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Abstract

The restricted isometry property (RIP) for design matrices gives guarantees for
optimal recovery in sparse linear models. It is of high interest in compressed
sensing and statistical learning. This property is particularly important for com-
putationally efficient recovery methods. As a consequence, even though it is in
general NP-hard to check that RIP holds, there have been substantial efforts to
find tractable proxies for it. These would allow the construction of RIP matrices
and the polynomial-time verification of RIP given an arbitrary matrix. We con-
sider the framework of average-case certifiers, that never wrongly declare that a
matrix is RIP, while being often correct for random instances. While there are
such functions which are tractable in a suboptimal parameter regime, we show
that this is a computationally hard task in any better regime. Our results are based
on a new, weaker assumption on the problem of detecting dense subgraphs.

Introduction

In many areas of data science, high-dimensional signals contain rich structure. It is of great in-
terest to leverage this structure to improve our ability to describe characteristics of the signal and
to make future predictions. Sparsity is a structure of wide applicability (see, e.g. Mallat, 1999;
Rauhut and Foucart, 2013; Eldar and Kutyniok, 2012), with a broad literature dedicated to its study
in various scientific fields.

The sparse linear model takes the form y = Xβ + ε, where y ∈ Rn is a vector of observations,
X ∈ Rn×p is a design matrix, ε ∈ Rn is noise, and the vector β ∈ Rp is assumed to have a
small number k of non-zero entries. Estimating β or the mean response, Xβ, are among the most
widely studied problems in signal processing, as well as in statistical learning. In high-dimensional
problems, one would wish to recover β with as few observations as possible. For an incoherent
design matrix, it is known that an order of k2 observations suffice (Donoho, Elad and Temlyakov,
2006; Donoho and Elad, 2003). However, this appears to require a number of observations far
exceeding the information content of β, which has only k variables, albeit with unknown locations.

This dependence in k can be greatly improved by using design matrices that are almost isometries
on some low dimensional subspaces, i.e., matrices that satisfy the restricted isometry property with
parameters k and θ, or RIP(k, θ) (see Definition 1.1). It is a highly robust property, and in fact
implies that many different polynomial time methods, such as greedy methods (Blumensath and
Davies, 2009; Needell and Tropp, 2009; Dai and Milenkovic, 2009) and convex optimization (Can-
dès, 2008; Candès, Romberg and Tao, 2006b; Candès and Tao, 2005), are stable in recovering β.
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Random matrices are known to satisfy the RIP when the number n of observation is more than about
k log(p)/θ2. These results were developed in the field of compressed sensing (Candès, Romberg and
Tao, 2006a; Donoho, 2006; Rauhut and Foucart, 2013; Eldar and Kutyniok, 2012) where the use of
randomness still remains pivotal for near-optimal results. Properties related to the conditioning of
design matrices have also been shown to play a key role in the statistical properties of computa-
tionally efficient estimators of β (Zhang, Wainwright and Jordan, 2014). While the assumption of
randomness allows great theoretical leaps, it leaves open questions for practitioners.

Scientists working on data closely following this model cannot always choose their design matrix
X , or at least choose one that is completely random. Moreover, it is in general practically impos-
sible to check that a given matrix satisfies these desired properties, as RIP certification is NP-hard
(Bandeira et al., 2012). Having access to a function, or statistic, of X that could be easily computed,
which determines how well β may be estimated, would therefore be of a great help. The search
for such statistics has been of great importance for over a decade now, and several have been pro-
posed (d’Aspremont and El Ghaoui, 2011; Lee and Bresler, 2008; Juditsky and Nemirovski, 2011;
d’Aspremont, Bach and El Ghaoui, 2008). Perhaps the simplest and most popular is the incoherence
parameter, which measures the maximum inner product between distinct, normalized, columns of
X . However, all of these are known to necessarily fail to guarantee good recovery when p ≥ 2n
unless n is of order k2 (d’Aspremont and El Ghaoui, 2011). Given a specific problem instance, the
strong recovery guarantees of compressed sensing cannot be verified based on these statistics.

In this article, we study the problem of average-case certification of the Restricted Isometry Property
(RIP). A certifier takes as input a design matrix X , always outputs ‘false’ when X does not satisfy
the property, and outputs ‘true’ for a large proportion of matrices (see Definition 2.1). Indeed, worst-
case hardness does not preclude a problem from being solvable for most instances. The link between
restricted isometry and incoherence implies that polynomial time certifiers exists in a regime where
n is of order k2 log(p)/θ2. It is natural to ask whether the RIP can be certified for sample size
n � k log(p)/θ2, where most matrices (with respect to, say, the Gaussian measure) are RIP. If it
does, it would also provide a Las Vegas algorithm to construct RIP design matrices of optimal sizes.
This should be compared with the currently existing limitations for the deterministic construction of
RIP matrices.

Our main result is that certification in this sense is hard even in a near-optimal regime, assuming a
new, weaker assumption on detecting dense subgraphs, related to the Planted Clique hypothesis.
Theorem (Informal). For any α < 1, there is no computationally efficient, average-case certifier
for the class RIPn,p(k, θ) uniformly over an asymptotic regime where n� k1+α/θ2.

This suggests that even in the average case, RIP certification requires almost k2 log(p)/θ2 observa-
tions. This contrasts highly with the fact that a random matrix satisfies RIP with high probability
when n exceeds about k log(p)/θ2. Thus, there appears to be a large gap between what a practitioner
may be able to certify given a specific problem instance, and what holds for a random matrix.On the
other hand, if a certifier is found which fills this gap, the result would not only have huge practical
implications in compressed sensing and statistical learning, but would also disprove a long-standing
conjecture from computational complexity theory.

We focus solely on the restricted isometry property, but other conditions under which compressed
sensing is possible are also known. Extending our results to the restricted eigenvalue condition
Bickel, Ritov and Tsybakov (2009) or other conditions (see, van de Geer and Buhlmann, 2009, and
references therein) is an interesting path for future research.

