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Appendix A Proofs of Propositions

Proof of Proposition 3.1
Noting the assumption that Ei < F < Ej, we have a′ = − (F−E1)

F−E2
> 0, and b′ = E1−E2

F−E2
> 0.

Recall also the assumption that p′ < 0, p′′ ≤ 0, c′i > 0, and c′′i ≥ 0. Let m∗(g1) denote the
left-hand side of Eq. (6). We first calculate the derivative of m∗(g1):

m∗′(g1) = p′b′ − c′′1 − (E1 − F )f ′

= p′b′ − c′′1 −
(E1 − F )

E2 − F

(
p′b′ − c′′2a′

)
< 0.

(A-1)

Thus, m∗(g1) is strictly decreasing, and g∗1, which is a solution to m∗(g1) = 0 (or Eq. (6)),
is unique if an interior solution exists. Next, let mc(g1) denote the left-hand-side of Eq.
(10) and calculate the derivative as follows:

mc′(g1) = p′b′ + p′ + g1p
′′b′ − c′′1 − (E1 − F )h′

= p′b′ + p′ + g1p
′′b′ − c′′1 −

(E1 − F )

E2 − F

(
p′b′ + ap′′b′ + p′a′ − c′′2a′

)
< 0.

(A-2)

Hence, mc(g1) is strictly decreasing, and gc1, which is a solution for mc(g1) = 0 (or Eq.(10)),
is unique if an interior solution exists. We now compare g∗1 and gc1 by calculating the
following:

mc(g1)−m∗(g1) = p′g1 − (h− f)(E1 − F )

= p′g1 −
(E1 − F )

E2 − F
ap′

< 0.

(A-3)
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Since mc(g1) < m∗(g1), we obtain gc1 < g∗1. We then compare gc1 and gs1 with the assump-
tion of interior solutions by calculating the following:

ms(g1)−mc(g1) = g1(b′ − 1)p′ − (E1 − F )g1h
′

= −(E1 − F )

E2 − F

(
p′ + p′b′ + ap′′b′ + p′a′ − c′′2a′

)
g1

< 0.

(A-4)

It follows from ms(g1) < mc(g1) that gs1 < gc1 holds for any interior solutions. We, thus,
obtain gs1 < gc1 < g∗1. Since a′ > 0, g2 = a(g1) is strictly increasing. We, thus, have
gs2 < gc2 < g∗2. 2

Proof of Proposition 3.2
It is straightforward from Proposition 3.1 that gs < gc < g∗. Since p′ < 0, p(g) is strictly
decreasing. Hence, ps > pc > p∗ holds. 2

Proof of Proposition 3.3
From Eq. (2), e = E1g1 + E2g2 = Fg. Hence, e, which is a function of g, is strictly
increasing since e′ = F > 0. It follows from this and Proposition 3.2 that es < ec < e∗. 2

Appendix B Nomenclature

Indices and Sets

Γ: upper-level decision variables
Ξ: lower-level primal decision variables
Ψ: lower-level dual variables
Φ: decision variables for MILP
i ∈ I: power producers
s: strategic producer index
j ∈ J : non-strategic producers1

k ∈ K: discrete generation level
` ∈ L: transmission lines
n′, n ∈ N : power network nodes
u′, u ∈ Un,i: generation units of producer i ∈ I at network node n ∈ N

Parameters

Bn,n′ : element (n, n′) of node susceptance matrix, where n, n′ ∈ N (1/Ω)
Cn,i,u: generation cost of unit u ∈ Un,i from producer i ∈ I at node n ∈ N ($/MW)
Dint
n : intercept of linear inverse demand function at node n ∈ N ($/MW)

Dslp
n : slope of linear inverse demand function at node n ∈ N ($/MW2)

En,i,u: CO2 emission rate of unit u ∈ Un,i from producer i ∈ I at node n ∈ N (t/MWh)
F : regulated CO2 emissions rate under performance (rate)-based policy (t/MW)
F : regulated CO2 emissions cap under mass-based policy (t)
Gn,i,u: maximum generation capacity of unit u ∈ Un,i from producer i ∈ I at node n ∈ N
(MW)
H`,n: element (`, n) of network transfer matrix, where ` ∈ L and n ∈ N (1/Ω)

1J ∩ {s} = ∅, J ∪ {s} = I
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K`: maximum capacity of power line ` ∈ L (MW)
Gn,s,u,k: discrete generation level k ∈ K of strategic producer’s unit u ∈ Un,s located at
node n ∈ N (MW)
En,s,u,k: discrete CO2 emissions associated with discrete generation level k ∈ K of strate-
gic producer’s unit u ∈ Un,i located at node n ∈ N (t)

Mλ,Mp,My,M,M, M̌, M̂, M̃ ,M : large constants used in disjunctive constraints and bi-
nary expansion

