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Abstract  

Bone loss caused by stress shielding of metallic implants is a concern, as it can potentially lead to 

long-term implant failure. Surface coating and reducing structural stiffness of implants are two ways 

to improve bone ingrowth and osteointegration. Additive manufacturing, through selective laser 

sintering (SLS) or electron beam melting (EBM) of metallic alloys, can produce porous implants with 

bone ingrowth regions that enhance osteointegration and improve clinical outcomes. Histology of 

porous Ti6Al4V plugs of two pore sizes with and without electrochemically deposited hydroxyapatite 

coating, implanted in ovine condyles, showed that bone formation did not penetrate deep into the 

porous structure, whilst significantly increased bone growth along coated pore surfaces 

(osteointegration) was observed. Finite Element simulations, combining new algorithms to model 

bone ingrowth and the effect of surface modification on osteoconduction, were verified with the 

histology results. The results showed stress shielding of porous implants made from conventional 

titanium alloy due to material stiffness and implant geometry, limiting ingrowth and 

osteointegration. Simulations for reduced implant material stiffness predicted increased bone 

ingrowth. For low modulus Titanium-tantalum alloy (Ti-70%Ta), reduced stress shielding and 

enhanced bone ingrowth into the porous implant was found, leading to improved mechanical 

interlock. Algorithms predicted osteoconductive coating to promote both osteointegration and bone 

ingrowth into the inner pores when they were coated. These new Finite Element algorithms show 

that using implant materials with lower elastic modulus, osteoconductive coatings or improved 

implant design could lead to increased bone remodelling that optimises tissue regeneration, fulfilling 

the potential of enhanced porosity and complex implant designs made possible by additive layer 

manufacturing techniques. 

 

Keywords: osteointegration, osteoconduction, porous scaffold, implant design, finite element 

analysis, biomaterial coating  
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1. Introduction 

The treatment of patients with major bone loss, due to trauma or tumour, using traditional implant 

designs, is often difficult due to the limited quality and quantity of bone stock remaining [1, 2]. In 

segmental bone defects of the proximal femur, a massive implant is often used to replace the 

femoral metaphysis and part of the diaphysis. The physical demands on these implants are high, 

leading to aseptic loosening as the main mode of implant failure. In these cases, extracortical bony 

bridging and ingrowth, where bone grows from the transection site onto the surface of the implant 

to achieve osteointegration, improves the survivorship of implants at 10 years from 75 to 98 % [3]. 

Finite element analysis (FEA) showed that this improved bone ingrowth results in a reduction in 

fracture risk of the implant stem, and a more natural stress distribution to the bone [2, 4]. 

Bone ingrowth and osteointegration is a multifactorial process involving implant surface area, 

bioactivity of the substrate, and mechanical properties [5]. Titanium alloy (Ti6Al4V) is routinely used 

as an implant material due to its high fatigue strength, capacity for osteointegration, bio-inertness 

and corrosion resistance [6]. Recent advances in electron beam melting (EBM) and selective laser 

sintering (SLS) (additive manufacturing) have enabled the fabrication of porous implants using 

Ti6Al4V that can result in bone ingrowth of up to 56% [7, 8]. Porous structures have lower structural 

stiffness, reducing the mismatch between the implant and the adjacent bone [7, 9]. The reduction of 

overall structural stiffness of the implant improves the mechanical stimulus for bone regeneration 

and reduces the effect of stress shielding [10, 37]. Ti6Al4V has an elastic modulus that is 10 times 

higher than that of cortical bone and new porous, low modulus Titanium alloys which are now 

available, can potentially increase bone ingrowth further [9, 10]. 

Surface modification of implants using biomimetic materials improves biological response and bone-

implant fixation [11, 12], through preferential osteoblastic differentiation along the coated surfaces 

(osteoconduction). Usually these coatings are applied using a ‘line of site” process (plasma spraying), 

but in substantially porous structures, only the outer pore surfaces will be treated. An alternative 
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method is via solution based calcium phosphate coatings, but these have shown mixed results. The 

amount of bone ingrowth did not significantly change for mandibular defects [8], but did 

significantly increase in femoral diaphyseal defect implants [11]. The loading conditions are different 

for the two implant sites, suggesting that the contribution of surface modification to improve 

osteointegration may depend on the loading conditions, especially when porous additively 

manufactured scaffolds are used. Electrochemical coating of porous implant scaffolds, made using 

SLS with hydroxyapatite (HA), resulted in significantly increased bone ingrowth into implants [13, 

14]. Therefore, the contribution of surface coating combined with the geometry of the pores and the 

modulus of the material should be considered for the design or analyses of extensive porous 

implants made using additive manufacturing.  In order to reduce the reliance of testing in animals, 

predictive models are required. 

