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Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion 
injury 

 
Structured Abstract 

Introduction: New treatments are required to improve clinical outcomes in patients presenting 

with acute myocardial infarction (AMI), in order to reduce myocardial infarct (MI) size and prevent 

heart failure. Following AMI, the heart is subjected to the detrimental effects of acute 

ischemia/reperfusion injury (IRI), which result in cardiomyocyte death and impaired cardiac 

function. Emerging studies have implicated a fundamental role for non-coding RNAs (microRNAs 

[miRNA], and more recently long non-coding RNAs [lncRNA]) in the setting of acute myocardial 

IRI.  

Areas covered: In this article, we discuss the roles of miRNAs and lncRNAs as potential 

biomarkers and therapeutic targets for the detection and treatment of AMI, review their roles as 

mediators and effectors of cardioprotection against acute myocardial IRI, particularly in the 

settings of interventions such as ischemic pre- and post-conditioning (IPC & IPost) as well as 

remote ischemic conditioning (RIC), and highlight future strategies for targeting these ncRNAs as 

potential novel therapies for reducing MI size and preventing heart failure following AMI.  

Expert opinion: Investigating the roles of miRNAs and lncRNAs in the setting of AMI has provided 

new insights into the pathophysiology underlying acute myocardial IRI, and has identified novel 

biomarkers and therapeutic targets for detecting and treating AMI. Pharmacological and genetic 

manipulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI 

patients. 
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1. Introduction 

Despite current therapy, acute myocardial infarction (AMI) and the heart failure which often 

follows, remain the leading causes of death and disability worldwide. As such new therapeutic 

strategies are required to protect the heart against the detrimental effects of acute 

ischemia/reperfusion injury (IRI), in order to prevent cardiomyocyte death and reduce myocardial 

infarct (MI) size, preserve left ventricular (LV) function, and prevent the onset of heart failure 1,2. 

Compared with drugs with a broad-spectrum mechanism of action, agents specifically targeting 

mitochondrial function – which has been perceived as a crucial mediator of reperfusion injury, 

have failed to demonstrate significant beneficial clinical outcomes 2-5. Thus, a multi-targeted 

approach (combining mitochondrial-targeting with other components of the IRI pathway) may 

confer better efficacy compared to a single-target intervention. In this regard, emerging studies 

have implicated a fundamental role for non-coding RNAs (ncRNA) in both cardiac development 

(cardiogenesis 6) and disease (left ventricular hypertrophy 7, heart failure 8, and acute myocardial 

infarction 9,10).  

            Only 2% of the human genome is made up of protein-coding regions, with the majority of 

transcripts comprising non-coding RNAs (ncRNAs), such as microRNA (miRNA) and long non-

coding RNAs (lncRNAs). MiRNAs are short (21-23 nucleotides in length), single-stranded 

ncRNAs, that modulate gene expression by inhibiting mRNA translation or promoting mRNA 

degradation (for recent reviews see 11). The newly defined class of ncRNAs, lncRNAs (over 200 

nucleotides in length), have been shown to regulate gene expression through a versatile array of 

post-transcriptional, translational, and epigenetic modes of action in cardiac development and 

disease (for a detailed review please see 12).  

In this article, we provide an overview of the roles of miRNA and lncRNA, as potential biomarkers 

and therapeutic targets for the detection and treatment of AMI, review their roles as mediators 

and effectors of cardioprotection against acute myocardial IRI, and highlight future strategies for 
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targeting ncRNAs as potential novel therapies for reducing MI size and preventing heart failure 

following AMI (refer to Figure 1). The role of ncRNAs as potential therapeutic targets for 

preventing post-AMI adverse LV remodeling will not be specifically discussed in this article, as 

the main focus of this article will be on those ncRNAs involved in the first few hours following AMI 

11,12.  

 

2. MiRNAs in acute myocardial ischemia/reperfusion injury 

Over the last decade, miRNAs have been extensively investigated in the setting of acute 

myocardial IRI. A large number of studies have shown early changes in myocardial expression of 

miRNAs (either increasing or decreasing) in response to acute myocardial IRI. Genetic or 

pharmacological manipulation of these miRNAs has been shown to modulate the sensitivity of 

the myocardium to acute IRI, thereby implicating miRNAs as therapeutic targets for 

cardioprotection (see Table 1 for summary of the major studies).  

One of the first studies to investigate the role of miRNAs in the setting of AMI, was by 

Rooij et al 13 who investigated the changes in miRNA expression in the infarct border zones in 

murine and human hearts. They observed changes in a large number of miRNAs, including 

upregulation of miR-15b, miR-21, miR-199, and miR-214, and down-regulation of miR-29c and 

miR-150. Interestingly, many of these miRNAs had been previously shown to be dysregulated in 

the settings of left ventricular hypertrophy (LVH) and heart failure. They went on to demonstrate 

that down-regulation of miR-29 in cardiac fibroblasts following AMI increased the expression of a 

number of fibrosis genes due to de-repression. The over-expression of miR-29 was able to 

decrease the expression of these fibrosis genes, implicating this miRNA as a therapeutic target 

for reducing cardiac fibrosis following AMI.  

Activation or inhibition of a number of proteins have been implicated as downstream 

targets for miRNA in the setting of acute myocardial IRI. As expected many of the downstream 

targets impact on cell death pathways such as apoptosis, autophagy, and more recently 
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necroptosis (see Table 1 for summary). More recently, downstream targets affecting calcium 

signaling, inflammation, mitochondrial protective pathways 14,15, and other cardioprotective 

pathways have been implicated.   

 

3. MiRNAs as mediators of cardioprotection 

An increasing number of experimental studies have demonstrated that endogenous miRNAs 

within the heart are able to mediate the protection against acute IRI conferred by pharmacological 

agents and endogenous cardioprotective strategies such as ischemic conditioning (see Figure 2). 

This appears to be mediated by downstream targets involved in cell death and cell survival 

pathways underlying acute myocardial IRI and cardioprotection, respectively.  

 

3.1.   MiRNAs as mediators of ischemic preconditioning 

The heart can be endogenously protected against acute IRI by applying brief non-lethal episodes 

of ischemia and reperfusion either prior to the index ischemic episode – a phenomenon which 

was first described in 1986 16, and has been termed ‘ischemic preconditioning’ (IPC). The IPC 

stimulus is known to induce 2 windows of cardioprotection – the first, immediately following the 

stimulus and lasting 2-3 hours (termed ‘classical IPC’), and the second, appearing 12-24 hours 

after the IPC stimulus and lasting 48-72 hours (termed ‘delayed IPC’, and requiring the synthesis 

of new proteins) 17-19. Unravelling the molecular pathways mediating IPC has identified novel 

therapeutic targets and strategies for protecting the heart against AMI. The role of miRNAs as 

mediators and effectors of IPC cardioprotection has been investigated over the last decade, and 

an overview is given here.  

