
Cite as: Huang, L.: An opensource solver for wave-induced FSI problems, In proceedings of CFD with

OpenSource Software, 2017, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2017

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson
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Learning outcomes

This tutorial will mainly teach four aspects: How to use it, The theory of it, How to implement it,
and How to modify it. Therefore the list of learning outcomes is organized with those headers.

The reader will learn:

How to use it

• How to use FSI package.

• How to use waves2Foam Package.

The theory of it

• The partitioned approach of FSI algorithm.

• The theory of free-surface modelling (VOF method)

• The theory of wave modelling (relaxation zone technique).

How it is implemented

• How to realize free-surface simulation in FSI package.

• How to couple waves2Foam with FSI package.

How to modify it

• How to build a new library/solver.

• How to set up a wave-induced FSI simulation.
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Chapter 1

Introduction

Fluid-Structure Interaction (FSI), known as the interaction of some deformable structure with an
internal or surrounding fluid flow, has broad applications in marine engineering field. A typical
example can be the wave-induced deformation of ocean structures. This work will provide an open-
source package to realize such a simulation using Computational Fluid Dynamics (CFD).

Previous efforts have been made to simulate FSI problems by an opensource CFD code, OpenFOAM.
The most representative one can be the FSI package developed by Tukovic et al. [1]. This package
uses a partitioned algorithm, which solves the fluid and solid mechanism separately and links them
together via the fluid-solid interface. It equips good capability to simulate flow-induced solid defor-
mation. However, the fluid solver of this package has not included a two-phase library, which means
it cannot be used to simulate some marine problems containing free-surface modelling. Targeting
at this gap, Li [2] imported a two-phase library into the original FSI package, but several unsolve
issues were also indicated, e.g. instability. Besides, further work can be conducted to make the FSI
package more applicable to a realistic case, for example, to simulate the solid deformation under
waves loads.

This project can be considered as a further development of Li’s [2]. The development route of this
work is shown in Figure 1.1, where the original FSI package will first be extended into two-phase
and then be endowed the capability of generating a target wave field.

This report expects a reader can comprehensively understand how to realize a wave-induce FSI sim-
ulation via OpenFOAM and be able to reproduce the process according to the provided instruction.
It is organized as follows: Chapter 2 introduces the selected materials used to compose the final
package, i.e. FSI package, free-surface module and wave module, where the code of the three mate-
rials and relevant CFD theories will be demonstrated. Chapter 3 provides a step-by-step explanation
about how the source code are modified and then the three materials are eventually merged into
one. Chapter 4 presents a tutorial of how to set up and simulate a wave-induced FSI case, by the
developed code. The simulation results are also presented to discuss the capability and stability of
the new package. Chapter 5 ends this study with conclusion and suggestions on future applications.

Figure 1.1: Development route of this work
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Chapter 2

Source packages

To realize wave-induced FSI simulations, three source packages (FSI package, free-surface module,
wave module) are selected and will be merged into one. In this chapter, the three materials and
their relevant theories are introduced separately.

2.1 FSI Package

This section introduces the basic of the FSI package, with details on the codes that relate to this
work. A general introduction of this package can be found be the presentation of Yao [3].

The FSI package can be downloaded and installed with foam-extend 4.0. The instruction can be
found at:

https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/Fluid-structure_interaction

This package contains two parts, run and src , which are the tutorial cases and source code respec-
tively.

[FluidsolidInteraction]

|-- run

|-- |-- ampFsiFoam

|-- |-- fsiFoam

|-- |-- solidFoam

|-- |-- thermalStressFoam

|-- |-- weakFsiFoam

|-- src

|-- Allwclean

|-- Allwmake

|-- fluidSolidInteraction

|-- solvers

|-- ThirdParty

|-- utilities

The source code mainly consists two directories, fluidSolidInteraction and solvers.
The fluidSolidInteraction folder contains the fluidSolvers, solidSolvers and fluidSolidInterface

(where the information between fluid and solid sides communicates).
The solver folder contains the process that how a FSI problem will be solved.