Our result shares many characteristics with a hypothesis by Feige (2002) on the hardness of refuting
random satisfiability formulas. Indeed, our statement is also about the hardness of verifying that
a property holds for a particular instance (RIP for design matrices, instead of unsatisfiability for
boolean formulas). It concerns a regime where such a property should hold with high probability (n
of order k1+α/θ2, linear regime for satisfiability), cautiously allowing only one type of errors, false
negatives, for a problem that is hard in the worst case. In these two examples, such certifiers exist in
a sub-optimal regime. Our problem is conceptually different from results regarding the worst-case
hardness of certifying this property (see, e.g. Bandeira et al., 2012; Koiran and Zouzias, 2012; Till-
mann and Pfetsch, 2014). It is closer to another line of work concerned with computational lower
bounds for statistical learning problems based on average-case assumptions. The planted clique
assumption has been used to prove computational hardness results for statistical problems such as
estimation and testing of sparse principal components (Berthet and Rigollet, 2013a,b; Wang, Berthet
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and Samworth, 2016), testing and localization of submatrix signals (Ma and Wu, 2013; Chen and
Xu, 2014), community detection (Hajek, Wu and Xu, 2015) and sparse canonical correlation anal-
ysis (Gao, Ma and Zhou, 2014). The intractability of noisy parity recovery problem (Blum, Kalai
and Wasserman, 2003) has also been used recently as an average-case assumption to deduce com-
putational hardness of detection of satisfiability formulas with lightly planted solutions (Berthet and
Ellenberg, 2015). Additionally, several unconditional computational hardness results are shown for
statistical problems under constraints of learning models (Feldman et al., 2013). The present work
has two main differences compared to previous computational lower bound results. First, in a de-
tection setting, these lower bounds concern two specific distributions (for the null and alternative
hypothesis), while ours is valid for all sub-Gaussian distributions, and there is no alternative distri-
bution. Secondly, our result is not based on the usual assumption for the Planted Clique problem.
Instead, we use a weaker assumption on a problem of detecting planted dense graphs. This does
not mean that the planted graph is a random graph with edge probability q > 1/2 as considered
in (Arias-Castro and Verzelen, 2013; Bhaskara et al., 2010; Awasthi et al., 2015), but that it can be
any graph with an unexpectedly high number of edges (see section 3.1). This choice is made to
strengthen our result: it would ‘survive’ the discovery of an algorithm that would use very specific
properties of cliques (or even of random dense graphs) to detect their presence. As a consequence,
the analysis of our reduction is more technically complicated.

Our work is organized in the following manner: We recall in Section 1 the definition of the restricted
isometry property, and some of its known properties. In Section 2, we define the notion of certifier,
and prove the existence of a computationally efficient certifier in a sub-optimal regime. Our main
result is developed in Section 3, focused on the hardness of average-case certification. The proofs
of the main results are in Appendix A of the supplementary material and those of auxiliary results
in Appendix B of the the supplementary material.

1 Restricted Isometric Property

1.1 Formulation

We use the definition of Candès and Tao (2005), who introduced this notion. Below, for a vector
u ∈ Rp, we define ‖u‖0 is the number of its non-zero entries.
Definition (RIP). A matrix X ∈ Rn×p satisfies the restricted isometry property with sparsity k ∈
{1, . . . , p} and distortion θ ∈ (0, 1), denoted by X ∈ RIPn,p(k, θ), if it holds that

1− θ ≤ ‖Xu‖22 ≤ 1 + θ,

for every u ∈ Sp−1(k) := {u ∈ Rp : ‖u‖2 = 1, ‖u‖0 ≤ k}.

This can be equivalently defined by a property on submatrices of the design matrix: X is in
RIPn,p(k, θ) if and only if for any set S of k columns of X , the submatrix, X∗S , formed by taking
any these columns is almost an isometry, i.e. if the spectrum of its Gram matrix is contained in the
interval [1− θ, 1 + θ]:

‖X>∗SX∗S − Ik‖op ≤ θ .
Denote by ‖ · ‖op,k the k-sparse operator norm, defined for a matrix A as ‖A‖op,k =
supx∈Sp−1(k) ‖Ax‖2. This yields another equivalent formulation of the RIP property: X ∈
RIPn,p(k, θ) if and only if

‖X>X − Ip‖op,k ≤ θ .

We assume in the following discussion that the distortion parameter θ is upper-bounded by 1. For
v ∈ Rp and T ⊆ {1, . . . , p}, we write vT for the #T -dimensional vector obtained by restricting
v to coordinates indexed by T . Similarly, for an n × p matrix A and subsets S ⊆ {1, . . . , n} and
T ⊆ {1, . . . , p}, we write AS∗ for the submatrix obtained by restricting A to rows indexed by S,
A∗T for the submatrix obtained by restricting A to columns indexed by T .

1.2 Generation via random design

Matrices that satisfy the restricted isometry property have many interesting applications in high-
dimensional statistics and compressed sensing. However, there is no known way to generate them
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deterministically in general. It is even NP-hard to check whether a given matrix X belongs to
RIPn,p(k, θ) (see, e.g Bandeira et al., 2012). Several deterministic constructions of RIP matrices
exist for sparsity level k . θ

√
n. For example, using equitriangular tight frames and Gershgorin’s

circle theorem, one can construct RIP matrices with sparsity k ≤
√
n and distortion θ bounded

away from 0 (see, e.g. Bandeira et al., 2012). The limitation k ≤ θ
√
n is known as the ‘square

root bottleneck’. To date, the only constructions that break the ‘square root bottleneck’ are due to
Bourgain et al. (2011) and Bandeira, Mixon and Moreira (2014), both of which give RIP guarantee
for k of order n1/2+ε for some small ε > 0 and fixed θ (the latter construction is conditional on a
number-theoretic conjecture being true).

Interestingly though, it is easy to generate large matrices satisfying the restricted isometry property
through random design, and compared to the fixed design matrices mentioned in the previous para-
graph, these random design constructions are much less restrictive on the sparsity level, typically
allowing k up to the order n/ log(p) (assuming θ is bounded away from zero). They can be con-
structed easily from any centred sub-Gaussian distribution. We recall that a distribution Q (and its
associated random variable) is said to be sub-Gaussian with parameter σ if

∫
R e

λx dQ(x) ≤ eλ2σ2/2

for all λ ∈ R.
Definition. Define Q = Qσ to be the set of sub-Gaussian distributions Q over R with zero mean,
unit variance, and sub-Gaussian parameter at most σ.

The most common choice for a Q ∈ Q is the standard normal distribution N (0, 1). Note that by
Taylor expansion, for any Q ∈ Q, we necessarily have σ2 ≥

∫
R x

2 dQ(x) = 1. In the rest of the
paper, we treat σ as fixed. Define the normalized distribution Q̃ to be the distribution of Z/

√
n for

Z ∼ Q. The following well-known result states that by concentration of measure, random matrices
generated with distribution Q̃⊗(n×p) satisfy restricted isometries (see, e.g. Candès and Tao (2005)
and Baraniuk et al. (2008)). For completeness, we include a proof that establishes these particular
constants stated here. All proofs are deferred to Appendix A or Appendix B of the supplementary
material.
Proposition 1. Suppose X is a random matrix with distribution Q̃⊗(n×p), where Q ∈ Q. It holds
that

P
(
X ∈ RIPn,p(k, θ)

)
≥ 1− 2 exp

{
k log

(
9ep

k

)
− nθ2

256σ4

}
. (1)

In order to clarify the notion of asymptotic regimes used in this paper, we introduce the following
definition.
Definition. For 0 ≤ α ≤ 1, define the asymptotic regime

Rα :=

{
(pn, kn, θn)n : p, k →∞ and n� k1+αn log(pn)

θ2n

}
.