 A number of experimental studies have demonstrated the following changes in miRNA 

expression in heart tissue associated with IPC: increased expression of miR-21, miR-1,20,21, miR-

144/451 22, miR-487b, miR-139-5p, miR-192, and miR-212 23; and downregulated expression of 

miR-1 24 and miR-199a 25. From these studies, it appears that the role of miR-1 in IPC is unclear 
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with either upregulation or downregulation in this miRNA – interestingly this was also observed 

with IPost (see next section), and the difference may relate to the timing of the tissue sampling 

and the experimental methods used. 

 In terms of showing that the miRNA actually contributes to IPC-cardioprotection, this has 

only been shown for miR-21 and miR-451. Cheng et al 20 found that intramyocardial injection of 

the antagomiR-21, 24 hours prior to acute myocardial IRI, abolished the increased expression of 

miR-21 and abrogated the MI-limiting effects of IPC. Injection of miR-21 was able to recapitulate 

IPC-cardioprotection and attenuate apoptotic cell death by downregulating programmed cell 

death 4 (PDCD4). Wang et al 22 demonstrated that mice deficient in the miR-144/451 complex 

were not amenable to IPC, and this effect was associated with increased expression of NADPH 

oxidase (NOX) and Ras-related C3 botulinum toxin substrate 1 (RAC1), and elevated levels of 

reactive oxygen species (ROS). Interestingly, using antagomiRs to miR-144 and miR-451, the MI-

limiting effect of IPC was only blocked when miR-451 was ablated, suggesting that in this miRNA 

complex miR-451 rather than miR-144 is required for IPC. Rane et al 25 have shown that IPC can 

downregulate miR-199a resulting in activation of the HIF-1α/Sirt1 pro-survival pathway 26,27.   

 The role of miRNAs as mediators of delayed IPC has also been investigated, with 

upregulation of miR-1, miR-21 and miR-24 demonstrated 24 hours after application of the IPC 

stimulus, effects which were associated with upregulation of eNOS, heat shock transcription 

factor-1 (HSF-1) and hsp70, known mediators of delayed IPC 28. Interestingly, the injection of 

these miRNAs 48 hours prior to acute myocardial IRI was able to limit MI size in naïve murine 

hearts, suggesting that these miRNAs could mimic the cardioprotection elicited by delayed IPC. 

The mechanisms through which IPC modulates the expression of miRNAs in the heart are not 

known, although Rane et al 29 have suggested that the pro-survival kinase, Akt, and the pro-

injurious beta-adrenergic cascades may converge on miR-199a, providing a potential point of 

point of regulation for determining cell death and survival in the setting of acute myocardial IRI.  
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The mechanistic pathways through which IPC actually regulates myocardial miRNA 

expression is not known and requires further study.  

 

3.2.   MiRNAs as mediators of ischemic postconditioning 

The major limitation of IPC as a cardioprotective strategy, is that it needs to be applied prior to 

the index ischemic event, which is not possible in AMI patients. This can be overcome by the 

phenomenon of ‘ischemic postconditioning’ (IPost) 30-32, in which myocardial reperfusion is 

interrupted by brief cycles of myocardial ischemia, allowing the protective stimulus to be applied 

at the onset of reperfusion in AMI patients treated by PPCI. The mechanisms underlying IPost 

are similar but not identical to those mediating IPC 33,34. The role of miRNAs as mediators of IPost 

cardioprotection have been recently investigated, and are reviewed in this section. 

 A number of experimental studies have investigated changes in myocardial miRNA 

expression following IPost, and have reported IPost cardioprotection to be associated with: 

increased expression of miR-1, miR-133a, miR-214, microRNA-1, microRNA let-7i, and 

microRNA let-7e in rodent hearts 23,35-37; downregulation of miR-208 23; enhanced expression of 

miR-29b, miR-133a, and miR-146b in pig hearts 38; down-regulation of miR-1 in the rat heart 21; 

and downregulation of miR-1 and upregulation of miR-21 in atrial tissue harvested from patients 

undergoing cardiac valve surgery 39. From these studies, it can be seen that the role of miR-1 in 

IPost has produced mixed data with either upregulation or downregulation in this miRNA with 

IPost. In this regard, Bian et al 40 found agomir-1 increased MI size and reduced Cx43 expression, 

whereas IPost downregulated miR-1 and preserved Cx43 expression in the rat heart.  

 Experimental evidence for miRNAs actually contributing to the cardioprotective effects of 

IPost have only been shown for miR-21 and miR-499. Tu et al 36 found that IPost markedly 

upregulated (by 5-fold compared to sham) the myocardial expression of miR-21 in the murine 

heart, and the effect of IPost on reducing MI size, limiting apoptotic cell death and upregulating 

Akt phosphorylation and BCl2 expression, were all abrogated by knock-down of miR-21 with an 
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antagomir-21, confirming the contribution of this miRNA to IPost cardioprotection. Similarly, Zhu 

et al 41 demonstrated that antagomir-mediated knock-down of miR-4199 abolished IPost 

cardioprotection, suggesting that miR-499 may also contribute to IPost by targeting PDCD4.  

Again, the actual mechanisms through which IPost changes the myocardial expression of these 

miRNAs is not known and needs to be investigated.  

  

3.3.    MiRNAs as mediators of remote ischemic conditioning 

Both IPC and IPost require the protective conditioning stimulus to be applied directly to the heart, 

thereby limiting their application to patients. This can be avoided by the phenomenon of ‘remote 

ischemic conditioning’ (RIC), in which the protective conditioning stimulus is applied to an organ 

or tissue away from the heart 42-45. Indeed, the ability to induce RIC by applying brief cycles of 

ischemia and reperfusion to the limb 46-48, has greatly facilitated the translation of RIC into the 

clinical setting – this can be easily achieved both non-invasively and at low-cost with the use of a 

standard blood pressure cuff places on the upper arm or thigh to induce brief cycles of ischemia 

and reperfusion 49-52. However, the underlying mechanisms through which the cardioprotective 

signal is relayed from the ‘conditioned’ limb to the heart remains unclear. It is thought to involve 

a neuro-hormonal pathway generating circulating cardioprotective factor or factors, the identity of 

which remain unclear 44,45,53,54. A number of studies have investigated the role of miRNAs as 

potential mediators of limb RIC cardioprotection, and are reviewed here.    

