
Multiple Identifications in Multi-Armed Bandits
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Abstract

We study the problem of identifying the top m arms in a multi-armed bandit game. Our
proposed solution relies on a new algorithm based on successive rejects of the seemingly bad
arms, and successive accepts of the good ones. This algorithmic contribution allows to tackle
other multiple identifications settings that were previously out of reach. In particular we show
that this idea of successive accepts and rejects applies to the multi-bandit best arm identification
problem.

1 Introduction
We are interested in the following situation: An agent faces K unknown distributions, and he is
allowed to do n sequential evaluations of the form (i,X) where i ∈ {1, . . . , K} is chosen by the
agent and X is a random variable drawn from the ith distribution and revealed to the agent. The
goal of the agent after the n evaluations is to identify a subset of the distributions (or arms in the
multi-armed bandit terminology) corresponding to some prespecified criterion. This setting was
introduced in Bubeck et al. [2009], where the goal was to identify the distribution with maximal
mean. Note that in this formulation of the problem the evaluation budget n is fixed. Another
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possible formulation is the one of the PAC model studied in Even-Dar et al. [2002], Mannor and
Tsitsiklis [2004] where there is an accuracy of ε and a probability of correctness δ that are pre-
specified, and one wants to minimize the number of evaluations to attain this prespecified accuracy
and probability of correctness. This latter formulation has a long history which goes back to the
seminal work Bechhofer [1954]. In this paper we focus on the fixed budget setting of Bubeck
et al. [2009]. For this fixed budget problem, Audibert et al. [2010] proposed a new analysis and
an optimal algorithm (up to a logarithmic factor). In particular this work introduced a notion of
best arm identification complexity, and it was shown that this quantity, denoted H , characterizes
the hardness of identifying the best distribution in a specific set of K distributions. Intuitively, it
was shown that the number of evaluations n has to be Ω(H/ logK) to be able to find the best arm,
and the algorithm SR (Successive Rejects) finds it with O(H log2K) evaluations. Furthermore in
the latter paper the authors also suggested the open problem of generalizing the analysis and al-
gorithms to the identification of the m distributions with the top m means. Our main contribution
is to solve this open problem. We suggest a non-trivial extension of the complexity H , denoted
H〈m〉, to the problem of identifying the top m distributions, and we introduce a new algorithm,
called SAR (Successive Accepts and Rejects), that requires only Õ

(
H〈m〉

)
1 evaluations to find the

topm arms. We also propose a numerical comparison between SAR, SR and uniform sampling for
the problem of finding the m top arms. Interestingly the experiments show that SR performs badly
for m > 1, which shows that the tradeoffs involved in this generalized problem are fundamentally
different from the ones for the single best arm identification.

As a by-product of our new analysis we are also able to solve an open problem of Gabillon
et al. [2011]. In this paper the authors studied the setting where the agent facesM distinct best arm
identification problems. A multi-bandit identification complexity was introduced, that we denote
H [M ]. On the contrary to the setting of single best arm identification, here the algorithm proposed
in Gabillon et al. [2011] that needs of order of H [M ] evaluations to find the best arm in each ban-
dit requires to know the complexity H [M ] to tune its parameters. Using our SAR machinery, we
construct a parameter-free algorithm that identify the best arm in each bandit with Õ

(
H [M ]

)
2 eval-

uations.

Both them-best arms identification and the multi-bandit best arm identification have numerous
potential applications. We refer the interested reader to the previously cited papers for several
examples.

2 Problem setup
We adopt the terminology of multi-armed bandits. The agent faces K arms and he has a budget of
n evaluations (or pulls). To each arm i ∈ {1, . . . , K} there is an associated probability distribution
νi, supported3 on [0, 1]. These distributions are unknown to the agent. The sequential evaluations
protocol goes as follows: at each round t = 1, . . . , n, the agent chooses an arm It, and observes

1In the m-best arms identification problem we write un = Õ(vn) when un = O(vn) up to logarithmic factor in K
2In the multi-bandit best arm identification problem we write un = Õ(vn) when un = O(vn) up to logarithmic

factor in MK
3One can directly generalize the discussion to σ-subgaussian distributions.
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a reward drawn from νIt independently from the past given It. In the m-best arms identification
problem, at the end of the n evaluations, the agent selects m arms denoted J1, . . . , Jm. The ob-
jective of the agent is that the set {J1, . . . , Jm} corresponds to the set of arms with the m highest
mean rewards.