We note that in this notation, Proposition 1 implies that for (p, k, θ) = (pn, kn, θn) ∈ R0 we have,
limn→∞ Q̃⊗(n×p)(X ∈ RIPn,p(k, θ)) = 1, and this convergence is uniform over Q ∈ Q.

2 Certification of Restricted Isometry

2.1 Objectives and definition

In practice, it is useful to know with certainty whether a particular realization of a random design
matrix satisfies the RIP condition. It is known that the problem of deciding if a given matrix is RIP
is NP-hard (Bandeira et al., 2012). However, NP-hardness is a only a statement about worst-case
instances. It would still be of great use to have an algorithm that can correctly decide RIP property
for an average instance of a design matrix, with some accuracy. Such an algorithm should identify a
high proportion of RIP matrices generated through random design and make no false positive claims.
We call such an algorithm an average-case certifier, or a certifier for short.
Definition (Certifier). Given a parameter sequence (p, k, θ) = (pn, kn, θn), we define a certifier for
Q̃⊗(n×p)-random matrices to be a sequence (ψn)n of measurable functions ψn : Rn×p → {0, 1},
such that

ψ−1n (1) ⊆ RIPn,p(k, θ) and lim sup
n→∞

Q̃⊗(n×p)
(
ψ−1n (0)

)
≤ 1/3. (2)
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Note the definition of a certifier depends on both the asymptotic parameter sequence (pn, kn, θn) and
the sub-Gaussian distribution Q. However, when it is clear from the context, we will suppress the
dependence and refer to certifiers for RIPn,p(k, θ) properties of Q̃⊗(n×p)-random matrices simply
as ‘certifiers’.

The two defining properties in (2) can be understood as follows. The first condition means that if a
certifier outputs 1, we know with certainty that the matrix is RIP. The second condition means that
the certifier is not overly conservative; it is allowed to output 0 for at most one third (with respect
to Q̃⊗(n×p) measure) of the matrices. The choice of 1/3 in the definition of a certifier is made to
simplify proofs. However, all subsequent results will still hold if we replace 1/3 by any constant in
(0, 1). In view of Proposition 1, the second condition in (2) can be equivalently stated as

lim inf
n→∞

Q̃⊗(n×p)
{
ψn(X) = 1

∣∣ X ∈ RIPn,p(k, θ)
}
≥ 2/3.

With such a certifier, given an arbitrary problem fitting the sparse linear model, the matrix X could
be tested for the restricted isometry property, with some expectation of a positive result. This would
be particularly interesting given a certifier in the parameter regime n � θ2nk

2
n, in which presently

known polynomial-time certifiers cannot give positive results.

Even though it is not the main focus of our paper, we also note that a certifier ψ with the above
properties for some distributionQ ∈ Q would form a certifier/distribution couple (ψ,Q), that yields
in the usual manner a Las Vegas algorithm to generate RIP matrices. The (random) algorithm keeps
generating random matrices X ∼ Q̃⊗(n×p) until ψn(X) = 1. The number of times that the certifier
is invoked has a geometric distribution with success probability Q̃⊗(n×p)

(
ψ−1n (1)

)
. Hence, the

Las Vegas algorithm runs in randomized polynomial time if and only if ψn runs in randomized
polynomial time.

2.2 Certifier properties

Although our focus is on algorithmically efficient certifiers, we establish first the properties of a
certifier that is computationally intractable. This certifier serves as a benchmark for the performance
of other candidates. Indeed, we exhibit in the following proposition a certifier, based on the k-sparse
operator norm, that works uniformly well in the same asymptotic parameter regime R0, where
Q̃⊗(n×p)-random matrices are RIP with asymptotic probability 1. For clarity, we stress that our
criterion when judging a certifier will always be its uniform performance over asymptotic regimes
Rα for some α ∈ [0, 1].

Proposition 2. Suppose (p, k, θ) = (pn, kn, θn) ∈ R0. Furthermore, Let Q ∈ Q and X ∼
Q̃⊗(n×p). Then the sequence of tests (ψop,k)n based on sparse operator norms, defined by

ψop,k(X) := 1

{
‖X>X − Ip‖op,k ≤ θ

}
.

is a certifier for Q̃⊗(n×p)-random matrices.

By a direct reduction from the clique problem, one can show that it is NP-hard to compute the k-
sparse operator norm of a matrix. Hence the certifier ψop,k is computationally intractable. The next
proposition concerns the certifier property of a test based on the maximum incoherence between
columns of the design matrix. It follows directly from a well-known result on the incoherence
parameter of a random matrix (see, e.g. Rauhut and Foucart (2013, Proposition 6.2)) and allows the
construction of a polynomial-time certifier that works uniformly well in the asymptotic parameter
regimeR1.

Proposition 3. Suppose (p, k, θ) = (pn, kn, θn) satisfies n ≥ 196σ4k2 log(p)/θ2. Let Q ∈ Q and
X ∼ Q̃⊗(n×p), then the tests ψ∞ defined by

ψ∞(X) := 1

{
‖X>X − Ip‖∞ ≤ 14σ2

√
log(p)

n

}
is a certifier for Q̃⊗(n×p)-random matrices.
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Proposition 3 shows that, when the sample size n is above k2 log(p)/θ2 in magnitude (in particular,
this is satisfied asymptotically when (p, k, θ) = (pn, kn, θn) ∈ R1), there is a polynomial time
certifier. In other words, in this high-signal regime, the average-case decision problem for RIP
property is much more tractable than indicated by the worst-case result. On the other hand, the
certifier in Proposition 3 works in a much smaller parameter range when compared to ψop,k in
Proposition 2. Combining Proposition 2 and 3, we have the following schematic diagram (Figure 1).
When the sample size is lower than specified inR0, the property does not hold, with high probability,
and no certifier exists. A computationally intractable certifier works uniformly overR0. On the other
end of the spectrum, when the sample size is large enough to be in R1, a simple certifier based on
the maximum incoherence of the design matrix is known to work in polynomial time. This leaves
open the question of whether (randomized) polynomial time certifiers can work uniformly well in
R0, or Rα for any α ∈ [0, 1). We will see in the next section that, assuming a weaker variant of
the Planted Clique hypothesis from computational complexity theory, R1 is essentially the largest
asymptotic regime where a randomized polynomial time certifier can exist.

Figure 1: Schematic digram for existence of certifiers in different asymptotic regimes.