Static FEA models evaluate the performance of implants by assessing the mechanical environment 

for bone adaptation at the initial stage after surgery. However, the load carried by the bone 

increases with bone ingrowth, affecting the mechanical stimulus for further bone remodelling in the 

porous biomaterials [15]. In order to obtain information about the remodelling process, adaptive 

bone simulations are preferred, especially for the long-term performance of the implant [16, 17]. 

Moreover, these simulations can be used to determine the optimum implant design for each site, as 

they are application-specific [18]. Several methods have been developed to model the remodelling 

process, including the use of continuum damage mechanics, mechanoregulatory algorithms, daily 

stress, and adaptive elasticity theory. Strain energy density (SED) is commonly used as the 

remodelling stimulus, comparing the stimulus value against a reference value, and is directly 

correlated with changes in bone density [19-21]. Changes in bone density around an implant have 

been predicted for internal remodelling [16, 22, 23] and are associated with changes in bone density 

rather than changes in bone shape. Bone ingrowth in porous implants has been modelled to predict 

remodelling at equilibrium state [17, 22, 24], but yield little information on the progression of bone 

formation associated with adaptive shape changes, which has been observed clinically as 
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extracortical bone formation adjacent to segmental prosthesis. Current algorithms based on SED are 

not able to predict the progression of bone ingrowth into substantially porous structures made by 

additive manufacturing. To predict the progression of external bone formation in segmental 

prostheses, a connectivity matrix was used to control the sequential laying down of new bone in a 

soft tissue envelope of elements (so called osteoconnectivity), around a grooved implant collar, 

giving improved time correspondence with clinical results [25]. However, the contribution of the 

presence of coating has not been modelled in porous or textured implants. The effect of pore size 

and material properties have not been optimised for bone ingrowth and osteointegration of 

substantially porous implants made by additive manufacturing. Furthermore, an in vivo study has 

shown that an implant design that is optimised by assuming the presence of osteointegration may 

not be valid, as the animal study showed only localised bone apposition along the uncoated implant 

surface [26, 27]. Bone ingrowth occurred throughout the coated implant, indicating the importance 

of combining the response to a surface that imparts bioactivity with the osteoconnectivity in an FE 

model. This shows the importance of developing a FEA model that can predict the amount of bone 

ingrowth and osteointegration. 

The main aim of this study was to understand how to achieve osteointegration and ingrowth in 

porous implants, and optimise them using HA coating, geometry (pore size), and material properties 

to maximise bone formation and osteointegration. This study quantified stress shielding and bone 

ingrowth based on implant design and material. The contribution of osteoconductive coating in 

increasing osteointegration and bone formation is modelled, by varying parameters of the 

osteoconnectivity algorithm of bone adaptation developed for extracortical bone formation, and 

verifying them with data observed in the experimental studies. The contribution of coating has not 

been modelled previously for porous or textured implants. The use of the osteoconnectivity model is 

suitable to model bone formation in the critical size defect model as bone growth is largely 

intramembranous, similar to extracortical bone formation in a segmental prosthesis. To achieve 

these aims, the remodelling results predicted by the FEA models were verified with histology results 
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of Ti6Al4V plugs of two pore sizes implanted into trabecular bone. In the FEA model, the material 

properties of the implant and presence of coating were varied to determine if the implant 

performance could be improved. 

2. Materials and methods 

2.1. Animal model 

Porous SLS scaffolds with pore sizes of 700 and 1500 mm were designed, manufactured, and tested 

in vivo in a mature ovine femoral condyle critical-size defect model (Fig. 1) as part of a larger study of 

the parameters that affect bone ingrowth. The ingrowth of bone with and without the presence of 

hydroxyapatite coatings was investigated [13]. The two pore sizes were incorporated into one 

implant, with 8 mm diameter and 14.5 mm length. Bilateral critical size defects were created in the 

medial femoral condyles of both the right and left hind limbs of 6 sheep. The implants were press-

fitted, the remaining tissues and periosteum repaired and the sheep allowed to recover with 

unrestricted weight bearing. Animal care and all procedures were carried out in accordance to the 

UK Animals (Scientific Procedures) Act 1986, under personal and project licences from the UK Home 

Office following review by the local animal welfare and ethical research committee. 

The implants were retrieved for histological analysis after 6 weeks. Excess soft tissue was removed 

and fixed in formalin before the specimens were dehydrated. The plug implants were then 

embedded in hard grade acrylic resin and sectioned longitudinally to obtain thin sections 

approximately 80 mm thick to yield a total of 6 slices each for the coated and uncoated implants. The 

sections were stained in Toluidine Blue and Paragon to identify soft tissue and bone respectively. 

Stained slides were imaged under a light microscope (Axioskop, Carl Zeiss, Welwyn Garden City, UK). 