Denote by µ1, . . . , µK the mean of the arms. In the following we assume that µ1 > . . . > µK .
The ordering assumption comes without loss of generality, and the assumption that the means are
all distinct is made for sake of notation (the complexity measures are slightly different if there is
an ambiguity for the top m means). We evaluate the performance of the agent’s strategy by the
probability of misidentification, that is

en = P ({J1, . . . , Jm} 6= {1, . . . ,m}) .

Finer measures of performance can be proposed, such as the simple regret rn =
∑m

i=1(µi−EµJi).
However, as it was argued in Audibert et al. [2010], for a first order analysis it is enough to focus
on the quantity en.

In the (single) best arm identification, Audibert et al. [2010] introduced the following complex-
ity measures. Let ∆i = µ1 − µi for i 6= 1, ∆1 = µ1 − µ2,

H1 =
K∑
i=1

1

∆2
i

and H2 = max
i∈{1,...,K}

i∆−2i .

It is easy to see that these two complexity measures are equivalent up to a logarithmic factor since
we have (see Audibert et al. [2010])

H2 ≤ H1 ≤ log(2K)H2. (1)

[Theorem 4, Audibert et al. [2010]] shows that the complexity H1 represents the hardness of the
best arm identification problem. However, as far as upper bounds are concerned, the quantity H2

proved to be a useful surrogate for H1. For the m-best arms identification problem we define the
following gaps and the associated complexity measures:

∆
〈m〉
i =

{
µi − µm+1 if i ≤ m
µm − µi if i > m

,

H
〈m〉
1 =

K∑
i=1

1(
∆
〈m〉
i

)2 ,
H
〈m〉
2 = max

i∈{1,...,K}
i
(

∆
〈m〉
(i)

)−2
,

where the notation (i) ∈ {1, . . . , K} is defined such that ∆
〈m〉
(1) ≤ . . . ≤ ∆

〈m〉
(K). We conjecture that

a similar lower bound to [Theorem 4, Audibert et al. [2010]] with H1 replaced by H〈m〉1 holds true
for the m-best arms identification problem. In this paper we shall prove an upper bound on en
that gets small when n = Õ

(
H
〈m〉
2

)
(recall that by (1), Õ

(
H
〈m〉
2

)
= Õ

(
H
〈m〉
1

)
). This result is
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derived in Section 3, where we introduce our key algorithmic contribution, the SAR (Successive
Accepts and Rejects) algorithm. We also present experiments for this setting in Section 5.

In Section 4 we consider the framework of multi-bandit introduced in Gabillon et al. [2011],
where the agent faces M distinct best arm identification problems. For sake of notation we assume
that each problem m ∈ {1, . . . ,M} has the same number of arms K. We also restrict our atten-
tion to the single best arm identification within each problem, but we could deal with m-best arms
identification within each problem. We denote by ν1(m), . . . , νK(m) the unknown distributions of
the arms in problem m. We define similarly all the relevant quantities for each problem, that is
µ1(m) > . . . > µK(m),∆1(m), . . . ,∆K(m), H1(m) and H2(m). Finally we denote by (i,m) the
arm i in problem m. In the multi-bandit best arm identification, the forecaster performs n sequen-
tial evaluations of the form (It,mt) ∈ {1, . . . , K} × {1, . . . ,M}. At the end of the n evaluations,
the agent selects one arm for each problem, denoted (J1, 1), . . . , (JM ,M). The objective of the
agent is to find the arm with the highest mean reward in each problem, that is in this setting the
probability of misidentification can be written as

en = P(∃m ∈ {1, . . . ,M} : Jm 6= 1).

Following Gabillon et al. [2011] we introduce the following complexity measure

H
[M ]
1 =

M∑
m=1

H1(m).

Again we define a sort of weaker complexity measure by ordering the gaps. Let

∆
[M ]
1 ≤ ∆

[M ]
2 ≤ · · · ≤ ∆

[M ]
MK

be a rearrangement of {∆i(m) : 1 ≤ i ≤ K, 1 ≤ m ≤M} in ascending order, and let

H
[M ]
2 = max

k∈{1,...,MK}
k
(

∆
[M ]
k

)−2
.

