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A new class of modified theory of gravity is introduced where the volume form becomes dynamical. This
approach is motivated by unimodular gravity and can also be related to Brans-Dicke theory. On the level of the
action, the only change made will be through the volume element which is used in the integration. This is
achieved by the introduction of a fourth-order tensor which connects the spacetime metric to the new volume
form. Using dynamical systems techniques, this model is studied in the context of cosmology. The most
interesting result is that there exist parameter ranges where this model starts undergoing an epoch of accelerated
expansion, followed by a decelerating expansion which evolves to a final epoch of accelerated expansion.
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I. INTRODUCTION

General relativity is a very successful physical theory in
excellent agreement with experimental data. Gravitational
waves in particular test strong and weak gravitational fields
in the sense that a strong gravitational field is required for
their creation while their propagation is governed by the
weak field approximated field equations. Despite its suc-
cess, general relativity faces two observational challenges
which are simply referred to as the dark matter and the dark
energy problems. Moreover, from a theoretical point of
view, quantum theory and gravity appear to be incompat-
ible and no consensus exists yet regarding the form of such
a theory. These issues have motivated the study of early
modifications of Einstein’s theory like teleparallel gravity
and Kaluza-Klein theories and, in the following years, have
justified the proposal of a plethora of other theories.
One of the most studied and most tested of these models

is the so-called scalar tensor theory of gravity. These
theories are based on the Brans-Dicke prototype action
which is given by

S ¼
Z �

1

2κ
ϕR −

ω

ϕ
∂aϕ∂aϕ

� ffiffiffiffiffiffi
−g

p
d4x: ð1Þ

Here one includes a nonminimal coupling between the
geometry in the form of the Ricci scalar R and an additional
scalar field ϕ. ω is the Brans-Dicke parameter which in the
limit ω → ∞ reduces Brans-Dicke theory to general

relativity. A fundamental problem related to this class of
theories is connected to the nature of this scalar field. One
hypothesis which is still under investigation is that this field
might coincide with the Higgs field (see e.g., [1–5]).
Another, perhaps more general, line of interpretation is
that this scalar field is indeed an effective field representing
a scalar degree of freedom (d.o.f.) of the theory. This
happens, for example, in the scalar field representation of
fðRÞ-gravity or the hybrid metric Palatini theories.
In this paper, we present a new class of theories of

gravitation in which the volume element is a dynamical
object. In particular, we wish to write

ffiffiffiffiffiffi
−g̃

p
≔ ϕ

ffiffiffiffiffiffi−gp
and

take
ffiffiffiffiffiffi
−g̃

p
d4x as the fundamental volume form. On the level

of the Brans-Dicke theory this means reinterpreting
ϕ

ffiffiffiffiffiffi−gp
d4x as the volume element over which one has to

integrate in order to evaluate the action. This idea can be
associated by contrast to the so-called unimodular gravi-
tational theories [6–11], in which the volume form is
considered constant. In our case, the volume form acts
as an additional field: in the action, we will only change the
volume element and retain the metric g as the basic object
from which curvature is computed.
At this stage there is no need to keep the simple relation

between g̃ and g which takes the form of a conformal
coupling

ffiffiffiffiffiffi
−g̃

p
≔ ϕ

ffiffiffiffiffiffi−gp
. Instead, we will assume that g̃ is

an arbitrary function of the metric g. Our key ingredient
will be to assume that there exists a rank 4 tensor χ which
relates those two metrics such that g̃ab ¼ χab

cdgcd. This is
in analogy to electromagnetism in materials where one has
to distinguish between the electric field and the electric
displacement and relates to ideas discussed in [12–15].
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Clearly, this theory reduces to Brans-Dicke theory provided
one takes a simple χ containing only Kronecker deltas and
includes a kinetic term. As we will see, however, this is not
the only case in which our new theory can be shown to
present only one additional d.o.f.
It is also worth pointing out an interesting link to the

work in [16]: one can prove that these exist forms of χ for
which the gravitational field equations of the new theory
become trace-free. This result implies that we are dealing
with a genuine generalization of unimodular gravity.
The paper is organized as following. Section II is

dedicated to the definition of the possible action(s) corre-
sponding to the idea of a dynamical volume form and the
derivation of their field equations and their properties.
Section III is instead dedicated to the exploration of the
cosmology of the via phase space analysis of the most
interesting of the actions defined in Sec. II. Section IV is
dedicated to the conclusions.