The surface integration was determined by importing the images into ImageJ (v1.51, National 

Institute of Health, Bethesda, USA), and the length of implant with direct bone contact measured 

and normalised by the total implant surface length, using thresholding and freeform methods. 
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Backscattered scanning electron microscopy (BSEM) was used to examine the structure of bone 

formed (JEOL 3500C, Tokyo, Japan). 

 

Fig. 1. (A) Radiographs of the implanted porous scaffolds (14.5 mm length, 8 mm diameter). (B) 3D 
solid models. (C) Transverse cuts taken across the plates; dimensions in mm. 

2.2. Finite element analysis 

Separate FEA models of the implant with the two pore sizes were developed with the plug implanted 

in trabecular bone as in the experiments. Using rotational symmetry, geometry, and repeating 

patterns, only a quarter slice was simulated to reduce computational cost (Fig. 2). The 1500 mm pore 

size quarter model had dimensions of 5 mm x 5 mm x 2.25 mm and was loaded by a uniform 

diametric pressure load of 200 N, corresponding to the peak axial force of 2.25 body weight (BW) in 

ovine stifle [28]. Axial loading was applied, as in vivo data combined with musculoskeletal modelling 

conducted in ovine stifle joint showed that the bending components accounted for less than 20% of 

the axial force [28], and would be negligible in the condyles of the knees where normal force is 

predominately transmitted. The 700 mm pore size model measured 5 mm x 5 mm x 1 mm. A 88.9 N 

load was used for the 700mm model, scaled according to the width. The 1500 and 700 mm models 
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have porosities of 70% and 75% respectively. Tied nodal contact was assumed throughout the 

model. The bone and the titanium plug were modelled with isotropic homogenous material 

properties (Bone: Elastic modulus E = 1.5 GPa, Poisson’s ratio n = 0.34; Ti6Al4V: 110 GPa, n = 0.34) 

[28]. Soft tissue of uniform initial modulus (0.5 GPa,n = 0.3) was assumed to fill the volume within 

the plug [19]. Static stress analysis was conducted to investigate mesh convergence. The geometries 

were meshed using linear tetrahedral elements for the soft tissue and linear hybrid mesh for bone 

and titanium (Fig. 2B) for improved geometrical conformity. The solution converged for mesh sizes 

of 0.06 mm and 0.03 mm (≤5 % stress change at fillet and ≤1 % for soft tissue), leading to 1.33 

million and 2.78 million elements for the 1500 and 700 mm plug models respectively. 

 

Fig. 2. (A) Schematic representation of the quarter FEA model of 1500 mm plugΣ прх Ŏǳǘ ǎƘƻǿƴ. (B) 

FEA ƳŜǎƘ ƻŦ Ŏǳǘ ǘŀƪŜƴ ŀǘ прх ŦǊƻƳ ǘƘŜ ƭƻŀŘ ŘƛǊŜŎǘƛƻƴ ŦƻǊ мрлл ŀƴŘ тлл mm plug. Pores are indicated 
in orange and refer to all connected soft tissue space within the implant. Plates and struts run 
parallel and perpendicular to the loading direction respectively.   
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A parametric study was conducted by varying the material properties of the plug models to 

investigate bone remodelling for different implant materials. Ti-70% Ta alloy (67 GPa) [29], and PEEK 

(3.8 GPa) were selected as reference values; additionally material properties were varied in the 

model using 50 (Ti-Ni), 40, and 25 GPa. The Poisson’s ratio was defined as 0.34 for all materials 

except as 0.38 for PEEK. 

2.3. Bone remodelling simulation 

The enhanced 3D bone formation and adaptation model, termed osteoconnectivity, was used to 

predict the changes in bone formation and understand the growth process [25]. The algorithm was 

developed for intramembranous bone growth, which is applicable for the critical size defect ovine 

model. The model enforces that remodelling of bone occurs only adjacent to existing bone and 

subsequent remodelling of bone occurs next to elements that have begun adapting at a previous 

time step. This concept, named here as connectivity, is different from the standard adaptive 

elasticity theory and most other mechanotransduction algorithms that permit all elements to adapt 

concurrently or add elements at the periosteal surface. The osteoconnectvity model is based on the 

adaptive elasticity theory, where bone adaptation is driven by strain energy density (SED) per unit 

mass [19, 30]: 

ρ Ὧ ὛὉὈ ρ  Ὧ (1)

 

A reference value of 0.004 Jg-1 was used for k, the critical SED. The dead zone where no remodelling 

occurs was assigned a 10% bandwidth for d [19]. When the SED is lower or higher than the dead 

zone, the tissue density changes via resorption or apposition respectively. The change in density was 

computed using Eq. 2, and used to update the stiffness matrix using a density-modulus relationship 