We conjecture that a similar lower bound to [Theorem 4, Audibert et al. [2010]] with H1 re-
placed by H

[M ]
1 holds true for the multi-bandit best arm identification problem. In this paper

we shall prove an upper bound on en that gets small when n = Õ
(
H

[M ]
2

)
(recall that by (1),

Õ
(
H

[M ]
2

)
= Õ

(
H

[M ]
1

)
). This result, derived in Section 4, builds upon the SAR strategy intro-

duced in Section 3. The improvement with respect to Gabillon et al. [2011] is that our strategy
is parameter-free, while the theoretical Gap-E introduced in Gabillon et al. [2011] requires the
knowledge of H [M ]

1 to tune its parameter. Moreover the analysis of SAR is much simpler than the
one of Gap-E.

For each arm i and all time rounds t ≥ 1, we denote by Ti(t) =
∑t

s=1 1It=i the number of
times arm i was pulled from rounds 1 to t, and by Xi,1, Xi,2, . . . , Xi,Ti,t the sequence of associated
rewards. Introduce µ̂i,s = 1

s

∑s
t=1Xi,t the empirical mean of arm i after s evaluations. Denote by

Xi,s(m) and µ̂i,s(m) the corresponding quantities in the multi-bandit problem.
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3 m-best arms identification
In this section we describe and analyze a new algorithm, called SAR (Sucessive Accepts and
Rejects), for the m-best arms identification problem, see Figure 1 for its precise description. The
idea behind SAR is similar to the one for SR (Successive Rejects) that was designed for the (single)
best arm identification problem, with the additional feature that SAR sometimes accepts an arm
because it is confident enough that this arm is among the m top arms. Informally SAR proceeds as
follows. First the algorithm divides the time (i.e., the n rounds) inK−1 phases. At the end of each
phase, the algorithm either accepts the arm with the highest empirical mean or dismisses the arm
with the lowest empirical mean, and in both cases the corresponding arm is deactivated. During
the next phase, it pulls equally often each active arm. The key to decide whether to accept or reject
during a certain phase k is to rely on estimates for the gaps ∆

〈m〉
i . More precisely, assume that the

algorithm has already acceptedm−m(k) arms J1, . . . , Jm−m(k), i.e. there ism(k) arms left to find.
Then, at the end of phase k, SAR computes for the m(k) empirical best arms (among the active
arms) the distance (in terms of empirical mean) to the (m(k) + 1)th empirical best arm among the
active arms. On the other hand for the active arms that are not among the m(k) empirical best
arms, SAR computes the distance to the m(k)th empirical best arm. Finally SAR deactivates the
arm ik that maximizes these empirical distances. If ik is currently the empirical best arm, then
SAR accepts ik and sets m(k + 1) = m(k) − 1, Jm−m(k+1) = ik, and otherwise it simply rejects
ik. The length of the phases are chosen similarly to what was done for the SR algorithm.

Theorem 1 The probability of error of SAR in the m-best arms identification problem satisfies

en ≤ 2K2 exp

(
− n−K

8log(K)H
〈m〉
2

)
.

Proof Consider the event ξ defined by

ξ =

{
∀i ∈ {1, . . . , K}, k ∈ {1, . . . , K − 1},

∣∣∣∣∣ 1

nk

nk∑
s=1

Xi,s − µi

∣∣∣∣∣ ≤ 1

4
∆
〈m〉
(K+1−k)

}
.

By Hoeffding’s Inequality and an union bound, the probability of the complementary event ξ̄ can
be bounded as follows

P(ξ̄) ≤
K∑
i=1

K−1∑
k=1

P

(∣∣∣∣∣ 1

nk

nk∑
s=1

Xi,s − µi

∣∣∣∣∣ > 1

4
∆
〈m〉
(K+1−k)

)

≤
K∑
i=1

K−1∑
k=1

2 exp(−2nk(∆
〈m〉
(K+1−k)/4)2)

≤ 2K2 exp

(
− n−K

8log(K)H
〈m〉
2

)
,

where the last inequality comes from the fact that

nk

(
∆
〈m〉
(K+1−k)

)2
≥ n−K

log(K)(K + 1− k)
(

∆
〈m〉
(K+1−k)

)−2 ≥ n−K
log(K)H

〈m〉
2

.
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Let A1 = {1, . . . , K}, m(1) = m, log(K) = 1
2

+
∑K

i=2
1
i
, n0 = 0 and for k ∈ {1, . . . , K − 1},

nk =

⌈
1

log(K)

n−K
K + 1− k

⌉
.

For each phase k = 1, 2, . . . , K − 1:

(1) For each active arm i ∈ Ak, select arm i for nk − nk−1 rounds.

