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Abstract 

National construction and energy datasets coupled with 

batch building performance simulation techniques have 

made feasible the construction of a stock building 

simulation model of over 16,000 schools. Although this 

should provide insights for targeted energy efficiency 

measures, discrepancies between measured and 

calculated performance limit predictive powers. 

A case study of building simulation models of three 

London schools built using the stock modelling process is 

presented. Discrepancies in calculated performance have 

been demonstrated when standardised variables are 

assumed for schedules, setpoints and equipment over the 

entire stock. Feedback mechanisms are proposed as a 

means of recruiting school building users to facilitate 

future data provision.  

Introduction 

Motivation and methods to model school energy 

performance 

Energy reduction measures in non-domestic buildings are 

a major component of the UK meeting its international 

commitments to climate change (IPCC, 2014) since 18% 

of the UK’s total carbon emissions come from this sector 

(Carbon Trust, 2009). The education sub-sector of similar 

sized and function non-domestic buildings provides a rich 

testing ground for testing carbon reduction strategies 

since as public buildings generally under public 

ownership, fabric datasets are available and there are 

possibilities of implementing renovation programmes at a 

population level (Pereira et al., 2014).  

Benchmarking (Hong et al., 2014) through Display 

Energy Certificates (DECs) has provided a means of 

informing school professionals and policy makers of the 

measured annual electricity and fossil fuel consumptions 

of their own school building relative to a benchmark 

(CIBSE, 2008). Although this has provided distinction 

between low energy but inefficient buildings and energy 

efficient buildings (Meier, 2004), top-down studies 

(Godoy-Shimizu et al., 2011) of the school stock have 

demonstrated that median benchmark values are changing 

over time. 

Post Occupancy Evaluation (POE) has demonstrated 

discrepancies between the measured and design annual 

energy consumption of individual schools (Pegg, Cripps 

and Kolokotroni, 2007) as well as large variations in 

performance between energy efficient non-domestic 

buildings (Bordass et al., 2001)  Extensive disaggregation 

of energy end-uses through bottom-up modelling has 

revealed a performance gap between original design 

assumptions and measured performance. Attempts have 

been made to disaggregate the gap in terms of model 

validation, data collection and external factors (De Wilde, 

2014) to compare with target cases (CIBSE, 2015b) but 

other case studies have revealed occupant related causal 

factors such as a difference in heating, lighting and 

electrical schedules (Demanuele, Tweddell and Davies, 

2010) as well as issues with building control systems 

(Bordass et al., 2001). 

Scaling these studies up to population level stock 

modelling has proved challenging. However the 

possibility of building a school stock model of 16,000 

bottom up building simulation models has recently been 

realised due to the development of automated functions 

(Evans, Liddiard and Steadman, 2017)  coupled with the 

availability of detailed datasets (Department for Business 

Energy & Industrial Strategy (BEIS), 2016) and high 

performance computing. UCL’s urban scale stock 

modelling tool, SimStock (Coffey et al., 2015) is such an 

example but in order to effectively explain performance 

gaps on individual members, reliable occupant datasets 

detailing equipment, schedules, behaviours and controls 

are required to populate such stock models.  

Structure of research 

The aim of this research is to test the effectiveness of a 

stock-modelling approach based on a case study of three 

London schools. Since the ultimate goal of this work is to 

feedback individual building performance as well as 

feeding forward aggregated insight into different sub-

sectors to national and local policy makers, a distinction 

is made here with bottom-up studies of individual schools 

since the method must eventually be scalable up to cover 

all 22,000+ public schools in England and Wales.  

The next section contains a short description of previous 

stock modelling efforts and current and proposed methods 

of accounting for different occupant schedules and 

setpoints within these models. The following section 

describes the application of the stock modelling approach 

to three complex London schools, comparing measured 

DEC consumption with simulated results and 

demonstrating pitfalls in the assumptions used in utilising 

national datasets, evident on an individual level. A final 

discussion section then details required additions to the 



stock modelling project and outlines a framework for 

future research to develop and test a platform for 

crowdsourcing data directly from occupants and 

mechanisms introduced by this form of data gathering. 

