First High Time Resolution FPI Observations of the Daytime Thermosphere During the Eclipse Over Svalbard on 20th March 2015

Anasuya Aruliah ${ }^{1}$, Ian McWhirter ${ }^{1}$, Amy Ronksley ${ }^{1}$, Rosie Hood ${ }^{1}$ and Herbert Carlson ${ }^{2}$
Anasuy a of the 1 . University College London, UK and 2. Utah State University Abstract Daylight observations of the upper atmosphere have long been asola
ground-based optical community. Fabry-Perot Interferometer observations of the airglow emission of atomic oxygen at 630.0 nm are used as a measure of thermospheric winds and temperatures at an altitude of around 240 km . However, airglow is only about 10 inns he he been attempted by a few groups, including ours, over the decades. However, the alignment of multiple etalons is extremely tricky, and long exposures (several minutes) are required, which reduces the capacity to observe the dynamic behaviour of the upper thermosphere. Here we show FPI observations made during the solar eclipse on the 20th March 2015. A total eclipse occurred over Svalbard for 2 minutes 27 seconds from 10:10-10:13 UT. This is within the time window when Svalbard passes under the magnetic cusp. There are 24 hours FPI observations, including cusp measurements. However, by the time of the March equinox, the hours of darkness have reduced significantly to give an observing period of 18:55-10:16 UT. During the tiny window of time of darkness due to the eclipse, we measured the vertical winds at very high time resolution using a 5 second exposure with our narrow angle FPl; and we were able to make a single exposure for 104 seconds with our Scanning Doppler Imager (SCANDI). The SCANDI provided an all-sky observation, divided into 61 sectors, of horizontal winds and temperatures as a context for the high time resolution vertical winds. The observations are compared with FPI-SCANDI December cusp measurements; and the UCL Coupled Middle Atmosphere Thermosphere (CMAT2) global circulation model simulations. This is an opportunity to test the model daylight winds with direct observations. Determining the day and night upwelling mechanism remains a challenge.

Figure 1: Path of the eclipse courtesy Kjellmar Oksavik University of Bergen and University Centre in Svalbard (UNIS)

Figure 3: The sky during the eclipse, as seen by the UCL All-Sky Camera at Svalbard. The Earth's shadow does not completely fill the horizon. The domes of the Kjell Henriksen Observatory can be seen around the edge of the image. We were very lucky, as it had been cloudy during the previous night. We were remotely controlling the
FPIs from London (UK) where it was totally clouded over. FPIs from London (UK) where it was totally clouded over.
 The top plot shows height profiles of electron densities (Ne) Svalbard field-aligned radar. The middle plot shows the equivalent for the UHF radar at Troms \varnothing which was also field-aligned Th "bite-out" caused by the lack of ionising solar flux is strong apparent in the Tromsø Te at all altitudes The bottom plot shows the strong meridional plasma velocities $\sim 1200 \mathrm{~ms}^{-1}$ measured by the VHF radar pointing northward at elevation 30 deg. The eclipse occurred a couple of days after one of the largest geomagnetic storms, where the maximum $\mathrm{Kp}=7-8$ for the second half of 17 March 2015, hence the label the "St Patrick's Day storm"

Figure 4: Comparison with the first cusp upwelling campaign at Svalbard from 06-09UT on 22 January 2012 when there were 24 hours of darkness. b) FPI up to $200 \mathrm{~ms}^{-1}$. unexpectedly large vertical winds of and c) fast plasma velocities inferred from ion temperatures measured by the EISCAT Svalbard Radar. 10049 on 20 / Mar-15

101124 on 20/ Mar-
figure 5: O airglow emission which is a 2 -dimensional FPI intensity image (see Figure 7) reduced to a radius-squared plot. During the eclipse, the 630 nm peaks are clearly seen as shown by the figure on the right

Figure 6: With only 2.5 minutes to observe, we decided to limit to zenith measurements at high time resolution 7.2 seconds (5 second exposures). These are the first 7.2 seconds (5 second exposures). These are the firim
ever high time resolution measurements of daytime winds measured directly by an FPI. Large, and variable, upward winds of between $40-90 \mathrm{~ms}^{-1}$ were observed as shown in the lower plot. The high intensities gave errors of the order of $\pm 5 \mathrm{~ms}^{-1}$. The winds are calculated from the Doppler shift of the 630 nm emission. The upper plot shows how careful calibration is required to determine the zero Doppler shift baseline since there is no laboratory source of excited atomic oxygen $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$. This is achieved using a helium-neon calibration lamp $(630.2 \mathrm{~nm})$ from the period of darkness before and after the daytime, as there was no time for the calibration during the eclipse. Determining the upwelling mechanism remains a challenge.

