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Abstract7

Unoccupied Underwater Vehicles (UUVs) are growing in importance and8

capabilities. Here, the trajectory control of an UUV carrying an object is9

investigated, with the consequent changes in system dynamics. For the first10

time, an Adaptive Model Predictive Control (AMPC) scheme for UUVs is11

developed, which selects optimal actions at the start of every time step to12

minimise the trajectory tracking error and prevent excessive changes in the13

control action over a receding time horizon. Prediction error minimisation14

is used to identify the linear model of the UUV in real time. The perfor-15

mance of AMPC is compared with existing PID and sliding-mode control16

(SMC) strategies through simulations. The latter is improved to prevent in-17

tegral wind-up. While SMC results in best tracking performance, it imposes18

a strong burden on the motors due to its bang-bang action selection. AMPC19

presents smoother changes in applied thrust, but higher tracking errors due20

to non-linear effects and inaccuracies in the on-line system identification pro-21

cess. PID presents best overall performance, but its behaviour is expected22

to degrade on an actual ROV application due to sensor noise. This study23

will contribute to the selection of a suitable control scheme for future UUVs24

performing maintenance tasks autonomously.25

Keywords: Remotely operated vehicle (ROV), system identification,26

trajectory control, PID control, sliding-mode control, model-predictive27

control (MPC)28

1. Introduction29

Over the past twenty years, the capabilities and thus the importance of30

Unoccupied Underwater Vehicles (UUVs) have been rising. Their main roles31
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include exploration and maintenance for the energy sector; exploration, in-32

telligence gathering, mine countermeasure and underwater warfare for the33

defence sector and exploration and data gathering for the oceanographic sec-34

tor. In general, it is possible to differentiate between Remotely Operated35

Vehicles (ROVs), i.e. machines connected to and powered by a mother ship36

through a tether and operated remotely by a human, and fully autonomous37

underwater vehicles (AUVs), whose range and capabilities are limited by the38

energy stored on-board (Fossen, 2011). Whereas AUVs tend to be stream-39

lined with higher speed and range, ROVs tend to be slower and limited by40

the tether, but more manoeuvrable and with a larger number of thrusters.41

The reader can find reviews of AUVs in Allard et al. (2014) and Wynn et al.42

(2014) for military and commercial applications, respectively, and of ROVs in43

Capocci et al. (2017). ROVs present a more interesting platform for main-44

tenance tasks, although they are dependent on a support ship and expert45

operators. Recent advances in machine learning and robotics can contribute46

towards a full automation of their operations. In this work, we make a step47

in this direction by developing strategies for the control of a single ROV48

carrying an object.49

Guidance systems for UUVs can be broadly subdivided into setpoint reg-50

ulation, trajectory tracking and path following (Fossen, 2011). In setpoint51

regulation, the desired position and orientation of the UUV are set to be52

constant, e.g. for autopilots. In trajectory tracking, the UUV is set to follow53

a desired trajectory in time, which prescribes reference position and orien-54

tation at each time step. In path following, the UUV is to follow a desired55

path independent of time. Although path following guidance systems have56

been the subject of most studies, especially for AUVs, we will consider tra-57

jectory tracking in this article. The reason for this is that the framework for58

apprenticeship learning, i.e. where the ROV learns specific actions from the59

operator, is currently designed for trajectory control (Abbeel et al., 2010).60

Hence, trajectory control is likely to be necessary for the future automation61

of ROV operations.62

A summary of most strategies for the control of UUVs can be found in63

Fossen (2011). The simplest scheme is PID control, which has been used64

since the 1920s. Soylu et al. (2016) have applied this technique for very65

accurate trajectory control of a ROV. More recent methods for trajectory66

control include integrator backstepping and Sliding-Mode Control (SMC).67

Backstepping consists in the recursive construction of a control Lyapunov68

function and results in improved robustness as compared with PID. Simi-69
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larly, SMC encompasses non-linear techniques to handle model uncertainties70

(Fossen, 2011). SMC for diving and steering control of UUVs is covered71

by Healey and Lienard (1993), while Lyshevski (2001) applies it to trajec-72

tory tracking. A model-free version is proposed by Raygosa-Barahona et al.73

(2011) and later developed in Garćıa-Valdovinos et al. (2014). Alternatively,74

Model Predictive Control (MPC) uses an internal model of the system to75

create an optimal control solution at each time step during a receding time76

horizon. This technique, known as Model Predictive Control (MPC), can77

also incorporate a prediction component that uses information of forecast78

disturbance, e.g. due to current or wave effects. Molero et al. (2011) apply79

MPC to the trajectory control of a ROV, while Steenson et al. (2014) for80

the depth control of an AUV and Kapetanović et al. (2017) for the path-81

following control of an UUV. Here, we will apply PID, SMC and MPC to the82

trajectory-tracking problem of a ROV carrying an object.83

One of the main challenges in the analysed problem is the associated84

change in the dynamic system after the ROV picks up the object. This re-85

quires the control scheme to be adaptive. Caccia et al. (2000) and Pereira86

and Duncan (2000) have described practical methods for the experimental87

measurement of the dynamic parameters of a ROV and UUVs in general, re-88

spectively, assuming decoupled equations of motion. Methods based on the89

frequency-domain or machine-learning have been proposed by Banazadeh90

et al. (2017) and Wehbe et al. (2017), respectively. Nevertheless, these meth-91

ods rely on prescribed manoeuvres and thus cannot be used in real-time.92

Smallwood and Whitcomb (2003) have investigated on-line system identifi-93

cation of a dynamically positioned ROV. Strategies for the on-line system94

identification of UUVs have been proposed by Sowerby et al. (2005), Kar-95

ras et al. (2013) and Eng et al. (2016) using recursive least-squares scheme.96

Eng et al. (2016) in particular use on-line system identification to design a97

suitable gain-scheduled controller for an AUV. On-line system identification98

will be used here in conjunction with MPC to produce the first application99

of adaptive MPC of an UUV.100

Although the energy industry has clearly used ROVs for lifting objects101

during maintenance tasks, this work with an industry focus has not been102

published. Conversely, the aeronautical community has studied the control103

of quadcopters lifting objects on their own or collaboratively, as for instance104

analysed by Mellinger et al. (2011) and Mellinger et al. (2015). Hence, these105

papers have been taken for inspiration. In the next section, the modelling106

of ROV dynamics is covered. Then, PID, SMC and adaptive MPC for ROV107
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Figure 1: Reference systems and degrees of freedom of a ROV. The original CAD drawing
was produced by BlueRobotics (2017).

control are treated. Afterwards, their performance is assessed by simulating108

a ROV picking up a sphere and tracking a desired trajectory.109

2. Modelling of ROV dynamics110

The book by Fossen (2011) contains a detailed description of the deriva-111

tion of the equations of motion of a ROV. The equations of motion are112

expressed in inertial and body-fixed reference frames. The latter is attached113

to the vehicle and its motion is described relative to the inertial, or Earth-114

fixed, frame. A right-hand-rule frame is employed, with positive direction115

North, East and downwards, as shown in Figure 1.116

2.1. Model of the Vehicle117

As shown in Figure 1, let us define the displacements of the ROV in 6
degrees of freedom (DOF) in the inertial reference frame and the velocity
vector in the body-fixed frame, respectively, as

