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Vibrational-excitation cross sections of ground electronic state of carbon dioxide

molecule by electron-impact through the CO−

2 (
2Πu) shape resonance is considered in

the separation of the normal modes approximation. Resonance curves and widths are

computed for each vibrational mode. The calculations assume decoupling between

normal modes and employ the local complex potential model for the treatment of

the nuclear dynamics, usually adopted for the electron-scattering involving diatomic

molecules. Results are presented for excitation up to 10 vibrational levels in each

mode and comparison with data present in the literature is discussed.

One of the technological problems, connected with strategies for reduction of the global
warming coming from the greenhouse effect produced by carbon dioxide, is represented by
the capture at source and storage of the CO2 gas, mainly based on the plasmolysis process
leading to the splitting of CO2 into CO molecules and atomic or molecular oxygen [1,
2]. The efficiency of the dissociation processes is strongly determined by the vibrational
activation of the molecule. Models of CO2 plasmas, aimed to optimize and clarify this
chemical conversion, have recently been constructed [3–7]. The main limitation of these
models is the lack of information on electron-impact cross sections or rate coefficients for
collisions inducing vibrational transitions in CO2 molecules; as result modellers usually resort
to estimated rates or approximate scaling-laws [6].

In order to fill this void, in this Letter we present a preliminary data set of electron-
impact cross sections for vibrational excitation of ground electronic state of carbon dioxide
molecule useful in plasma kinetic modeling. The cross sections show two distinctive features
observed experimentally: a 2Πu shape resonance around 3.8 eV [8–10] and, at energies below
2 eV, an enhancement due to the presence of the 2Σ+

g symmetry virtual state [11–13]. Both

phenomena are explained in terms of a temporary CO−

2 system. For a general review on
this topics see Itikawa paper [14] and references therein.

We present here the cross sections for the following process:

e + CO2(X
1Σ+

g ; v) → CO−

2 (
2Πu) → e + CO2(X

1Σ+
g ; v

′) , (1)

which occurs through the formation of the shape resonance generated by the electronic state
2Πu of the CO−

2 ion. CO2 in its ground electronic state, X 1Σ+
g , is a linear molecule with

C–O equilibrium distance Req = 2.19 a0 characterized by three normal modes of vibration,
denoted in the following by v = (ν1, ν2, ν3) and referred to, respectively, as the symmetric
stretching, bending mode (doubly degenerate) and asymmetric stretching.
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FIG. 1: Upper panels: Potential energy curves for the electronic ground electronic state X 1Σ+
g

of CO2 (full blue line) and for the resonant state CO−

2 (dashed red and green lines) for the three

normal mode symmetric, bending and asymmetric. Lower panels: the corresponding resonance

widths. ∆ represents the displacement from the equilibrium geometry.

In principle, scattering involving polyatomic molecules needs a multidimensional treat-
ment of the potential energy surface and of the nuclear motion, in order to take into account
the non-adiabatic coupling between different vibrational modes [15]. However, as we are lim-
iting ourself to the lowest vibrational levels, where the potential energy is approximatively
harmonic, is possible to adopt the assumption of separation of the modes and split the CO2

potential into three one-dimensional independent modes. This allows one to compute the
cross sections employing the local model of resonant collisions as formulated for diatomic
vibrational excitation [16–18]. In the uncoupled vibrational mode approximation, each mode
is considered as independent. This implies that the scattering processes involves one mode
only and does not affect at all the other two. Preliminary results for the symmetric stretch
mode only, were given previously [19]. Here we present calculations on all the three normal
modes of the molecule, for 0 ≤ νi ≤ ν ′

i ≤ 10 (i = 1, 2, 3), and for electron collision energies
from the threshold up to 10 eV.

A peculiar aspect of the the doubly degenerate 2Πu symmetry of CO−

2 ion is that it splits,
upon bending, into two (Renner-Teller) 2A1 and

2B1 components, no longer degenerate, due
to the breaking of linear geometry (D2h symmetry to C2v symmetry of bending mode) [20–
22]. A second aspect, that derives from the stretch-bend coupling possible in polyatomic
molecules, is an accidental degeneracy of vibrational levels belonging to different modes,
known as Fermi resonance [14, 22]. In the case of CO2 a quasi-degeneracy occurs between
the pure stretch (100) and the pure bending (020) levels (Fermi dyads) that result in a near
50:50 mixing of the two states which is well-known experimentally [10]. Here we neglect this
stretch-bend coupling; it is at least arguable that including it will only result in redistribution
of flux in the excitation cross sections rather than radically different excitation rates.

The CO2 potential energy curves were computed using the ab-initio quantum chem-
istry code MOLPRO [23], by adopting a aug-cc-pVQZ basis set and the coupled-cluster
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νi i = 1 i = 2 i = 3

0 0. 0. 0.

1 0.1676 (0.172) 0.0764 (0.082) 0.2973 (0.291)

2 0.3345 0.1585 (0.159) 0.5996

3 0.5007 0.2415 0.9052

4 0.6661 0.3246 1.2138

5 0.8309 0.4081 1.5252

6 0.9949 0.4919 1.8396

7 1.1583 0.5760 2.1569

8 1.3208 0.6604 2.4771

9 1.4827 0.7450 2.8000

10 1.6439 0.8299 3.1257

ǫνi=0 0.0840 0.0357 0.1469

TABLE I: CO2 vibrational levels ǫνi in the three normal modes referred to the energy of the

corresponding ground vibrational levels whose value ǫνi=0, with respect to the minimum of the

potential energy curve, is given in the last row. In parenthesis are shown the experimental values

from Ref. [22]. All entries are in eV.