The role of occupant data in stock modelling 

Stock modelling of non-domestic buildings 

Top-down studies of the energy performance of entire 

urban areas or sectors have been possible for many years 

due to energy certification schemes such as EnergyStar  

and more recently the UK Display Energy Certificate 

(DEC) scheme (Burman, Mumovic and Kimpian, 2014; 

Hong et al., 2014). However building simulation 

modelling on an urban scale is an emerging field 

(Reinhart and Cerezo Davila, 2016) due to advances in 

computing power and methods. The advantage of the 

stock modelling approach is that end-use causes for 

underperformance are provided on a sector scale and 

effective policies tested (Kavgic et al., 2010). 

Such an approach is based on the ability to form geometric 

inputs based on comprehensive floorspace taxation 

databases and 3D polygon datasets (Evans, Liddiard and 

Steadman, 2017). Another requirement is that the fabric 

of all the buildings being investigated can be generalised 

by a set of archetypes representing different construction 

ages and types and climate zones (Monteiro et al., 2017) 

as a trade-off between accuracy and model complexity. 

Standardised templates for input data are required (Cerezo 

Davila, Reinhart and Bemis, 2016) to ensure consistency 

between buildings of different age and function. 

The choice of weather file used for calculating stock 

modelling heating loads depends on the aims of the stock 

model. If the aim is to generate an average design year, a 

Typical Meteorological Year (TMY) can be used for the 

appropriate degree day region; actual recorded weather 

should be used, where possible, when a comparison to 

measured data such as DEC annual consumption is 

required. However if neighbouring buildings have annual 

data recorded over different timeframes, adjustments will 

have to be made (Hong, 2015). 

Although a more comprehensive list of stock modelling 

projects is given elsewhere (Reinhart and Cerezo Davila, 

2016), Table 1 gives some examples of urban scale 

modelling - largely identification and remedying 

underperforming sub-sectors using Energy Use 

Intensities (EUI). Most of these are district scale rather 

than sets of buildings of the same sector so involve 

aggregating data from neighbouring buildings rather than 

comparison between peer buildings of the same sector. 

However, as alluded to in the Introduction, oversight of 

schedules, setpoints and equipment are also required at 

the district scale to distinguish between energy 

inefficiency and high energy usage (Meier, 2004), 

although sector-level also requires normalising the effect 

of weather when comparing buildings in different regions. 

Gathering of occupant data for stock modelling 

For gathering these vital occupant datasets, the 

International Energy Agency Annex 66 (Yan et al., 2017) 

has developed a framework integrating behavioural 

modelling and building simulation including truthfulness, 

management and ethics as well as how and what data is 

collected. Previous data gathering efforts for bottom-up 

studies have focussed on two main areas: in situ 

monitoring (Menezes et al., 2012) and survey based 

(Dasgupta, Prodromou and Mumovic, 2012) or a mixture.  

Table 1: Summary of selected stock modelling methods containing description of role of occupant data 

Institution Reference Scope of study Objectives of model Occupant input data 

source 

MIT 

(Boston, 

USA) 

(Cerezo 

Davila, 

Reinhart and 

Bemis, 2016) 

102,439 polygons 

representing 98% of 

residential and non-

domestic built floor 

area in Boston 

Providing a basis for demand-

response intervention studies 

at a city scale such as the 

manipulation of thermostat 

settings on a large scale 

Statistical methods used to 

upscale metered data to 

entire urban scale model  

EPFL 

(Lausanne, 

Switzerland) 

(Haldi and 

Robinson, 

2011) 

Using CitySim stock 

modelling software to 

represent stochastic 

models of window 

and blinds opening 

on a shoebox model 

To demonstrate behavioural 

diversity- inter-occupant 

spread more significant than 

within a single occupant 

Ultimately -decision support 

for energy policy makers to 

minimise net use of energy 

Data recorded from single 

office spaces in a research 

building in EPFL. Multiple 

simulations run based on 

derived probability 

distributions of presence, 

window and blind opening. 