η =
[
x y z φ θ ψ

]T
, (1a)

ν =
[
v ω

]T
=
[
u v w p q r

]T
. (1b)

The body velocity in the inertial reference frame can be found as follows118

η̇ = J(η)ν (2)
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using the transformation matrix for the generalised coordinates1

J(η) =

[
R(η) 0

0 T (η)

]
, (3a)

R(η) =

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cθcφ

 , (3b)

T (η) =

1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)/c(θ) c(φ)/c(θ)

 , (3c)

where 0 ∈ IR3×3 is a matrix of zeros, R the linear velocity transformation119

and T the angular velocity transformation matrix with c indicating cosine,120

s sine, t tangent functions and φ, θ and ψ being the Euler angles in (1a).121

Additionally, it is possible to include the effects of an external current122

represented by the velocity vector η̇c in the inertial reference frame. If the123

current is assumed to be steady and irrotational, it is possible to obtain the124

relative velocity vector of the ROV in body-fixed coordinates as125

νr =
[
vr ωr

]T
= ν − J(η)−1η̇c. (4)

Neglecting the effects due to waves, disturbances and the tether, the126

dynamics of a ROV can thus be expressed by the following system of ordinary127

differential equations:128 [
η̇
ν̇

]
=

[
J(η)ν

M−1 (−fh(η)− fd(νr)− fc(ν,νr) + τ )

]
, (5)

where M = (MB +MA) is the combined mass matrix, with MB being the
mass matrix of the rigid body in 6 DOF and MA the added-mass matrix, fh

indicates the hydrostatic force vector, fd the damping force vector, fc the
vector force representing the Coriolis and centripetal effects and τ the thrust

1Note that quaternions should be used instead to prevent an singularity for θ = 90◦.
However, in this work the angle of pitch never reaches this value.
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vector. The mass matrix of the rigid body is given by

MB =

[
mI −mS(rbg)

mS(rbg) Ib

]
, where (6a)

Ib = Ig −mS2(rbg) and (6b)

rbg =
[
xg yg zg

]T
(6c)

is the position of the centre of gravity of the ROV in the body-fixed reference129

frame, m its mass, Ib the inertia matrix about the origin of the body-fixed130

frame and Ig about the centre of gravity, I ∈ IR3×3 indicates the identity131

matrix and S ∈ IR3×3 the skew-symmetric matrix. The added mass matrix132

can be similarly subdivided into four equations of size IR3×3:133

MA =

[
MA,1,1 MA,1,2

MA,2,1 MA,2,2

]
. (7)

The weight and buoyancy of the ROV are given by W = mg and B =134

ρ∇g, respectively, where ∇ is the volume displaced by the ROV, ρ the sea-135

water density and g the gravitational acceleration. The position of the centre136

of buoyancy in the body-fixed reference frame is expressed as137

rbb =
[
xb yb zb

]T
. (8)

Then, the hydrostatic force vector is given by138

fh =


(W −B)s(θ)

(B −W )c(θ)s(φ)
(B −W )c(θ)c(φ)

(ybB − ygW )c(θ)c(φ) + (zgW − zbB)c(θ)s(φ)
(zgW − zbB)s(θ) + (xgW − xbB)c(θ)c(φ)
(xbB − xgW )c(θ)s(φ) + (ybB − ygW )s(θ)

 . (9)

Although fully non-linear models can result in greater accuracy (Wehbe et al.,139

2017), it is typical to model the damping force of ROVs with a linear and a140

quadratic term:141

fd = Dlνr +Dqνr � |νr|, (10)

where � indicates element-wise multiplication, Dl the linear damping matrix142

and Dq the quadratic damping matrix.143
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The Coriolis and centripetal force vector is expressed as

fh = CB(ν)ν +CA(νr)νr, where (11a)

CB(ν) =

[
0 −mS(v)−mS(ω)S(rbg)

−mS(v) +mS(rbg)S(ω) −S(Ibω)

]
, (11b)

CA(νr) =

[
0 −S(MA,1,1vr +MA,1,2ωr)

−S(MA,1,1vr +MA,1,2ωr) −S(MA,2,1vr +MA,2,2ωr).

]
. (11c)

2.2. Model of the Vehicle Carrying an Object144

When a ROV carries an object, its dynamics are affected. Here, the model145

focuses on the scenario when the ROV has already picked up the body. In146

particular, the object is assumed to be held fixed in place so that its position147

with respect of the ROV does not change, as shown in Figure 2. This can148

be achieved through grippers and reflects realistic applications of the oil and149

gas, exploration and defence industries. As a result, the combination of the150

ROV and the object can be modelled as a new, single, rigid body, whose151

motions can be described by the same equations as in Secion 2.1.152

G1, O

G

G2, B2

B1x

z

B

Figure 2: Body-fixed frame and position of the centres of gravity and buoyancy of the ROV
carrying an object. The original CAD drawing of the ROV was produced by BlueRobotics
(2017).
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Let us consider here the case of a single ROV carrying a single object,
as shown in Figure 2. The variables relating to the ROV are labelled as 1,
those relating to the object as 2 and those corresponding to the combined
rigid body with no number. The displaced volume, mass and position of the
centres of buoyancy and gravity of the total entity can be computed as

∇ =
2∑
i=1

∇i, (12a)

m =
2∑
i=1

mi, (12b)

rbb =

∑2
i=1∇ir

b,i
b

∇
, (12c)

rbg =

∑2
i=1 mir

b,i
g

m
. (12d)

If the centres of gravity and buoyancy of the object are vertically in line with153

those of the ROV, then no heel or trim angles will occur. The position of the154

origin of the body-fixed frame is unchanged after the object is picked up.155

Using the parallel-axis theorem, it is possible to compute the inertia ma-156

trix of each body i referenced to the origin of the body-fixed frame as157

Ibi = Ig,i −miS
T (rbg,i)S(rbg,i), (13)

where Ig,i is the inertia matrix of each body referenced to its centre of gravity.158

Hence, the inertia matrix of the whole assembly about the origin of the body-159

fixed reference frame is given by160

Ib =
2∑
i=1

Ibi . (14)

Whereas the rigid-body mass matrix of the combined body can be com-161

puted with (6a), the added mass and viscous damping matrices need to be162

estimated either experimentally or through numerical simulations for the163

composite system. Here, cross-coupling effects between the two bodies are164

assumed to be small so that the new matrices are computed as the superpo-165

sition of the respective matrices about the origin of the body-fixed frame for166

the ROV and object. Since the origin of the reference frame does not move,167
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the added mass and viscous damping matrices of the ROV are unchanged168

and labelled as AA,1, Dl,1 and Dq,1, respectively.169

If the object can be modelled as a sphere, then its volume, mass, added
mass and viscous damping about its own centre of mass in surge, sway and
heave (no components in roll, pitch and yaw due to symmetry) are given by