II. MODEL AND GRAVITATIONAL
FIELD EQUATIONS

A. Gravitational actions

Following from the previous discussion, we introduce
the two actions

S1 ¼
Z �

1

2κ
R

ffiffiffiffiffiffi
−g̃

p
þ LðmÞðg;ψ ;∇ψÞ ffiffiffiffiffiffi

−g
p �

d4x; ð2Þ

S2 ¼
Z �

1

2κ
R

ffiffiffiffiffiffi
−g̃

p
þ LðmÞðg̃;ψ ;∇ψÞ

ffiffiffiffiffiffi
−g̃

p �
d4x: ð3Þ

The main difference between those two actions is the
coupling of the matter in the theory, clearly the most
important issue when it comes to any gravitational theory.
Since there is little guidance as to which of those two is
preferred from a theoretical point of view, we will study
both cases separately. As one can probably expect at this
point, these two versions of the theory will give rise to quite
a different phenomenology when applied to cosmology.
Ideally, some external input like observational data could
be used to make this choice. As we will see, it turns out that
the most interesting cosmological models are given by S1.
In the following, we will assume the relationship

g̃ab ¼ χab
cdgcd; ð4Þ

between the two metrics. As we will see, this includes a
number of interesting cases e.g., conformal/disformal
transformations which were studied in different contexts.
Note that the standard Brans-Dicke theory is recovered
when χab

cd ¼ δcaδ
d
bϕ

1=4.
The volume integration in S2 is straightforward in the

sense that one views
ffiffiffiffiffiffi
−g̃

p
d4x as the volume form of

spacetime while keeping in mind that R is computed using
the metric g. In this case, we require g̃ to be a well-defined
metric which means the inverse of g̃ must also exist. Hence,
one arrives at

g̃kmg̃mn ¼ χkm
abgabχmn

cdgcd ¼ χkma
aχmnc

c ¼ δnk: ð5Þ
This means we impose the following condition on the
tensor χkmcd

χkma
aχmnc

c ¼ δnk; ð6Þ
where the metric g was used to raise and lower indices.
On the other hand, in S1 one is using two different

volume elements and one might be tempted to regard this as
unnatural. However, one can rewrite S1 as follows,

S1 ¼
Z �

1

2κ
R

ffiffiffiffiffiffi
−g̃

p
ffiffiffiffiffiffi−gp þ LðmÞðg;ψ ;∇ψÞ

� ffiffiffiffiffiffi
−g

p
d4x

¼
Z �

1

2κ
Rρþ LðmÞðg;ψ ;∇ψÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð7Þ

where we introduced ρ ¼ ffiffiffiffiffiffi
−g̃

p
=

ffiffiffiffiffiffi−gp
, thereby integrating

over an appropriate volume.1 The possibility of writing the
action might suggest that theories of the type S1 and S2
contain only an additional d.o.f. This can appear strange, as
the tensor χ has great number of nontrivial components.
Indeed, we will find that for a surprisingly general form of χ
these theories present only one additional d.o.f.
One can view the matter coupling in S1 as minimal since

the matter couples to gravity via the canonical volume
form. Likewise, one can view the matter coupling in S2 as
nonminimal because the matter couples to gravity via g̃
which in itself obeys a relation to g. When stating the field
equations explicitly, this point will be verified.

B. Determinant and variations of g̃

The determinant of a rank 2 tensor Mij is defined by

M ¼ detðMijÞ ¼
1

4!
εijklεabcdMiaMjbMkcMld; ð8Þ

where we work using the standard convention ε0123 ¼ 1.
When raising or lowering indices of εijkl, one has to be
quite careful and work with the (pseudo) tensor

ηijkl ¼
ffiffiffiffiffiffi
−g

p
εijkl; ηijkl ¼ −

εijklffiffiffiffiffiffi−gp : ð9Þ

Now, we can define the determinant of g̃ij which gives

g̃ ¼ detðg̃ijÞ ¼
1

4!
εijklεabcdg̃iag̃jbg̃kcg̃ld

¼ 1

4!
εijklεabcdχia

pqgpqχjbrsgrsχkctugtuχldvwgvw

¼ 1

4!
ðεijklεabcdχiapqχjbrsχkctuχldvwÞgpqgrsgtugvw: ð10Þ

1Note that the determinant of a metric is not a true scalar under
arbitrary coordinate transformations. However, we will find in
Sec. II C that ρ is a true scalar field.
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The above formula can be used to calculate the variations of g̃ with respect to the metric. We begin with

δg̃ ¼ 1

4!
ðεijklεabcdχiapqχjbrsχkctuχldvwÞðδgpqgrsgtugvw þ gpqδgrsgtugvw þ gpqgrsδgtugvw þ gpqgrsgtuδgvwÞ

¼ 1

4!
ðεijklεabcdχiapqχjbrsχkctuχldvwÞðδmp δnqgrsgtugvw þ gpqδmr δnsgtugvw þ gpqgrsδmt δnugvw þ gpqgrsgtuδmv δnwÞδgmn ð11Þ

Let us use the standard identity δgmn ¼ −gmignjδgij and
the implicit definition for χ̄mn given by

δg̃≕−g̃χ̄mnδgmn: ð12Þ

which is motivated by the GR analogue of this equation.
Then, after some algebra, we arrive at