3 Hardness of Certification

3.1 Planted dense subgraph assumptions

We show in this section that certification of RIP property is an average-case hard problem in the
parameter regimeRα for any α < 1. This is precisely the regime not covered by Proposition 3. The
average-case hardness result is proved via reduction to the planted dense subgraph assumption.

For any integer m ≥ 0, denote Gm the collection of all graphs on m vertices. We write V (G)
and E(G) for the set of vertices and edges of a graph G. For H ∈ Gκ where κ ∈ {0, . . . ,m}, let
G(m, 1/2, H) be the random graph model that generates a random graphG onm vertices as follows.
It first picks κ random vertices K ⊆ V (G) and plants an isomorphic copy of H on these κ vertices,
then every pair of vertices not in K × K is connected by an edge independently with probability
1/2. We write PH for the probability measure on Gm associated with G(m, 1/2, H). Note that ifH
is the empty graph, then G(m, 1/2, ∅) describes the Erdős–Rényi random graph. With a slight abuse
of notation, we write P0 in place of P∅. On the other hand, for ε ∈ (0, 1/2], if H belongs to the set

H = Hκ,ε :=

{
H ∈ Gκ : #E(H) ≥ (1/2 + ε)

κ(κ− 1)

2

}
,

then G(m, 1/2, H) generates random graphs that contain elevated local edge density. The planted
dense graph problem concerns testing apart the following two hypotheses:

H0 : G ∼ G(m, 1/2, ∅) and H1 : G ∼ G(m, 1/2, H) for some H ∈ Hκ,ε. (3)

It is widely believed that for κ = O(m1/2−δ), there does not exist randomized polynomial time
tests to distinguish between H0 and H1 (see, e.g. Jerrum (1992); Feige and Krauthgamer (2003);
Feldman et al. (2013)). More precisely, we have the following assumption.
Assumption (A1) 1. Fix ε ∈ (0, 1/2] and δ ∈ (0, 1/2). let (κm)m be any sequence of integers
such that κm →∞ and κm = O

(
m1/2−δ). For any sequence of randomized polynomial time tests

(φm : Gm → {0, 1})m, we have

lim inf
m

{
P0

(
φ(G) = 1

)
+ max
H∈Hκ,ε

PH
(
φ(G) = 0)

)}
> 1/3 .
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We remark that if ε = 1/2, then Hκ,ε contains only the κ-complete graph and the testing problem
becomes the well-known planted clique problem (cf. Jerrum (1992) and references in Berthet and
Rigollet (2013a,b)).

The difficulty of this problem has been used as a primitive for the hardness of other tasks, such
as cryptographic applications, in Juels and Peinado (2000), testing for k-wise dependence in Alon
et al. (2007), approximating Nash equilibria in Hazan and Krauthgamer (2011). In this case, As-
sumption (A1) is a version of the planted clique hypothesis (see, e.g. Berthet and Rigollet (2013b,
Assumption APC)). We emphasize that Assumption A1 is significantly milder than the planted
clique hypothesis (since it allows any ε ∈ (0, 1/2]), or that a hypothesis on planted random graphs.
We also note that when κ ≥ Cε

√
m, spectral methods can be used to detect such graphs with

high probability. Indeed, when G contains a graph of H, denoting AG its adjacency matrix, then
AG − 11>/2 has a leading eigenvalue greater than ε(κ− 1), whereas it is of order

√
m for a usual

Erdős–Rényi random graph.

The following theorem relates the hardness of the planted dense subgraph testing problem to the
hardness of certifying restricted isometry of random matrices. We recall that the distribution of X is
that of an n×p random matrix with entries independently and identically sampled from Q̃

d
= Q/

√
n,

for some Q ∈ Q. We also write Ψrp for the class of randomized polynomial time certifiers.

Theorem 4. Assume (A1) and fix any α ∈ [0, 1). Then there exists a sequence (p, k, θ) =
(pn, kn, θn) ∈ Rα, such that there is no certifier/distribution couple (ψ,Q) ∈ Ψrp×Q with respect
to this sequence of parameters.

Our proof of Theorem 4 relies on the following ideas: Given a graph G, an instance of the planted
clique problem in the assumed hard regime, we construct n random vectors based on the adjacency
matrix of a bipartite subgraph of G, between two random sets of vertices. Each coefficient of these
vectors is then randomly drawn from one of two carefully chosen distributions, conditionally on the
presence or absence of a particular edge. This construction ensures that if the graph is an Erdős–
Rényi random graph (i.e. with no planted graph), the vectors are independent with independent
coefficients, with distribution Q̃. Otherwise, we show that with high probability, the presence of an
unusually dense subgraph will make it very likely that the matrix does not satisfy the restricted isom-
etry property, for a set of parameters inRα. As a consequence, if there existed a certifier/distribution
couple (ψ,Q) ∈ Ψrp × Q in this range of parameters, it could be used - by using as input in the
certifier the newly constructed matrix - to determine with high probability the distribution of G,
violating our assumption (A1).

We remark that this result holds for any distribution inQ, in contrast to computational lower bounds
in statistical learning problems, that apply to a specific distribution. For the sake of simplicity, we
have kept the coefficients of X identically distributed, but our analysis is not dependent on that
fact, and our result can be directly extended to the case where the coefficients are independent, with
different distributions in Q.

Theorem 4 may be viewed as providing an asymptotic lower bound of the sample size n for the
existence of a computationally feasible certifier. It establishes this computational lower bound by
exhibiting some specific ‘hard’ sequences of parameters inside Rα, and show that any algorithm
violating the computational lower bound could be exploited to solve the planted dense subgraph
problem. All hardness results, whether in a worst-case (NP-hardness, or other) or the average-case
(by reduction from a hard problem), are by nature statements on the impossibility of accomplishing a
task in a computationally efficient manner, uniformly over a range of parameters. They are therefore
always based on the construction of a ‘hard’ sequence of parameters used in the reduction, for
which a contradiction is shown. Here, the ‘hard’ sequence is explicitly constructed in the proof
to be some (p, k, θ) = (pn, kn, θn) satisfying p ≥ n and n1/(3−α−4β) � k � n1/(2−β)−δ , for
β ∈ [0, (1 − α)/3) and any small δ > 0. The tuning parameter β is to allow additional flexibility
in choosing these ‘hard’ sequences. More precisely, using an averaging trick first seen in Ma and
Wu (2013), we are able to show that the existence of such ‘hard’ sequences is not confined only in
the sparsity regime k � n1/2 . We note that in all our ‘hard’ sequences, θn must depend on n. An
interesting extension is to see if similar computational lower bounds hold when restricted to a subset
ofRα where θ is constant.
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A Proofs of Main Results

Proof of Theorem 4. We prove by contradiction. Assume the contrary, that (ψn)n is a polynomial
time computable certifier for Q̃⊗(n×p)-random matrices.