∇2 =
4

3
πρr3, (15a)

m2 =
4

3
πρsr

3, (15b)

mA,2 =
2

3
πρsr

3, (15c)

fD,2 =
1

2
ρ · 0.5 · πr2 =

1

2
πρr2, (15d)

respectively, where r is the radius of the sphere, ρs the density of its uniform
material and CD = 0.5 its drag coefficient. The viscous drag should con-
tribute to the quadratic damping. However, since a ROV is likely to travel
at slow speeds, it is possible to assume that Dq,2 = 0 and fD,2 to contribute
to the linear damping instead. Thus, if the object is treated as a point mass,
then the added-mass and viscous damping matrices in 6 DOF of the sphere
about the origin of the body-fixed frame can be approximated respectively
as

AA,2 =

[
mA,2I −mA,2S(rbg,2)

mA,2S(rbg,2) mA,2z
2
gI

]
, (16a)

Dl,2 =

[
fD,2I −fD,2S(rbg,2)

fD,2S(rbg,2) fD,2z
2
gI

]
. (16b)

2.3. Linearised Model170

For a standard, well-balanced ROV, the DOF of roll and pitch should be
hydrostatically stable. This condition is maintained even if the ROV lifts
an object denser than water under its centre of gravity, although permanent
angles of heel or trim may occur. Here, the object is assumed to be lifted
in line with the centres of gravity and buoyancy so that the equations of
motions can be linearised about φ = 0◦ and θ = 0◦. As shown in Fossen
(2011), the resulting linearised model in state-space form in 4 DOF (surge,
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sway, heave and yaw) is given by

ẋ = Ax+Bτη +Ew, where (17a)

x =
[
x y z ψ ẋ ẏ ż ψ̇

]T
, (17b)

A =

[
0 I
0 −M−1Dl

]
, (17c)

B = E =

[
0

M−1

]
, (17d)

I ∈ IR4×4, M ∈ IR4×4, Dl ∈ IR4×4, the disturbance w can be used to model171

ocean current or hydrostatic effects and τη is the thrust vector in the inertial172

frame. In particular, if there is no ocean current and the ROV is not neutrally173

buoyant (e.g. after lifting an object), then w can be set to a constant scalar174

value, say 1, and E =
[
0 0 (W −B) 0

]T
.175

2.4. Model of the Thrusters176

In this work the case of a ROV with non-rotatable thrusters is considered.177

Hence, it is possible to express the thrust and torque vector in the 6 DOF as178

τ = Tft, (18)

where the thrust in each propulsor is included in the vector ft ∈ IRnp×1, with179

np being the number of propulsors, and T ∈ IR6×np is the thrust allocation180

matrix. The thrust allocation matrix is a function of the position and orien-181

tation of the thrusters with respect to the origin of the body-fixed system of182

reference. Although the thrust in each rotor is a function also of the speed183

of advance in the water, here the thrust is assumed to be purely a function184

of the voltage into the thrusters V as in Garćıa-Valdovinos et al. (2014):185

ft = f(V ), (19)

where the coefficients of the function f , which is usually polynomial, are186

obtained experimentally.187

3. Trajectory-Tracking Control of a ROV188

The aim of the control task analysed in this work is to obtain appropriate189

values for the thrust (or in fact voltage) in each thruster so that the ROV190
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Figure 3: Diagram of the ROV control framework.

tracks a desired trajectory in space and time. Roll and pitch are assumed to191

be hydrostatically stable so that the ROV is controlled only in 4 DOF, since192

the system is underactuated.193

If the desired trajectory in the inertial reference frame is defined as ηt(t)
(the time dependence shows that there is an entry for each time step), then
the control error vector and its derivative can be expressed respectively as

η̃ = ηt − η, (20a)

˙̃η = η̇t − η̇. (20b)

Figure 3 shows the diagram of the control methodology applied in this194

paper. The controller uses η̃ and ˙̃η and returns a vector containing the de-195

sired voltages to each thruster, Vd, passing through a number of intermediate196

steps. The control scheme returns the required thrust in the inertial reference197

frame, τη,d, which is converted to the body-fixed frame as198

τd = J−1τη,d. (21)

The next step is to obtain the desired thrust in each vector, ft,d as199

ft,d = T−1τd. (22)
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This step requires the thrust allocation matrix to be invertible, which is200

possible only for fully actuated systems. The voltage in each thruster is then201

obtained from the inverse of the function in (19). The values are passed202

through a saturation block to prevent damage to the motors.203

The diagram in Figure 3 is completed by the trajectory generator, the204

thrusters model, which relies on (18) and (19), additional functions required205

to deal with the conversion between 6 to 4 DOF for the controller and the206

ROV platform or model. In this article, the ROV motions will be simulated207

as described in Secion 2, since the authors have no access to an actual system.208

However, the control framework can be easily modified for application to a209

real system, although additional state estimators will be required, likely in210

the form of Kalman filters.211

In the following sections, PID control, Model-Free High-Order Sliding212

Mode Control (MF-HOSMC) and MPC will be described for the control of a213

ROV picking up an object. All these methods can be interchangeably applied214

to the control scheme block in Figure 3.215

3.1. PID Control216

PID controllers have been used since the 1920s for the automated steer-217

ing of ships and represent one of the most applied types of control systems218

(Fossen, 2011). The control action comprises of the sum of a proportional,219

an integral and a derivative term based on the error signal. The proportional220

term is used to correct the response of the system based on current perfor-221

mance, whereas the derivative term can be used to forecast future values.222

The integral action, which relies on past data, can be used to remove steady-223

state errors, e.g. due to ocean current forces or hydrostatics imbalances (if224

the ROV is not neutrally buoyant). Based on the trajectory-tracking error225

signal in (20a), the desired thrust in 4 DOF in the inertial reference frame226

can be obtained as (Fossen, 2011)227

τη,d = Kpη̃ +Ki

∫ t

0

η̃(t′)dt′ +Kd
˙̃η (23)

at every time step, where the gain matrices are diagonal.228

3.2. Model-Free Sliding Mode Control229

Sliding-mode control is a robust non-linear scheme. MF-HOSMC for230

UUVs was proposed by Raygosa-Barahona et al. (2011) and later developed231
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in Garćıa-Valdovinos et al. (2014). The reader is referred to the latter for232

proof of stability and the derivation. Here, two changes are made to the ex-233

isting MF-HOSMC method. Firstly, a term aimed at improving the transient234

response is removed, as it does not affect the stability of the control scheme.235