Primal Variables

gn,i,u: generation at node n ∈ N by producer i ∈ I using unit u ∈ Un,i (MW)
dn: consumption at node n ∈ N (MW)
vn: voltage angle at node n ∈ N (rad)
yn,s,u,k: strategic generator’s electricity sales revenue at node n ∈ N using unit u ∈ Un,s
at generation level k ∈ K ($)
zn,s,u,k: strategic generator’s CO2 permit revenue (or cost) at node n ∈ N using unit
u ∈ Un,s at generation level k ∈ K ($)
qyn,s,u,k: auxiliary variable to linearize the strategic generator’s objective function with
respect to electricity sales at node n ∈ N using unit u ∈ Un,s at generation level k ∈ K
pn,s,u,k: auxiliary variable used to associate CO2 permit price for the output level of pro-
ducer at node n ∈ N using unit u ∈ Un,s at generation level k ∈ K ($/t)

Dual Variables

βn,i,u: shadow price on generation capacity at node n ∈ N for generation unit u ∈ Un,i of
producer i ∈ I ($/MW)
µ`, µ`: shadow prices on transmission capacity for transmission line ` ∈ L ($/MW)
λn: market-clearing price at node n ∈ N ($/MW)
ν: hub price ($/MW)
ρ: shadow price on emissions rate ($/t)

Integer Variables

qλn: auxiliary variable used to indicate whether market-clearing price at node n ∈ N is
positive
qn,s,u,k: auxiliary variable used to discretize the strategic generator’s electricity generation
at node n ∈ N using unit u ∈ Un,s at generation level k ∈ K
rn,j,u: auxiliary variable used to handle the Karush-Kuhn-Tucker (KKT) condition with
respect to non-strategic producer j ∈ J ’s generation at node n ∈ N using unit u ∈ Un,j
and gn,j,u
rn: auxiliary variable used to handle the KKT condition with respect to consumption at
node n ∈ N and dn
řn,j,u: auxiliary variable used to handle complementarity condition between generation
constraint of non-strategic producer j ∈ J ’s unit u ∈ Un,j located at node n ∈ N and
shadow price of generation capacity
r̂`: auxiliary variable used to handle the complementarity condition between transmission
line `’s capacity constraint and the shadow price in positive direction
r̃`: auxiliary variable used to handle the complementarity condition between transmission
line `’s capacity constraint and the shadow price in negative direction
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r: auxiliary variable used to handle the complementarity condition between the emissions
constraint and the CO2 price

Appendix C KKT Conditions for Lower-Level Equi-

librium Problem

0 ≤ gn,j,u ⊥ Dslp
n

∑
u′∈Un,j

gn,j,u′ + Cn,j,u + βn,j,u − λn + ρ (En,j,u − F ) ≥ 0,∀n,∀j,∀u ∈ Un,j

(C-5)

0 ≤ dn ⊥ −Dint
n +Dslp

n dn + λn ≥ 0,∀n (C-6)∑
`∈L

µ`H`,n −
∑
`∈L

µ
`
H`,n −

∑
n′∈N

(λn′ − ν)Bn′,n = 0 with vn u.r.s.,∀n (C-7)

0 ≤ βn,j,u ⊥ Gn,j,u − gn,j,u ≥ 0, ∀n,∀j,∀u ∈ Un,j (C-8)

0 ≤ µ` ⊥ K` −
∑
n∈N

H`,nvn ≥ 0 , ∀` (C-9)

0 ≤ µ
`
⊥ K` +

∑
n∈N

H`,nvn ≥ 0 , ∀` (C-10)

dn −
∑
i∈I

∑
u∈Un,i

gn,i,u +
∑
n′∈N

Bn,n′vn′ = 0 with λn u.r.s., ∀n (C-11)

∑
n∈N

∑
n′∈N

Bn,n′vn′ = 0 with ν u.r.s. (C-12)

0 ≤ ρ ⊥
∑
n∈N

∑
i∈I

∑
u∈Un,i

(F − En,i,u) gn,i,u ≥ 0 (C-13)

Appendix D MILP Reformulation

The complementarity conditions in Eqs. (C-5)–(C-6), (C-8)–(C-10), and (C-13) can be
converted to disjunctive constraints using sufficiently large constants (Fortuny-Amat and
McCarl, 1981; Gabriel and Leuthold, 2010). Another computational difficulty is the bilin-
ear terms, λngn,s,u and ρ (En,s,u − F ) gn,s,u, in Eq. (17a). We apply binary expansion to
linearize those bilinear terms (Barroso et al., 2006; Gabriel and Leuthold, 2010). Taking
discrete generation level k of strategic producer’s unit u ∈ Un,i located at node n ∈ N ,
i.e., Gn,s,u,k, we consider the following linearization.