(E = 3790r3) [31]. The remodelling rate B was set as 1gcm-3 based on literature data [19]. An upper 

threshold for bone formation rcb, was set as corresponding to 12GPa, the average elastic modulus of 

the trabeculae [32]. Additionally, a conductivity algorithm was developed and used to model the 
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effect of osteoconduction in coated implants, by modifying the remodelling law to preferentially 

allow soft tissues in contact with the coated implant surfaces to form bone. The levels of tissue 

strain required for bone to form was reduced for the elements adjacent to the implant surface. k 

was set at 0 Jg-1 with no bandwidth (d = 0), and a remodelling rate B of 5 gcm-3 was assumed, to 

model the increased bone formation due to the osteoconductive coating, lowering the threshold 

SED and increasing the remodelling rate: 

Ὠ”

Ὠὸ
ὄὛὉὈὯ     π ” ”  

(2) 

 

The simulations were conducted using an initial fixed, non-dimensional time step of 0.1 computer 

time units (ctu) until the number of remodelling elements remained unchanged, at time = 50 ctu. 

Thereafter, adaptive stepping at 1.2x of the previous step was used, for computational efficiency, as 

the rate of change slows asymptotically towards equilibrium, e.g. bone density increased by 6.4% 

from 100 ctu to 1000 ctu. For humans it was found previously that a ctu of 4.0 corresponds 

approximately to 1 year [25]. However, the time correspondence for sheep has not been established 

in literature and for this study, histology results were only available at one time point, after 6 weeks. 

The iterative simulations were conducted using the FEA software MSC.Marc 2017.0 (MSC Software 

Corporation, Santa Ana, CA, USA). 

2.4. Verification of FEA models 

The FEA predictions for two models with different pore sizes, with and without osteoconduction, 

were compared with histology results for the experiments. A threshold was applied to display areas 

of bone with a minimum tissue density of 1 GPa [32]. Quarter slices of the FEA models were created 

by varying the angle of the cut in 10° increments (Fig. 2A), to replicate the histological cuts. For each 

histology slice, two FEA cuts with the closest plug pattern were selected. The FEA slices were 

imported into ImageJ, and converted to greyscale images for analysis. The extent of osteointegration 

for each slice was computed by measuring the length of the implant in contact with bone, 
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normalised by the total inner surface perimeter of the implant. The mean value was validated with 

the results reported by Mumith et al. [13]. Standard deviations were calculated using OriginPro 2016 

(OriginLab Corp., Northampton, MA). 

3. Results 

3.1. Bone remodelling predictions 

The remodelling patterns predicted for the uncoated cases were similar for both pore sizes (Fig. 3A, 

B). In the uncoated cases, bone ingrowth was limited to the circumference, around the outer pores 

and struts. The bone ingrowth was highest on top of the implant (loading direction), and decreases 

towards the sides. For the coated implants, when osteoconduction, together with osteoconnectivity, 

was modelled, bone formation reached the centre of the implant, surrounding all the the struts 

forming a thin layer of bone over the surface of the porous implant (Fig. 3C, D). However, the 

remodelling pattern within the centre of the pores remained similar to the uncoated cases with 

limited bone ingrowth. The use of conductivity caused the volume of bone formation to increase 

from 34% and 23% to 45% and 38%, for the 1500 and 700 mm plug sizes respectively. The average 

apparent density of the soft tissue increased from 0.75 to 0.79 gcm-3 and 0.66 to 0.73 gcm-3 for the 

larger and smaller pores respectively. 
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Fig. 3. 3D view of bone remodelling in soft tissue scaffold at equilibrium, with plate and bone 

removed for visualisation. (A) 700mm plug size, uncoated. (B) 1500mm plug size, uncoated. (C) 700mm 

plug size, coated with osteoconductive material. (D) 1500mm plug coated with osteoconductive 
material. Insets show cuts across pore (soft tissue) centre, with the location of the struts marked in 
grey. 

Transverse cuts of the adaptive FEA models taken at 45⁰ show the progression with time of bone 

remodelling from the bone (Fig. 4). For the uncoated 700 mm implant (Fig. 4A), bone remodelling 

was restricted to the outer pore. All tissue in the outer pore was remodelling at 10 ctu. The highest 

density (12 GPa), representing bone, was at the edge of the plates, in contact with the existing bone, 

while the least remodelling occurred around the fillet of the struts. Remodelling continued beyond 

20 ctu until all the bone became fully dense. In the coated 700 mm model, remodelling and 

osteointegration of the outer pore occurred more rapidly than for the uncoated case at 10 ctu (Fig. 

4C), leading to higher bone density. At 20 ctu, bone formation had progressed to the inner pores, 

along the coated surface of the plates and webs of the inner struts. At equilibrium, osteointegration 
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had occurred along all the implant surfaces. Bone ingrowth within the inner pores was limited to the 

coated implant surface. 

