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On Hypothesis Testing for Comparing Image Quality Assessment Metrics
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In developing novel image quality assessment (IQA) met-
rics, researchers should compare their proposed metrics with
state-of-the-art metrics. A commonly adopted approach is
by comparing two residuals between the nonlinearly mapped
scores of two IQA metrics and the difference mean opinion
score, which are assumed from Gaussian distributions with
zero means. An F -test is then used to test the equality of
variances of the two sets of residuals. If the variances are
significantly different, then we conclude that the residuals are
from different Gaussian distributions and that the two IQA
metrics are significantly different. The F -test assumes that
the two sets of residuals are independent. However, given that
the IQA metrics are calculated on the same database, the two
sets of residuals are paired and may be correlated. We note
this improper usage of the F -test by practitioners, which can
result in misleading comparison results of two IQA metrics.
To solve this practical problem, we introduce the Pitman test
to investigate the equality of variances for two sets of corre-
lated residuals. Experiments on the LIVE database show that
the two tests can provide different conclusions.

Introduction

Image quality assessment (IQA) is a popular research topic
in image processing. Several widely used IQA metrics,
such as noise quality measure (NQM) [1], structural similar-
ity index (SSIM) [2], multiscale structural similarity (MS-
SSIM) [3], visual information fidelity [4], feature similarity
index (FSIM) [5] and gradient similarity (GSM) [6], have
been proposed in the last several decades.

Researchers should compare their proposed IQA metrics
with state-of-the-art metric to validate the superiority of their
metrics. Such comparisons are typically performed following
the procedures proposed in [7].

To test whether two IQA metrics are significantly differ-
ent, Sheikh et al. [7] used the hypothesis test on two sets of
residuals between the nonlinearly mapped scores calculated
from each of the two IQA metrics and the difference mean
opinion score (DMOS). In [7], one assumption is that the
two sets of residuals are samples from Gaussian distributions
with zero means. Therefore, to test whether the two sets of
residuals are from the same distribution, we only need to test
whether the two sets of residuals present the same variance.
Sheikh et al. [7] adopted a simple F -test to investigate the
equality of variances of two sets of residuals.

The F -test assumes that the two samples are indepen-
dent [8]. However, we note that the two sets of residuals in
IQA can be correlated, thereby invalidating the independence
assumption in the F -test. In particular, when comparing two
IQA metrics, we apply the metrics to the same database, re-
sulting in paired scores calculated from the two IQA metrics,
with one residual in the first IQA metric uniquely matched
with one residual in the second IQA metric on the same im-
age. The paired scores of the two IQA metrics are correlated;
for example, as degradation on an image increases, the scores
from the two IQA metrics can both decrease. Thus, the two
residuals between the DMOS and the two nonlinearly mapped
scores may also be correlated.

When the two samples are correlated, the F -test cannot
provide reliable results on the equality of variances. There-
fore, the conclusion whether the two IQA metrics are statisti-
cally different based on the F -test is not reliable.

Pitman and Morgan [9, 10] developed a test to examine
the equality of variances for two correlated samples. In the
Pitman test statistic, the Pearson correlation coefficient is in-
volved to consider the effect of the correlation between sam-
ples. Instead of using the F -test, we introduce the Pitman test
to examine the equality of variances for comparing two IQA
metrics.

Using the F -test to compare IQA metrics

Supposing that the aim is to compare the scores x and y cal-
culated from two IQA algorithms (after the nonlinear map-
ping) on the same database with x = [x1, x2, . . . , xN ]T 2
RN⇥1 and y = [y1, y2, . . . , yN ]T 2 RN⇥1, where N is
the number of images in the database and supposing that the
DMOS for the images in the database is denoted as z =
[z1, z2, . . . , zN ]T 2 RN⇥1, then the two residuals between
the DMOS and the two nonlinearly mapped scores are dx =
z� x and dy = z� y.

Sheikh et al. [7] assumed that dx = [dx1, dx2, . . . , dxN ]T 2
RN⇥1 and dy = [dy1, dy2, . . . , dyN ]T 2 RN⇥1 are the sam-
ples drawn from Gaussian distributions with zero means.
Therefore, testing whether dx and dy are from the same
Gaussian distribution becomes testing whether their popula-
tion variances �2

x and �
2
y are the same.