BEST 

(Milan, 

Italy) 

(Caputo, 

Costa and 

Ferrari, 

2013) 

All residential and 

commercial buildings 

in Milan 

Support to energy planners, 

administrators and public 

utilities by demonstrating the 

pros and cons of new local 

/national buildings legislation 

Standard occupancy 

patterns assumed from 

Swiss Standards for 

Energy and Building 

Technology 

Osaka 

University 

(Osaka, 

Japan) 

(Shimoda et 

al., 2004) 

1,128,000 households 

in Osaka City using 

55 household types 

(family structures) 

Evaluating the effectiveness of 

insulation and appliance 

standards and investigating the 

effect of the urban heat island  

Occupant schedules from 

national time use survey 

defined for 55 households, 

scaled up by census data 



A potential gap has been defined (Cerezo Davila, Reinhart 

and Bemis, 2016) in generating hourly usage profiles in 

the absence of in situ data, which is not always available 

from utility companies. Post Occupancy Evaluation 

(POE) has been used effectively to gain insight into 

bottom-up school energy consumption from school 

building users (Pegg, Cripps and Kolokotroni, 2007). 

However the cost and time constraints of specialist 

personnel and equipment to survey and monitor sample 

buildings has limited such studies to small samples. 

For individual findings to be scaled up to regional level, 

the high intensity, manpower and costs of data gathering 

has necessitated the use of statistical methods (Hawkins 

et al., 2012) and neural networks (Hong et al., 2014) to 

derive occupant datasets based on acceptable ranges 

derived from observation. Unfortunately this may reduce 

the causal determination powers of the model by 

removing dependence on building physics. Conversely 

accruing real data by simply shifting the onus to the 

building user leads to unreliable or sporadic data due to 

lack of expertise and motivation on the part of the 

participants or even lack of control (Menezes et al., 2012). 

Crowdsourcing (Zhao and Qinghua, 2014) has previously 

been proposed (Robertson, Mumovic and Hong, 2015) to 

bridge this enthusiasm and knowledge gap in recruiting 

school building users to assist in stock modelling, While 

data gathering through an online platform has been 

trialled previously through Carbonbuzz (Dasgupta, 

Prodromou and Mumovic, 2012) to highlight 

discrepancies between peer buildings as well as between 

operational and asset performance, these efforts have 

been targetted at building professionals responsible for 

designing buildings rather than users responsible for 

operating buildings. 

Implicit in ensuring the quality of data gathered through 

non-experts is the need to provide feedback to participants 

reviewing, updating and correcting data to ensure 

knowledge and satisfaction are being provided as 

compensation. While tailored feedback (Abrahamse et al., 

2007) has previously been demonstrated as a means of 

informing hundreds of households individually of energy 

performance measures it has not yet been used to 

encourage the provision of accurate heating, lighting and 

equipment schedules and setpoints or to aggregate local 

and national data within the same platform. Sourcing data 

direct from building users who have influence over 

heating, lighting and equipment controls means that 

aggregated outputs from modelling are a closer 

representation of reality. National and local policymakers 

can then be better informed of the potential upsides and 

downsides of policy instruments while designing key 

benchmarks which can be measured over the whole stock 

due to the consistency within the stock model. 

Another advantage of engaging building users directly 

through the data gathering process is that confirmation of 

comfort and successful provision of building services can 

be acquired concurrently. Testing the trade-off between 

comfort and emissions reduction requires connecting the 

outputs of building users to the aggregated reduction 

targets of policy makers. Similarly, Human Computer 

Interaction (HCI) (Bleil de Souza and Tucker, 2016) has 

also been demonstrated to enhance understanding of the 

outputs of building simulation for design engineers by 

automating the simulation process to give feedback in real 

time, allowing access to libraries of building data and 

facilitating comparison between cases.  

The next section presents a case study demonstrating the 

importance of individualised occupant datasets in the 

school setting and the format of data which can be fed 

back. 

Criticality of occupant data: a case study of 

three complex school campuses 

Input data construction and modelling method 

In order to test the veracity of using a stock modelling 

approach to produce calculated EUIs to compare with 

measured data used in producing the DEC, three complex 

school campuses in north London consisting of multiple 

buildings of different ages ranging from Victorian to post-

2005 design and technology extensions were modelled.  

 

 School 

1 

School 

2 

School 3 

Main Build      Upper 

3D 

    

Floor DEC 

(m2) 

7940 7209 4878 4765 

Electricity 

(kWh/m2) 

56 59  33 73  

Heat 

(kWh/m2) 

243  91 114 86 

Figure 1: Description of three Camden school campuses 

The geometrical models for the three schools, 1, 2 and 3 

are shown in Figure 1 together with DEC derived 

floorspace and annual measured EUI data. School 3 has 2 

DECs corresponding to main building and upper school. 