For the uncoated 1500 mm model, the volume of bone formed and its density increased with time in 

the outer pore as it was not restricted by the location of the struts (Fig. 4B). At equilibrium, bone 

ingrowth just about reached the corner of the plates at the inner strut on the outer pore.  Bone 

ingrowth showed a density gradient, with decreasing modulus towards the strut, unlike the 

homogenous bone density in the 700 mm model. The bone ingrowth pattern was similar in the 

coated 1500 mm implant (Fig. 4D). However, bone formed on the top of the inner plate and the web 

at 10 ctu before remodelling occurred at the fillet. At 20 ctu, remodelling spread to the underside of 

the inner web and plate, but also to the outer plates.  At equilibrium, the elements adjacent to the 

coated implant have the highest densities. The main geometrical changes occurred by 36 ctu, and 

only changes in tissue density were observed thereafter. Increased bone growth was predicted for 

the FEA models that included osteoconductivity, where bone formed on the surface of struts deep 

within the porous implant. 
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Fig. 4Φ .ƻƴŜ ƛƴƎǊƻǿǘƘ ƛƴǘƻ прх ǘǊŀƴǎǾŜǊǎŜ ǎƭƛŎŜ ƻŦ ŀ ¢ƛс!ƭп± ƛƳǇƭŀƴǘ ǿƛǘƘ ǘƛƳŜΦ ό!ύ тллmm plug size, 

uncoated. (B) 1500mm plug size, uncoated. (C) 700mm plug size, coated with osteoconductive 

material. (D) 1500mm plug size, coated with osteoconductive material; grey: implant, white; soft 
tissue. 

3.2. Verification of finite element simulations 

Fig. 5 shows the qualitative comparison between the numerical results at equilibrium and the 

histology of the animal study.  For the 700 mm cases, bone formation was observed in the outer 

pores of the implant for both the experimental and FEA results of coated and uncoated implants 

(Fig. 5A, C). For the uncoated implant (Fig. 5A), no bone ingrowth was predicted for the inner pores, 

corresponding well with the histology result. The 700 mm model with osteoconduction showed a 

thin layer of bone growth localised along the struts with a high degree of osteointegration, with 

some variations but overall similar to the histology results (Fig. 5C). This agreed well with both the 

histology and the backscattered scanning electron microscopy (BSEM) result of a coated 700 mm 

implant. The BSEM image shows the pores of the scaffold partially filled with lamellar bone attached 

to the implant coating (Fig. 6). The histology and SEM results suggest a thicker layer of bone 
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formation at the surface of the coated implants of up to 220 mm compared to the FEA prediction of 

150 mm thickness. For the 1500 mm pore size, the simulations predicted a partial filling of the outer 

pore for both coated and uncoated cases, which appears slightly higher than observed from the 

histology results (Fig. 5B, D). The histology for the coated implant showed a layer of bone growth 

adjacent to the implant, which the conductivity model predicted well (Fig. 5D).  

 

Fig. 5. Comparison of bone ingrowth between histology and numerical results in (A) 700 mm plug size, 

uncoated, (B) 1500 mm plug size, uncoated, (C) 700 mm plug size, HA-coated, and (D) 1500 mm plug 
size, HA-coated. Bone and soft tissue are stained red and pink in the histological analysis respectively. 
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Fig. 6. Backscattered Scanning electron microscopy (BSEM) image of cross-section of retrieved, 

coated 700 mm porous plug. 

The extent of surface integration observed from the histology slices and predicted by the FEA 

simulations is compared in Fig. 7. From the histology results, similar levels of surface integration 

were found for both pore sizes of the uncoated implants at 10% and 11% for the 1500 and 700 mm 

implants respectively. Histology for the 1500 and 700 mm coated implants showed 75% and 80% of 

the pore surfaces osteointegrated respectively, which was significantly higher than the uncoated 

cases. No statistical significant difference between pore sizes was found. The FEA models predicted 

similar levels of bone growth of 19% and 23% of surface integration for the 1500 and 700mm 

uncoated plugs respectively, which is an over prediction by about 10%. For the coated models, the 

FEA results predicted a significantly higher amount of surface integration of 93% for the 1500 mm 

and 97% for the 700mm plug, approximately 15% higher than the histology results. 

 

Fig. 7. Comparison of the extent of surface integration between the histology (Exp) and simulation 
(FEA) results. Error bars represent standard deviation.  