The F -test is adopted in [7] to test the equality of vari-
ances. The null hypothesis H0 is �

2
x/�

2
y = 1 and the alter-

native hypothesis H1 is �
2
x/�

2
y 6= 1. Given the two sets of
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samples dx and dy , the F -test statistic is calculated as

F =
s
2
x

s2y

, (1)

where s2x = 1
N�1

PN
i=1(dxi�d̄x)2 and s

2
y = 1

N�1

PN
i=1(dyi�

d̄y)2 are the sample variances, and d̄x = 1
N

PN
i=1 dxi and

d̄y = 1
N

PN
i=1 dyi are the sample means. The F -test statistic

has an F distribution with N � 1 and N � 1 degrees of
freedom.

Therefore, the test conclusion is drawn by comparing the
value of F in (1) with the critical values of an F distribution
with N � 1 and N � 1 degrees of freedom. Given the signifi-
cance level ↵ (which usually takes values of 1%, 5% or 10%),
the null hypothesis is rejected F > F1�↵/2,N�1,N�1 or F <

F↵/2,N�1,N�1, where F1�↵/2,N�1,N�1 and F↵/2,N�1,N�1

are the critical values. Then, we conclude that dx and dy

are from different Gaussian distributions. Otherwise, if
F↵/2,N�1,N�1  F  F1�↵/2,N�1,N�1, we do not re-
ject the null hypothesis, and the conclusion is that dx and dy

are from the same Gaussian distribution.

Why the F -test is unsuitable for comparing IQA metrics?

The F -test assumes that dx and dy are two independent sam-
ples from Gaussian populations. However, dx and dy may
be correlated because the samples are paired; one sample dxi

in dx is uniquely paired with one sample dyi in dy because
they are calculated on the same ith image. Such samples are
called paired samples in statistics. If the two IQA metrics are
both well designed, their scores both decrease as the degree
of degradation increases in the same image. Such correla-
tions between scores may also render the residuals dx and dy

as correlated. Empirical evidence of the correlation between
residuals is provided later in experimental results. Therefore,
the conclusion drawn from the F -test of whether dx and dy

are from the same distribution can be unreliable.

The Pitman test as a solution

In statistics, a hypothesis test for paired samples is usually
different from that for independent samples. For example, the
t-test is used to test the equality of means for independent
samples, whereas the paired t-test is used for paired samples.
For evaluating the equality of variances, the Pitman test is
designed for correlated samples [9, 11, 12].

Here, we introduce the Pitman test to examine the equality
of variances for the residuals of two IQA metrics. The null
hypothesis H0 is �2

x = �
2
y , and the alternative hypothesis H1

is �2
x 6= �

2
y . The Pitman test statistic is calculated as

t =
(1� s

2
x/s

2
y)
p
N � 2

q
4(1� r2)(s2x/s

2
y)

, (2)

where

r =

PN
i=1(dxi � d̄x)(dyi � d̄y)qPN

i=1(dxi � d̄x)2
PN

i=1(dyi � d̄y)2
(3)

is the Pearson correlation coefficient between the two sets of
samples dx and dy . It is clear that in (2) the correlation r

is considered in the test statistic. The Pitman test statistic
exhibits a Student’s t distribution with N � 2 degrees of free-
dom.

Similar to that in the F -test, the test conclusion is drawn
by comparing the value of t in (2) with the critical values of a
t distribution with N � 2 degrees of freedom.

The F -test versus the Pitman test

In Fig. 1, we illustrate the use of the F -test and the Pitman test
in comparing IQA metrics. Two IQA metrics Mx and My are
applied to the same IQA database, providing two residuals dx

and dy , respectively. In the comparison of dx and dy by us-
ing the F -test, two assumptions are applied: 1) independence
between dx and dy and 2) normality of dx and dy , as shown
in Fig. 1(a). By contrast, when the Pitman test is used, the
only assumption is the normality of dx and dy , as shown in
Fig. 1(b). Given that dx and dy are paired and correlated, the
Pitman test is more appropriate to test the equality of vari-
ances than the F -test.

Experimental results

In the following experiments, we aim to test whether dx and
dy are from Gaussian distributions with the same variances
on the LIVE database. We show that different conclusions
can be drawn from the F -test and the Pitman test.

Following the experiments in [7], all experiments are
performed on five types of degradations (JPEG2000, JPEG,
Gaussian noise, Gaussian blur and fast-fading wireless) sepa-
rately and then on the overall database.