Secondly, a term is added to prevent wind-up of the controller response.236

The sliding mode or extended trajectory error is given by

s = ˙̃η +Kp,smη̃, (24a)

sr = s+Ki,sm

∫ t

0

sign(s)dt′, (24b)

where the gain matrices are positive definite and diagonal. The desired thrust237

vector in 4 DOF in the inertial reference frame is thus obtained as238

τη,d = Kτsr, (25)

where Kτ is also diagonal positive definite.239

Integral wind-up occurs mainly with PID controllers when the set-point
rises significantly (Fossen, 2011). This results in the error accumulating in the
integral term, which continues to grow after an initial overshoot due to errors
in other directions, so that the response can become unstable. MF-HOSMC
can also suffer from this behaviour due to the integral term. In particular,
the signum function can cause considerable error build-up in heave for the
case when the UUV is not neutrally buoyant, which was not considered in
Garćıa-Valdovinos et al. (2014). As a result, to prevent unstable behaviour
in heave, (24b) has been modified as follows

i =

∫ t

0

sign(s)dt′, (26a)

si,j =

{
min (ij, 1) if ij ≥ 0,

max (ij,−1) if ij < 0
for j = 1, . . . , np, (26b)

sr = s+ si. (26c)

3.3. Adaptive Model Predictive Control240

3.3.1. Model Predictive Control241

MPC consists in the computation of an optimal control action at every242

time step using an internal model of the ROV dynamics such that a cost243
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function is minimised during a receding time horizon. The standard cost244

function (Bordons and Camacho, 2007) is245

J = Jy + Ju + J∆u, (27)

where each component is described hereafter:246

• Jy is the output reference cost function (Bordons and Camacho, 2007):247

Jy(k|k) =

ny∑
j=1

p∑
i=1

{W y
i,j [rj(k + i|k)− yj(k + i|k)]}2, (28)

where k is the current time step, p the number of time steps in the248

prediction horizon, ny the number of plant output variables, r(k+ i|k)249

the reference output value evaluating i samples in the future, y(k+ i|k)250

the predicted output vector and W y a positive semi-definite matrix of251

tuning weights, which can be used to penalise output errors.252

• Ju is the input error cost function, relying on the difference between253

the control input action and its reference along the control horizon. In254

general, Ju is used when there are more input values than plant outputs255

(Bordons and Camacho, 2007). As this is not the case here, Ju = 0 is256

employed.257

• J∆u is the control action cost function, which is used to penalise large258

changes in the control action along the control horizon with length259

c < p (Bordons and Camacho, 2007):260

J∆u(k|k) =
nu∑
j=1

c−1∑
i=1

{W∆u
i,j [uj(k + i|k)− uj(k + i− 1|k)]}2, (29)

where nu is the number of input variables, u is the predicted vector261

of control actions over the control horizon and W∆u a positive semi-262

definite matrix of tuning weights, which can be used to penalise changes263

in the control action to prevent damage to the motors.264

One of the most powerful features of MPC is the ability to include con-265

straints on the plant outputs, the input actions and the change in control266

actions (Bordons and Camacho, 2007). This is achieved by modifying the267
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cost function in (27), but can result in an increased computational burden,268

which can make a real-time implementation of the control challenging. In269

this work, any constraints within MPC are not implemented because of the270

voltage saturation shown in Figure 3.271

To predict the resulting plant outputs during the future time horizon,
MPC relies on an internal plant model in state-space format. Although non-
linear MPC is possible, linear MPC results in much less computational effort,
thus enabling a real-time implementation (Bordons and Camacho, 2007). For
this reason, the linearised model in Secion 2.3 will be used for ROV MPC,
with y = Ix and u = τη. However, as is clear from this section, MPC works
with discrete time steps. Hence, the continuous-time linear model in (17a)
is discretised with a zero-order hold (Franklin et al., 2008):

x(k + 1) = Adx(k) +Bdu(k) +Edw(k), (30a)

y(k) = Cdx(k), (30b)

where Cd = I ∈ IR8×8.272

With this linear time-invariant model, it is possible to predict the future273

trajectories of the model as follows (Bordons and Camacho, 2007):274

y(i|k) = Cd

{
Ai

dx(k) +
i−1∑
h=0

Ai−1
d

[
Bd

(
u(k − 1) +

h∑
j=0

∆u(k + j)

)
+Edw(k + h)

]}
,

(31)
This can be rewritten as275 y(k + 1)

...
y(k + p)

 = Sxx(k)+Su,1u(k−1)+Su

 ∆u(k)
...

∆u(k + p− 1)

+Hw

 w(k)
...

w(k + p)

 ,
(32)
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where

Sx =


CdAd

CdA
2
d

...
CdA

p
d

 ,Su,1 =


CdBd

CdBd +CdAdBd
...∑p−1

h=0CdA
h
dBd

 , (33a)

Su =


CdBd 0 . . . 0

CdBd +CdAdBd CdBd . . . 0
...

...
. . .

...∑p−1
h=0CdA

h
dBd

∑p−2
h=0CdA

h
dBd . . . CdBd

 , (33b)

Hw =


CdEd 0 . . . 0
CdAdEd CdEd . . . 0

...
...

. . .
...

CdA
p−1
d Ed CdA

p−2
d Ed . . . 0

 . (33c)

Substituting (32) into (27) yields a quadratic problem, which can be276

solved through quadratic programming in real time (Bordons and Camacho,277

2007). An implementation on an actual ROV requires an additional Kalman278

filter for the estimation of the states. However, since the controller is being279

tested in a numerical setting, this is not analysed within this article.280

3.3.2. On-line System Identification281

The lifting of the object results in a change in the ROV hydrostatics,282

damping, inertia and added mass. Hence, the original model of the sys-283

tem dynamics is no longer accurate and the parameters of (30a) need to284

be updated using observed data. This process is known as on-line system285

identification.286

Due to the linear form of (30a), recursive least-squares estimation would287

seem most appropriate (Ljung, 1999) and has been used successfully by Eng288

et al. (2016) with a gain-scheduling control scheme. However, here on-line289

recursive least-squares estimation coupled with MPC has been found to re-290

sult in unstable behaviour. This may be caused by the large number of291

unknown parameters. By using a zero-order hold for discretising (17c-17d),292

both Ad and Bd end up with 32 unknowns each. Hence, a suboptimal com-293

bination of parameters may result in a better fit to the trajectory than the294

actual one due to the non-linear effects, which are not accounted for in (30a).295

Since the suboptimal combination of parameters corresponds to an incorrect296
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model, MPC is unable to select correct actions and this causes the unstable297

behaviour observed.298

Therefore, the adoption of an alternative approach has been preferred for299

the estimation of the parameters based on batch-mode system identification.300

This method provides superior robustness at the expense of a more sluggish301

response. The technique consists of identifying the parameters of Ad and302

Bd using a batch of data points of x and τη ordered in time. As a result,303

it is run in parallel with the controller at a specific time interval, say every304