[src]

|-- Allwclean
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2.1. FSI PACKAGE CHAPTER 2. SOURCE PACKAGES

|-- Allwmake

|-- fluidSolidInteraction

|-- |-- fluidSolidInterface

|-- |-- fluidSolvers

|-- |-- include

|-- |-- lnInclude

|-- |-- Make

|-- |-- solidSolvers

|-- solvers

|-- |-- ampFsiFoam

|-- |-- fluidFoam

|-- |-- fsiFoam

|-- |-- solidFoam

|-- |-- thermalSolidFoam

|-- |--weakFsiFoam

|-- ThirdParty

|-- |-- eigen3

|-- utilities

|-- functionObjects

The core of this package is the solver fsiFoam, whose source file is located at src/solvers/fsiFoam/fsiFoam.C.
It will call all the relevant code in the FSI package. To demonstrate the process of how this package
solves a FSI problem, this code of fsiFoam.C is shown and explained as below:

• fsiFoam.C:line 49-64

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

fluidSolidInterface fsi(mesh, solidMesh);

Info<< "\nStarting time loop\n" << endl;

for (runTime++; !runTime.end(); runTime++)

{

Info<< "Time = " << runTime.value()

<< " (dt = " << runTime.deltaT().value() << ")" << nl << endl;

fsi.initializeFields();

fsi.updateInterpolator();

scalar residualNorm = 0;

The above code initializes an FSI simualtion, similar to a usual OpenFOAM solver, and then the
following processes are executed for each timestel.

• fsiFoam.C:line 66-92

if (fsi.predictor())

{

fsi.updateForce();
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2.1. FSI PACKAGE CHAPTER 2. SOURCE PACKAGES

fsi.stress().evolve();

residualNorm =

fsi.updateResidual();

}

do

{

fsi.outerCorr()++;

fsi.updateDisplacement();

fsi.moveFluidMesh();

fsi.flow().evolve();

fsi.updateForce();

fsi.stress().evolve();

residualNorm =

fsi.updateResidual();

}

For each iteration (outerCorr()++), do:

fsi.updateDisplacement();

update the displacement of the solid. The displacement is solved by the solid solver, according to
the fluid load on the solid body.

fsi.moveFluidMesh();

change the fluid mesh according to the deformed solid

fsi.flow().evolve();

go to fluid solver and solve the fluid state

fsi.updateForce();

update the fluid force on the solid, according to the calculated fluid state

fsi.stress().evolve();

go to solid solver and solve the solid stress/strain/displacement.

residualNorm = fsi.updateResidual();

update the residual. Here the residualNorm is the difference of fluid-interface-mesh displacement
and solid-interface-mesh displacement, so this residual is set to keep the fluid and solid mesh coupled.

• fsiFoam.C:line 93-115

while

(

(residualNorm > fsi.outerCorrTolerance())

&& (fsi.outerCorr() < fsi.nOuterCorr())
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);

fsi.flow().updateFields();

fsi.stress().updateTotalFields();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return(0);

}

// ************************************************************************* //

When the calculated residual satisfies the tolerance set or the iteration time exceeds the max value,
update both the fluid and solid fields, go to next timestep. If not, go back and do the iteration
process again.

To sum up, Figure 2.1 provides a process diagram to help illustrate how an FSI problem is solved
by fsiFoam.

Figure 2.1: The solving process of fsiFoam (for a single timestep)
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2.2. FREE-SURFACE MODULE CHAPTER 2. SOURCE PACKAGES

2.2 Free-surface module

Free-surface modelling can be carried out by The Volume of Fluid (VOF) method [4]. This method
introduces a parameter α to define the fractional volume of a cell occupied by a specific phase.
Commonly, a value of α = 1 corresponds to a cell full of liquid, and a value of α = 0 indicates a
cell full of gas. Thus, the free surface, which is a mix of the two phases, is formed by the cells with
0 < α < 1.
The present study will add the core code of interDyMFoam into the original FSI package to enable
its free-surface modelling. The interDyMFoam solver, as described in its source file, is a “solver for
2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based
interface capturing approach, with optional mesh motion and mesh topology changes including adap-
tive re-meshing.”. The governing equations used by interDyMFoam are the continuity equation, the
Navier-Stokes equation and the VOF equations:

∇ · U = 0 (2.1)

∂(ρU)

∂t
+ ρ∇U · U = −∇P + ρ∇ · (µ∇U) + ρg (2.2)

∂α

∂t
+∇ · Uα = 0 (2.3)

ρ = αρwater + (1− α)ρair (2.4)

µ = αµwater + (1− α)µair (2.5)

Where U is velocity, P is pressure, ρ is density, t is time, µ is dynamic viscosity and g is gravitational
acceleration.
To give an introduction on the this solver, the interDyMFoam.C file is shown with explanations as
below:

• interDyMFoam.C:line 62-74

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

# include "readControls.H"

# include "CourantNo.H"

// Make the fluxes absolute

fvc::makeAbsolute(phi, U);

# include "setDeltaT.H"

For each timestep, the readTimeControls.H reads the control parameters like DeltaT, adjustTimeStep,
maxCo and correctPhi. CourantNo.H calculates the mean and maximal courant number. setDeltaT.H
will choose an optimal timestep if “adjustTimeStep” is enabled.