χ̄mn ¼ −
1

4!
ðηijklηabcdχiapqχjbrsχkctuχldvwÞ

× ½gpmgqngrsgtugvw þ gpqgrmgsngtugvw

þ gpqgrsgtmgungvw þ gpqgrsgtugvmgwn�: ð13Þ

The quantity χ̄mn will enter the equations of motion or field
equations through the variations of the volume element
with respect to the metric. Note also that, from the general
expression (8), one has

χ̄m
m ¼ −

1

3!
ðηijklηabcdg̃iag̃jbg̃kcg̃ldÞ ¼ 4

g̃
g
¼ 4ρ2: ð14Þ

The factor 4 appears because the trace of the tensor χ̄
corresponds to the trace of the Kronecker delta when g and
g̃ coincide, which also gives ρ ¼ 1.

C. Gravitational equations of motion

Having established the variations of the new volume
form, we are now ready to derive the equations of motion of
the gravitational part of the action. Matter couplings will be
addressed separately in the next section. Let us begin with

δ½gabRab

ffiffiffiffiffiffi
−g̃

p
�

¼δgabRab

ffiffiffiffiffiffi
−g̃

p
þgabδRab

ffiffiffiffiffiffi
−g̃

p
−
1

2

1ffiffiffiffiffiffi
−g̃

p gabRabδg̃: ð15Þ

Using the above Eq. (12) for the variation of g̃, we have

δ½gabRab

ffiffiffiffiffiffi
−g̃

p
�

¼
�
Rab −

1

2
Rχ̄ab

� ffiffiffiffiffiffi
−g̃

p
δgab þ gab

ffiffiffiffiffiffi
−g̃

p
δRab: ð16Þ

In GR, this final term would be a boundary term, however,
for the current model this is not the case. We recall

δRmn ¼ ∇dδΓd
mn −∇mδΓd

dn: ð17Þ

and use the formula

gmn
ffiffiffiffiffiffi
−g̃

p
δRmn

¼ ð∇a∇bδgab − gmn∇a∇aδgmnÞ
ffiffiffiffiffiffi
−g̃

p
: ð18Þ

In this way, recalling ρ ¼ ffiffiffiffiffiffi
−g̃

p
=

ffiffiffiffiffiffi−gp
to eliminate the

boundary terms, we have

gmn
ffiffiffiffiffiffi
−g̃

p
δRmn ¼ ð∇a∇bρ − gab∇c∇cρÞ ffiffiffiffiffiffi

−g
p

δgab: ð19Þ

Note that ρ is a true scalar in the sense of differential
geometry. While determinants are pseudo-scalars (they
transform differently to scalars), the ratio of two pseudo-
scalar gives a scalar field as stated previously.
Consequently, we see that this ratio of “volumes” looks
like the Brans-Dicke scalar. Putting everything together
leads to

δ½gabRab

ffiffiffiffiffiffi
−g̃

p
� ¼

�
ρ

�
Rab −

1

2
Rχ̄ab

�
−∇a∇bρ

þ gab∇m∇mρ

� ffiffiffiffiffiffi
−g

p
δgab: ð20Þ

Next, we need to couple matter to the geometry.

D. Coupling matter with
ffiffiffiffiffiffiffi− gp

The minimal coupling setting is described by action S1,
given by (2). A direct calculation gives

δ½LðmÞðg;ψ ;∇ψÞ ffiffiffiffiffiffi
−g

p � ¼ Tab
ffiffiffiffiffiffi
−g

p
δgab; ð21Þ

so that the complete field equations take the form

ρGab ¼ 2κTab þ
1

2
ρRðχ̄ab − gabÞ

þ∇a∇bρ − gab∇m∇mρ: ð22Þ

Should one consider the issue of a field equation for the
field ρ? As ρ is not a dynamical variable for which we
specify a separate Lagrangian, one would not expect it to
satisfy additional field equations. However, general rela-
tivity and its modifications obey other symmetry properties
so that one cannot simply choose ρ freely. To see this,
consider the trace of the (22), which gives
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3□ρþ ρR −
1

2
ρχ̄R − 2κT ¼ 0; ð23Þ

which has the structure of a Klein-Gordon-type equation for
ρ. Note, however, that due to the presence of χ̄ab in Eq. (22)
this theory is different from standard scalar field theories.