Experimental studies have investigated changes in myocardial expression of miRNAs 

following limb RIC (brief cycles of hind-limb ischemia/reperfusion) in the rodent heart, and have 

shown reduced expression of miR-1 and downstream targets such as PCDC4 21, but not brain-

derived neurotrophic factor (BDNF) 55. Interestingly, after 6 hours of reperfusion, myocardial 

expression of miR-1 was reported to be elevated by limb RIC compared to control ones 55, making 

it possible that the upregulation of miR-1 at this time-point contributed to the delayed 

cardioprotective effect of limb RIC. The effect of limb RIC on miR-1 has also been demonstrated 
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in human heart tissue by Slagsvold et al 56 who found that RIC reduced the myocardial expression 

of miR-1 in right atrial appendage tissue harvested from patients undergoing coronary artery 

bypass graft (CABG) surgery, findings which were associated with preserved mitochondrial 

function, and a lower incidence of post-operative atrial fibrillation. In addition, this patient study 

found increased myocardial expression of miR-338-3p in patients subjected to limb RIC when 

compared to control, but the relevance of this needs to be further investigated 56. Similarly, Hu et 

al 57 found that limb RIC down-regulated miR-1 and miR-195 in right atrial appendage tissue 

harvested from patients undergoing heart valve replacement surgery, findings which were 

associated with upregulation of the anti-apoptotic factor, Bcl-2, less apoptotic cell death, and 

reduced peri-operative myocardial injury. Interestingly, in another study, Slagsvold et al 58 failed 

to show any change in miRNA expression in left ventricular tissue harvested from CABG patients 

following limb RIC, suggesting differential expression of miRNAs within the heart following limb 

RIC. 

The role of circulating miRNAs as potential mediators of limb RIC cardioprotection has 

also been investigated. Li et al 59 found that limb RIC increased circulating plasma levels of miR-

144 in mice and human volunteers, suggesting that plasma miR-144 levels may be used as a 

biomarker to assess the efficacy of the limb RIC protocol. In addition, myocardial expression of 

miR-144 in murine hearts following limb RIC, and the cardioprotective effect of limb RIC was 

blocked by inhibiting miR-144 using an antisense oligonucleotide. Finally, exogenous 

administration of a miR-144 homologue oligonucleotide reduced MI size in the murine heart, a 

finding which was associated with increased phosphorylation of known cardioprotective factors, 

Akt and Erk1/2, decreased levels of mTOR, and enhanced myocardial autophagy 59. The 

mechanism through which miR-144 is transported in the plasma from the conditioned limb to the 

heart was thought to be due to the Argonaute-2 (Ago-2) protein rather than circulating exosomes 

59. Whether circulating exosomes actually contribute to the cardioprotective effect of limb RIC, 

and whether this is mediated by miRNAs transported in exosomes is inconclusive 60,61. A 
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subsequent clinical study has confirmed the increase in plasma miR-144 following limb RIC in 

patients with stable coronary artery disease, an effect which was not associated with any changes 

in myocardial perfusion in ischemic and non-ischemic areas of the heart 62.  

Interestingly, it has been reported that limb RIC, repeated daily for one month, prevented 

adverse LV remodeling following AMI in the rodent heart 63. Yamaguchi et al 64 have subsequently 

reported that repeated limb RIC was associated with increased expression of miR-29a in 

circulating exosomes, and augmented expression of both miR-29a and miR-30a in myocardial 

tissue. As such, whether miR-29a generated in the limb following RIC, is then carried to the heart, 

where it activates cardioprotective signaling pathways is not known. 

 

3.4. MiRNAs as mediators of pharmacological cardioprotection  

A number of other cardioprotective strategies and pharmacological agents have been shown to 

reduce cell death or MI size, by modifying the expression of miRNAs within the heart (see Table 

2 for summary). In general, these other cardioprotective strategies and agents are associated 

with either downregulation of pro-injurious miRNAs and/or upregulation of protective miRNAs.  

 One of the first studies to investigate the role of endogenous miRNAs as mediators of 

cardioprotection was by Yin et al 10, who demonstrated that total body heat stress (an endogenous 

cardioprotective stimulus which mimics IPC) increased the expression of miR-1, miR-21 and miR-

24 in the murine heart. Interestingly, miRNAs isolated from the heat-stressed mice and injected 

into naïve animals were able to reduce MI size, and this transferrable protective effect was 

associated with the downregulation of pro-apoptotic genes (caspases 1, 2, 8 and 14, Bid, Bcl10, 

Cidea, Ltbr, Trp53 and Fas ligand), and the upregulation of anti-apoptotic proteins (Bag3, and 

Prdx2). Finally, this study demonstrated that the administration of chemically synthesised miR-21 

limited MI size, and this beneficial effect could be abrogated using a miR-21 inhibitor.  

 From Table 2, it is clear that a diverse variety of cardioprotective strategies and agents 

have been shown to protect the heart against acute IRI. Although some of these to appear act by 
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modulating cardioprotective signaling pathways underlying ischemic conditioning, others appear 

to target other cell survival and signaling pathways. In many cases, whether the miRNA is actually 

responsible for mediating the beneficial effects elicited by the cardioprotective strategy or agent 

has not been demonstrated. Moreover, in most cases the mechanisms through which the 

cardioprotective strategy of agent modulates miRNA expression is not known. 

 

4. LncRNAs in acute myocardial ischemia/reperfusion injury 

The lncRNAs have emerged as important regulators of cell function in both cardiac development 

and disease, and have been shown to regulate both gene expression and protein translation 

Nuclear-localized lncRNAs can regulate gene expression at both the epigenetic and 

transcriptional levels in either cis or trans position, according to whether the lncRNA gene is in 

close proximity or distant to their target genes, respectively. Cytosol-based lncRNAs can modify 

protein translation by blocking, stabilizing/destabilizing, or sponging miRNAs. LncRNAs can be 

classified into different groups based on their functional roles including acting as a: signal 

(expressed at a specific time or in a particular place following various stimuli); decoy (repressing 

transcription by sequestering transcription factors, chromatin remodelers); guide (binding 

transcription factors to their target sites); enhancer (inducing a chromosomal loop to bring 

together enhances and promoter regions); or scaffold (bringing multiprotein complexes together) 

12. 

 LncRNAs have been investigated primarily in cardiac development and some cardiac 

diseases (left ventricular hypertrophy and heart failure), and have only recently been explored in 

the setting of acute myocardial IRI. Prior studies in liver 65 and brain 66, have described roles for 

lncRNAs in liver and brain tissue following acute IRI. Dharap et al 66 found that lncRNAs in brain 

tissue were highly dysregulated following acute IRI in a murine model of stroke. Chen et al 65 

demonstrated that siRNA knock-down of lncRNA AK139328 protected the murine liver against 
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acute IRI by reducing caspase 3 activation and preserving levels of phosphorylated Akt, GSK-3 

and eNOS.  