• interDyMFoam.C:line 76-81
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runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

bool meshChanged = mesh.update();

reduce(meshChanged, orOp<bool>());

The topology of the mesh is updated over each timestep, as the interDyMFoam solver incorporates
dynamic meshes. This is the difference between interDyMFoam and interFoam.

• interDyMFoam.C:line 83-99

# include "volContinuity.H"

volScalarField gh("gh", g & mesh.C());

surfaceScalarField ghf("ghf", g & mesh.Cf());

if (correctPhi && meshChanged)

{

# include "correctPhi.H"

}

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

if (checkMeshCourantNo)

{

# include "meshCourantNo.H"

}

volContinuity.H calculates volume continuity errors. Then, two fields gh and ghf are defined
for further calculations. meshCourantNo.H calculates and outputs the mean and maximum courant
numbers for the meshes. For a FSI problem, when the mesh changes over a timestep, the correctPhi
is acquiescently true, then correctphi.H is executed, which makes sure the total inflow and outflow
of mass is conserved after the mesh movement.
Here the fluxes are made relative to mesh motion as the meshes may have been changed, which
corresponds the fluxes are made absolute (at the beginning of interDyMFoam.C) to initialize the
case.

• interDyMFoam.C:line 101-144

// Pressure-velocity corrector

while (pimple.loop())

{

twoPhaseProperties.correct();

# include "alphaEqnSubCycle.H"

# include "UEqn.H"

// --- PISO loop

while (pimple.correct())
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{

# include "pEqn.H"

}

p = pd + rho*gh;

if (pd.needReference())

{

p += dimensionedScalar

(

"p",

p.dimensions(),

pRefValue - getRefCellValue(p, pdRefCell)

);

}

turbulence->correct();

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

// ************************************************************************* //

Above is the main process of this solver, where U and P are solved. So far, the solution of a fluid
field with free surface is obtained. This can be used as the fluid solver in the FSI package, which
will provide the necessary capacity to simulate a free-surface FSI problem.

2.3 Wave module

In physics, wave is actually the distribution of the free surface. To model the loads of waves on
a solid body, a desired wave field should be generated in the CFD model, which is known as a
numerical wave tank.
In OpenFOAM, the waves2foam toolkit can be used to model a numerical wave tank. Its installation
instruction and theoretical details can be found in the manual [5].
In the present study, waves2foam will be coupled with a two-phase FSI package, so that target waves
can be generated and further induce solid deformation. The waves2foam toolkit uses a technique
known as relaxation zone [6] to facilitate the modelling of a numerical wave tank. Commonly, two
relaxation zones are set at the inlet and outlet of the domain, as the schematic diagram shown in
Figure 2.2. These two zones can effectively help generate and absorb surface waves respectively. A
relaxation zone can also be set to other shapes, e.g. cylindrical rather than rectangular.
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Figure 2.2: Schematic diagram for the inlet and outlet relaxation zones (grey) in a numerical wave tank.
(Reproduced with permission of jacobsen [7])

Figure 2.3: The value of spatial weighting factor, χ(ξ), as a function of local coordinate. (Reproduced with
permission of jacobsen [7])

The relaxation zones can be employed to prevent wave reflection from the outlet boundary and
also to prevent internally reflected waves, e.g. the waves reflected by internal structure to influence
the wave generation at the inlet boundary. In the relaxation zone method, a spatial weighting factor
χ is introduced as:

χ(ξ) = 1− exp(ξβ − 1)

exp(1)− 1
(2.6)

where ξ is the local coordinate in the relaxation zone, which equals to 1 at the outer end and 0 at
the inner end of the relaxation zone, as indicated in Figure 2.3. The shape factor β can be defined
arbitrarily. Then a local value φ is dependent on χ as:

φ = χφcomputed + (1− χ)φtarget (2.7)

where φtarget is the target solution such as U or α, and φcomputed is the numerically computed value,
obtained from the Navier-Stokes and VOF equations. Thus, the relaxation zone can obtain an ad-
justed φ over each timestep, thereby minimizing the interference caused by wave reflection. The tar-
get wave parameters are set according to wave theories through a file named waveProperties.input,
which will be introduced as below.

To introduce how to set a target wave field, the waveProperties.input file under the tutorial
case waveFlume/constant (within the installation of waves2Foam) will be explained as below:
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• waveProperties.input:line 15-23

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

seaLevel 0.00;

// A list of the relaxation zones in the simulation. The parameters are given

// in <name>Coeffs below.

relaxationNames (inlet outlet);

initializationName outlet;

The file starts with the definition of still water level, the names of relaxation zones and the wave
theory used to initiate the simulation (here it accords to the relaxation zone named outlet).