E. Trace-free vacuum field equations

Notice that Eq. (22) can give the trace-free equations in
vacuum. In fact, we can write (22) as

ρ

�
Rab−

1

2
Rχ̄ab

�
¼∇a∇bρ−gab∇m∇mρþ2κTab: ð24Þ

The left-hand side of the latter equation becomes the trace-
free equation if we make the choice χ̄ab ¼ gab=2. To
achieve this, let us choose for instance χabcd ¼ Ωδcaδdb, then

g̃ab ¼ χab
cdgcd ¼ Ωδcaδdbgcd ¼ Ωgab: ð25Þ

We begin with the first term of (13) and get

ðηijklηabcdχiapqχjbrsχkctuχldvwÞ ¼ Ω4ηprtvηqsuw; ð26Þ
and consequently one arrives at

χ̄mn ¼ Ω4gmn: ð27Þ
This means Ω4 ¼ 1=2 gives a trace free or conformal left-
hand side. Note that, in this case,

detðg̃abÞ ¼ Ω4 detðgabÞ ⇒ ρ2 ¼ Ω4 ¼ 1=2: ð28Þ
This is an elegant result which can be connected to the
framework considered by Ellis [11,16]. It is worth
stressing, however, that the choice of the quantity ρ can
influence only the gravitational part of the field equations.
Therefore, the result (28) will be compatible only with
traceless matter.

F. Coupling matter with
ffiffiffiffiffiffiffi− g̃p

Considering action (3), the variation of the matter part
would introduce terms that contain explicitly the matter
Lagrangian

δ½LðmÞðg;ψ ;∇ψÞ
ffiffiffiffiffiffi
−g̃

p
�

¼
�
ρTab þ

1

2
ρðgab − χ̄abÞLðmÞ

� ffiffiffiffiffiffi
−g

p
δgab: ð29Þ

This leads to the following set of field equations:

ρGab ¼ 2ρκTab þ
1

2
ρ½Rþ 2κLðmÞ�ðχ̄ab − gabÞ

þ∇a∇bρ − gab∇m∇mρ: ð30Þ
The explicit dependence of the field equations on the matter
Lagrangian means that we are dealing with a nonminimally
coupled theory. While theories of this type have been

considered in the past, such models are problematic. We
should note that when setting κLðmÞ ¼ 0 in the field
equation (30), one recovers the previous field equation (22)
in vacuum, which is perhaps unsurprising as the respective
actions only differ by the form of the matter coupling to
geometry. This implies that the two actions present, for
example, the same black hole solutions.

G. The limit to general relativity

Starting with Eq. (4), let us recall the most general
isotropic rank 4 tensor which is given by

χab
cd ¼ αgabgcd þ βδcaδ

d
b þ γδdaδ

c
b; ð31Þ

where α, β and γ are some functions of the coordinates in
general. However, we assume those to be constants to
recover general relativity. This gives

g̃ab ¼ ð4αþ β þ γÞgab: ð32Þ
Let us introduce the notation Ω2 ¼ 4αþ β þ γ. This is a
natural choice because (32) should preserve the metric
signature, so that this result can now be written in the
familiar looking form

g̃ab ¼ Ω2gab: ð33Þ
This takes the form of a conformal transformation.
Choosing α, β, γ such that Ω ¼ 1 reduce this theory to
general relativity. For simplicity, we choose α ¼ γ ¼ 0 so
that χab

cd ¼ δcaδ
d
b and hence g̃ab ¼ δcaδ

d
bgcd ¼ gab. This

also implies that detðg̃abÞ ¼ detðgabÞ and therefore ρ ¼ 1.
It remains to check that χ̄mn ¼ gmn given this specific

choice of χ. We begin with the first term of Eq. (13) and
find

ðηijklηabcdχiapqχjbrsχkctuχldvwÞ ¼ ηprtvηqsuw: ð34Þ
Consequently, one arrives at

χ̄mn ¼ −
1

4!
ηprtvηqsuw

× ½gpmgqngrsgtugvw þ gpqgrmgsngtugvw

þ gpqgrsgtmgungvw þ gpqgrsgtugvmgwn�: ð35Þ
Therefore

χ̄mn ¼ −
1

3!
ηprtvηqsuw½gpmgqngrsgtugvw�

¼ −
1

3!
½ηprtvηqsuwgrsgtugvw�gpmgqn: ð36Þ

Using the standard identity

½ηprtvηqsuwgrsgtugvw� ¼ −3!gpq; ð37Þ

yields the desired equation
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χ̄mn ¼ −
1

3!
ð−3!Þgpqgpmgqn ¼ gmn: ð38Þ

In summary, the GR limit means: g̃ab ¼ gab, χ̄mn ¼ gmn
and ρ ¼ 1.
Substituting these back into the two sets of field

equations, one can easily verify that both (22) and (30)
reduce to the Einstein field equations.

III. APPLICATIONS TO COSMOLOGY

In the following, we will investigate the cosmological
dynamics of model 1 which gives rise to various interesting
properties. For completeness, we also studied model 2
which is discussed in Appendix. Model 1 allows for
solutions which make a transition from acceleration to
deceleration and then back to acceleration before terminat-
ing at a scaling solution. This feature makes this model
particularly interesting when applied to our Universe.