For α < 1 and 0 ≤ β < 1
3 (1 − α), let (p, k, θ) = (pn, kn, θn) ∈ Rα be a sequence satisfying

p ≥ n, log p = O(log n), n
1

3−α−4β � k � n
1

2−β−δ for some δ > 0 and θ =
√
k1+α log(p)/n. Let

L = 10 and ` = bkβc. Define m = L`n and κ = Lk. We check that

κ2 � k2−βkβ � n1−δ`� m1−δ′

for some positive δ′ that depends on δ only. We remark that the purpose of introducing the extra
parameter β in the proof is mainly to show the ubiquity of parameter sequences (p, k, θ) that arrive at
a contradiction. In particular, we can use positive β values to construct sequences where k � n1/2.
For a first reading, it suffices to take β = 0 (i.e. ` = 1), which already constitutes a proof of the
theorem. When β > 0, the proof requires the additional assumption that there exists Q̆ such that
for Y1, . . . , Y 2

`
i.i.d.∼ Q̆, `−1

∑`2

i=1 Yi ∼ Q̃. Note when β = 0, we can simply take Q̆ = Q̃. Let
ξ denote the median of Q̆. By definition of the median, there exists a unique decomposition of the
probability measure Q̆ as Q̆ = 1

2 Q̆
+ + 1

2 Q̆
−, where Q̆+ and Q̆− are probability measures supported

on (−∞, ξ] and [ξ,∞) respectively.

We prove below that Algorithm 1, which runs in randomized polynomial time, can distinguish be-
tween P0 and PH with zero asymptotic error for any choice of H ∈ Hκ,ε.
First, assume G ∼ P0. Then matrix A from Step 1 of Algorithm 1 have independent Rademacher
entries, which implies that X ∼ Q̃⊗(n×p). Therefore, by (2) in Section 2 we must have

lim inf P0(φ(G) = 1) = Q̃⊗(n×p)(ψ−1n (0)) < 1/3.

Next, assume G is generated with probability measure PH for some H ∈ Hκ,ε. We claim that

X̃ /∈ RIPn,n

(
k,
ck2

n`2

)
(1)

for some absolute positive constant c. Since

k2

n`2
�
√
k1+α

n
� θ,
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Algorithm 1: Pseudo-code for an algorithm to distinguish between P0 and PH .
Input: m ∈ N, κ ∈ {1, . . . ,m}, G ∈ Gm, L ∈ N
begin

Step 1: Let N ← bm/Lc, k ← bκ/Lc, `← bkβc, n← bN/`c, p← pn. Draw
u1, . . . , uN , w1, . . . , wN uniformly at random without replacement from V (G). Form
A = (Aij) ∈ RN×N where Aij = 2 · 1{ui∼wj} − 1.
Step 2: Let Y + = (Y +

ij ) and Y − = (Y −ij ) be N -by-N random matrices independent from all

other random variables and from each other, and such that Y +
ij

i.i.d.∼ Q̆+ and Y −ij
i.i.d.∼ Q̆−.

Define Z = (Zij) by Zij = 1{Aij = 1}Y +
ij + 1{Aij = −1}Y −ij .

Step 3: For 0 ≤ a, b ≤ `− 1, define Z(a,b) ∈ Rn×n by Z(a,b)
i,j = Zan+i,bn+j . Define

X̃ ← `−1
∑

0≤a,b<` Z
(a,b). Finally, let X ←

(
X̃ X̃ ′

)
where X̃ ′ ∈ Rn×(p−n) has entries

independently drawn from distribution Q̃.
Step 4: Let φ(G)← 1− ψn(X).

end
Output: φ(G)

we have that for large n, X̃ /∈ RIPn,n(k, θ). Hence X is a fortiori not an RIPn,p(k, θ) matrix. As
a result,

lim inf
m

max
H∈Hκ,ε

PH
(
φ(G) = 0)

)
< 1/3,

contradicting Assumption (A1).

It remains to verify the claimed result in (1). LetK ⊆ V (G) be the κ-subset of vertices on which the
subgraph H is planted. We write U = {u1, . . . , uN} and W = {w1, . . . , wN} for the two random
subsets of vertices. Let NU,W ;K be the random variable counting the number of edges in G with
two endpoints in U ∩K and W ∩K respectively. Then

NU,W ;K = #
{
{u,w} ∈ E(G) : u ∈ U ∩K,w ∈W ∩K

}
=
∑
u∈K

∑
w∈K

1{u ∈ U}1{w ∈W}1{u ∼ w}.

Define

Ω1 :=

{
NU,W ;K ≥

(
1

2
+
ε

4

)
k2
}
∩
{∣∣#U ∩K − k∣∣ ≤ ε

8
k

}
∩
{∣∣#W ∩K − k∣∣ ≤ ε

8
k

}
.

Lemma 1 below shows that Ω1 has asymptotic probability 1. Note Ω1 is in the σ-algebra of (U,W ).
Let U = U0 and W = W0 be any realization satisfying Ω1. We write PU0,W0 and EU0,W0 as
shorthand for the probability and expectation conditional on U = U0 and W = W0.

For each j ∈ {1, . . . , n}, define sj :=
∑
ui∈U∩K Ai,j . Write k1 := (1−ε/8)k and k2 = (1+ε/8)k.

Let S := {i : ui ∈ U ∩K}, and let T be a subset of k1 indices in {1, . . . , n} corresponding to the
k1 largest values of sj (breaking ties arbitrarily). Note that S and T are functions of U and V . On
the event U = U0 and W = W0, both #S = #U ∩K and #W ∩K are bounded in the interval
[k1, k2], so in particular k1 ≤ #W ∩K. We have∑
wj∈W∩K

sj = 2NU,W ;K −#(U ∩K)×#(W ∩K) ≥
{

(1 + ε/2)− (1 + ε/8)2
}
k2 ≥ ε

5
k2.

As elements of T index columns of A corresponding to largest values of sjs, we have that on event
{U = U0,W = W0}, ∑

j∈T
sj ≥

#T

#W ∩K
ε

5
k2 ≥ ε

5

k2k1
k2
≥ ε

6
kk1. (2)

2



Define the unit vector v ∈ Rn by vT = k
−1/2
1 1k1 and vT c = 0. Note that v is k1-sparse and hence

also k-sparse. Conditional on U = U0 and W = W0, Zij = Y +
ij if Aij = 1 and Zij = Y −ij

if Aij = −1. By definition of Q̃+ and Q̃−, and the fact that Q̃ is not a point mass, we have
EY +

ij = −EY −ij = c1/
√
n for some absolute constant c1 > 0. By (2), the sum

∑
i∈S,j∈T Zij can

be bounded below in conditional expectation by

EU0,W0

∑
i∈S,j∈T

Zij ≥ EU0,W0

( ∑
i∈S,j∈T

(1{Aij = 1}Y +
ij + 1{Aij = −1}Y −ij )

)

=
c1√
n

(∑
j∈T

sj

)
≥ c1√

n

ε

6
kk1 .