2.5 to 10 s. Since the method becomes more accurate as the number of305

data points increases, past data points are also used during following system306

identification steps. The data set is cleared whenever the ROV payload is307

deemed to have significantly changed. This can be determined by running an308

additional on-line recursive least-squares method and recognising an abrupt309

change in coefficients.310

The batch-mode system identification method relies on a prediction er-311

ror minimization (PEM) approach (Ljung, 1999), a robust technique with312

excellent asymptotic properties and applicable to a wide range of model pa-313

rameterisations. Let us store all data points in a time series with N time314

steps315

ZN = {u(1),y(1),u(2),y(2), . . . ,u(N),y(N)}. (34)

The input vector u includes the entries for τη but also w (3 vectors assuming316

irrotational currents) and a vector with entries with value 1 to account for317

a hydrostatic force in heave (1 vector, which can also be included within318

w). Additionally, let us consider a state-space representation as the linear319

time invariant model describing the system. In particular, a continuous time320

system is considered as in Section 2.3 so that it is possible to reduce the321

number of parameters θ to 16 each for both matrices A and B in (17a),322

which are now expressed as A(θ) and B(θ), respectively. In the case of no323

external ocean currents, matrix E(θ) has a single entry (W −B) to account324

for hydrostatic forces in heave if the ROV is not neutrally buoyant.325

In linear PEM (Ljung, 2002), the assumption is that the data in ZN has326

been generated according to327

y(t) = G(q,θ)u(t) +H(q,θ)v(t), (35)

where v is Gaussian white noise and q is the shift or lag operator. Hence,328

the vector of the difference between the measured and the predictive outputs329
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Figure 4: Diagram of AMPC for the ROV.

of the model e can be expressed as (Ljung, 2002)330

e(t) = H−1(q,θ) [y(t)−G(q,θ)u(t)] . (36)

The vector of parameters θ can then be computed by minimising the differ-331

ence between the predicted and measured outputs332

θ = arg min
θ

N∑
t=1

||e(t)||2. (37)

The minimisation usually relies on the damped Gauss-Newton method (Ljung,333

2002).334

Once matrices A(θ) and B(θ) are identified, they are discretised with a335

zero-order hold (Franklin et al., 2008) to produce Ad and Bd, respectively.336

The process is repeated whenever the system identification is called again337

with an updated or new data set ZN .338

3.3.3. Adaptive Model Predictive Control Summary339

The developed Adaptive Model Predictive Control (AMPC) method for340

ROVs can be seen in Figure 4. While MPC has a time step of 0.1 s, system341

identification is run in parallel at a slower rate of 2.5 s (for this specific342

application). To increase the accuracy of the identified system, data can be343

collected to be stored in ZN at a quicker rate than 10 Hz; namely, every 0.01 s344

here. Although in this work a simulated system with no noise is used, in real345

applications the stored data will need to be filtered and possibly estimated.346

The MPC block receives three input vectors with entries for each time347

step in the next time horizon of length p. One of these is a vector of entries348
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Figure 5: Thrusters’ position of the Kaxan ROV. The figure is taken from Garćıa-
Valdovinos et al. (2014).

with value 1, which is required to account for possible imbalances in the349

hydrostatics during system identification (i.e. if the ROV is not neutrally350

buoyant).351

4. Simulation of a ROV Lifting a Body352

In the absence of access to an actual ROV system, here the control of353

a ROV picking up an object is modelled using simulations. The modelling354

framework can be seen in Figure 3. Although not specifically designed for355

weight lifting, the Kaxan ROV described in Garćıa-Valdovinos et al. (2014)356

is selected, since the identified system is provided in that article.357

4.1. Model Parameters358

The Kaxan is a small ROV with four thrusters, as shown in Figure 5 for359

clarity. The reader is referred to Garćıa-Valdovinos et al. (2014) for a detailed360

description of the system. It can be seen that the ROV is underactuated in361

6 DOF; however, control in 4 DOF is possible.362

For this platform, the following parameters, taken from Garćıa-Valdovinos
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et al. (2014), apply:

rbb,1 =
[
0 0 −0.1

]T
m, (38a)

rbg,1 =
[
0 0 0

]T
m, (38b)

m1 = 98.5 kg, ρ = 1024 kg ·m−3, g = 9.81 m · s−2, (38c)

Ig,1 = diag (1.32, 2.08, 2.32) kg ·m2, (38d)

MA,1 = diag (29, 30, 90, 5.2, 7.2, 3.3) kg, kg ·m, kg ·m2, (38e)

Dl,1 = diag (72, 77, 95, 40, 30, 30) kg · s−1, kg · s−1 ·m, kg · s−1 ·m2, (38f)

Dq,1 = 0, (38g)

T =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 −0.07 0
−0.1 −0.1 0 0.022
0.175 −0.215 0.135 0

 , (38h)

ft,i =

{
0.6738V 3

i + 0.7566V 2
i − 0.3969Vi − 1.2410 for i = 1, 2,

0.7696V 3
i + 0.0352V 2

i − 1.2560Vi − 0.1574 for i = 3, 4,
, (38i)

Vi =

{
−2.684|ft,i|0.2097 + 1.4730 for ft,i < 0

0.9795f 0.3427
t,i + 0.2088 for ft,i ≥ 0

for i = 1, 2, (38j)

Vi =

{
−0.6473|ft,i|0.4223 − 0.4759 for ft,i < 0

1.003f 0.3495
t,i − 0.0763 for ft,i ≥ 0

for i = 3, 4. (38k)

The formulae for f and f−1 have been obtained by fitting the thrust-voltage363

curves of the thrusters reported in Garćıa-Valdovinos et al. (2014). Addi-364

tionally, the ROV is known to be neutrally buoyant so that W = B.365

The sphere is assumed to have the following parameters:

rbb,2 = rbg,2 =
[
0 0 0.5

]T
m, (39a)

r = 0.15 m, ρs = 1415 kg ·m−3. (39b)

The mass of the sphere has been selected so that the vertical thruster is able366

to counteract the difference between weight and buoyancy forces.367
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4.2. Controller parameters368

For PID control, very high gains have been used to improve the controller
response due to very small noise present in the simulation environment:

Kp = diag (500, 500, 500, 100) , (40a)

Ki = diag (5, 5, 5, 5) , (40b)

Kd = diag (10, 10, 10, 10) . (40c)

However, note that in a realistic implementation on an actual ROV system,369

lower gains and filters would be needed to deal with noise and state estimation370

combining data from multiple sensors.371

For MF-HOSMC, the same controller gains as in Garćıa-Valdovinos et al.
(2014) have been employed:

Kp,sm = I, (41a)

Ki,sm = 0.1I, (41b)