A. Choosing a cosmological χ

Let us consider (22) and (30) in the case of cosmological
spacetimes. In spite of the compact form of the field
equations that we have given using the quantity ρ, one
should not forget that these equations depend on all the
components of the tensor χ. Treating the most general form
of these equations is a formidable task which we will not
undertake here. Rather we will consider a general case in
which the theory can be considered as function only of the
metric tensor and ρ. This restriction on the d.o.f. of the

theory allows a connection with Brans Dicke theory. As we
will see, however, this resemblance is only apparent, as (22)
and (30) present interesting peculiarities.
Starting form the general form (31), we will assume that

the tensor χabcd can be written as

χabcd ¼ χ1uaubucud þ 2χ2uauðchdÞb þ 2χ3haðcudÞub
þ χ4hachbd þ χ5uaubhcd

þ χ6habucud þ χ7habhcd; ð39Þ
where ua is the velocity of a chosen observer, hab ¼
gab − uaub and χi are generic functions of the cosmic time.
Such a choice however would not lead to a set of equations
containing only the metric and ρ. In order to obtain
equations of this type in a fairly general way, we can set

χ5 → αχ1 χ6 → βχ4 χ7 → γχ4; ð40Þ
so that

χabcd ¼ χ1uaubðucud þ αhcdÞ þ 2χ2uauðchdÞb

þ 2χ3haðcudÞub þ χ4½hachbd þ γðβucud þ hcdÞ�:
ð41Þ

In the following, we will use this form of χabcd in the
context of cosmology.

B. The cosmology of action S1
Using the standard FLRW metric and the previous

choice (41) we find

ð2ρ2 − 1Þð _H þH2Þ ¼ −
2κμ

3ρ
f1 − ½2þAð3w − 1Þ�ρ2g þH _ρ

2ρ
½ð3A − 2Þρ2 þ 1� þAρ̈ρ; ð42Þ

ð2ρ2 − 1Þ
�
H2 þ k

S2

�
¼ κμ

3ρ
f2½2þAð3w − 1Þ�ρ2 − ð1þ 3wÞg þH _ρ

2ρ
½2ð3A − 2Þρ2 − 1� þ ρ̈

2ρ
ð2Aρ2 − 1Þ; ð43Þ

_μþ 3Hðμþ pÞ ¼ 0; ð44Þ
and the final equation

2ρð2ρ2 − 1Þð2Aρ2 − 1Þ⃛ρþ ½HB1ðρ;AÞ þ B2ðρ;AÞ_ρ�ρ̈þHB3ðρ;AÞ_ρ2

þ
�
2κμ½B4ðρ;AÞ þ wB5ðρ;AÞ� þ 2k

S2
B6ðρ;AÞ þH2B7ðρ;AÞ

�
_ρ

¼ 2Hκμ½B8ðρ;AÞ − wB9ðρ;AÞ þ w2B10ðρ;AÞ�: ð45Þ
Here we introduced the following functions

A ¼ γð9αβ − 4β þ 3Þ þ 1

ð3α − 1Þððβ − 3Þγ − 1Þ ; ð46Þ

B1ðρ;AÞ ¼ ρð2ρ2 − 1Þ½2ð7A − 2Þρ2 − 3�; ð47Þ

B2ðρ;AÞ ¼ −16Að6A2 − 7Aþ 2Þρ6 þ 8ð5A2 − 5Aþ 2Þρ4 þ ð6A − 20Þρ2 þ 5; ð48Þ
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B3ðρ;AÞ ¼ 8ð3A2 þA − 2Þρ4 − 16ð2 − 3AÞ2ð2A − 1Þρ6 þ 10ðA − 2Þρ2 þ 3; ð49Þ

B4ðρ;AÞ ¼ 2

3
ρ2ð8ðA − 2Þð2A − 1Þð3A − 2Þρ4 þ 4ð7A2 − 11Aþ 6Þρ2 þA − 10Þ þ 7

3
; ð50Þ

B5ðρ;AÞ ¼ −16Að6A2 − 7Aþ 2Þρ6 þ 8ð5ðA − 1ÞAþ 2Þρ4 þ ð6A − 20Þρ2 þ 5; ð51Þ

B6ðρ;AÞ ¼ ρð2ρ2 − 1Þ½8ð6A2 − 7Aþ 2Þρ4 þ 2ð5A − 4Þρ2 þ 3�; ð52Þ

B7ðρ;AÞ ¼ 8ð2A − 1Þρ3ð2ρ2 − 1Þ½ð6A − 4Þρ2 − 1�; ð53Þ

B8ðρ;AÞ ¼ 4

3
ρð2ρ2 − 1Þð2ðA − 2Þρ2 þ 3Þ; ð54Þ

B9ðρ;AÞ ¼ 8ρð2ρ2 − 1Þð2ðA − 1Þρ2 þ 1Þ; ð55Þ

B10ðρ;AÞ ¼ 12ρð2ρ2 − 1Þð2Aρ2 − 1Þ: ð56Þ

We can easily explore this cosmological model via phase
space analysis, see [17–20], setting