 One of the first studies to investigate the role of lncRNAs in the setting of acute IRI in the 

heart, was by Liu et al 67 who demonstrated marked upregulation of 5 lncRNAs (AK035396, 

ENSMUST00000156081, AK005401, ENSMUST00000118172 and ENSMUST00000118702), 

and downregulation of 5 lncRNAs (uc007prv.1, AK080112, ENSMUST00000170410, AK156124 

and ENSMUST00000166777), in the infarcted murine heart at 2.5 hours of reperfusion. Changes 

in myocardial expression of lncRNAs were found to be associated with modulation of the mRNAs 

(CXCL1, CCL9, CXCL12, EDA, TNFAIP3 and BIRC3), targets which are known to be relevant to 

acute myocardial IRI. Using a similar approach in the porcine heart subjected to acute IRI, 

Kaikkonen et al 68 have shown changes in a large number of lncRNAs in infarcted tissue when 

compared to remote myocardium including lncRNAs directed to myocardial transcription factors 

GATA-binding protein 4, GATA-binding protein 6, and Krüppel-like factor 6. These changes were 

associated with the induction of inflammatory mediators and dampening of peroxisome 

proliferator-activated receptor signalling and oxidative phosphorylation, the ischemic region, and 

differential expression of transcriptional factors linked to ischemia including Krüppel-like factor, 

MEF2C, ETS, NFY, ATF, E2F2, and NRF1. Saddic et al 69 have recently investigated the changes 

in myocardial lncRNA expression in patients undergoing CABG surgery following acute ischemia 

in left ventricular biopsies taken at initiation of cardiopulmonary bypass, and after a median time 

of 74 minutes ischemia. Some of the major findings from this clinical study included: upregulation 

of 97 lncRNAs including RP11-64B16.4 (the extent of which was related to the ischemic time), 

and downregulation of 13 lncRNAs, changes which were associated with mRNA implicated in the 

stress and immune response to ischemia.   

 The role of lncRNAs as mediators of acute IRI and potential targets for cardioprotection 

has been recently investigated. Wang et al 70 found that the lncRNA, necrosis-related factor 

(NRF), prevented cell death induced by acute myocardial IRI, by binding to and repressing miR-



12 
 

873, and attenuating RIPK1/RIPK3-mediated programmed cell necrosis, highlighting NRF as a 

novel target for cardioprotection. It has been shown in H9c2 cells that simulated IRI upregulated 

the lncRNA, maternally expressed gene 3 (MEG3), and siRNA knockdown of MEG3 reduced cell 

death and attenuated apoptosis 71. The mechanism of protection was linked to miR-183-induced 

suppression of p27 through activation of the PI3K/AKT/FOXO3a signaling cascade. Finally, it has 

been shown that siRNA knockdown of the lncRNA, NONRATT021972, prevented the 

upregulation of P2X7 in cervical sympathetic neurones resulting is dampening of the 

hemodynamic changes and less cell death induced by acute myocardial IRI 72,73. Whether 

lncRNAs mediate the cardioprotection elicited by pharmacological agents and endogenous 

strategies such as ischemic conditioning, as is the case with miRNAs, is not known and needs to 

be investigated. 

  

5. Cross-talk between miRNAs and lncRNAs  

Emerging studies have shown a functional interaction between miRNAs and lncRNAs. The mutual 

interaction of miRNAs and lncRNAs can regulate each other’s activities, and can be categorized 

into 4 types depending on the nature of the interaction and its effects: miRNAs inducing lncRNA 

decay; lncRNAs acting as miRNA sponges/decoys; lncRNAs and miRNAs competing for mRNAs; 

and lncRNAs acting as precursors for miRNAs 74,75. 

        During acute myocardial IRI, increased levels of the lncRNA, autophagy-promoting factor 

(APF), have been demonstrated to result in direct binding with miR-188-3p, which inhibited the 

latter’s activity leading to enhanced cardiac autophagy, and greater MI injury 76. Cardiac 

apoptosis-related lncRNA (CARL), a lncRNA that is important in the regulation of mitochondrial 

dynamics, cardiac apoptosis, and cardiac dysfunction, has been demonstrated to act as a 

‘‘sponge’’ to miR-539 77, a miRNA which binds PHB2 mRNA and inhibits the latter’s activity. The 

presence of CARL thus upregulates the expression of PHB2 thereby suppressing mitochondrial 

fission and apoptosis. MiR-484 which is required for the inhibition of mitochondrial fission-
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mediated apoptotic cell death can be bound by nuclear miR-361. The mitochondrial dynamic-

related lncRNA (MDRL) has been shown to act as an endogenous sponge by binding to miR-361, 

downregulating its expression and inhibiting mitochondrial fission and apoptosis in 

cardiomyocytes 78. Finally, the lncRNA, H19, can act as a sponge to block miR-103/107 

expression, and in the presence of ischemia however, H19 expression is downregulated thereby 

increasing myocardial injury 79. 

 

6. MiRNAs and lncRNAs as biomarkers in AMI patients 

Although cardiac magnetic resonance imaging (MRI) remains the gold standard of imaging 

modality to assess the consequences of acute IRI in AMI patients in terms of MI size and adverse 

LV remodeling 80-82, this technique is limited in terms of ease of access and availability of skilled 

personnel to maneuver. The presence of ncRNAs in the serum plasma and bodily fluids, however, 

offer a window of opportunity to serve as biomarkers in AMI patients 83-85. Several clinical studies 

have measured changes in circulating levels of miRNAs and lncRNAs from AMI patients soon 

after presentation, and have investigated their roles as novel biomarkers of myocardial injury for 

diagnosing AMI, and their ability to predict those AMI patients at risk of developing adverse post-

MI modelling (reviewed in 86). Although the plasma contains RNases, circulating ncRNAs 

especially circular lncRNAs have been shown to be stable in this environment indicating that they 

are relatively resistant to nucleolytic degradation, making them potentially useful as a circulating 

biomarker for AMI. Following AMI, myocardial necrosis induced by acute IRI results in the release 

of cardiac biomarkers such as Troponins (T and I) and CK-MB into the circulation, the presence 

of which has been shown to diagnose AMI and predict clinical outcomes.   

 Several clinical studies have demonstrated the release of miRNAs into the circulation in 

AMI patients suggesting that they can be used for the early diagnosis of AMI. The first clinical 

studies to investigate the utility of circulating cardiac- and muscle-enriched miRNAs following AMI 

demonstrated elevated levels of miR-1, miR-133a/b, miR-499, miR-423-5p, miR-208a/b 87-89, and 
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depressed levels of miR-122 and miR-375 levels 89, when compared to control subjects. 

Subsequent studies have shown that these miRNAs correlate with other cardiac biomarkers of 

AMI such as Troponin and CK-MB, with miR-208 having the highest specificity and sensitivity for 

AMI. However, their performance in detecting AMI are not superior to current cardiac biomarkers 

such as Troponin, and therefore their value may be enhanced by measuring multiple miRNAs in 

combination with conventional cardiac biomarkers. Elevated levels of miR-208b and miR-133a 

early after AMI have been demonstrated to predict patients at risk of developing adverse left 

ventricular remodeling after AMI, and correlate with increased risk of mortality or HF at 6 months 

90-92, suggesting the miRNAs may be used to risk stratify AMI patients. 