Kτ = 500I, (41c)

where I ∈ IR4×4.372

MPC is applied using the parameters in Secion 4.1 to pre-compute the373

matrices Ad, Bd and Ed. Similarly, these values are used to pre-initialize374

AMPC for the first 2.5 s. In particular, with AMPC the batch-mode system375

identification is run every 2.5 s.376

The MPC and AMPC schemes have a time-step of 0.1 s. In general, the377

selection of the length of the prediction and control horizons is a compromise:378

longer time horizons result in superior performance, but also much greater379

computational cost (Bordons and Camacho, 2007). For this reason, values380

of p = 25 and c = 10 have been chosen after preliminary studies, deeming381

longer time horizons difficult to be applicable in real-time.382

For both MPC and AMPC, W y is a matrix of 1 and W∆u of 0.1 so as to383

give greater importance to matching the desired displacement and velocity384

trajectories than to limiting the change in control actions. In general, it is385

possible to specify lower weights towards time steps further into the future,386

which are associated with higher levels of uncertainty (Bordons and Cama-387

cho, 2007). However, this has not been done here for simplicity. Addition-388

ally, for both MPC and AMPC the model parameters have been initialised389

according to the data in Secion 4.1.390
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4.3. Trajectory-Control Tests391

In the simulations, the ROV is tasked with following a minimum-snap392

trajectory (Mellinger, 2012) in the absence of currents, which requires coor-393

dinated surge, sway, heave and yaw. The ROV then has to return to the394

original position, wait, pick up the sphere (at t = 35 s) and then repeat395

the whole trajectory once more. This is shown in the trajectory curve in396

Figure 6.397

The time of t = 35 s is used to clear the data points stored for system398

identification when using AMPC. In fact, a recursive least-squares estimator399

is likely to be used on an actual system.400

The simulations are run in MATLAB/Simulink. The system in Figure 3401

is modelled with a combination of default blocks and C-coded S-functions for402

improved computational speed. While default MathWorks functions are used403

for PID, MPC and system identification to remove the need for additional404

verifications, MF-HOSMC has been implemented with a C-coded S-function.405

The equations of motion in Section 2 are discretised using a fourth-order406

Runge-Kutta scheme with a time step of 0.01 s.407

5. Results and Discussion408

The response of the ROV under the different control conditions is shown409

in Figure 6 in all 6 DOF. Figure 7 highlights more clearly the difference410

between desired and actual displacement trajectories. The corresponding411

input actions that are required to obtain the desired response can be seen412

in Figure 8 for each thruster. Note that MF-HOSMC with the anti-wind-up413

measure is labelled as MF-HOSMC-AW.414

The desired trajectory, shown in Figure 6, is particularly challenging,415

since it requires concurrent motions in surge, sway, heave and yaw. Although416

the required accelerations to follow the trajectory are not excessive, the ROV417

experiences significant roll and pitch angles anyway, as clear from Figure 6d418

and Figure 6e. Nevertheless, the static forces in roll and pitch are sufficient419

to restore the ROV to its original orientation. This supports the validity420

of the simplification of the control problem to only 4 DOF. In addition, in421

Figure 6d and Figure 6e it is interesting to notice the lower roll and pitch422

angles experienced after the ROV picks up the sphere (i.e. for t > 35 s)423

whilst performing the same manoeuvre, which is likely to be caused by the424

increased damping and inertia associated with the new system configuration.425
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Figure 6: Displacement of the ROV in 6 DOF under trajectory control using different
schemes.

As shown in Figures 6 and 7 all analysed control schemes are able to fol-426

low the desired trajectory satisfactorily, with the exception of MF-HOSMC,427

which becomes unstable in heave as the ROV with the sphere is requested428
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Figure 7: Difference in desired and actual displacement of the ROV in 6 DOF under
trajectory control using different schemes.

to go back to the original position and orientation (for t > 50 s). In fact,429

for all controllers heave is the most difficult DOF to control due to the static430

downward force (along the positive z-direction because of the selected system431

of reference) because the sphere is denser than water. In particular, as can432
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Figure 8: Thrust in each propulsor to obtain the desired trajectory using difference control
schemes.

be seen in Figure 8, all controllers apply the maximum thrust to the vertical433

thruster (thruster 4, which is assumed to be installed facing downwards from434

Figure 5) for 55 s < t < 65 s in order to track the desired trajectory. This435

inability to apply more thrust corresponds to a fuller hump in Figure 6c or a436

trough in Figure 6c, as compared to the case of the ROV tracking the same437

trajectory without carrying the sphere (20 s < t < 30 s).438

In Table 1, the performance of the five analysed control schemes is quanti-439

fied. The computational cost is expressed by the computational time of each440

simulation. However, note that for MPC and AMPC, the computational441

time is not representative due to the adopted implementation: whereas for442

the other controllers, coded S-functions have been used, for MPC and AMPC443
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Table 1: Computational time (tcomp), root mean square error (RMSE) between actual
and desired trajectories, root mean square value (RMS) of the thrusters’ force and its
time derivative over the whole simulation duration for the 5 types of analysed control
schemes. An additional row reports whether unstable behaviour was observed during the
simulations.

PID MF-HOSMC MF-HOSMC-AW MPC AMPC
tcomp (s) 2.260 6.418 17.194 83.663 1527.367

RMSE x (m) 3.525 0.235 3.011 8.460 33.645
RMSE y (m) 3.630 1.231 2.449 8.037 25.176
RMSE z (m) 11.641 34.561 5.949 16.888 23.986

RMSE ψ (rad) 2.256 0.815 0.159 2.325 8.238
RMS ft,1 (kN) 1.461 4.982 5.658 1.450 1.646
RMS ft,2 (kN) 0.699 4.989 5.623 0.558 0.903
RMS ft,3 (kN) 0.945 4.660 3.186 0.815 1.377
RMS ft,4 (kN) 4.390 5.200 4.799 4.246 4.216

RMS dft,1/dt (N/s) 18.541 7575.622 10302.365 21.118 29.0315
RMS dft,2/dt (N/s) 15.015 7869.253 10378.323 9.726 23.9145
RMS dft,3/dt (N/s) 7.182 5200.265 5442.323 14.346 32.577
RMS dft,4/dt (N/s) 28.167 3677.101 4769.186 48.529 47.212

Unstable? no yes no no no

the MATLAB MPC toolbox has been exploited. This means that at every444

time step in Simulink, a MATLAB function is called, which calls the toolbox,445

thus requiring a compilation process. The problem is even worse for AMPC,446

where the model estimation is also run. A C-only implementation is likely to447

result in a computational cost two orders of magnitude lower. The accuracy448

of the control scheme is represented by the root mean square error (RMSE) of449

the actual and desired trajectories over the whole simulation duration. The450

energy expenditure associated with each control strategy is defined by the451

root mean square (RMS) value of the thrust in each actuator. The feasibility452

of the control scheme can be deduced by the RMS value of the derivative of453

the force in each thruster. Finally, the robustness is indicated by whether454

unstable behaviour was observed during the simulations.455

Comparing the individual controllers, the PID scheme produces the best456

performance. In Figure 6 and Figure 7, it tracks the desired trajectory accu-457

rately despite some struggling with the control of the ROV after the object is458

picked up and while returning to the original position and orientation while459

carrying the sphere. The integral term is particularly important in off-setting460

the steady state-error due to the system being no longer neutrally buoyant.461

Additionally, PID control presents the lowest associated computational cost462
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as shown in Table 1. Although the adopted implementations (a mix of MAT-463