Input data sets were constructed under four categories: 

• Weather – IWEC file measured at Gatwick 

representing a typical year based on 1983-2001 data 

• Built form: 

o Geometry - a series of polygons were 

constructed using 3DStock functions 

(Evans, Liddiard and Steadman, 2017) with 

LIDAR derived Ordnance Survey (OS) 

coordinates and heights. 

o Filtering – polygons constituting <2% of 

volume were removed. DEC floorspace was 

compared to total polygon floorspace.  

o Glazing - glazing ratios were calculated 

using automatable area measuring methods 

based on images gathered by site 

visits/Google Streetview.  

• Fabric 

o Archetypes – have been defined in an earlier 

paper (Bull et al., 2014) to which an extra 

modern archetype has been added based on 

the design of the 2005-built Design and 



Technology studios on the site of School 1 

(Haverstock Architects, 2006) 

o Building age – derived using historical maps 

– possibility of automating this process for 

more than 22,000 schools 

Table 2: Occupant schedules and variables as defined by literature and expected school function 
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Classes                         
Dining                         
Lighting                         
IT                         
Cooking                         
Showers                         
Heating                         
Ventilation                         

 Completely unoccupied/off (0%)  Occupied by staff only (8.33%)  Completely occupied/on (100%) 

Parameter Unit Setting 

Heat generated by seated, 

active occupant 

W 120, 250 

Thermostat heating set 

point (Gym/Arts, class) 

degC 17, 20 

Thermostat Cooling Set 

Point 

degC 25 

Infiltration rate (pre-2005, 

modern) 

air ch/hour 0.7, 0.2 

Ventilation rate l/s/person 8 

Power of lighting strip 

(pre-2005), LED (modern) 

lumen/W 60, 100 

Power of active computer W/computer 300 

Cooking facilities kWh/meal 1.5 

• Occupant schedules, setpoints and equipment –Table 

2 demonstrates typical parameters required as inputs 

for the building simulation. Since the objective of this 

study is to determine the relative power of each of the 

above datasets to influence overall consumption 

when provided deterministically to a stock modelling 

process, single values are used first based on 

literature and then tested in the sensitivity analysis. 

This data comes from a variety of sources including 

industry standards (CIBSE, 2015), educational 

regulations (UK Parliament, 1999) and other studies 

of wattage of equipment (Mudie et al., 2014) 

Input data files (.idf) were created for EnergyPlus V8.7 

based on LIDAR derived geometry using the 3D stock 

method (Evans, Liddiard and Steadman, 2017). Fabric 

and occupant variables, stored in a separate database were 

pre-processed and automatically added to the .idf file. A 

simulation was run with the .idf file and IWEC weather 

file calculating heat and electricity loads at hourly 

intervals for an entire year. 

Results 

For School 1, the floorspace indicated by the DEC was 

7940 m2, whereas total floorspace from polygons was 

calculated to be 15015 m2. Since it is not possible to 

determine whether the floorspace figure is wrong or 

whether the DEC only applies to parts of the building, 

School 1 was removed from consideration, whilst noting 

the importance of cross-checking floorspace and which 

parts of premises a DEC applies to when stock modelling 

thousands of schools. 

Comparison between measured DEC data and calculated 

end-use usage revealed that for the three remaining DECs 

(1 for School 2 and 2 for School 3), calculated space 

heating usage was between 50-150% higher than fossil 

fuel consumption indicated by the DEC. This difference 

is even more marked given that water heating for catering 

and showers which has been separated out from 

calculated space heating could be included in the fossil 

fuel consumption measurements. Figure 2 show a typical 

comparison with three calculated cases, explained in the 

following section.  The remainder of annual consumption 

allocated to IT, lighting, cooking and showers is within 

20% of the measured annual figure for electricity.  



 
Figure 2: DEC Measured vs. calculated end-use annual 

consumption in MWh for single school (School 2) 

Some variation between measured and calculated 

consumption is expected due to differences in building 

constructions and model replication as part of the 

performance gap acknowledged in the Introduction.  A 

sensitivity analysis was carried out, qualitatively 

reviewing the possible flexibility of the four input data 

types as well as quantifying the impact on calculated 

annual consumption based on perceived flexibility. 