X ¼ _ρ

4Hρ
; Y ¼ ρ̈

4H2ρ
; Z ¼ ρ;

Ω ¼ κμ

3ρH2
; K ¼ k

S2H2
: ð57Þ

Choosing the time variable τ ¼ lnðS=S0Þ the dynamical
equations are

X0 ¼ 1

4AZ2 − 2
fK½Z2ð4AX þ 2Þ − 1� − 12AwΩZ2

− 16X2ðAZ2 − 1Þ − 4X½ðA − 2ÞZ2 þ 2Ω�
þ 4ΩZ2½ðA − 2Þ þ 2ð1þ 3wÞ� þ 2Z2 − 1g;

Z0 ¼ 8XZ;

K0 ¼ 4K
2AZ2 − 1

½AðK þ 1ÞZ2 þ 2X − 2Ω�;

Ω0 ¼ Ω
2AZ2 − 1

½4AKZ2 þ wð3 − 6AZ2Þ
þ Xð12 − 8AZ2Þ þ 2AZ2 − 8Ωþ 1�: ð58Þ

where the prime denotes the derivative with respect to τ and
we applied the constraint

Ωf2Z2½ð1 − 3wÞA − 2� þ 3wþ 1g
þ X½ð4 − 6AÞZ2 þ 1� þ Yð1 − 2AZ2Þ

þ 1

2
ðK þ 1Þð2Z2 − 1Þ ¼ 0: ð59Þ

The solutions associated to the fixed points can be found
solving the equation

H0 ¼ H
1−2AZ2�

ð2AK�Z2� þ4AZ2� þ4X�−4Ω�−1Þ; ð60Þ

where an asterisk denotes the value of the variables in the
fixed point. The fixed points an their stability can be found
in Table I.
Since ρ > 0 by definition, only the Z > 0 part of the

phase space has physical meaning. We will refer to this part
of the phase space as physical. The system (58) contains
three invariant submanifolds Ω ¼ 0, K ¼ 0 and Z ¼ 0.
Therefore a global attractor for the cosmology has to lay in
the intersection of these three submanifolds. The system
also presents a singular submanifold Z ¼ ð2AÞ−1=2, which
is related to the structure of (42) and in particular to the
factor multiplying the left-hand side of the Friedmann and
Raychaudhuri equations. The physical phase space con-
tains a line of fixed points together with six isolated points
of which one belongs to this line. The phase space presents
two different attractors: the Line L and Point D, none of
them global. Of these, only the stability properties of Point
D depend on the value of A. The presence of these
attractors suggests that, depending on initial conditions,
the final state of the cosmology might be very different. The
phase space also presents a saddle point which corresponds
to a de Sitter solution, leaving space for a transient phase of
accelerated expansion.
To gain an idea of the dynamics, we can look at the phase

space of this model in the spatially flat (K ¼ 0) and vacuum
(Ω ¼ 0) case (see Fig. 1 in which A ¼ 1=3). It is evident
that four different types of cosmic histories are possible
depending on the initial conditions. The most interesting is
the one when X > −1=4 and Z <

ffiffiffiffiffiffiffiffi
3=2

p Þ in which the
Universe can have initial conditions in accelerated expan-
sion then switches to decelerated expansion ðBÞ to
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accelerate again first with an exponential rate ðCÞ and then
with a power law rate t2 ðDÞ.
The most interesting critical point of this system is

Point D, the late time attractor where the Universe
undergoes an accelerated expansion provided that
ðA − 1Þð2A − 1Þ > 1 which means 0 < A < 1=2. Once
this choice has been made it is remarkable that “many”
trajectories will make a transition from acceleration to

deceleration and then back to acceleration before terminat-
ing at Point D. Considering also the invariant submanifold
K ¼ 0, Z ¼ 0 (see Fig. 2) we can explore nonvacuum
orbits. From their behavior, we can conclude that the
cosmology for action S1 allows for early time and late
time acceleration while at the same time allowing for a
matter or radiation epoch.

IV. CONCLUSIONS

We constructed a new class of modified theories of
gravity which is characterized by a dynamical volume
form. The key idea of this approach is to treat the volume
form which appears in the action differently from the
induced volume of the metric. This class of theories can be
seen as a dynamical generalization of “unimodular gravity”
theories in which the volume form is a constant. The
introduction of a variable volume form is achieved by
the introduction of a fourth-order tensor χ which connects
the metric of the spacetime with another rank two tensor g̃
whose determinant expresses the dynamical volume form.
No other modifications are introduced.
Our construction allows for two straightforward

options in which matter couples to spacetime. First, we
discussed the case where matter couples directly to the
spacetime metric (theory S1). Second, we considered the
possibility where matter couples to g̃ (theory S2). In this
second case, the gravitational field equations contain
explicitly the matter Lagrangian, the cosmological dynam-
ics implied by this model appear to be less interesting for
cosmology.
Remarkably, in both cases a fairly general choice of χ

leads to theories which contain only one additional scalar
d.o.f. ρ. Theories of this type have been our main interest in
the context of the evolution of cosmological spacetimes. In
spite of their resemblance with standard scalar tensor
gravity, our model presents some fundamental differences.
For example, since ρ is not a true independent dynamical
variable, the theory does not present an independent
equation for the evolution of this scalar d.o.f. Note,
however, the trace of the field equations amounts to a
Klein-Gordon-like equation for ρ, much in the same way of
one of the scalar field representation of fðRÞ gravity.