3.3. Parametric variation of material properties 

Fig. 8 shows the extent of bone ingrowth at equilibrium for varying material properties (stiffness) of 

the implant. The change from Ti6Al4V (110 GPa, Fig. 8A) to uncoated Ti-70%Ta alloy (67 GPa, Fig. 8B) 

showed an increase in ingrowth volume for the 700 mm case from 23% to 59%, with additional bone 

formation concentrated around the plates. The web of the inner struts exhibited some 

osteointegration, but not at the fillets or on the underside of the first strut. For the 1500mm 
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uncoated model, the increase in osteointegration was limited to the outer pore, leading to an 

increase in ingrowth from 34% to 56%. A region without bone ingrowth can be seen just above the 

second strut. The inclusion of osteoconduction for the 67 GPa material increased bone formation to 

65% and 66% for the 700 and 1500 mm implants respectively. This corresponded to increased 

osteointegration along the coated surface, but there was additional ingrowth in the inner pore for 

the 1500 mm case (Fig. 8B). For an assumed implant material of 50 GPa stiffness (Ti-Ni), bone 

formation occurred in all pores, with additional ingrowth and denser bone compared to the Ti-

70%Ta alloy. However, osteointegration and bone formation were absent directly below the first 

layer of struts for the 700 mm case (Fig. 8C). Osteoconduction increased ingrowth by less than 4%, 

leading to 92% and 79% bone volume for the 700 and 1500 mm implants respectively. Similar 

remodelling patterns were observed for the 40GPa material, but with increased ingrowth (not 

shown). Full ingrowth of dense bone throughout the porous implant was observed for both the 

coated and uncoated cases for PEEK (3.8 GPa) (Fig. 8D) and a 25 GPa material (not shown). 

 

Fig. 8. Bone remodelling and osteointegration at equilibrium (1000 ctu) for different implant material 
properties (stiffness) and coating. (A) Ti6Al4V, 110GPa. (B) Ti-70%Ta, 67GPa. (C) Ni-Ti, 50GPa. (D) 
PEEK, 3.8GPa. 



18 
 

The remodelling curves for the 1500mm pore size show the change in average tissue density with 

computation time (Fig. 9). A decrease in the stiffness of the implant material increased the 

remodelling rate and led to higher average density. The amount and rate of bone formation was 

enhanced in the stiffer materials where osteoconductivity was applied, and led to a higher average 

tissue density at equilibrium. The contribution of the coating was largest for the two Titanium alloys 

as the final density increased by 5% to reach 0.79 and 0.92 gcm-3 for implants with material stiffness 

of 110 and 67 GPa respectively. Lowering the modulus decreased the contribution of 

osteoconduction. For 50 and 40 GPa materials, osteoconduction increased the average tissue 

density by 3% and 2% to reach 1.20 and 1.05 gcm-3 respectively. For the 25 GPa material, the tissue 

density converged to 1.41 gcm-3 at equilibrium for the uncoated case. The addition of 

osteoconduction increased the density by 0.6%. For PEEK, the tissue density saturated at 1.47 gcm-3 

for both the uncoated and coated cases, the upper limit set for bone density. 

 

Fig. 9. Change in average tissue density with time for different implant material properties (stiffness) 

and the influence of HA-coating (osteconductivity) for 1500 mm sized plugs. 

4. Discussion 

In this study, finite element simulations were combined with new algorithms to model bone 

ingrowth (osteoconnectivity) and the effect of surface modification on osteoconduction, in order to 

predict bone ingrowth into porous titanium implants. The numerical results were verified against 

histology from animal models, where bone ingrowth and osteointegration were measured. The 
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effect of an osteoconductive coating was to induce bone formation along the inner porous surface, 

but this only added marginally to the levels of bone ingrowth. There was an effect of the pore 

geometry on bone ingrowth and a more open pore structure adjacent to the original bone interface 

is advocated. 

Porous titanium alloys have recently been manufactured by foaming and sintering, producing 

interconnected pores and a complex surface topography to enhance bone ingrowth [33]. However, 

it is difficult to alter the size of the pores and optimise the geometry of the prosthesis with these 

materials [27]. The use of selective laser sintering in the manufacture of titanium alloy prostheses 

allows functionally graded porosity to be used in a single prosthesis. In order to provide the 

appropriate strength, these may be joined to solid metal made by the same process. However it is 

unclear if the rules associated with bone ingrowth on surfaces of conventional implants apply to 

implants which are substantially more porous. 

A recent method to design scaffolds utilised computed tomography (CT), mechanical testing, and 

statistical analysis to predict the effects of pore size, porosity, strut thickness, and topology on the 

elastic modulus and compressive yield strength of additively manufactured porous biomaterials [34]. 

Whilst this approach is extremely valuable to minimize the mismatch in the structural stiffness of the 

implant to the bone [7], it does not relate the porous structure to the level of bone ingrowth and 

osteointegration. At present, it is unclear if the shape and size of pores used to construct implants 

can be optimised for bone ingrowth, as the literature reports contradictory results. De Wild et al. 

[35] used 5 different lattice designs with pore sizes between 700 and 1300 mm and showed the 

maximum of bone ingrowth to be below 40% and not significantly different between the designs, in 

noncritical-sized defect bridging in calvarial bones of rabbits.  However, octet-truss structure was 

shown to cause more ingrowth than tetrahedron structures in canine femurs [7]. Moreover, an 

animal study has shown localised and limited bone ingrowth, demonstrating that it is insufficient to 
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assume the occurrence of osteointegration throughout the implant in the optimisation of design 

[27]. 