yn,s,u,k =

{
λnGn,s,u,k if qn,s,u,k = qλn = 1
0 otherwise

(D-1)

zn,s,u,k =

{
ρ (En,s,u − F )Gn,s,u,k if qn,s,u,k = r = 1
0 otherwise

(D-2)

If generation level Gn,s,u,k is selected and power price λn is positive, then we have the
strategic generator’s electricity sales revenue, yn,s,u,k. Moreover, if generation level Gn,s,u,k

is selected and the CO2 allowance price ρ is positive, then we have strategic generator’s
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CO2 permit revenue (or cost), zn,s,u,k. Our formulation is an extension of Gabriel and
Leuthold (2010) in which one type of bilinear term was considered.

Maximize
Φ

∑
n∈N

∑
u∈Un,s

(∑
k∈K

yn,s,u,k−
∑
k∈K

zn,s,u,k − Cn,s,ugn,s,u

)
(D-3)

s.t. (C − 7), (C − 11), (C − 12)

0 ≤ λn ≤Mλqλn, ∀n (D-4)

gn,s,u =
∑
k∈K

qn,s,u,kGn,s,u,k, ∀n, ∀u ∈ Un,s (D-5)∑
k∈K

qn,s,u,k = 1, ∀n, ∀u ∈ Un,s (D-6)

qyn,s,u,k ≤ qλn, ∀n, ∀u ∈ Un,s, ∀k (D-7)

qyn,s,u,k ≤ qn,s,u,k, ∀n, ∀u ∈ Un,s, ∀k (D-8)

qn,s,u,k + qλn − 1 ≤ qyn,s,u,k, ∀n, ∀u ∈ Un,s, ∀k (D-9)

yn,s,u,k ≤ λnGn,s,u,k, ∀n, ∀u ∈ Un,s, ∀k (D-10)

0 ≤ yn,s,u,k ≤Myqyn,s,u,k, ∀n, ∀u ∈ Un,s, ∀k (D-11)

0 ≤ pn,s,u,k ≤Mpqn,s,u,k, ∀n, ∀u ∈ Un,s, ∀k (D-12)∑
k∈K

pn,s,u,k = ρ, ∀n, ∀u ∈ Un,s (D-13)

−
(
En,s,u,k − FGn,s,u,k

)
pn,s,u,k + zn,s,u,k ≥ 0, ∀n, ∀u ∈ Un,s, ∀k (D-14)

0 ≤ −Dint
n +Dslp

n dn + λn ≤Mrn, ∀n (D-15)

0 ≤ dn ≤M (1− rn) , ∀n (D-16)

0 ≤ Dslp
n

∑
u′∈Un,j

gn,j,u′ + Cn,j,u − λn + βn,j,u ≤Mrn,j,u, ∀n, j, u ∈ Un,j (D-17)

0 ≤ gn,j,u ≤M (1− rn,j,u) , ∀n, j, u ∈ Un,j (D-18)

0 ≤ K` −
∑
n

H`,nvn ≤ M̂ r̂`, ∀` (D-19)

0 ≤ µ` ≤ M̂ (1− r̂`) , ∀` (D-20)

0 ≤ K` +
∑
n

H`,nvn ≤ M̃ r̃`, ∀` (D-21)

0 ≤ µ
`
≤ M̃ (1− r̃`) , ∀` (D-22)

0 ≤ −gn,j,u +Gn,j,u ≤ M̌ řn,j,u, ∀n, j, u ∈ Un,j (D-23)

0 ≤ βn,j,u ≤ M̌ (1− řn,j,u) , ∀n, j, u ∈ Un,j (D-24)

0 ≤
∑
n∈N

∑
i∈I

∑
u∈Un,i

(F − En,i,u) gn,i,u ≤M(1− r) (D-25)

0 ≤ ρ ≤Mr (D-26)

r ∈ {0, 1}; rn ∈ {0, 1}, ∀n; rn,j,u ∈ {0, 1}, řn,j,u ∈ {0, 1}, ∀n, j, u ∈ Un,j;
r̂` ∈ {0, 1}, r̃` ∈ {0, 1} ∀` (D-27)

qλn ∈ {0, 1} ∀n; qn,s,u,k ∈ {0, 1}, qyn,s,u,k ∈ [0, 1] ∀n, ∀u ∈ Un,s, ∀k (D-28)
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where we define:
Φ = {dn, gn,i,u, vn, λn, ν, µ`, µ`, βn,j,u, ρ, r, rn, rn,j,u, řn,j,u, r̂`, r̃`, yn,s,u,k, zn,s,u,k, qn,s,u,k, q

λ
n,

qyn,s,u,k, pn,s,u,k}.
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