(2) Let σk : {1, . . . , K + 1 − k} → Ak be the bijection that orders the empirical means by
µ̂σk(1),nk ≥ µ̂σk(2),nk ≥ · · · ≥ µ̂σk(K+1−k),nk . For 1 ≤ r ≤ K + 1 − k, define empirical
gaps

∆̂σk(r),nk =

{
µ̂σk(r),nk − µ̂σk(m(k)+1),nk if r ≤ m(k)

µ̂σk(m(k)),nk − µ̂σk(r),nk if r ≥ m(k) + 1

(3) Let ik ∈ argmaxi∈Ak ∆̂i,nk (ties broken arbitrarily). Deactivate arm ik, that is set Ak+1 =
Ak \ {ik}.

(4) If µ̂ik,nk > µ̂σk(m(k)+1),nk then arm ik is accepted, that is set m(k + 1) = m(k) − 1 and
Jm−m(k+1) = ik.

Output: The m accepted arms J1, . . . , Jm.

Figure 1: SAR (Successive Accepts and Rejects) algorithm for m-best arms identification.

Thus, it suffices to show that on the event ξ, the algorithm does not make any error. We prove this
by induction on k. Let k ≥ 1. Assume the algorithm makes no error in all previous k − 1 stages.
Note that event ξ implies that at the end of stage k, all empirical means are within 1

4
∆
〈m〉
(K+1−k) of

the respective true means.
Let Ak = {a1, . . . , aK+1−k} be the the set of active arms during phase k. We order the ai’s

such that µa1 > µa2 > · · · > µaK+1−k . To slightly lighten the notation we denote m′ = m(k) for
the number of arms that are left to find in phase k. The assumption that no error occurs in the first
k − 1 stages implies that

a1, a2, . . . , am′ ∈ {1, . . . ,m}, am′+1, . . . , aK+1−k ∈ {m+ 1, . . . , K}.

If an error is made at stage k, it can be one of the following two types:

1. The algorithm accepts aj at stage k for some j ≥ m′ + 1.

2. The algorithm rejects aj at stage k for some j ≤ m′.

Again to slightly shorten the notation we denote σ = σk for the bijection (from {1, . . . , K+1−k}
to Ak) such that µ̂σ(1),nk ≥ µ̂σ(2),nk ≥ · · · ≥ µ̂σ(K+1−k),nk . Suppose Type 1 error occurs. Then
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aj = σ(1) since if the algorithm accepts, it must accept the empirical best arm. Furthermore we
also have

µ̂aj ,nk − µ̂σ(m′+1),nk ≥ µ̂σ(m′),nk − µ̂σ(K+1−k),nk , (2)

since otherwise the algorithm would rather reject arm σ(K + 1− k). The condition aj = σ(1) and
the event ξ implies that

µ̂aj ,nk ≥ µ̂a1,nk ⇒ µaj +
1

4
∆
〈m〉
(K+1−k) ≥ µa1 −

1

4
∆
〈m〉
(K+1−k)

⇒ ∆
〈m〉
(K+1−k) >

1

2
∆
〈m〉
(K+1−k) ≥ µa1 − µaj ≥ µa1 − µm+1

We then look at the condition (2). In the event of ξ, for all i ≤ m′, we have

µ̂ai,nk ≥ µai −
1

4
∆
〈m〉
(K+1−k) ≥ µam′ −

1

4
∆
〈m〉
(K+1−k) ≥ µm −

1

4
∆
〈m〉
(K+1−k).

So there are m + 1 arms in Ak (namely a1, a2, . . . , am′ , aj) whose empirical means are at least
µm− 1

4
∆
〈m〉
(K+1−k), which means µ̂σ(m′+1),nk ≥ µm− 1

4
∆
〈m〉
(K+1−k).On the other hand, µ̂σ(K+1−k),nk ≤

µ̂aK+1−k,nk ≤ µaK+1−k + 1
4
∆
〈m〉
(K+1−k). Therefore, using those two observations and (2) we deduce(

µaj +
1

4
∆
〈m〉
(K+1−k)

)
−
(
µm −

1

4
∆
〈m〉
(K+1−k)

)
≥
(
µm −

1

4
∆
〈m〉
(K+1−k)

)
−
(
µaK+1−k +

1

4
∆
〈m〉
(K+1−k)

)
⇒ ∆

〈m〉
(K+1−k) ≥ 2µm − µaj − µaK+1−k > µm − µaK+1−k .