• waveProperties.input:line 25-60

inletCoeffs

{

// Wave type to be used at boundary "inlet" and in relaxation zone "inlet"

waveType stokesFirst;

// Ramp time

Tsoft 2;

// Water depth at the boundary and in the relaxation zone

depth 0.400000;

// Wave period

period 2.0;

// Phase shift in the wave

phi 0.000000;

// Wave number vector, k.

direction (1.0 0.0 0.0);

// Wave height

height 0.1;

// Specifications on the relaxation zone shape and relaxation scheme

relaxationZone

{

relaxationScheme Spatial;

relaxationShape Rectangular;

beachType Empty;

relaxType INLET;

startX (0 0.0 -1);

endX (5 0.0 1);

orientation (1.0 0.0 0.0);

}

};
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The wave type as well as wave parameters of the inlet relaxation zone are specified, followed by
the definition of the relaxation zone. Here, stokesFirst waves are supposed to be generated and
a rectangular relaxation zone is set at the inlet. Other options for waveType, relaxationScheme,
relaxationShape and beachType are also available and can be selected from the munual [5].

• waveProperties.input:line 62-83

outletCoeffs

{

waveType potentialCurrent;

U (0 0 0);

Tsoft 2;

relaxationZone

{

relaxationScheme Spatial;

relaxationShape Rectangular;

beachType Empty;

relaxType OUTLET;

startX (13 0.0 -1);

endX (18 0.0 1);

orientation (1.0 0.0 0.0);

}

};

// ************************************************************************* //

The structure for setting the outlet relaxation zone is as the same as the setting of inlet but here
it uses the wave theory “potentialCurrent”, which means introducing a current that is uniform over
the depth (non-disturbed water). This theory is typically used for an outlet relaxation zone. At
the beginning of this file, it defines “initializationName outlet”, which means this simulation will be
initialized as a still water situation.
By employing the waves2Foam toolkit, the effect diagram and numerical view of a established nu-
merical wave tank are presented as Figure 2.4 and Figure 2.5.

11



2.3. WAVE MODULE CHAPTER 2. SOURCE PACKAGES

Figure 2.4: Effect diagram of a numerical wave tank, where wave generation and absorption function are
realized by the application of relaxation zone

Figure 2.5: Numerical view of a wave flume, where regular waves are well generated and absorbed at the
outlet boundary (red stands for crest and blue stands for trough).
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Chapter 3

Code development

This chapter provides a guideline on how to develop a package for running a “wave-induced FSI
simulation”. Based on the explanation in the last chapter, the idea for the code development is
using interDyMFoam to replace the fluid solver part of fsiFoam and coupling the new FSI package
with waves2Foam. Before conducting the following steps, the reader should make sure that all the
three parts described in the chapter 2 have been properly installed.

3.1 Enable two-phase FSI simulation

To extend the FSI package from single-phase to two-phase, essentially it is to build a new free-surface
fluid library beside other existing fluid libraries, e.g. pisoFluid, icoFluid. The fluid libraries of
FSI package are stored under src/fluidSolidInteraction/fluidSolvers/.
For this purpose, the code of interDyMFoam will be transplanted as a new two-phase fluid library
under the fluidSolvers directory, which will be named as “interFluid”. Detailed steps of building
this library are shown as below:

1. Establish a new library and name it “interFluid”

cd FluidSolidInteraction/src/fluidSolidInteraction

cd fluidSolvers

cp -r pisoFluid interFluid

cd interFluid

mv pisoFluid.C interFluid.C

mv pisoFluid.H interFluid.H

sed -i s/pisoFluid/interFluid/g interFluid.*

2. Add the interFluid path into FluidSolidInteraction/src/fluidSolidInteraction/Make/files

cd ../..

echo "fluidSolvers/interFluid/interFluid.C" >> Make/files

3. Supply the content of FluidSolidInteraction/src/fluidSolidInteraction/Make/options so
that it can call the free-surface package of foam-extend

ADD under EXE_INC:

-I$(LIB_SRC)/transportModels/incompressible/lnInclude \

-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \

ADD under EXE_LIBS:

-linterfaceProperties \

13



3.1. ENABLE TWO-PHASE FSI SIMULATION CHAPTER 3. CODE DEVELOPMENT

4. Add the headers required by interDyMFoam but not yet existing in interFluid

ADD after the headers of interFluid.H:

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "MULES.H"

#include "subCycle.H"

#include "interfaceProperties.H"

#include "twoPhaseMixture.H"

#include "turbulenceModel.H"

#include "pimpleControl.H"

5. Update the member data of the interFluid library, according to interDyMFoam.C and its
createFields.H

The member data are declared in interFluid.H, where the previous ones are deleted (except the
gradP and gradU) and then revised as:

• member data declaration in interFluid.H

volScalarField pd_;

volScalarField alpha1_;

volVectorField U_;

surfaceScalarField phi_;

twoPhaseMixture twoPhaseProperties_;

dimensionedScalar rho1_;

dimensionedScalar rho2_;

volScalarField rho_;

surfaceScalarField rhoPhi_;

uniformDimensionedVectorField g_;//from readGravitationalAcceleration.H

volScalarField gh_; // in interFoam but not in interDyMFoam

surfaceScalarField ghf_;// in interFoam but not in interDyMFoam

volScalarField p_;

interfaceProperties interface_;

autoPtr<incompressible::turbulenceModel> turbulence_;

volVectorField gradp_;//- Pressure gradient, from pisoFluid

volTensorField gradU_;//- Velocity gradient, from pisoFluid

pimpleControl pimple_;

Then, place their corresponding member data definition in interFluid.C (make sure in the same
order as appear in interFluid.H), as:

• member data definition in interFluid.H

pd_

(

IOobject

(

"pd",

runTime().timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

14
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),

mesh

),

alpha1_

(

IOobject

(

"alpha1",

runTime().timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

),

U_

(

IOobject

(

"U",

runTime().timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

),

phi_

(

IOobject

(

"phi",

runTime().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

linearInterpolate(U_) & mesh.Sf()

),

twoPhaseProperties_(U_, phi_, "alpha1"),

rho1_( twoPhaseProperties_.rho1()),

rho2_( twoPhaseProperties_.rho2()),

rho_

(

IOobject

(

"rho",

runTime().timeName(),

mesh,

IOobject::READ_IF_PRESENT

),

alpha1_*rho1_ + (scalar(1) - alpha1_)*rho2_,//see Equation (2.4)

alpha1_.boundaryField().types()//the same boundary types as alpha1

),
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rhoPhi_

(

IOobject

(

"rho*phi",

runTime().timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

rho1_*phi_

),

g_

(

IOobject

(

"g",

runTime().constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

),

gh_("gh", g_ & mesh.C()),

ghf_("gh", g_ & mesh.Cf()),

p_

(

IOobject

(

"p",

runTime().timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

pd_ + rho_*gh_

),

interface_(alpha1_, U_, twoPhaseProperties_),

turbulence_

(

incompressible::turbulenceModel::New(U_, phi_, twoPhaseProperties_)

),

gradp_(fvc::grad(p_)),

gradU_(fvc::grad(U_)),

pimple_(const_cast <fvMesh&> (mesh))

Note: part of the syntax of interDyMFoam is not as same as that in the FSI package, therefore some
expressions need to be revised for consistency, e.g. revising “const dimensiondScalar rho()” into
“volScalarField rho()”.

6. Revise the main member function of interFluid.C to conform with interDyMFoam

In the fluid library of FSi package, the main function is the evolve() function, as pointed in the
step “fsi.flow().evolve()” of fsiFoam.C. Therefore the evolve() function in interFluid.C is revised
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referring to the main member function of interDyMFoam.C (line 66-136)., as:

• evolve() function in interFluid.C

for (int oCorr = 0; oCorr < nOuterCorr; oCorr++)

{

# include "interCourantNo.H"

// Make the fluxes absolute

fvc::makeAbsolute(phi_, U_);

# include "interVolContinuity.H"

# include "interCorrectPhi.H"

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi_, U_);

// Pressure-velocity corrector

while (pimple_.loop())

{

twoPhaseProperties_.correct();

# include "interAlphaEqnSubCycle.H"

# include "interUEqn.H"

// --- PISO loop

while (pimple_.correct())

{

# include "interPEqn.H"

}

p_ = pd_ + rho_*gh_;

if (pd_.needReference())

{

p_ += dimensionedScalar

(

"p",

p_.dimensions(),

pRefValue - getRefCellValue(p_, pdRefCell) //pRefValue changed to pdR...

);

}

gradp_ = fvc::grad(p_); // reserve from FSI package

gradU_ = fvc::grad(U_); // reserve from FSI package
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turbulence_->correct();

}

}

7. Compile interFluid
Under FluidSolidInteraction/src/fluidSolidInteraction, wmake and debug till no error oc-
curs.

8. Build a two-phase FSI solver, “interFsiFoam”

cd FluidSolidInteraction/src/solvers

cp -r fsiFoam interFsiFoam

cd interFsiFoam

mv fsiFoam.C interFsiFoam.C

sed -i s/fsiFoam/interFsiFoam/g Make/files.*

echo "-linterfaceProperties" >> Make/options

wmake

9. Test
The new interFluid and interFsiFoam can be tested by running the FSI dambreak case written
by Li [2]. (Download available at: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/ )