(CCSD(T)) and MCSCF models. Scattering calculations were performed using the UK
polyatomic R-matrix codes [24, 25]. A static exchange plus polarization (SEP) model, and
the same basis used for CO2, were utilised to calculate the complex potential energy curve
for CO−

2 . The R-matrix calculations were performed on a grid of fixed internuclear dis-
tances. The position and width of the resonant state were then calculated by fitting the
corresponding eigenphases sum with a Breit-Wigner function [26].

The potential energy curves for CO2 and CO−

2 species and for the three normal modes, are
shown in Fig. 1 along with the corresponding resonance widths Γ. These curves are plotted
as a function of the atomic displacements, ∆, calculated with respect to the equilibrium
geometry for the three modes. Table I reports the vibrational energy levels ǫνi for each
normal mode (i = 1, 2, 3).

The resonant cross section for the process in (1) of a single normal mode ν has been
calculated [16, 19, 21], as a function of the electron energy ǫ, by:

σν→ν′(ǫ) =
4π3

k2
|Tνν′ |

2 , (2)

where k is the incoming electron momentum and the scattering matrix, Tνν′ , as a function
of the total energy E = ǫ+ ǫν , is defined as:

Tνν′(E) = 〈χ∗

ν′|V(H− E)−1V|χν〉 . (3)

In Eq.(3), χν(ν′) is the wave function of the initial (final) vibrational level; H = TN+V −− i
2
Γ

is the Hamiltonian of the system, where TN is the kinetics energy operator and V − − i
2
Γ is

the complex optical potential of the resonance; V =
√

Γ/2 is the bound-continuum coupling
matrix. Full details about the theoretical model can be found in the paper [27] and references
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FIG. 2: Summary of the electron-CO2 vibrational excitation cross sections as a function of the

incident electron energy for the three normal modes. Upper panels: excitation cross section for

processes starting from the lowest vibrational levels. Lower panels: mono-quantum (symmetric

stretching) and double-quantum (bending and asymmetric stretching) cross sections for processes

starting also from vibrationally excited molecules.
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FIG. 3: Summary of selected electron-CO2 vibrational excitation rate coefficients as a function of

the electron temperature for the three normal modes.

therein. The cross section involving different modes (ν1, ν2, ν3) is given by the coherent sum
over the cross sections for the three normal modes νi.

Figure 2 shows selected cross section results, as a function of the incident electron energy,
for the vibrational transitions described in process (1), starting from the ground vibrational
levels and exciting the n-th level of the three normal modes (upper panels). All cross
section curves show a main pronounced peak close to 3.8 eV which corresponds to the CO−

2

resonance threshold. The other secondary peaks correspond to the CO−

2 vibrational levels
(boomerang oscillations). The figures show that the elastic cross sections (n = 0) for the
bending and asymmetric stretching reach comparable values, an order of magnitude larger
than those for the symmetric stretch. The inelastic cross sections decrease for increasing n,
as expected, for all the three cases, also by orders of magnitude. The same figure (lower
panels) also shows the cross sections for one-quantum transitions of the symmetric stretch
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FIG. 4: Comparison between present result (solid blue curve) with the theoretical calculations of

Rescigno et al. [20] (broken curves) for elastic symmetric stretching 0 → 0 cross section.

motion, and two-quantum transitions occurring in the other two normal modes, for which
the selection rule, ∆n = 0, 2, holds. This is due to the symmetric shape of the potentials
and widths in bending and antisymmetric modes, so that the Frank-Condon overlap between
wave functions having opposite parity, is suppressed. Experimental investigations, actually,
show that this is not the case. This aspect however is not fully clarified in literature. In fact,
a coupled model could produce non-zero bending cross sections for odd-parity transitions as
showed in Estrada et al [15] but also other processes, involving Feshbach resonances, could
be important [28]. The cross sections shown in the lower panels of Fig. 2 refer to excitation
process starting also from vibrationally excited molecules. Figure 3 shows some series of the
rate coefficients as a function of the electron temperature for the three normal modes.

Figure 4 shows the comparison with the theoretical calculations of Rescigno et al. [20]
for the elastic symmetric stretching 0 → 0 cross section. The present result as well as
Rescigno’s 1D calculation shows the well known resonant ‘boomerang’ structure and they
are in general agrement with each other. The slight shift of the peak positions is due to the
different potential energy curves used in the calculations. On the other hand, Fig. 5 shows
very good agrement with experimental data available in literature for symmetric stretching
cross sections. In the comparison for 0 → 2 bending mode transition cross sections, in Fig.
6, we find qualitative agreement with Kitajima et al. results [32] and disagreement with the
estimated data presented by Campbell et al. [31]. These last data, as Campbell et al. state
in their article, take into account also the Fermi dyad and triad coupling [21]. However, the
disagreement between the theoretical and experimental cross sections shows that further
studies are needed to achieve reliable results for the excitation of bending modes.

In conclusion, in this Letter we presented a set of vibrational excitation cross sections
for electron-CO2 scattering in the separations of the mode approximation. In particular,
we studied the role of the resonant contribution to the scattering. Good agreement, with
respect to the data reported in literature, is found for the symmetric stretching mode whereas
for the bending and asymmetric modes further investigations, taking into account non-
resonant contributions, are needed. Finally, the full set of data can be downloaded from the
Phys4Entry database [33].
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FIG. 5: Comparison between present results with available experimental data in Refs. [29, 30] for

selected symmetric stretching cross sections.
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