Histological analysis conducted on uncoated porous 700 and 1500 mm plugs implanted in ovine 

condylar defect models after 6 weeks showed the amount of osteointegration (at a level of 10% of 

the available surface) was similar and independent of pore size [13]. Osteointegration increased to 

above 75% when the implants were HA coated. The FEA models use SED as the driver for 

remodelling and were verified with the histology results, predicting similar amounts of 

osteointegration for the uncoated plugs for both pore sizes (Fig. 4). Modelling osteoconduction 

predicted a significant increase in osteointegration for the coated models, in line with the histology 

results. The simulated bone remodelling patterns were similar to the histology results with bone 

ingrowth limited to the outer pores for the uncoated cases, and osteointegration observed along the 

coated surfaces (Fig. 5). The FEA remodelling results showed limited bone ingrowth into inner pores, 

even when the implants were HA-coated. While the use of a biomimetic coating increased 

osteointegration significantly, ingrowth remained less than 50% and bone formation was localised 

around the coated struts (Fig. 6). These remodelling patterns are caused by stress shielding of the 

Ti6Al4V struts, which lowers SED in the inner pores. Coating porous Ti6Al4V enhanced 

osteointegration of the inner pores surfaces, but did not promote significant bone ingrowth. 

The limited bone growth in the inner pores as predicted by the FEA models agrees with results from 

studies that have evaluated bone ingrowth in animals using similar non-flexible, uncoated implant 

designs [27, 36, 37]. The 23% ingrowth predicted in the 700 mm model (300 mm strut size, 75% 

porosity) is consistent with the reported ingrowth of 19.23 ± 6.39% in a cylindrical implant 7.5mm in 

diameter (strut size of 200 mm, cross section 700 x 700 mm and 83.5% porosity), after 8 weeks in 

non-critical sized defects in calvarial rabbit bone [36]. The 34% ingrowth predicted in the 1500 mm 

model is higher than ingrowth of 15 – 28% obtained using a 53% porous structure with pore sizes 
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between 800 and 1500 mm in sheep mandibles [37], but is within the range of ingrowth reported in 

porous scaffolds [27]. 

The developed FEA models consistently overestimated the amount of osteointegration by about 10 

– 15%. This could be due to limitations of the models or biological reasons. The FEA model was 

developed as a quarter slice by exploiting symmetry and repeating pattern of the implant design. 

This assumed that the slice is located away from the implant edges. The FEA prediction in Fig. 5 is a 

reconstruction from repeating slices and shows the locations where remodelling could occur, which 

does not happen perfectly as the biological response is subject-specific and multifactorial. The 

orientation of the implant may also be rotated during surgery but the FEA model here represented 

the case with the highest amount of ingrowth. The histology results were obtained at 6 weeks, and 

were compared with equilibrium FEA results. It is also possible that bone remodelling in the implants 

in the ovine model had not reached equilibrium. 

The ingrowth across the middle of the struts was highest in the loading direction, but remodelling 

volume was limited to the outer struts (Fig. 3 insets). Bone formation occurred in pores near the first 

column of struts for the 700 mm implant, which was absent in the 1500 mm implant. This could be 

caused by the slightly higher load/volume ratio of 700 mm implant, resulting in more load transfer to 

the soft tissue. The bone formed in the outer pore was fully dense for the 700 mm implant, without a 

density gradient that penetrated further in the 1500 mm case (Fig. 4, 8). Moreover, the extent of 

osteointegration (Fig. 5) depends on the surface area available. The higher surface area to volume 

ratio for the 700 than for the 1500 mm implant suggests that the former should have exhibited a 

higher amount of osteointegration even in the uncoated case. These result suggests that the 

placement of the outer layer of struts is critical in optimising the extent of osteointegration, 

depending on the material used; the smaller plug size would benefit from struts located nearer the 

centre of the implant. Nevertheless, the advantage with the current 700 mm model is improved 

mechanical interlock due to full osteointegration at the outer pores. Therefore, moving the location 
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of the struts of the 1500 mm implant towards the circumference of the implant could improve 

osteointegration without sacrificing bone ingrowth. 