• Weather - Since DEC data is measured over a precise 

time frame indicated on the certificate, there is scope 

to vary the exact temperature from the “typical year” 

IWEC file by up to around 2 degC either side based 

on monthly averages from 2015 and 2016 compared 

to the IWEC monthly average. In addition the urban 

heat island effect may mean that temperatures close 

to the centre of London are higher by around 2-3 

degC. Therefore two additional cases were run 

representing slightly hotter (2 degC added to all 

temperatures) and much hotter (4 degC) conditions, 

accounting for different times and locations from 

where IWEC was recorded. 

• Built form - small differences were found between 

polygons and reality where curved roofs were not 

accounted for, external walkways were incorrectly 

interpreted as being part of the thermal envelope or 

the polygon consisted of two sections of different 

ages. These mismatches are impossible to identify 

and correct automatically through a stock modelling 

process since they would require specialised 

interrogations of the polygons formed within 3D 

stock as demonstrated in the next section. Glazing is 

one area where built form can be misinterpreted so 

two extreme cases of 0% and 63% glazed were run to 

demonstrate the range. 

• Fabric - As shown in Figure 2, three cases were 

created for each school representing increasing 

complexity of fabric modelling: 

o Case A: A single archetype was used across 

the entire campus based on the age of oldest 

building with school activities (cooking, 

gym, art, computing, etc) spread 

homogeneously throughout. 

o Case B: Different archetypes and activities 

were allocated to individual polygons based 

on publicly available data. 

o Case C: Splitting of polygons to account for 

extensions of different ages and subsequent 

allocation of activities. 

• Occupant setpoints - Simplistic ideal heating loads 

have been used in EnergyPlus in conjunction with 

minimum and maximum setpoints and schedules. 

Classrooms and gyms are heated to different 

temperatures but no further distinction between 

heating zones (ie corridors, offices, toilets and 

classrooms) takes place. A single heating setpoint is 

over-simplistic since areas of each school will be 

heated to different extents but could also be a proxy 

for increasing the space which is considered to be 

unheated corridor from the conservative starting 

assumption that all indoor space is heated to the 

standards specified for classrooms in Table 1. A 

minimum setpoint of around 16 degC could be 

interpreted as a rough method of accounting for 

around half the “classroom” space in the model being 

unheated space. 

Figure 3 shows the relative effects of the four sensitivity 

variables relative to the measured DEC fossil fuel 

consumption. It can be seen that temperature and heating 

setpoints are the most significant factors which can be 

altered to provide the magnitude of change required to 

approximate measured annual fossil fuel consumption.  

 

 
Figure 3: Sensitivity analysis on weather, glazing, fabric 

cases and temperature setpoints (Base Case- School 2, 

Case B, 20 degC heating) 

Having demonstrated that standardised heating setpoints 

provide insufficient detail on an individual level for 

school stock modelling, the remainder of this paper 

discusses future work acquiring more robust datasets of 

occupant schedules, setpoints and equipment and how 

design of feedback mechanisms may facilitate this. 

Discussion and future research 

The need for and format of occupant feedback 

The previous section demonstrated that setpoints and even 

floorspace of the annual consumption covered by the 

DEC can provide significant uncertainty for individual 

school buildings within a school stock model. Scope for 

correcting or generating these datasets should be 

accounted for within the stock model framework in order 



for correct information to be fedforward to policy makers. 

The current scope for UCL’s stock modelling platform 

SimStock is detailed below in Figure 4Error! Reference 

source not found.. Under “other data”, individualised 

schedule, setpoint and equipment datasets will be required 

to complement the built form (“3D stock”) and fabric 

(“16000/22000 School Database”). In addition there is a 

need to define how this data can be aggregated and 

categorised (“Analysis Module” in Figure 4) to track 

progress towards CO2 reduction targets to national and 

local policy makers. 

 

Figure 4: Current SimStock framework 

The previous section demonstrated that for individual 

building performance to be determined accurately and 

aggregated in the stock modelling process, there is 

evidence that this data will need to be obtained actively 

rather than extrapolating model inputs from elsewhere. 