We compare the scores of the following seven IQA
metrics: FSIM [5], GSM [6], most apparent distortion
(MAD) [13], MS-SSIM [3], NQM [1], peak signal to noise
ratio (PSNR) and SSIM [2]. All scores and their nonlinearly
mapped scores are obtained from http://sse.tongji.
edu.cn/linzhang/IQA/IQA.htm.

The significance levels of the F -test and the Pitman test
are both set to 5%.

Are two conclusions different?

The results show that, for all types of degradations and the
overall database, the F -test does not always produce the same
conclusion as that by the Pitman test regarding whether two
IQA metrics are statistically significantly different. Here, we
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(a)

(b)

Fig. 1. Illustrations of the use of (a) the F -test and (b) the Pitman test in the comparison of IQA metrics.

Table 1. Differences between the conclusions drawn from the F -test and the Pitman test for the overall database and Gaussian
noises.

Same conclusions
Different conclusions

TotalPitman: Mx and My are different Pitman: Mx and My are the same
F : Mx and My are the same F : Mx and My are different

Overall database 19 2 0 21
Gaussian noises 18 3 0 21

show two examples on the overall database and the Gaussian
noises in Table 1.

A total of 21 pairs of IQA metrics are compared in the
experiments. For the overall database, we obtain 19 same
conclusions and 2 different conclusions from the two tests.
The two pairs of IQA metrics with different conclusions are
(PSNR, GSM) and (PSNR, MS-SSIM). Similar results are ob-
tained for the Gaussian noises, that is, 18 same conclusions
and 3 different conclusions on (PSNR, FSIM), (PSNR, MS-
SSIM) and (NQM, MS-SSIM). In addition, all different con-
clusions present the same pattern: the Pitman test concludes
that Mx and My are different, whereas the F -test concludes
that Mx and My are the same. For example, the well-known
MS-SSIM is empirically superior to PSNR. However, the F -
test cannot tell their difference, whereas the Pitman test can
statistically distinguish between the pair.

We can formulate two observations from the above re-
sults. First, the F -test and the Pitman test can provide the
same conclusions for most comparisons of IQA metrics.

However, different conclusions exist for certain cases. Sec-
ond, the Pitman test can detect more statistically significantly
unequal IQA metrics than the F-test for correlated samples.
This finding is reasonable because a high correlation r results
in increased absolute value of t in (2), given the fixed s

2
x and

s
2
y . Thus, with a larger absolute value of t, the Pitman test is

more likely to reject the null hypothesis, compared with the
F -test.

Are two residuals correlated?

The Pearson correlation coefficients between the two sets of
residuals for all tests with different conclusions and the same
conclusions are box-plotted in Fig. 2. From these two box-
plots, we can observe the following patterns.

First, almost all correlations are nonzeros, with the excep-
tion of several outliers. This finding empirically demonstrates
our argument that the two sets of residuals from the two IQA
metrics may be correlated.

Second, the median of the correlations in the left boxplot
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Fig. 2. Correlations between the pairs of residuals for IQA
metrics with different conclusions (the left boxplot) and the
same conclusions (the right boxplot) between the F -test and
the Pitman test.

is close to 0.9 and is markedly higher than that in the right
boxplot. This finding suggests that with a high correlation
between the two sets of residuals, the two statistical hypothe-
sis tests tend to provide different conclusions.

Recommendations for practitioners

On the basis of experimental results, we offer the following
suggestions for the comparison of IQA metrics.

When the correlation between two scores (or particularly
residuals) is low, the Pitman test and the F -test can provide
the same comparison result. However, with a high correla-
tion, the Pitman test and the F -test tend to provide different
answers. In this case, we trust the results of the Pitman test,
which is specifically designed for correlated samples. There-
fore, to obtain reliable results for all cases, we suggest for
practitioners to use the Pitman test to evaluate the equality of
variances for comparing two IQA metrics. With the Pitman
test, several methods that were reported to be statistically in-
distinguishable in the literature can be determined to be sta-
tistically significantly different.

Summary

In this article, we introduce the Pitman test to address the
problem of using the F -test in comparing IQA metrics when
the independence assumption is invalidated. However, if the
normality assumption is also violated, then the power of the
Pitman test also decreases. In this case, nonparametric tests
without the normality assumption may provide superior solu-
tions.
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