TABLE I. Critical points stability and associated solution of Eqs. A with the ansatz (41).

Point Coordinates Attractor Repeller Solutions

L fK → −1;Ω → 0; X → 0; Z → Z0g Z0 > 0 Never a → a0ðt − t0Þ
A fK → −1;Ω → 0; X → 0; Z → 0g Never Never a → a0ðt − t0Þ
B fK → 0;Ω → 0; X → − 1

4
; Z → 0g Never Never a → a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t − t0

p
C fK → 0;Ω → 0; X → 1

4
; Z → 0g Never Never a → a0eH0t

D fK → 0;Ω → 0; X → 0; Z → 1ffiffi
2

p g 0 < A < 1 Never a → a0ðt − t0Þ A−1
2A−1

E fK → 0;Ω → 1
4
ð2 − 3wÞ; X → 1

4
ð1 − 3wÞ; Z → 0g Never Never a → a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t − t0

p
F

n
K → 0;Ω → 1þ3w−ð3w−1ÞA

4ð3Aw−Aþ2Þ ; X → 0; Z →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðwþ1Þ
2½ð3w−1ÞAþ2�

q o
Never Never a → a0ðt − t0Þ

2
3ð1þwÞ

FIG. 1. The phase space for Eqs. A with the ansatz (41) for
spatially flat spacetime and vacuum. Here A ¼ 1=3 and the
dashed line separates accelerating (right part of the plot) from
decelerating expansion (left part of the plot).

FIG. 2. The K ¼ 0, Z ¼ 0 invariant submanifold of the phase
space for Eqs. A with the ansatz (41). Here A ¼ 1=3 and the
dashed line separates accelerating (right part of the plot) from
decelerating expansion (left part of the plot).

GENERALIZED MATTER COUPLINGS IN GENERAL … PHYS. REV. D 98, 024054 (2018)

024054-7



The phase space analysis of the theory S1 presents some
most interesting features which are almost unique when
compared with other models. In particular, we can show that
there exits a set of values of the parameters for which the
Universe is characterized by accelerated expansion (q < 0)
at early (inflation) and late times (dark energy). These two
accelerating epochs are connected by an intermediate phase
of decelerated expansion (q > 0). Such features show that
the new theory allows us to model the entire standard
cosmology, from inflation to the dark era, including a phase
of the matter or radiation domination. The phase space
analysis also presents a Friedmannian fixed point F, but the
orbits associated to the cosmic histories of the accelerating
type do not pass close to it. We expect, therefore, that, in
general, our model will have matter eras which are different
from ΛCDM cosmology. Such differences might generate
signatures in some well known observables like the linear
spectrum of structure. It is also remarkable that in general the
double accelerating orbits will include two different accel-
erating eras: one unstable “almost” exponential expansion,
and a stable power law one.
In conclusion, we found that a dynamical version of

unimodular gravity with minimally coupled matter has, at
least at the background level of cosmology, a number of
interesting features which, in principle, have observable

consequences. In this respect, this class of model deserves
further investigation not only at cosmological level, but
also, for example, at astrophysical scales. Future works will
be dedicated to such a task.
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APPENDIX: THE COSMOLOGY OF ACTION S2

We include here, for completeness, the analysis of the
phase space of model S2. Using the FLRW metric and the
choice (41),

ð2ρ2 − 1Þð _H þH2Þ ¼ −
2κμ

3ρ
f2ðA − 2Þρ2 − wð2Aρ2 − 1Þðρþ 3Þ þ 1g þH _ρ

2ρ
½ð3A − 2Þρ2 þ 1� þAρ̈ρ; ðA1Þ

ð2ρ2 − 1Þ
�
H2 þ k

S2

�
¼ κμ

3ρ
f−2ðA − 2Þρ2 þ ρwð2ðA − 1Þρ2 þ 6Aρþ 1Þ − 2g þH _ρ

2ρ
½2ð3A − 2Þρ2 − 1� þ ρ̈

2ρ
ð2Aρ2 − 1Þ;