Since building users themselves are responsible for 

defining this dataset, by definition this data needs to be 

sourced directly from building users, who may lack the 

initial motivation and knowledge to accurately provide 

this information.  

 

Carbon 

Trust 

figures 

 

 

School 3 

overall – 

Case B 

 

 

Figure 5: Comparison of simulation with literature 

breakdown of energy uses (Carbon Trust, 2012) 

Comparisons with peers or national benchmarks are 

possible through stock modelling; while DECs provide 

overall comparisons, modelling output allows different 

energy end-uses to be disaggregated and compared. 

Figure 5 demonstrates such a comparison between a case 

study schools and Carbon Trust figures (Carbon Trust, 

2012) for a “typical school”,  demonstrating 

overprediction of heating requirements and IT relative to 

literature figures. Such comparison could demonstrate to 

individual schools where significant operating costs could 

be being incurred in relation to other schools (feedback) 

and also conversely demonstrate nationally where false 

assumptions are being made about the use of energy in 

schools. 

Future work developing a platform to test feedback 

and feedforward mechanisms 

The previous section discussed tailoring feedback 

towards different school users within a national school 

stock model. However the format and usability of 

aggregated data to national and local policy makers, or 

feedforward mechanism, is also critical to the success of 

the stock modelling platform as a decision making tool. 

The following research questions will require 

consideration.   

Feedback from school building users: 

• What motivational drivers such as the cost of 

school energy as the second largest expense after 

salary (Pereira et al., 2014) can be used to 

encourage engagement of school users with the 

review, updating and correction of their school’s 

data? 

• What level of detail and interaction of simulation 

outputs could educate school users with the 

knowledge required to improve the quality of 

provided data?  

• Is it additionally possible to influence potential 

improvements in the operation of school 

buildings through tailored feedback? 

Feedforward to policy makers: 

• What are the key performance metrics and sub-

sectors required by local and national 

policymakers from aggregated data? 

• What range of policies or school measures 

(Smith, Mumovic and Curtis, 2013) require 

testing by policy makers? 

A future research project by this paper’s authors will 

involve the development of a crowdsourcing platform as 

detailed in Figure 6 to answer the questions posed above. 

To inform the design of feedback and feedforward 

mechanisms, engagement with the following key 

stakeholders would be required through workshops and 

testing: 

1. National policy makers - defining progress 

towards emissions targets and prioritising sub-

sectors of the stock to target energy measures on. 

2. Local authorities - determining the allocation of 

financial (such as Salix funding) and bulk project 

managing resources 

3. Individual school building users - to tailor 

feedback mechanisms which can suitably inform 

and motivate different school building users to 

provide accurate datasets. 

 



 
Figure 6: Crowdsourcing platform with feedback and feedforward mechanisms to key stakeholders

Engagement between building simulation and school 

design professionals has been previously demonstrated 

for the purposes of carbon reduction (Smith, Mumovic 

and Curtis, 2013). However as the case study 

demonstrated, simulating thousands of buildings still 

requires inputs on an individual level, which requires the 

building user as a key stakeholder. 

Conclusions 

The effectiveness of the school stock modelling process 

has been investigated in the above case study of three 

schools based on available weather, built form, fabric and 

occupant datasets. The study has demonstrated that details 

of heating, lighting and equipment schedules and 

setpoints at an individual level are essential to building 

simulation models which predict end-use energy usage. 

While other stock modelling methods detailed in Table 1 

have required occupant datasets, these have generally 

been generated from case studies or reference data and 

scaled up through statistical or machine learning methods. 

The only potential source of insight into actual rather than 

design usage on an individual building basis across the 

stock without sampling through cost and time intensive 

post occupancy evaluations are the building users 

themselves. In addition quality control of existing datasets 

is required as with DEC floorspace in School 1. 

Crowdsourcing this data directly from building users may 

provide a potential method of creating occupant schedule, 

setpoint and equipment datasets. However, future work 

will require testing of the design of motivation and 

information feedback to the building user. The 

effectiveness of such a platform will additionally require 

monitoring incremental improvements to the accuracy of 

simulation models generated relative to measured data as 

well as the quality of aggregated output to be fed forward 

to national and local policymakers for progress tracking 

and decision making. 
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