By Lemma 3, both Y +
ij − EY +

ij and Y −ij − EY −ij are sub-Gaussian with parameter at most c2σ/
√
n

for some absolute constant c2 > 0. By Hoeffding’s inequality for sums of sub-Gaussian random
variables (see e.g. Vershynin (2012, Proposition 5.10)),

PU0,W0

( ∑
i∈S,j∈T

Zij >
c1ε

12
√
n
kk1

)
≥ 1− 2 exp

{
−

( c1ε
12
√
n
kk1)2

2c22σ
2k1k2/n

}
→ 1. (3)

By (3) and the fact that P(Ω1)→ 1, the event

Ω2 :=

{ ∑
i∈S,j∈T

Zij ≥
c1εkk1
12
√
n

}
has asymptotic probability 1.

Now define

S̃ = {i ∈ {1, . . . , n} : uan+i ∈ U ∩K for some 0 ≤ a ≤ `− 1}
T̃ = {j ∈ {1, . . . , n} : wbn+j ∈W ∩K for some 0 ≤ b ≤ `− 1}

Also, define v(b) = (vbn+1, . . . , vbn+n)> for 0 ≤ b ≤ ` − 1, ṽsum =
∑

0≤b≤`−1 v
(b) and ṽ =

ṽsum/‖ṽsum‖2. By Lemma 6, we have ‖ṽsum‖∞ ≤ c2k−1/21 with asymptotic probability 1 for some
c2 depending on β only. Hence ‖ṽsum‖2 ≤ c2. Thus, by Cauchy–Schwarz inequality, we have with
asymptotic probability 1,

‖X̃S̃∗ṽ‖2 ≥ ‖ṽsum‖
−1
2 (#S̃)−1/2‖X̃S̃∗ṽsum‖1

Since

X̃S̃∗ṽsum = `−1
( ∑
0≤a,b<`

Z
(a,b)
S∗

)( ∑
0≤b′<`

v(b)
)

= `−1
∑

0≤a,b<`

Z
(a,b)
S∗ v(b) + `−1

∑
0≤a,b,b′<`

b 6=b′

Z
(a,b)
S∗ v(b

′)

We can bound ‖X̃S̃∗ṽsum‖1 from below by the entrywise sums of the two terms above. The en-
trywise sum of the first term can be rewritten as `−1

∑
i∈S,j∈T Zij , which by (3) is bounded from

below by c3εk
`
√
n

with asymptotic probability 1. The second term has entries with nonnegative means,
hence another application of the Hoeffding’s inequality shows that its contribution will be of smaller
order than the first term with high probability. To summarise, we have that

‖X̃S̃∗ṽ‖2 ≥
c3εk

`
√
n
.

with asymptotic probability 1. On the other hand, the submatrix X̃S̃c∗ has independent and iden-
tically distributed entries. By Vershynin (2012, Lemma 5.9), for i ∈ S̃c and 1 ≤ j ≤ n,
X̃ij = `−1

∑`−1
a,b=0 Z

(a,b)
an+i,bn+j is a centred sub-Gaussian random variable with sub-Gaussian pa-

rameter σ/
√
n and variance 1/n. Let X̃i denote the ith row vector of the matrix X̃ , then conditional

on T̃ , we have that X̃>i ṽ is also a centred sub-Gaussian random variable with parameter σ/
√
n and

variance 1/n. Using Lemma 5, we have

P
(
‖X̃Sc∗ṽ‖22 −

n−#S̃

n
≤ −

√
log n

n−#S̃

)
≤ exp

{
− log n

64σ4

}
→ 0.
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Since #S̃ ≤ k2 with asymptotic probability 1, the event

Ω3 :=

{
‖X̃S̃c∗ṽ‖

2
2 ≥ 1− k2

n
−
√

2 log n

n

}
has asymptotic probability 1. Finally, since X̃ṽ = (X̃S̃∗ṽ, X̃S̃c∗v)>, on Ω2 ∩ Ω3,

‖X̃ṽ‖22 = ‖X̃S̃∗ṽ‖
2
2 + ‖X̃S̃c∗v‖

2
2 ≥ 1 +

c23ε
2k2

`2n
− k2

n
−
√

2 log n

n
.

The right hand side is at least 1+ck2/(n`2) for some absolute positive constant c for all large values
of n. This verifies (1) and concludes the proof.

Lemma 1. Let G be a graph on m vertices and K a κ-subset of V (G), such that the edge density
of G restricted to K is at least 1/2 + ε. Let n, p be integers less than m/2. Choose u1, . . . , un and
w1, . . . , wp independently at random without replacement from V (G). Denote U = {u1, . . . , un}
and W = {w1, . . . , wp}. Define NU,W ;K to be the number of edges with two endpoints in U and
W respectively. Then for m,n, p, κ sufficiently large.

P
{∣∣∣∣#U ∩K − nκ

m

∣∣∣∣ ≥ ε

8

nκ

m

}
≤ 64m

ε2nκ
,

P
{∣∣∣∣#W ∩K − pκ

m

∣∣∣∣ ≥ ε

8

pκ

m

}
≤ 64m

ε2pκ
,

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 16m(pκ+ nκ+m)

ε2npκ2
.

Proof. The cardinality of U ∩K has HyperGeom(m,κ, n) distribution. Hence

E(#U ∩K) =
nκ

m
and var(#U ∩K) = n

κ

m

m− κ
m

m− n
m− 1

≤ nκ

m
.

The first inequality in the lemma now follows from an application of Chebyshev’s inequality. A
similar argument establishes the second inequality. For the final inequality in the lemma, we have
that for κ sufficiently large,

E(NU,W ;K) =
∑
u∈K

∑
w∈K

P(u ∈ U,w ∈W )1{u ∼ w}

=
np

m(m− 1)

∑
u∈K

∑
w∈K

1{u ∼ w} ≥
(1

2
+ ε
)npκ(κ− 1)

m(m− 1)
≥
(1

2
+
ε

2

)npκ2
m2

.

We then compute the variance of NU,W ;K by

var(NU,W ;K) = cov

(∑
u∈K

∑
w∈K

1{u ∈ U,w ∈W,u ∼ w},
∑
u′∈K

∑
w′∈K

1{u′ ∈ U,w′ ∈W,u′ ∼ w′}
)

=
∑

u,w,u′,w′∈K
cov
(
1{u ∈ U,w ∈W,u ∼ w},1{u′ ∈ U,w′ ∈W,u′ ∼ w′}

)
=: I + II + III + IV,

where the four terms I, II, III and IV handle sums over subsets of indices {(u,w, u′, w′) ∈ K4 : u 6=
u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 : u = u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 : u 6= u′, w = w′} and
{(u,w, u′, w′) ∈ K4 : u = u′, w = w′} respectively.