3.2 Enable wave-induced FSI simulation

The coupling of waves2Foam with FSI package is divided into two parts: on the one hand, to build
a new solver that can call both waves2Foam package and FSI package; on the other hand, to include
necessary wave objects into the new developed FSI fluid library (the “interFluid” that contains free-
surface capability).
Detailed steps of the development process are shown as below:

1. Make a copy of interFsiFoam and name it “waveFsiFoam”

mkdir $WM_PROJECT_USER_DIR/applications/solvers/waveFsiFoam

cp -r $WM_PROJECT_USER_DIR/FluidSolidInteraction/solvers/interFsiFoam/* \

$WM_PROJECT_USER_DIR/applications/solvers/waveFsiFoam

cp -r $WM_PROJECT_DIR/applications/solvers/multiphase/interFoam/ \

alphaEqn.H alphaEqnSubCycle.H createFields.H UEqn.H pEqn.H \

$WM_PROJECT_USER_DIR/applications/solvers/waveFsiFoam

cd $WM_PROJECT_USER_DIR/applications/solvers/waveFsiFoam

mv interFsiFoam.C waveFsiFoam.C

2. Revise waveFsiFoam/Make/files, as:

waveFsiFoam.C

EXE = $(FOAM_USER_APPBIN)/waveFsiFoam

3. Supply the content of waveFsiFoam/Make/options, so that it can call the waves2Foam package
(this step refers to waves2Foam/application/solvers/solvers400_EXT/waveFoam/Make/options,
as this work is based on foam-extend 4.0)
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ADD under EXE_INC:

-DOFVERSION=400 \

-DEXTBRANCH=1 \

-DOFPLUSBRANCH=0 \

-I$(WAVES_SRC)/waves2Foam/lnInclude \

-I$(WAVES_SRC)/waves2FoamSampling/lnInclude \

-I$(WAVES_GSL_INCLUDE)

ADD under EXE_LIBS:

-L$(WAVES_LIBBIN) \

-lwaves2Foam \

-lwaves2FoamSampling \

-L$(WAVES_GSL_LIB) \

-lgsl \

-lgslcblas

4. Revise the Make/options again so that it can call the FSI package

Under EXE_INC, link the following paths with the installation position of FSI, as:

-I../../../FluidSolidInteraction/src/fluidSolidInteraction/lnInclude \

-I../../../FluidSolidInteraction/src/ThirdParty/eigen3 \

5. Complie waveFsiFoam

Under the waveFsiFoam directory, wmake and debug till no error occurs.

6. Make a copy of interFluid and name it “waveInterFuild”

cd FluidSolidInteraction/src/fluidSolidInteraction

cd fluidSolvers

cp -r interFluid waveInterFluid

cd waveInterFluid

mv interFluid.C waveInterFluid.C

mv interFluid.H waveInterFluid.H

sed -i s/interFluid/waveInterFluid/g waveInterFluid.*

7.Add the path of waveInterFluid into
FluidSolidInteraction/src/fluidSolidInteraction/Make/files

cd ../..

echo "fluidSolvers/waveInterFluid/waveInterFluid.C" >> Make/files

8. Add relaxationZone class into the waveInterFluid library

ADD at the end of the head files in waveInterFluid.H:

#include "relaxationZone.H"

ADD at the end of the member data in waveInterFluid.H:

relaxationZone relaxing;

ADD at the end of the member function in waveInterFluid.C:

relaxing(const_cast <fvMesh&> (mesh), U_, alpha1_)

ADD under {twoPhaseProperties_.correct(), in waveInterFluid.C:

relaxing.correct();

9. Add waveProperties class into the waveInterFluid library (should be added after the construc-
tion of “g”, as the wave theories need to call the gravitational acceleration)
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ADD after the member data of "g", in waveInterFluid.H+

IOdictionary waveProperties;

dimensionedVector referencePoint;

scalar sL;

ADD after the member function of "g", in waveInterFluid.C+

waveProperties

(

IOobject

(

"waveProperties",

runTime().constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

),

referencePoint("NULL", dimLength, vector::zero),

sL(readScalar(waveProperties.lookup("seaLevel"))),

ADD after "Info << "Evolving fluid solver" << endl;", in waveInterFluid.C

if (SMALL < Foam::mag(sL))

{

if (Switch(waveProperties.lookup("seaLevelAsReference")))

{

// Make a positive unit vector along the direction of gravity

referencePoint.value() = g_.value()/Foam::mag(g_.value());

referencePoint.value() = Foam::cmptMag(referencePoint.value());

// Make the sea level the reference level

referencePoint.value() *= sL;

}

}

10. Compile waveInterFLuid:
Under FluidSolidInteraction/src/fluidSolidInteraction, wmake and debug till no error oc-
curs.

