrices, Linear Algebra Appl., 385 (2004), 215–286.

[11] V. Bolotnikov and N. Zobin, Boundary asymptotic expansions of analytic self-maps
of the unit disk, to appear in Rev. Mat. Iberoam.

[12] I. V. Kovalishina, A multiple boundary interpolation problem for contractive matrix–
valued functions in the unit circle, Teoriya Funktsii, Funktsianal’nyi Analiz i Ikh
Prilozheniya, 51 (1989), 38–55. English transl. in: Journal of Soviet Mathematics,
52 (1990), no. 6, 3467–3481.



22 VLADIMIR BOLOTNIKOV, TENGYAO WANG, AND JOSHUA M. WEISS
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