Thus so far we proved that if there is a Type 1 error, then

∆
〈m〉
(K+1−k) > max(µa1 − µm, µm − µaK+1−k).

But at stage k, only k − 1 arms have been accepted or rejected, thus ∆
〈m〉
(K+1−k) ≤ max(µa1 −

µm, µm − µaK+1−k). By contradiction, we conclude that Type 1 error does not occur.
Suppose Type 2 error occurs. The reasoning is symmetric to Type 1. In fact, if we rephrase the

problem as finding the K −m worst arms instead of the m best arms, this is exactly the same as
Type 1 error. Hence Type 2 error cannot occur as well. This completes the induction and conse-
quently the proof of the theorem.

4 Multi-bandit best arm identification
In this section we use the idea of SAR for multi-bandit best arm identification. Here at the end
of each phase we estimate the gaps ∆i(m) within each problem, and we reject the arm with the
largest such estimated gap. Moreover if a problem is left with only one active arm, then this arm
is accepted and the problem is deactivated. The corresponding strategy is described precisely in
Figure 2
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Let A1 = {(1, 1), . . . , (K,M)}, log(MK) = 1
2

+
∑MK

i=2
1
i
, n0 = 0 and for k ∈ {1, . . . ,MK −

1},

nk =

⌈
1

log(MK)

n−MK

MK + 1− k

⌉
.

For each phase k = 1, 2, . . . ,MK − 1:

(1) For each active pair (arm, problem) (i,m) ∈ Ak, select arm i in problemm for nk−nk−1
rounds.

(2) Let hk(m) be the arm with the highest empirical mean µ̂i,nk(m) among the active arms
in the active problem m (that is such that (i,m) ∈ Ak).

(3) If there is a problem m such that hk(m) is the last active arm in problem m, then
deactivate both the arm and the problem, and accept the arm. That is, set Ak+1 =
Ak \ {(hk(m),m)} and Jm = hk(m). Otherwise proceed to step (4).

(4) Let (ik,mk) ∈ argmax(i,m)∈Ak

(
µ̂hk(m),nk(m)− µ̂i,nk(m)

)
(ties broken arbitrarily). De-

activate arm ik in problem mk, that is set Ak+1 = Ak \ {(ik,mk)}.

Output: The M accepted arms (J1, 1), . . . , (JM ,M) (where the last accepted arm is defined by
the unique element of AMK).

Figure 2: SAR (Successive Accepts and Rejects) algorithm for the multi-bandit best arm identification.

Theorem 2 The probability of error of SAR in the multi-bandit best arm identification problem
satisfies

en ≤ 2M2K2 exp

(
− n−MK

8log(MK)H
[M ]
2

)
.

Proof Consider the event ξ defined by

ξ =

{
∀ 1 ≤ i ≤ K, 1 ≤ m ≤M, 1 ≤ k ≤MK − 1∣∣∣∣∣ 1

nk

nk∑
s=1

Xi,s(m)− µi(m)

∣∣∣∣∣ ≤ 1

4
∆(MK+1−k)

}
.

Following the same reasoning than in the proof of Theorem 1, it suffices to show that in the event
of ξ the algorithm makes no error. We do this by induction on the phase k of the algorithm. Let
k ≥ 1. Assume the algorithm makes no error in all previous k − 1 stages. Then at phase k,
for all active problem m, the arm (1,m) is still active. Moreover, as only k − 1 arms have been
deactivated, one clearly has

max
(i,m)∈Ak

(µ1(m)− µi(m)) ≥ ∆(MK+1−k).
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Suppose the above maximum is achieved for the arm (i∗,m∗), so we have

µ1(m
∗)− µi∗(m∗) ≥ ∆(MK+1−k). (3)

Assume now that the algorithm makes an error at the end of phase k, i.e. some arm (1,m) is
deactivated and it was not the last active arm in problem m. For this to happen, we necessarily
have for some j ∈ {2, . . . , K} (e.g., j = hk(m)),

µ̂j,nk(m)− µ̂1,nk(m) ≥ µ̂1,nk(m
∗)− µ̂i∗,nk(m∗). (4)

Clearly on the event ξ one has

µ̂j,nk(m)− µ̂1,nk(m)

= µ̂j,nk(m)− µj(m) + µj(m)− µ1(m) + µ1(m)− µ̂1,nk(m)

<
1

2
∆(MK+1−k).