 A number of non-cardiac miRNAs have also been implicated as biomarkers of myocardial 

injury and predictors of clinical outcomes following AMI. MiR-633b and miR-1291 have been 

shown to detect AMI with high specificity and sensitivity 93, and miR-150 and miR-486 have been 

shown to be able to distinguish STEMI from non-STEMI patients 94. Larger clinical studies with 

extended follow-up have shown that elevated levels of miR-126, miR-197, miR-223, miR-155, 

miR-380*, miR-192, miR-194, miR-34a, miR-328, miR-134, miR16, miR-27a 95-100, and low levels 

of miR-223, miR-197, miR-150, miR-101 95,97, were associated with risk of heart failure and 

cardiovascular death. The source of these circulating non-cardiac miRNAs is not clear and further 

work is required to elucidate their contribution to the pathophysiology of AMI and subsequent 

clinical outcomes. 

 One of the first clinical studies to investigate the role of circulating lncRNAs in AMI patients, 

was by Vausort et al 101, who demonstrated elevations in plasma of the following lncRNAs; hypoxia 

inducible factor 1A antisense RNA 2 (aRNA), potassium voltage-gated channel KQT-like 

subfamily, member 1 opposite strand/antisense transcript 1 (KCNQ1OT1), myocardial infarction-

associated transcript (MIAT]), and metastasis associated lung adenocarcinoma transcript 1 

[MALAT1]). In contrast, the lncRNA, plasma levels of cyclin-dependent kinase inhibitor 2B 

antisense RNA 1 (ANRIL) was decreased following AMI. Interestingly, plasma levels of ANRIL 
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and KCNQ1OT1 were found to be predictive of LV dysfunction in AMI patients. In a subsequent 

experimental study, Li et al 102  demonstrated that downregulation of the KCNQ1OT1 lncRNA, 

protected H9C2 cardiac cells from simulated IRI, and this protective effect was mediated via the 

adiponectin receptor and suppression of the p38 MAPK/NF-kB signal cascade.     

In another clinical study 103, plasma levels of the circular lncRNA, urothelial carcinoma-

associated 1 (UCA1), were found to be depressed soon after AMI (within 2-6 hours), and 

increased at day 3, changes which were inversely related to miRNA, suggesting that it may have 

a role as a novel cardiac biomarker, although its ability to diagnose AMI was not superior to the 

current standard cardiac biomarkers, Troponin I and CK-MB. Zhang et al 104 demonstrated 

reciprocal changes in the lncRNAs, Zinc finger antisense 1 (ZFAS1) and Cdr1 antisense 

(CDR1AS), in AMI patients, with lower levels of ZFAS1 and elevated levels of CDR1AS in blood 

samples taken 3.5 hours after onset of acute myocardial ischemia. Both these lncRNAs were 

shown to independently predict AMI. Another clinical study has reported elevations in the lncRNA 

Myosin Heavy Chain Associated RNA Transcripts (MHRT) in the blood from AMI patients, when 

compared to controls, and went onto show that siRNA knock-down of MHRT in neonatal rat 

cardiomyocytes reduce cell death following oxidative stress, suggesting a cardioprotective role 

for this MHRT 105. Finally, in a recent clinical study, reduced plasma levels of the lncRNAs 

(ENST00000416860.2, ENST00000421157.1 and TCONS_00025701) were demonstrated, but 

the impact of these changes on MI size or subsequent remodeling was not investigated 106.  

 

7. Therapeutic targeting of ncRNA as a cardioprotective strategy 

7.1.   Delivery of ncRNA to the ischemic heart 

Non-coding RNA or the antisense molecules may be delivered to the ischemic heart using a 

number of approaches including intravenous or intramyocardial injections or carriers such as 

viruses, nanoparticles, or exosomes. Nanoparticles, which can be made heart tissue-specific, can 

be used to improve the bioavailability of ncRNA genes or the antisense molecules, to the ischemic 
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tissue following AMI 106. The administration of exosomes have been shown to confer 

cardioprotection against acute myocardial IRI in experimental animal studies. In addition, delivery 

of miRNAs to the ischemic heart using exosomes has been shown to reduce MI size following 

AMI 107,108. Exosomes secreted by a variety of cells (induced pluripotent stem cells [iPS], H9c2 

cells, and cardiosphere-derived cells [CDCs]) have been shown to contain miRNAs which 

contribute to the cardioprotective effect elicited by the exosomes following AMI.  Wang et al 109 

demonstrated that exosomes harvested from mouse cardiac fibroblast-derived iPS cells protected 

H9c2 cells against hydrogen-peroxide induced oxidative stress and inhibited caspases 3 and 7 

via miR-21 and miR-210. Zhang et al 110 found that hypoxia modified the expression of several 

miRNAs in exosomes generated by H9c2 cells, and these exosomal miRNAs (including miR-21-

5p, miR-378-3p, miR-152-3p, and let-7i-5p, were able to protect naïve H9c2 cell against simulated 

IRI and prevent apoptosis through HIF-1, TNF, MAPK, and mTOR signaling pathways. 

Furthermore, a luciferase reporter assay confirmed that Atg12 and Fas ligand were the targets of 

miR-152-3p and let-7i-5p, respectively. Finally, Couto et al 111 have recently demonstrated that 

administering exosomes containing miR-181b harvested from CDCs reduced MI size in rat and 

pig models of myocardial infarction, and this protected effect was mediated through the PKC-δ 

and polarization of macrophages to an anti-inflammatory phenotype. 

 

7.2.   Therapeutic targeting of ncRNAs  

Given that a number of miRNAs have been shown to have detrimental effects during acute 

myocardial IRI, therapeutic inhibition of these miRNAs may provide a potential therapeutic 

strategy for cardioprotection, although the timing of intervention is crucial to elicit either protection 

against reperfusion injury or circumvent negative remodeling post-MI A number of different 

approaches have been used to inhibit miRNAs including antisense oligonucleotides and locked 

nucleic acid (LNA)-modified oligonucleotides. Injection of chemically modified, cholesterol-

conjugated, single-stranded RNA analogs complementary to miRNAs (termed “antagomirs”) have 
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been used to therapeutically silence detrimental miRNAs in vivo following AMI, in mainly rodent 

models of acute myocardial IRI (see Table 1). In terms of eventually translating this therapeutic 

approach into the clinical setting, some experimental studies have demonstrated that inhibiting 

detrimental miRNAs such as to miR-15 and miR-92a at the onset of reperfusion reduced MI size 

in large animal (porcine) models of acute myocardial IRI (see Table 1). This approach is 

technically feasible, as only a single dose of the antisense oligonucleotide is required to reduce 

acute MI size. However, in order to achieve long-term or chronic effects (for example following 

post-MI cardiac remodeling or heart failure), multiple doses of antagomirs will be required for 

sustained inhibition of miRNA, which presents a challenge in terms of delivery and off-target 

effects. LNA-modified oligonucleotides are more stable than antagomirs and have enhanced 

specificity toward complementary RNA or DNA, hence allowing for shorter molecules. LNA-

modified oligonucleotides have been shown to provide both sustained and potent silencing of 

cardiac expressed miRNAs, irrespective of the method of delivery.   