11. Test: the usage of the developed code will be introduced in Chapter 4.
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Chapter 4

Tutorial case

This chapter will set up a case to demonstrate how a wave-induced FSI problem is simulated through
the code developed in this work. A tutorial case, which can be considered as “beam deformation in
regular waves”, will be demonstrated. The case is revised based on a basic case “beamInCrossFlow”
(within the installation of original FSI package). The simulation view of the “beamInCrossFlow”
case is shown in Figure 4.1.

Figure 4.1: Simulation view of the tutorial case “beamInCrossFlow”, where the beam is being deformed by
the moving flow

4.1 Case structure

As shown in the tree diagram below, the FSI case mainly consists of two parts: fluid and solid.
Each of them has its own 0, constant and system directory, as a common OpenFOAM case, and the
“createZones” and “setBatch” define the fluid/solid interface. The “makeLinks”, “makeSerialLinks”
and “removeSerialLinks” files manage the link between the fluid and solid. The “Allrun” and “All-
clean” files are located in the fluid part, and the “AllrunPar” file is used for parallel computation.
During the process of an FSI simulation, only the fluid part needs to be executed, because the solid
part will be called automatically over each timestep.
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1

[A FSI CASE]

|-- fluid

|-- |-- 0

|-- |-- Allclean

|-- |-- Allrun

|-- |-- AllrunPar

|-- |-- constant

|-- |-- createZones

|-- |-- foam.foam

|-- |-- gpDeflection

|-- |-- setBatch

|-- |-- system

|-- makeLinks

|-- makeSerialLinks

|-- removeSerialLinks

|-- solid

|-- 0

|--constant

|-- createZones

|-- foam.foam

|-- setBatch

|-- system

4.2 Mesh

The mesh of a FSI case also contains two parts, i.e. fluid mesh and solid mesh, defined separately in
their constant/polyMesh/blockMeshDict. The fluid mesh and solid mesh must match each other
through their interface and compose a whole computational domain, as shown in Figure 4.2.

Figure 4.2: Fluid mesh, solid mesh and the integral mesh. (Blue: fluid field; Red: interface; Grey: Solid
field)
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Through the interface, the loads of fluid on solid is outputted to the solid solver and converted
into the displacement of the solid surface (here the solid bottom displacement is constrained at
zero, following the beam constraint). According to the solid deformation, dynamic mesh capacity
is employed to make the fluid mesh deform together. Figure 4.3 gives an example of how the fluid
mesh changes with solid deformation.

Figure 4.3: The topology of the fluid mesh changes according to solid surface displacement.

4.3 Boundary conditions

Compared with the original “beamInCrossFlow” case , the following revises are required under
fluid/0/ :
1. Copy the alpha1.org file from the tutorial case “damBreakWithoutObstacle” (within the instal-
lation of foam-extend 4.0), so that the VOF method will divide the domain into two phase.
2. Rename the pressure field from p to pd; Revise its outlet boundary into a zeroGradient condition
and its top boundary into a totalPressure (typically used to model the atmosphere) condition.
3. To generate waves at the inlet boundary, the inlet boundary conditions of volume fraction
alpha1.org and velocity U are set as waveAlpha and waveVelocity respectively, which are the
boundary conditions installed with the waves2Foam package.

For alpha1.org

inlet

{

type waveAlpha;

refValue uniform 0;

refGrad uniform 0;

valueFraction uniform 1;

value uniform 0;

}

For U

inlet

{

type waveVelocity;

refValue uniform ( 0 0 0 );

refGradient uniform ( 0 0 0 );

valueFraction uniform 1;

value uniform ( 0 0 0 );

}
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4.4 Constant

Compared with the original “beamInCrossFlow” case, the following revises are required under
fluid/constant/ :
1. In fluidProperties, set the “fluidslover” as waveInterFluid (this step calls the new fluid library
developed in this study), also change the following “fluidcoeffs” value into waveInterFluidCoeffs.
2. Replace the transportProperties file by that of the tutorial case “damBreakWithoutObsta-
cle”.
3. Copy waveProperties.input from the toturial case “waveFlume”, as well as the g file and
RASproperties file. Adjust the “sealevel” and other wave parameters according to the geometry.