The results showed stress shielding of conventional titanium alloy due to material stiffness and 

implant geometry, limiting ingrowth and osteointegration. Assessment of the influence of a 

reduction in the apparent mechanical properties of fully load-bearing porous titanium implants in 

mandibular bone defects indicated the importance of lower modulus porous structures to promote 

increased bone ingrowth [37]. To improve bone ingrowth in the implant, materials with lower 

modulus were investigated to reduce stress shielding (Fig. 8). Simulations for reduced implant 

material stiffness predicted increased bone ingrowth. Good results were predicted for the use of 

uncoated Titanium-tantalum alloy Ti-70%Ta, as ingrowth was predicted to exceed 50% for both pore 

sizes. The ingrowth into the inner pores of the 700 mm implant suggests that its structural stiffness is 

slightly lower than that of the 1500 mm implant. The use of osteoconduction caused bone ingrowth 

into the inner pores of the 1500 mm model, suggesting that the SED was initially borderline below 

the threshold. The regions without bone ingrowth, located above the struts in the 1500 mm model, 

suggest that stress shielding imposes an important effect. Although coating had a significant effect 

on bone formation on the surface of the inner pores, they were never completely filled in with bone 

in conventional titanium alloy for both pore sizes investigated, again suggesting that stress shielding 

imposes an important effect. In the FEA model, the use of PEEK allowed the formation of fully dense 

bone, as its material stiffness is similar to that of bone. Investigating different modulus values for 

hypothetical materials between titanium alloy and PEEK demonstrated increased ingrowth and 

remodelling rate, due to increased load distribution on the soft tissue associated with a reduction in 

stress shielding (Fig. 9). Very good ingrowth was predicted for moduli between 40 – 50 GPa, but no 

such material at the present time exists which can be used for the manufacture of implants by 3D 

additive manufacturing methods. 
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The contribution of an osteoconductive coating to ingrowth was the highest on the 1500 mm 67 GPa 

implant and promoted bone formation in the inner pores, marginally higher than that for the 700 

mm case. However, the contribution of osteoconduction reduces with decreasing modulus, as the 

driver for bone remodelling increase and osteoconduction does not lead to additional bone ingrowth 

into the middle of the pores. The use of coating in lower modulus materials only increased the 

densification of tissues adjacent to the implant, but this contribution became insignificant when full 

ingrowth was achieved below a material stiffness of 25GPa. 

Biologically, PEEK is not as effective as titanium and titanium alloys in promoting osteointegration, 

nevertheless, complete bone ingrowth would lead to mechanical interlock, which is beneficial for 

load transfer. The saturation of the tissue density for PEEK in Fig. 9 is the result of the threshold 

placed on the remodelling of bone, to prevent unrealistic bone density from forming. Histological 

analysis yields no information about the quality of the bone formed in the implants, and given that 

the plugs were implanted in the condyles and surrounded by trabecular bone, it was necessary to 

limit the density of the bone formed. As titanium-based alloys are known to enable bone formation 

on their surface [36] and for this reason osteointegration of bone with the implant was assumed 

when remodelling of bone occurred adjacent to the implant. Two limitations of this study are that 

the tissue density of the thin layer of bone formed on the coated implants (Fig. 6) was not quantified 

and that bone volume formation was not measured in 3D. Micro-CT scans can be conducted to 

obtain the volume of bone formation within a specific region of interest (ROI) to compare the 

performance of different bone implants [27, 37]. It has been reported that measuring bone 

morphology a distance of 1mm away from the surface of the implant caused little artefact [27]. The 

pore sizes used in this study were 1000 microns and below, and the bone formed on the coated 

implants was rather thin and localised (Fig. 5, 6), which would lead to imaging artefacts. For different 

implant designs with thicker layers of bone formation, bone morphometric analysis via micro-CT 

scans could be conducted [27]. The histology and SEM results suggest a thicker layer of bone 

formation at the surface of the coated implants than predicted by the FEA. Further work should 
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explore the use of novel imaging techniques, such as ultrasound spectroscopy or nano-CT, to 

quantify the quality of bone growth at different time points, to refine the algorithm and for the 

computation time units in the FEA model to be correlated with bone formation in real time. 

Geometrical changes to the design of the implant could be investigated while assessing their long-

term fatigue strength and failure strain. 

5. Conclusion 

The developed Finite Element models were able to predict the level of osteointegration and bone 

ingrowth into porous implants, which are based on two novel algorithms that modelled the 

sequential laying down of bone and the effect of osteoconductive coating. The limited bone 

ingrowth into the pores was found to be due to the stress shielding of the stiff outer struts of the 

implant, leading to low strain energy density in the inner implant pores. Significantly increased 

osteointegration was observed along the implant surfaces coated with HA, but only a small increase 

of overall bone ingrowth. Finite Element simulations for lower implant material stiffness predicted 

significantly increased bone ingrowth for Ti-70%Ta, a Titanium alloy with lower elastic modulus. In 

combination with an osteoconductive coating, good osteointegration and bone ingrowth was 

predicted. Further improvements could be achieved by lowering the stiffness of the implant, either 

using materials with lower elastic modulus or through changes to the implant design. The algorithms 

developed in this study could be used to design substantially porous implants, predicting bone 

ingrowth. Empirical designs based on bone formation in animal studies could be optimised prior to 

testing in vivo. The verification of these FEA models was utilised in an in vivo model but the loads 

and forces associated with implants in human could be used with these algorithms to investigate 

more functional, substantially porous implants in humans. 
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