 Delivery of ncRNA mimics to the ischemic heart may be used to target miRNAs or lncRNAs 

which are known to be beneficial for cardioprotection, but are downregulated following AMI. 

Finally, an alternative approach to upregulate cardioprotective miRNAs, can be to use a small 

molecule therapeutic strategy. By screening small molecules on their ability to induce miR-182, 

Lee et al 112 identified the hit compound Kenpaullone as a cardioprotective small molecule capable 

of increasing myocaridal expression of miR-182 and protecting against acute IRI.  

 

8. Conclusions 

A number of miRNAs and more recently lncRNAs have been investigated in the setting of acute 

myocardial IRI, many of which have been shown to be biomarkers of cardiac disease or potential 

therapeutic targets for protecting against AMI preventing heart failure. In this setting, ncRNAs may 

be targeted either directly using ncRNA mimetics and/or antagomiRs, although the stability and 

specificity of these compounds require further investigation. An alternative will be indirect 
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targeting using pharmacological agents or endogenous cardioprotective strategies such as 

ischemic conditioning. In addition, further work is required to investigate the interplay of ncRNAs 

with known cardioprotective signaling pathways underlying ischemic preconditioning, 

postconditioning, and remote ischemic conditioning. Finally, more research is required to optimize 

the delivery of ncRNA to the ischemic heart in order to translate the targeting ncRNA as a 

cardioprotective strategy for reducing MI size and preventing heart failure following AMI, 

particularly with the possible issue of uptake by non-target tissues and off-target effects. In this 

regard, ongoing studies are investigating the use of nanoparticles, viruses and exosomes to 

improve the cardiac-specific delivery, and increase bioavailability of ncRNAs to the ischemic 

heart.   

 

Expert Opinion 

The therapeutic targeting of ncRNA in cardiac disease is only beginning to be unraveled and 

much more remains to be learned. Nonetheless, ncRNAs as important regulators during cardiac 

disease together with the feasibility to potently inhibit or upregulate specific ncRNAs, makes them 

exciting new candidates to target in the setting of ischemic heart disease. Analogous to protein 

kinases/phosphatases, the ncRNAs can work independently or in concert to achieve their diverse 

effects on cell survival and death. Further complicating the scenario is the fact that multiple 

upstream genes can exert their actions on the ncRNAs, thus rendering the understanding of the 

regulatory network more difficult. In addition, different ncRNAs exert different effects at different 

locations at the site of injury in the heart, e.g. remote vs border vs infarct area. Yet, it is the 

dynamism of the ncRNAs that may potentially allow them to act as biomarkers to predict AMI 

occurrence, severity of injury and future degree of recovery, provided sample collection and 

testing protocols for the ncRNAs are standardized. Interventions using stable ncRNA mimetics 

and/or antagomirs are likely to emerge as therapeutic strategies for protecting against AMI 

although the off-target effects and non-target tissue uptake of the ncRNAs remain extremely 
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relevant prior to clinical trial testing. In summary, key features in harnessing ncRNAs to combat 

cardiac disease require: (1) identifying novel ncRNAs that serve as biomarkers for AMI and predict 

clinical outcomes following AMI; and (2) defining the optimum conditions, e.g. cell type specificity, 

timing of delivery, method of delivery, for the use of ncRNAs and their inhibitors for reducing acute 

myocardial IRI and preventing heart failure. In addition to serving its potential as a therapeutic 

target for AMI, the ncRNAs may hold further potential for alternative therapies such as cellular 

therapy or even cardiac regeneration to repair the damaged heart 

 

Article highlights box 

- Once considered “genomic junk”, non-coding regions of the genome are shown to produce 

ncRNAs which play critical roles in the regulation of cardiac development and cardiac 

diseases such as left ventricular hypertrophy, heart failure, and acute myocardial 

infarction. 

- Both miRNAs and lncRNAs play important role in the pathogenesis of acute myocardial 

ischemia-reperfusion injury. 

- Modulation of miRNAs and lncRNAs provides a potential therapeutic strategy for 

cardioprotection. 

- Emerging evidence supports the existence of cross-talk between miRNAs and lncRNAs 

that regulate distinct molecular events during acute myocardial IRI. 
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Figure 1. An overview of miRNAs and lncRNAs in acute myocardial ischemia/reperfusion 

injury  

This figure illustrates the modulation of survival signaling cascades and death pathways 

(apoptosis and necrosis) by miRNAs (in blue) and lncRNAs (in pink) within the cardiomyocyte 

following acute ischemia/reperfusion injury. Pro-death target proteins include Bcl-2-associated X 

protein (Bax), Bcl-2 homologous antagonist/killer (Bak), Bisindolylmaleimide (Bim), receptor-

interacting serine/threonine-protein kinase 1 and 3 (RIPK1 & RIPK3, respectively). Pro-survival 
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proteins include B-cell lymphoma 2 (Bcl-2), Myeloid cell leukemia 1 (Mcl-1). Heat shock proteins 

include heat shock protein 20 (Hsp20), heat shock protein 60 (Hsp60), heat shock protein 70 

(Hsp70), phosphatase and tensin homolog deleted on chromosome ten (PTEN), 

Phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). Proteins involved in mitochondrial 

function and dynamics include dynamin-related protein-1 (Drp1), Mitofusin 1 (Mfn1), Optic atrophy 

1 (Opa1), adenine nucleotide translocase (ANT). Autophagy-related proteins include autophagy-

related protein 7 (Atg7), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3). Other 

proteins include Sirtuin-1 (Sirt1), proliferator activated receptor-g coactivator-1α (PGC1α),  

 

 

 

 

 

 

 

Figure 2. General mechanism of conditioning 
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This scheme illustrates the general mechanisms of conditioning achieved via either pre-

conditioning or post-conditioning, both of which can be achieved remotely. The conditioning 

strategies initiate the production of protective kinases which target the mitochondria, leading to 

the protective effects of cardioprotection via mechanisms such as closure of the mPTP, 

maintenance of ATP production, tolerance towards calcium overloading and ROS production and 

prevention of cyt c release.  
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Table 1: Summary of major studies investigating miRNAs in the setting of acute 
myocardial ischemia-reperfusion injury 
 
miRNA Changes in 

expression 
with acute IRI* 
 

Downstream targets/effects  Potential Therapeutic 
application 

Study 

miR-1   Increases cell death by 
inhibiting Bcl-2 

Inhibition of miR-1 to reduced cell 
death following H2O2 and reduced 
MI size following AMI 