Note: the deformation properties of the solid is set in solid/constant/rheologyProperties, as:

• rheologyProperties:line 15-27

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

planeStress no;// yes for 2d no for 3d

rheology

{

type linearElastic;

rho rho [1 -3 0 0 0 0 0] 1000; //density

E E [1 -1 -2 0 0 0 0] 1.4e10; //Young's modulu

nu nu [0 0 0 0 0 0 0] 0.4; //Poissson ratio

}

// ************************************************************************* //

4.5 Running the case

Compared with the original “beamInCrossFlow” case, the following revises are required under
fluid/system/ :
1. In controlDict, change the “application” value into waveFsiFoam (this step calls the developed
new solver) and comment the previous object functions.
2. Replace the fvSchemes file and fvSolution file by those of the tutorial case “damBreakWith-
outObstacle”, and revise the pressure field of the two files from p to pd.

To run the case by the command “./Allrun”, the fluid/Allrun file needs to be revised as be-
low:

• Allrun:line 1-19

#!/bin/sh

# Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

# Get application name

application=`getApplication`

24



4.6. RESULTS AND DISCUSSION CHAPTER 4. TUTORIAL CASE

runApplication -l log.blockMesh.solid blockMesh -case ../solid

runApplication -l log.setSet.solid setSet -case ../solid -batch ../solid/setBatch

runApplication -l log.setToZones.solid setsToZones -case ../solid -noFlipMap

runApplication blockMesh

runApplication setSet -batch setBatch

runApplication setsToZones -noFlipMap

cd ..

./makeSerialLinks fluid solid

The basic operations (blockMesh, Setset, setTozones) of both the solid part and fluid part are
made to set the mesh and interface, and then the two parts are linked.

• Allrun:line 21-30

cd fluid

cp 0/alpha1.org 0/alpha1

runApplication setWaveParameters

runApplication setWaveField

runApplication $application

# ----------------------------------------------------------------- end-of-file

The utility setWaveParameters is a pre-processing utility, which computes all the necessary wave
parameters based on physical meaningful properties, e.g. setWaveParametes converts information
on water depth and wave period into a wave number for first order Stokes wave theory. In this step,
it will load the constant/waveProperties.input and output the processed data into a new file,
constant/waveProperties .
The utility setWaveField is used to set the initial conditions according to a user defined wave the-
ory, which is defined by the keyword “initializationName” in the file waveProperties.input (see
Section 2.3).
The last step calls the solver waveFsiFoam, as defined by “getAppapplication” in fluid/controlDict.
Thus, the new solver waveFsiFoam will solve the case.

4.6 Results and discussion

In this case, regular ocean waves are generated from the left and propagating towards right, as shown
in Figure 4.4. Figure 4.5 represents the interactions of the beam with incoming waves: when the
beam is hit by a wave crest, it deforms forward; when the beam is hit by a wave trough, it deforms
backward. Figure 4.6 plots the beam deformation over time, in which it can be seen that the sim-
ulation reaches converge after a while and the beam deformation reveals a periodically sinusoidal
response under the regular wave loads. Stable periodical results can be expected if the simulation
continues running.

So far, it is the scope of this work. According to the analysis above, the solver shows good stability
and the result is qualitatively physical. It should be noted that this case is set with coarse mesh
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and used to test the capability of the developed package. To improve this case, finer mesh can be
applied and further work can be conducted on verifying wave quality and validating the accuracy of
the beam deformation.

Figure 4.4: Wave generation: from the left and propagating towards right.

Figure 4.5: The interaction of the beam with incoming waves: when the beam is hit by a wave crest, it
deforms forward (above); when the beam is hit by a wave trough, it deforms backward (below).
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Figure 4.6: Deformation of the beam as a function of runtime
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Chapter 5

Conclusion

This project introduces an approach to simulate wave-induced FSI problems upon OpenFOAM.
Three opensourse packages, FSI package, interDyMFoam and waves2Foam, are coupled together
and evolved into a new fluid library waveInterFluid and a new solver waveFsiFoam. Details are
given on relevant theoretical background and the development process.

A tutorial case “beam deformation in regular waves” is provided to demonstrate the usage of the
proposed code. Through the simulation of this case, the new code preforms stably with reasonable
results obtained, which suggests this code may be promising to simulate similar problems.

The tutorial case is a simple application of this package, but this package should also be valid to
more marine FSI cases. On the fluid side, more complex waves can be generated. On the solid side,
the structure can be varied.
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Study questions

How to use it

• 1 What is the structure of a FSI case?

• 2 How to run a solid solver during a FSI simulation?

The theory of it

• 1 What is the theory used in this work to realize free-surface modelling?

• 2 What is the theory used in this work to facilitate a numerical wave tank?

How it is implemented

• 1 Where should interDyMFoam be implemented into the FSI package?

• 2 How to link waves2Foam package with a FSI solver?

How to modify it

• 1 How to modify wave properties?

• 2 How to modify the deformation properties of the solid and what properties can be modified?
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