On the other hand, using (3) and ξ, one has

µ̂1,nk(m
∗)− µ̂i∗,nk(m∗)

= µ̂1,nk(m
∗)− µ1(m

∗) + µ1(m
∗)− µi∗(m∗) + µi∗(m

∗)− µ̂i∗,nk(m∗)

≥ 1

2
∆(MK+1−k).

Therefore, µ̂1,nk(m
∗)− µ̂i∗,nk(m∗) > µ̂j,nk(m)− µ̂1,nk(m), contradicting (4). This completes the

induction and the proof.

5 Experiments
In this section we revisit the simple experiments of Audibert et al. [2010] in the setting of multiple
identifications. Since our objective is simply to illustrate our theoretical analysis we focus on the
m-best arms identification problem, but similar numerical simulations could be conducted in the
multi-bandit setting and compared to the results of Gabillon et al. [2011].

We compare our proposed strategy SAR to three competitors: The uniform sampling strategy
that divides evenly the allocation budget n between the K arms, and then return the m arms with
the highest empirical mean (see Bubeck et al. [2011] for a discussion of this strategy in the single
best arm identification). The SR strategy is the plain Successive Rejects strategy of Audibert
et al. [2010] which was designed to find the (single) best arm. We slightly improve it for m-best
identification by running only K − m − 1 phases (while still using the full budget n) and then
returning the last m surviving arms. Finally we consider the extension of UCB-E to the m-best
arms identification problem, which is based on a similar idea than the extension Gap-E of Gabillon
et al. [2011] for the multi-bandit best arm identification, see Figure 3 for the details. Note that
this last algorithm requires to know the complexity H〈m〉1 . One could propose an adaptive version,
using ideas described in Audibert et al. [2010], but for sake of simplicity we restrict our attention
to the non-adaptive algorithm.
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Parameter: exploration parameter c > 0.

For each round t = 1, 2, . . . , n:

(1) Let σt be the permutation of {1, . . . ,K} that orders the empirical means, i.e., µ̂σt(1),Tσt(1)(t−1) ≥
µ̂σt(2),Tσt(2)(t−1)

≥ · · · ≥ µ̂σt(K),Tσt(K)(t−1). For 1 ≤ r ≤ K, define the empirical gaps

∆̂σt(r),t =

{
µ̂σt(r),Tσt(r)(t−1)

− µ̂σt(m+1),Tσt(m+1)(t−1) if r ≤ m
µ̂σt(m),Tσt(m)(t−1) − µ̂σt(r),Tσt(r)(t−1) if r ≥ m+ 1

(2) Draw

It ∈ argmax
i∈{1,...,K}

−∆̂i,t + c

√
n/H

〈m〉
1

Ti(t− 1)
.

Let J1, . . . , Jm be the m arms with highest empirical means µ̂i,Ti(n).

Figure 3: Gap-E algorithm for the m-best arms identification problem.

In our experiments we consider only Bernoulli distributions, and the optimal arm always has
parameter 1/2. Each experiment corresponds to a different situation for the gaps, they are ei-
ther clustered in few groups, or distributed according to an arithmetic or geometric progression.
For each experiment we plot the probability of misidentification for each strategy, varying m be-
tween 2 and K − 1. The allocation budget for each experiment is chosen to be roughly equal to
max1≤m≤K−1H

〈m〉
1 . We report our results in Figure 4. The parameters for the experiments are as

follows:

• Experiment 1: One group of bad arms, K = 20, µ2:20 = 0.4 (meaning for any j ∈
{2, . . . , 20}, µj = 0.4)

• Experiment 2: Two groups of bad arms, K = 20, µ2:6 = 0.42, µ7:20 = 0.38.

• Experiment 3: Geometric progression, K = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.

• Experiment 4: 6 arms divided in three groups, K = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.

• Experiment 5: Arithmetic progression, K = 15, µi = 0.5− 0.025i, i ∈ {2, . . . , 15}.

• Experiment 6: Three groups of bad arms, K = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

It is interesting to note that SR performs badly for m-best arms identification when m > 1, as
it has even worse performances than the naive uniform sampling in many cases. This shows that
the tradeoffs involved in finding the single best arm and finding the top m arms are fundamentally
different. As expected SAR always outperforms uniform sampling, and Gap-E has slightly better
performances than SAR (but Gap-E requires an extra information to tune its parameter, and the
adapative version comes with no provable guarantee).
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Figure 4: Numerical simulations for the m-best arms identification problem. We chose c = 2 (exploration
parameter) for the Gap-E algorithm in all experiments.
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