113,114 

  (human)  
 

 115 

miR-7 N/A Regulates mPTP by targeting 
VDAC1 

May prevents mPTP opening at 
the onset of reperfusion thus 
reducing MI size  

116 

miR-15  (pig) Increases cell death  Inhibition of miR-15 using LNA 
anti-miRs reduced MI size 
following AMI in mice and pigs  
 

117 

miR-21   miR-21 protects by 
downregulating PCDC4, AP1, 
PTEN and Fas ligand. Akt 
upstream of miR-21 
 

Over-expression of miR-21 
reduced MI size following AMI 

118-120 

miR-22   miR-22 protects by 
downregulating Cav3 and 
upregulating eNOS 
 
miR-22 protects by 
downregulating P53, CBP-AP1, 
TNF-α and IL-6, and 
upregulating Bcl2/Bax ratio 
 

Over-expression of miR-22 
reduced MI size following AMI 

121,122 

miR-24   miR-24 protects by 
downregulating Bim 

Over-expression of miR-22 
reduced MI size following AMI  
 

123 

miR-29  
(Border area 
human) 

Increased expression of fibrosis 
proteins (collagens, fibrillins, 
and elastin) due to de-
repression of miR-29 
 

Over-expression of miR-29 to 
reduce cardiac fibrosis following 
AMI 

13 

miR-31   Increased cell death 
miR-31 protects by 
upregulating PKC-ε and 
downregulating NFκB 
 

Inhibition of miR-31 using 
antagomir reduced MI size 
following AMI in mice 

124 

miR-92a  (pig)  Inhibition of miR-92a using LNA 
anti-miR reduced MI size following 
AMI in pigs 
 

125 

miR-103/107  Increased cell necrosis by 
downregulation of FADD and 
activation of RIPK1/RIPK3. 
lncRNA upstream of miR-
103/107 
 

Inhibition of miR-103/107 using 
antagomir reduced MI size 
following AMI in mice  

126 

miR-128 N/A Increase cell death by 
antagonizing Akt, PPARγ and 

Mcl‑1 protein 

 

Inhibition of miR-128 using 
antagomir reduced MI size 
following AMI in mice 

127 
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miR-133   miR-133 protects by inhibiting 
DAPK2 
 

Over-expression of miR-133 
reduced MI size following AMI  

128 

  (human)   115 

miR-140   Increased cell death by 
inhibiting Mfn1 and inducing 
mitochondrial fission 
 

Inhibition of miR-140 using 
antagomir reduced MI size 
following AMI in mice 

129 

miR-142  miR-142 protects by inhibiting 
HMGB1 
 

Over-expression of miR-142 
reduced cell death 

130 

miR-144/451 N/A miR-144/451 protects by 
targeting CUGBP2–COX-2 
pathway. GATA-4 upstream of 
miR-144/451  
 

Over-expression of miR-144/451 
reduced cell death  
 

131 

miR-145   miR-145 protects by inhibiting 
BNIP3 

Over-expression of miR-145 
reduced cell death and protect 
mitochondria  
 

132 

miR-146 N/A miR-146a protects by reducing 
caspase 3,7,8, suppressing 
IRAK1 and TRAF6 expression 
and inhibiting NFκB/ 
inflammatory cytokine 
production 
 

Over-expression of miR-145 
reduced cell death and protect 
mitochondria 

133 

miR-181  miR-181c induces cell death by 
inhibiting COX-1 and increasing 
mitochondrial ROS, whereas 
miR-181a/b protects by 
inhibiting PTEN 
 

 134 

miR-192-5p  Increases cell death by 
targeting FABP3 and 
upregulating Bax/Bcl2 ratio 
 

Inhibition of miR-192-5p using 
antagomir reduced apoptosis 

135 

miR-195   Increases cell death by 
inhibiting Bcl2. BDNF upstream 
of miR-195 
 

Inhibition of miR-195 using 
antagomir reduced MI size 
following AMI 

136 

miR-200c   miR200c protects by 
upregulating GATA-4 and Bcl2 

Over-expression of miR-200c 
reduced cell death and protect 
mitochondria 
 

137 

miR-208  (human)   115 

miR-214  miR-214 protects by repression 
of NCX1, CaMKIIδ, CypD, 
and BIM 
 

 138 

miR-223 N/A miR-223 protects by inhibiting 
TNFR1, DR6, NLRP3 and IkB 
kinase α 
 

Over-expression of miR-223 to 
reduce MI size following AMI 

139 

miR-320   Increases cell death Over-expression of miR-320 to 
reduce MI size following AMI  
 

140 

miR-363   Increases cell death by 
inhibiting Notch signaling 

Inhibition of miR-429 using 
antagomir reduced cell death 
 

141 

miR-378  miR-378 protects by inhibiting 
caspase 3 

Over-expression of miR-378 
reduced cell death 

142 

miR-429   Increases cell death by 
inhibiting Notch signaling 

Inhibition of miR-429 using 
antagomir reduced cell death 
 

143 

miR-451  miR-451 protects by inhibiting 
HMGB1 
 

Over-expression of miR-451 
reduced cell death 

144 
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miR-494  miR-494 protects by inhibiting 
PTEN, ROCK1, CaMKIIδ, and 
activating FGFR2 and LIF  
 

Over-expression of miR-494 
reduced MI size following AMI  
 

145 

miR-499  miR-499 protects by inhibiting 
calcineurin thereby preventing 
Drp-1 mediated mitochondrial 
fission 
 

Over-expression of miR-499 
reduced MI size following AMI  
 

146 
 

miR-613   miR-613 protects by 
phosphorylating Akt and 
inhibiting PDCD10 
 

Over-expression of miR-613 
reduced cell death 

147 

miR-761  miR-761 protects by repressing 
Mff and inhibiting mitochondrial 
fission 
 

Over-expression of miR-761 
reduced MI size following AMI  
 

148 

miR-2861   Increases cell death by 
inhibiting ANT1 

Inhibition of miR-2861 using 
antagomir reduced cell death 
 

149 

 

AMI, acute myocardial infarction; ANT1, adenine nucleotide translocase 1; AP1, activator protein 

1; Bax, Bcl-2-associated X protein; Bak, Bcl-2 homologous antagonist/killer; BDNF, brain-derived 

neurotrophic factor; Bcl-2, B-cell lymphoma 2; Bim, Bisindolylmaleimide; BNIP3, Bcl2/adenovirus 