We bound the four terms separately. For the first term, we have

I =
∑

u,u′,w,w′ distinct

{
P(u, u′ ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u′ ∈ U,w′ ∈W )

}
1{v ∼ w}1{u′ ∼ w′}

=
∑

u,u′,w,w′ distinct

{
n(n− 1)p(p− 1)

m(m− 1)(m− 2)(m− 3)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u′ ∼ w′}.

4



When m > max(2n, 2p), the term in bracket above is non-positive, hence I ≤ 0. For the second
term, we get that

II =
∑

u,w,w′ distinct

{
P(u ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u ∈ U,w′ ∈W )

}
1{u ∼ w}1{u′ ∼ w′}

=
∑

u,w,w′ distinct

{
np(p− 1)

m(m− 1)(m− 2)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u ∼ w′}

≤ np(p− 1)

m(m− 1)(m− 2)

∑
u,w,w′ distinct

1{u ∼ w}1{u ∼ w′} ≤ np2κ3

m3
.

Similarly, we have

III ≤ n(n− 1)pκ(κ− 1)(κ− 2)

m(m− 1)(m− 2)
≤ n2pκ3

m3
.

And finally,

IV =
∑

u,w distinct

{
P(u ∈ U,w ∈W )− P(u ∈ U,w ∈W )2

}
1{u ∼ w} ≤ npκ(κ− 1)

m(m− 1)
≤ npκ2

m2
.

Sum up the four terms, we get that

var(NU,W ;K) ≤ npκ2

m2

(
pκ

m
+
nκ

m
+ 1

)
.

By Chebyshev’s inequality, we get that

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 16m(pκ+ nκ+m)

ε2npκ2
,

as desired.

B Auxiliary Results

Proof of Proposition 1. Let Xi denote the ith row vector of X . Then for any fixed u ∈ Sp(k),

Eeλ(X
>
i u) =

∏
1≤j≤p

EeλXijuj ≤
∏
j

eλ
2u2
j/(2σ

2n) = eλ
2/(2σ2n).

Apply Lemma 5 to ‖Xu‖22 − 1 = n−1
∑n
i=1

{
(
√
nX>i u)2 − E(

√
nX>i u)2

}
, and use the fact that

θ/(8σ2) ≤ 1, we have

P
(
1− θ ≤ ‖Xu‖22 ≤ 1 + θ

)
≥ 1− 2e−nθ

2/(64σ4).

We claim that there is a set N of cardinality at most
(
p
k

)
9k such that

sup
u∈Sp(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ 2 sup

u∈N

∣∣‖Xu‖22 − 1
∣∣ (4)

Given (4), by union bound, we have

P(X ∈ RIP(k, θ)) = P
(

sup
u∈Sp(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ θ) ≥ P

(
sup
u∈N

∣∣‖Xu‖22 − 1
∣∣ ≤ θ/2)

≥ 1− 2

(
p

k

)
9ke−nθ

2/(256σ4) ≥ 1− 2 exp

{
k log

(
9ep

k

)
− nθ2

256σ4

}
,

as desired. It remains to verify Claim (4). For any cardinality k subset J ⊆ {1, . . . , p}, let BJ =
{u ∈ Sp(k) : uJc = 0}. Each BJ contains a 1/4-net, NJ , of cardinality at most 9k (Vershynin,
2012, Lemma 5.2). ThenN := ∪JNJ form a 1/4-net for Sp(k). Define uJ ∈ argmaxu∈BJ‖Xu‖

2

5



and let vJ be an element in NJ closest in Euclidean distance to uJ . Define A := X>X − Ip. We
have

|u>J AuJ | ≤ |v>J AvJ |+ |(uJ − vJ)>AvJ |+ |u>J A(uJ − vJ)| ≤ max
u∈NI

|u>Au|+ 1

2
sup

u∈Sp(k)
|u>Au|.

Hence
sup

u∈Sp(k)
|u>Au| ≤ 2 max

u∈N
|u>Au|,

which verifies the claim.

Proof of Proposition 2. By definition, ‖X>X − Ip‖op,k ≤ θ is equivalent to X ∈ RIPn,p(k, θ).
Moreover, by Proposition 1, X ∈ RIPn,p(k, θ) with probability converging to 1, under Q̃⊗(n×p).
The certifier hence satisfies the two desired properties.

Proof of Proposition 3. The proposed certifier is clearly polynomial time computable (it has time
complexity O(np2)). To verify that it is a certifier, we check that (i) ψ−1n (1) ⊆ RIPn,p(k, θ) and
(ii) lim infn→∞ Q̃⊗(n×p)(ψ−1n (1)) > 2/3.

For (i), on the event ‖X>X − Ip‖∞ ≤ 14σ2
√

log p
n , for any index set T ∈ {1, . . . , p} of cardinality

k, we have ‖X>∗TX∗T − Ik‖∞ ≤ 14σ2
√

log p
n , which implies that

‖X>∗TX∗T − Ik‖op ≤ 14σ2k

√
log p

n
≤ θ

For (ii), let Yn ∼ χ2
n. Using Lemma 5 and the fact that for any A ∈ Rp×p

‖A‖∞ = sup
S⊆{1,...,p},#S=2

‖ASS‖∞ ≤ sup
S⊆{1,...,p},#S=2

‖ASS‖op = ‖A‖op,2

we get

P
{
‖X>X − Ip‖∞ ≤ 14σ2

√
log p

n

}
≥ P

{
sup

u∈Sp(2)

∣∣‖Xu‖22 − 1
∣∣ ≤ 14σ2

√
log p

n

}
≥ 1− 2

(
p

2

)
92 exp

{
− n

256σ4

196σ4 log p

n

}
≥ 1− 81p2 exp{−3 log p/4} → 1.

as desired.

Lemma 2. Let Z be a non-negative random variable and r ≥ 2, then

E(Zr) ≥ E(|Z − EZ|r).

In other words, centring a nonnegative random variable shrinks its second or higher absolute mo-
ments.