LAB, Simulink and C) cannot allow a direct meaningful comparison of the464

actual computational cost associated with each control strategy, PID is in465

general one to two orders of magnitude more efficient than MPC in standard466

applications (Bordons and Camacho, 2007). Nevertheless, the strong perfor-467

mance of PID control is biased by the absence of noise associated with these468

simulations, which enables the user to select very high gains for the pro-469

portional, integral and derivative terms. When controlling an actual ROV470

platform, some states (the velocities) are likely to be observed and the read-471

ings need to be filtered due to the presence of sensor noise. Furthermore,472

smaller gains are likely to be used to reduce the risk of instabilities if noise473

effects become significant. As a result, the performance of PID is expected474

to degrade somewhat in a practical implementation, although this is true475

for the other control schemes as well. Hence, further testing of the control476

strategies should be performed experimentally.477

Although Garćıa-Valdovinos et al. (2014) observed MF-HOSMC to per-478

form well for ROV control even in the presence of ocean currents with chang-479

ing direction and velocity, here it is found to become unstable for the control480

of heave when the ROV is no longer neutrally buoyant. In particular, this481

occurs in the region where the vertical thruster reaches its saturation limit.482

The addition of the anti-wind-up measure in (26b) is fundamental in restor-483

ing stability in heave control. In fact, MF-HOSMC with anti-wind-up results484

in the best overall trajectory tracking performance as indicated by smallest485

RMSE in Table 1, with negligible error with the exception of the case when486

the vertical thruster reaches the saturation limit in Figure 6 and Figure 7.487

However, from Figure 8, it is clear that MF-HOSMC achieves trajectory con-488

trol with a bang-bang type of behaviour, which can impose severe burden489

on the motors and is unlikely to be achievable in practice due to the inertia490

associated with the spinning rotors, which will cause a lag in their response.491

This is shown by the RMS of thrust derivative values, which are three orders492

of magnitude greater than for PID, MPC and AMPC. Hence, testing with493

an actual ROV system is required to assess the performance of this control494

type.495

Even though AMPC is able to track the desired trajectory reasonably496

well, it under-performs and presents the largest tracking errors after MF-497

HOSMC as clear from Table 1. On the one hand, part of this problem is498

caused by inaccuracies associated with the system identification process, as499

shown by a comparison with MPC in Figure 6, Figure 7 and Table 1, par-500
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ticularly for surge, sway and yaw. On the other hand, the non-linear effects501

caused by the rolling and pitching of the ROV contribute to the tracking502

errors, since MPC relies on a linear model in state-space form. Thus, higher503

tracking errors are expected for stronger non-linear behaviour, e.g. as ex-504

perienced in more aggressive manoeuvres where non-linear effects are more505

significant. Nevertheless, the controller performance is still satisfactory and506

the selected system-identification procedure has enabled us to produce a con-507

trol strategy that is truly adaptive to changes in system dynamics, whilst still508

being applicable to a real-time implementation. Furthermore, the inclusion509

of a penalty for large changes in the selected control actions within the cost510

function results in a well-behaved controller input in Figure 8 and Table 8,511

although the constraints on the applicable thrust should be included within512

the MPC framework. Due to the simplicity of integration with a Kalman513

filter for state estimation, the performance of AMPC is expected to show514

only negligible change when applied to an actual ROV platform.515

It is true that the selected ROV platform is not designed for the lifting516

and carrying of heavy objects due to its thrust limitations. In fact, since517

the increases in added mass, inertia and damping associated with the sphere518

have been found to be of minor importance as compared with the changes519

in hydrostatics, an on-board adjustable ballast system may be more suitable520

for ROV designs that are to be used for carrying objects in maintenance521

tasks. However, by applying the proposed control schemes, even the anal-522

ysed ROV system has been successfully used to lift and carry a heavy body.523

Therefore, this study represents an initial contribution to the development of524

fully autonomous underwater maintenance operations. Our aim is to extend525

this work to the assessment of the analysed control strategies on a real ROV,526

so that a better understanding of the importance of non-linear effects and527

sensor noise can be established.528

6. Conclusions529

In this article, a control strategy has been developed for ROVs lifting ob-530

jects based on AMPC and compared its performance for a trajectory tracking531

task in 4 DOF with that of PID and MF-HOSMC. The control strategy relies532

on MPC based on a linear model in state-space form for the selection of the533

thrust vector in the 4 DOF, that results in best tracking performance while534

minimizing changes in applied thrust over a future, receding time horizon.535

On-line system identification based on PEM is run in parallel to MPC to536
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update the model of the ROV dynamics using collected data. In addition,537

MF-HOSMC has been improved with a saturation block to prevent wind-up538

of the integral term.539

The selection of a control scheme depends on the requirements of interest.540

From numerical studies based on a model of an existing ROV taken from the541

literature (i.e. the Kaxan ROV described in Garćıa-Valdovinos et al. (2014)),542

the best tracking performance was shown by MF-HOSMC-AW, with the anti-543

wind-up measure proving fundamental in ensuring a robust behaviour. How-544

ever, the small tracking errors come at the expense of very large changes545

in the actuators’ input, which are not feasible in practice. Therefore, the546

best performance is in fact shown by the simple PID control, which has been547

found to produce the best compromise in the minimisation of the tracking548

error and changes in the thrusters’ input. Additionally, PID control also549

presents the smallest computational cost. Although this result may be con-550

sidered disappointing, it is actually fortunate that a PID controller, which551

is readily available and has significant use in both research and commercial552

applications, presents appropriate performance.553

The developed AMPC was able to track the desired trajectory reason-554

ably with smooth changes in the thrusters’ input. However, its performance555

is affected both by the linearisation of the system dynamics and the system556

identification process. Its large computational cost is associated with the se-557

lected code implementation. Nevertheless, AMPC shows the desired adaptive558

behaviour. In fact, all systems have been found to be adaptive to changes in559

the system dynamics and can be successfully used to control ROVs carrying560

objects.561

From numerical studies based on a model of an existing ROV taken from562

the literature (i.e. the Kaxan ROV described in Garćıa-Valdovinos et al.563

(2014)), the simple PID control has been found to produce the best compro-564

mise in the minimisation of the tracking error and changes in the thrusters’565

input. The proposed anti-wind-up measure has been found to be very effec-566

tive and MF-HOSMC resulted in the best tracking performance, although its567

bang-bang type of behaviour is expected to cause severe strains on the mo-568

tors. AMPC was able to track the desired trajectory reasonably with smooth569

changes in the thrusters’ input. However, its performance is affected both by570

the linearisation of the system dynamics and the system identification pro-571

cess. Nevertheless, all systems have been found to be adaptive to changes in572

the system dynamics and can be successfully used to control ROVs carrying573

objects.574
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From this study, it is clear that the analysed ROV is not designed for the575