E1B 19 kDa protein-interacting protein 3; CaMKIIδ, Ca2+/calmodulin-dependent protein kinase II 

δ-isoform; Cav3, caveolin 3; CBP, CREB Binding Protein; DR6, death receptor-6; CypD, 

cyclophilin D; DAPK2, death associated protein kinase 2; Drp-1, dynamin related protein-1; 

eNOS, endothelial nitric oxide synthase; FABP3, Fatty Acid Binding Protein 3; FADD, Fas-

associated protein with death domain; FGFR2,  fibroblast growth factor receptor 2; GATA-4, 

GATA Binding Protein 4; HMGB1,  High mobility group box 1; IL-5, interleukin 6; IRAK1, 

interleukin 1 Receptor Associated Kinase 1; LIF, leukemia inhibitory factor; Mcl-1, myeloid cell 

leukemia 1; Mff, Mitochondrial Fission Factor; MI, myocardial infarct; Mfn1, Mitofusin 1; NCX1, 

sodium calcium exchanger-1; COX-1, cyclooxygenase-1 ; NLRP3,  NLR Family Pyrin Domain 

Containing 3; PDCD, Programmed cell death protein; PGC1a, Peroxisome proliferator activated 

receptor-g coactivator-1a; PKC-ε, protein kinase C-ε; PPARγ, proliferator activated receptor-g 

coactivator gamma; PTEN, phosphatase and Tensin homolog; RIPK, Receptor-interacting 

serine/threonine-protein kinase; ROCK1, Rho Associated Coiled-Coil Containing Protein Kinase 

1; ROS, reactive oxygen species; TNFR1, tumor necrosis factor receptor 1; TRAF1, TNF 

Receptor Associated Factor 1. 
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Table 2: Summary of major studies investigating miRNAs as mediators of cardioprotection  

Cardioprotective 
strategy or 
agent 

Change in 
miRNA 
expression 
 

Downstream targets/effects Study 

Heat stress  
(IPC mimic) 

Upregulation of   
miR-1, miR-21 and 
miR-24 

Reduced MI size, associated downregulation of pro-
apoptotic genes (caspases 1, 2, 8 and 14, Bid, Bcl10, 
Cidea, Ltbr, Trp53 and Fas ligand), and upregulation of 
anti-apoptotic proteins (Bag3, and Prdx2) 
 

10 

Propanolol  
(cAMP–PKA 
activation) 

Downregulation of 
miR-1  

Less IRI arrhythmias and preservation of Cx43 and Kir2.1 150 

Carvedilol Upregulation of 
miR-199a-3p and 
miR-214 
 

Less cell death and apoptosis with upregulation of Akt 
phosphorylation and Sox-4, and inhibition of ddit4 and ing4 

151 

Tanshinone IIA 
(Danshen, 
traditional chinese 
medicine)  
 

Downregulation of 
miR-1 

Reduced MI size, less IRI arrhythmias, preservation of 
Cx43 and Kir2.1, and inhibition of p38 MAPK. 

152,153 

Pioglitazone and 
rosiglitazone 
(PPAR-γ agonist) 
 

Downregulation of 
miR-29  

Less cell death and apoptosis. 
Less caspase 3 and upregulation of Mcl-2 

154 

Resveratrol (a 
constituent of red 
wine) 

Modulation of a 
number of miRNAs 
affected by IRI 
(including 
upregulation of 
miR-21) 
 

Reduced MI size 155,156 

Hypoxia inducible 
factor-1α 
 

Upregulation of  
miR-24 

Less cell death and apoptosis with upregulation of BCl2 157 

γ-tocotrienol  
(a constituent of 
palm oil) 
 

Upregulation of  
miR-20b 

Reduced MI size, upregulation of HIF-1α and VEGF 156 

Choline  
(M3-AChR agonist) 
 

Downregulation of 
miR-376b-5p 

Reduced MI size, upregulation of BDNF 157 

Hypoxia and 
Tricostatin A 
(HDAC inhibitor) 
 

Upregulation of  
miR-126 

Less cell death and phosphorylation of Akt and Erk1/2 158 

Triiodothyronine 
(T3) 
 

Upregulation of  
miR-30a 

Less cell death and decreased expression of p53 159 

Hydrogen sulphide  Downregulation of 
miR-1 
 

Less cell death and apoptosis with less caspase 3, 
upregulation of Bcl2, and preservation of HDAC4 
 

160,161 
 
 
162 
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Upregulation of 
miR-21 
 

Reduce MI size, less apoptosis, less inflammation, 
reduced inflammasome formation 

Luteolin  
(a dietary flavonoid) 

Downregulation of 
miR-208b-3p 

Less cell death and apoptosis with downregulation of BAX 
and caspase 3, and upregulation of avian erythroblastosis 
virus E26 oncogene homolog 1 and Bcl2 
 

163 

Isoflurane   Upregulation of 
miR-21 
 
 
 

Reduce MI size and downregulation of PDCD4 
 
Reduce MI size, increased phosphorylation of Akt, eNOS, 
nNOS and less MPTP opening with isoflurane but not in 
miR-21 KO mice 
 

164 
 
165 

Trimetazidine   
 

Upregulation of 
miR-21 
 

Reduced MI size, less cell death and apoptosis with 
suppression of PTEN, phosphorylation of Akt, decreased 
Bax and increased Bcl2  
 

166,167 

Recombinant 
HMGB1A-box 

Downregulation of 
miR-21 

Less cell death and apoptosis with phosphorylation of Akt, 
decreased Bax and caspase 3 and increased Bcl2  
 

168 

Morphine Upregulation of 
miR-133b-5p 
 

Less cell death and reduced Fas ligand 169 

Salvianolic acid B 
(Chinese medicine 
herb) 
 

Upregulation of 
miR-30a 

Less cell death and autophagy, upregulation of PI3K and 
phosphorylated Akt 

170 

Inorganic nitrite Downregulation of 
miR-125a-5p, miR-
146b, miR- 
339-3p, miR-433 at 
reperfusion 

 171 

Bax, Bcl-2-associated X protein; Bak, Bcl-2 homologous antagonist/killer; BDNF, brain-derived 

neurotrophic factor; Bcl-2, B-cell lymphoma 2; Bim, Bisindolylmaleimide; BNIP3, Bcl2/adenovirus 

E1B 19 kDa protein-interacting protein 3; Cidea, Cell death activator; Cx43, connexin 43; eNOS, 

endothelial nitric oxide synthase; FADD, Fas-associated protein with death domain; HDAC4, 

histone Deacetylase 4; Ltbr, lymphotoxin-beta receptor; MAPK, mitogen activated protein kinase; 

MI, myocardial infarct; MPTP, mitochondrial permeability transition pore; nNOS, neuronal nitric 

oxide synthase; PDCD, Programmed cell death protein; Trp53,  transformation related protein 53. 
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