Proof. Let µ := E(Z) and define Y = Z−µ. Let P denote the probability measure on R associated
with random variable Y . Hence

∫
[−µ,∞)

y dP (y) = 0. Without loss of generality, we may assume
that Z is not a point mass. Then

∫
[−µ,0](−y) dP (y) =

∫
(0,∞)

y dP (y) = A for some A > 0. For
any measureable function f : R→ [0,∞), we may write

A

∫
[−µ,∞)

f(y) dP (y) =

∫
[−µ,0]

(−v) dP (v)

∫
(0,∞)

f(u) dP (u) +

∫
(0,∞)

u dP (u)

∫
[−µ,0]

f(v)dP (v)

=

∫
u∈(0,∞)

∫
v∈[−µ,0]

(
u

u− v
f(v)− v

u− v
f(u)

)
(u− v) dP (v) dP (u).

(5)
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Let (U, V ) be a bivariate random vector having probability measure

1

A
(u− v)1(0,∞)(u)1[−µ,0](v) dP (u) dP (v)

on R2 (that this is a probability measure follows from substituting f(y) ≡ 1 in (5)). Then (5) can be
rewritten as

E
{
f(Y )

}
= E

{
U

U − V
f(V )− V

U − V
f(U)

}
.

Now consider choosing f to be f1(y) = |y|r and f2(y) = (y + µ)r respectively in the above
equation. Note that for u ∈ (0,∞) and v ∈ [−µ, 0] and r ≥ 2, we always have

uf2(v)− vf2(u) ≥ −vf2(u) ≥ −v(u− v)r ≥ (−v)ru+ (−v)ur ≥ uf1(v)− vf1(u).

Therefore,

E(|Y |m) = E
{

U

U − V
f1(V )− V

U − V
f1(U)

}
≤ E

{
U

U − V
f2(V )− V

U − V
f2(U)

}
= E(|Y + µ|m),

as desired.

Lemma 3. Suppose X is a sub-Gaussian random variable with parameter σ and median ξ. Let
X+ = X | X ≥ ξ and X− = X | X < ξ. Then X+ − EX+ and X− − EX− are both
sub-Gaussian with parameters are most cσ for some absolute constant c.

Proof. By Vershynin (2012, Lemma 5.5), X is sub-Gaussian with parameter σ implies that
(E|X|p)1/p ≤ c1σ

√
p for some absolute constant c1. Hence by Lemma 2, we have

E
(∣∣X+ − EX+

∣∣p)1/p ≤ (E∣∣X+
∣∣p)1/p = 2

(
E
∣∣X1{X ≥ ξ}∣∣p)1/p ≤ 2c1σ

√
p.

Using Vershynin (2012, Lemma 5.5) again, we have thatX+−EX+ is sub-Gaussian with parameter
at most cσ for some absolute constant c. A similar argument holds for X− − EX−.

Lemma 4. Suppose X is a random variable satisfying EeλX ≤ eσ
2λ2/2 for all λ ∈ R. Define

Y = X2 − EX2. Then EeλY ≤ e16σ4λ2

for all |λ| ≤ 1
4σ2 .

Proof. By Markov’s inequality,

P(|X| ≥ t) = P(X ≥ t)+P(−X ≥ t) ≤ e−t
2/σ2

E
(
etX/σ

2)
+e−t

2/σ2

E
(
e−tX/σ

2)
≤ 2e−t

2/(2σ2).

From Lemma 2, for r ≥ 2

E(|Y |r) ≤ E(|X|2r) =

∫ ∞
0

P(|X| ≥ t)(2r)t2r−1 dt ≤
∫ ∞
0

4rt2r−1e−t
2/(2σ2) dt = 2(2σ2)rΓ(r+1).

Consequently, if |2σ2λ| ≤ 1/2, then

EeλY =

∞∑
r=0

λrEY r

r!
≤ 1 + 2

∞∑
r=2

(2σ2λ)r ≤ 1 + 16σ4λ2 ≤ e16σ
4λ2

,

as desired.

Lemma 5. LetX1, X2, . . . , Xn be independent sub-Gaussian random variables with sub-Gaussian
parameters at most σ. Let Yi := X2

i − EX2
i . Then

P
( n∑
i=1

Yi ≥ θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}

P
( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
− θ2

64nσ4

}
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Proof. Using Markov’s inequality, we have

P
( n∑
i=1

Yi ≥ θ
)

= P
(
eλ

∑
i Yi ≥ eλθ

)
≤ e−λθ

∏
i

EeλYi .

Set λ = θ
32nσ4 ∧ 1

4σ2 . By Lemma 4, we have

P
( n∑
i=1

Yi ≥ θ
)
≤ e−λθ+16λ2nσ4

≤ e−λθ/2,

which establishes the first desired inequality. Applying the same argument with −Yi in place of Yi
we get

P
( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}
. (6)

Taylor expand the moment generating function of Xi around 0, we have EX2
i ≤ σ2. Hence we may

assume θ ≤ nσ2. Then we have
θ2

64nσ4
<

θ

8σ2
,

which together with (6) implies the desired result.

Lemma 6. Suppose n` balls are arranged in an array of n rows and ` columns and k balls
(k < n) are chosen uniformly at random. Let Vi be the number of chosen balls in row i and
V = (V1, . . . , Vn)>. Then

P
(
‖V ‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ 1

k2
.

Moreover, if k ≤ nγ for some γ < 1, then

P
(
‖V ‖∞ ≥ a

)
≤ n1−a(1−γ)

(
1− n−(1−γ)

)
.

Proof. Let Ui be the number of balls chosen in row i when balls are drawn with replacement from
the array and U = (U1, . . . , Un)>. Then ‖V ‖0 is stochastically larger than ‖U‖0 and ‖V ‖∞ is
stochastically smaller than ‖U‖∞. So it suffices to show the desired inequalities with U replacing
V . In the following argument, we consider only drawing with replacement.

Let X = {e1, . . . , en} where ei denotes the ith standard basis vector in Rn. For 1 ≤ r ≤ k, let Xr

be uniformly distributed in X . Then U d
=
∑k
r=1Xr. We note that changing the value of any of the

Xr affects the value of ‖U‖0 by at most 1. By McDiarmid’s inequality (McDiarmid, 1989), we have
that for any t > 0,

P
(
‖U‖0 − E‖U‖0 ≤ −t

)
≤ e− 2t2

k . (7)
For 1 ≤ i ≤ n. Define Ji = 1{no ball is chosen in row i}, then

E‖U‖0 = n−
n∑
i=1

EJi = n− n(1− 1/n)k ≥ k
(

1− k

2n

)
.

Thus, together with (7), we have

P
(
‖U‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ P

(
‖U‖0 − E‖U‖0 ≤ −

√
k log k

)
≤ e−2 log k = k−2,

as desired. For the second inequality,

we have by union bound that

P(‖U‖∞ ≥ a) ≤ nP(U1 ≥ a) = n

k∑
s=a

(
k

s

)
n−s

≤ n
∞∑
s=a

(k/n)s = n
(k/n)a

1− k/n
≤ n1−a(1−γ)(1− n−(1−γ))−1,

as desired.
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