transport of heavy objects. The design and analysis of adaptive controllers576

will be continued on a more suitable platform. Furthermore, the PID, MF-577

HOSMC-AW and AMPC algorithms will be applied to the control of a real578

ROV in an experimental study, since stronger non-linear effects and sensor579

noise are expected to worsen the control performance, particularly for PID580

and MF-HOSMC. This work should contribute to the automation of UUVs581

and may be included in future studies on apprenticeship learning. The idea582

is to have UUVs learn how to perform maintenance tasks where they have583

to move objects. The results from this study are important in the selection584

of a suitable control scheme for these applications.585

Acknowledgements586

The authors would like to acknowledge the help and advice provided by587

Matthew Whorwood at UCL.588

References589

Abbeel, P., Coates, A. and Ng, A. Y. (2010), ‘Autonomous Helicopter Aer-590

obatics through Apprenticeship Learning’, The International Journal of591

Robotics Research 29(13), 1608–1639.592

Allard, Y., Shahbazian, E. and Isenor, A. (2014), Unmanned Underwater593

Vehicle (UUV) Information Study, Technical report, OODA Technologies594

Inc., Montreal.595

Banazadeh, A., Seif, M. S., Khodaei, M. J. and Rezaie, M. (2017), ‘Iden-596

tification of the equivalent linear dynamics and controller design for an597

unmanned underwater vehicle’, Ocean Engineering 139(April), 152–168.598

BlueRobotics (2017), ‘BlueROV2’.599

URL: http://docs.bluerobotics.com/brov2/#3d-model600

Bordons, C. and Camacho, E. F. (2007), Model Predictive Control, 2nd edn,601

Springer-Verlag.602

Caccia, M., Indiveri, G. and Veruggio, G. (2000), ‘Modeling and identifica-603

tion of open-frame variable configuration unmanned underwater vehicles’,604

IEEE Journal of Oceanic Engineering 25(2), 227–240.605

30



Capocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T. and Toal, D.606

(2017), ‘Inspection-Class Remotely Operated Vehicles: A Review’, Journal607

of Marine Science and Engineering 5(1), 13.608

Eng, Y. H., Teo, K. M., Chitre, M. and Ng, K. M. (2016), ‘Online System609

Identification of an Autonomous Underwater Vehicle Via In-Field Experi-610

ments’, IEEE Journal of Oceanic Engineering 41(1), 5–17.611

Fossen, T. I. (2011), Handbook of Marine Craft Hydrodynamics and Motion612

Control, first edn, JohnWiley & Sons.613

Franklin, G. F., Powell, J. D. and Emami-Naeini, A. (2008), Feedback Control614

of Dynamic Systems, 6th editio edn, Pearson.615
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Kapetanović, N., Bibuli, M., Mǐsković, N. and Caccia, M. (2017), ‘Real-time623

model predictive line following control for underactuated marine vehicles’,624

IFAC-PapersOnLine 50(1), 12374–12379.625

Karras, G. C., Bechlioulis, C. P., Leonetti, M., Palomeras, N., Kormushev,626

P., Kyriakopoulos, K. J. and Caldwell, D. G. (2013), ‘On-line identifi-627

cation of autonomous underwater vehicles through global derivative-free628

optimization’, IEEE International Conference on Intelligent Robots and629

Systems pp. 3859–3864.630

Ljung, L. (1999), System Identification: Theory for the User, 2nd edn,631

Prentice-Hall, Upper Saddle River, NJ.632

Ljung, L. (2002), ‘Prediction error estimation methods’, Circuits, Systems,633

and Signal Processing 21(1), 11–21.634

Lyshevski, S. (2001), ‘Autopilot Design for Highly Maneuverable Multipur-635

pose Underwater Vehicles’, Proceedings of the 2001 American Control Con-636

ference. (Cat. No.01CH37148) 1, 131–136.637

31



Mellinger, D. (2012), ‘Trajectory generation and control for quadrotors’, Pro-638

Quest Dissertations and Theses 3509215, 136.639

Mellinger, D., Lindsey, Q., Shomin, M. and Kumar, V. (2011), ‘Design, mod-640

eling, estimation and control for aerial grasping and manipulation’, IEEE641

International Conference on Intelligent Robots and Systems pp. 2668–2673.642

Mellinger, D., Shomin, M., Michael, N. and Kumar, V. (2015), ‘Cooperative643

Grasping and Transport using Multiple Quadrotors.pdf’, Springer Tracts644

in Advanced Robotics 83, 545–558.645

Molero, A., Dunia, R., Cappelletto, J. and Fernandez, G. (2011), ‘Model pre-646

dictive control of remotely operated underwater vehicles’, IEEE Confer-647

ence on Decision and Control and European Control Conference pp. 2058–648

2063.649

Pereira, J. and Duncan, A. (2000), ‘System identification of underwater ve-650

hicles’, Proceedings of the 2000 International Symposium on Underwater651

Technology, UT 2000 pp. 419–424.652

Raygosa-Barahona, R., Parra-Vega, V., Olguin-Diaz, E. and Munoz-Ubando,653

L. (2011), ‘A model-free backstepping with integral sliding mode control654

for underactuated ROVs’, 2011 8th International Conference on Electrical655

Engineering, Computing Science and Automatic Control pp. 1–7.656

Smallwood, D. A. and Whitcomb, L. L. (2003), ‘Adaptive identification of657

dynamically positioned underwater robotic vehicles’, IEEE Transactions658

on Control Systems Technology 11(4), 505–515.659

Sowerby, N., Omerdic, E. and Roberts, G. (2005), ‘System identification660

and fault accommodation for thruster propelled UUVs’, Journal of Marine661

Engineering and Technology 4(2), 41–50.662

Soylu, S., Proctor, A. A., Podhorodeski, R. P., Bradley, C. and Buckham,663

B. J. (2016), ‘Precise trajectory control for an inspection class ROV’, Ocean664

Engineering 111, 508–523.665

Steenson, L. V., Wang, L., Phillips, A. B., Turnock, S. R., Furlong, M. E.666

and Rogers, E. (2014), Experimentally verified depth regulation for AUVs667

using constrained model predictive control, Vol. 19, IFAC.668

32



Wehbe, B., Hildebrandt, M. and Kirchner, F. (2017), ‘Experimental Evalua-669

tion of Various Machine Learning Regression Methods for Model Identifi-670

cation of Autonomous Underwater Vehicles’, (Ml), 4885–4890.671

Wynn, R. B., Huvenne, V. A. I., Le Bas, T. P., Murton, B. J., Connelly, D. P.,672

Bett, B. J., Ruhl, H. A., Morris, K. J., Peakall, J., Parsons, D. R., Sumner,673

E. J., Darby, S. E., Dorrell, R. M. and Hunt, J. E. (2014), ‘Autonomous674

Underwater Vehicles (AUVs): Their past, present and future contributions675

to the advancement of marine geoscience’, Marine Geology 352, 451–468.676

33