ðA2Þ
_μþ 3Hðμþ pÞ ¼ 0; ðA3Þ

and the final equation

2ρð2ρ2 − 1Þð2Aρ2 − 1Þ⃛ρþ ½HB1ðρ;AÞ þ B2ðρ;AÞ_ρ�ρ̈þHB3ðρ;AÞ_ρ2

þ f2κμ½B4ðρ;AÞ þ wB11ðρ;AÞ� þ 2k
S2

B6ðρ;AÞ þH2B7ðρ;AÞg_ρ
¼ 2Hκμ½B8ðρ;AÞ − wB12ðρ;AÞ þ w2B13ðρ;AÞ�: ðA4Þ

Here

B11ðρ;AÞ ¼ −
32

3
A½Að6A − 7Þ þ 2�ρ7 − 32A½Að6A − 7Þ þ 2�ρ6 þ

�
40

3
Að2A − 3Þ þ 16

�
ρ5

þ ½80ðA − 1ÞAþ 32�ρ4 þ 4

3
ð8A − 9Þρ3 þ ð12A − 40Þρ2 þ 4ρ

3
þ 10; ðA5Þ

B12ðρ;AÞ ¼ 4

3
ρð2ρ2 − 1Þ½2ðA − 2Þρ3 þ 12ðA − 1Þρ2 þ 3ρþ 6�; ðA6Þ

B13ðρ;AÞ ¼ 2ðρþ 3Þ½8Aρ5 − 4ðAþ 1Þρ3 þ 2ρ�: ðA7Þ

In the equations above, we assumed that LðmÞ ¼ −p ¼ −wμ is the Lagrangian of a perfect fluid with barotropic equation
of state w.
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As before, we can analyze the phase space of this
cosmology using the variables

X ¼ _ρ

4Hρ
; Y ¼ ρ̈

4H2ρ
; Z ¼ ρ;

Ω ¼ κμ

3ρH2
; K ¼ k

S2H2
; ðA8Þ

and the time variable τ ¼ lnðS=S0Þ. The dynamical
equations are then

X0 ¼ 1

4AZ2− 2
fKðZ2ð2− 4AXÞ− 1Þ

þ 4Xð2AwΩZ3þð2− 3AÞZ2 −wΩZþ 2Ωþ 1Þ
−Ω½4AwZ3þð12Aw− 4Aþ 8ÞZ2

þ 2wZþ 2ð3wþ 1Þ�þ 16AX2Z2þ 2Z2− 1g;
Z0 ¼ 4XZ;

K0 ¼ 4K
2AZ2− 1

½AZ2ðK− 2wΩZþ 1Þ
þwΩZþ 2X− 2Ω− 1�;

Ω0 ¼ Ω
2AZ2− 1

½wð2AZ2− 1Þð4ΩZ− 3Þ
− 4Xð2AZ2þ 1Þ− 4AKZ2 − 6AZ2þ 8Ωþ 5�: ðA9Þ

where the prime denotes the derivative with respect to τ and
we applied the constraint

Ω½2ðA − 2ÞZ2 − wðZ þ 3Þð2AZ2 − 1Þ þ 1�
þ X½ð4 − 6AÞZ2 þ 1� þ Yð1 − 2AZ2Þ

þ 1

2
ðK − 1Þð2Z2 − 1Þ ¼ 0: ðA10Þ

The solutions associated to the fixed points can be found
solving the equation

H0 ¼ H
1 − 2AZ2�

fΩ�½4 − 2wZ�ð2AZ2� − 1Þ�

þ 4X� þ K�ð2AZ2� − 1Þ þ K� − 1g; ðA11Þ

where an asterisk denotes the value of the variables in the
fixed point. As before, the physical phase space will be
characterized by Z > 0 and the system presents the
invariant submanifolds Ω ¼ 0, K ¼ 0 and Z ¼ 0 so that
a global attractor will necessarily have coordinates
Ω ¼ 0; K ¼ 0; Z ¼ 0. The system (A9) also present the
same singular manifold as the previous set of equations in
Z ¼ ð2AÞ−1=2. In our treatment, we will consider only
Z ≠ ð2AÞ−1=2. These analogies should not be surprising, as
the two sets of field equations only differ in the matter
sector. The fixed points and their stability can be found in
Table II. Differently from the previous case we now have
only isolated fixed points of which only two (B and D) can
be attractors, neither of them global. Point B can represent
accelerated expansion if A > 2. In Fig. 3, we give a plot of
the phase space for K ¼ 0, Ω ¼ 0 for A ¼ 3.

FIG. 3. The phase space for Eqs. B with the ansatz (41) for
spatially flat spacetime and vacuum. Here A ¼ 3 and the dashed
line separates accelerating (right part of the plot) from decelerat-
ing expansion (left part of the plot).

TABLE II. Critical points stability and associated solution of Eqs. B with the ansatz (41). The index i of the points Fi runs from 1 to 3
and Z0;i are the real solutions of equation in the last row.

Point Coordinates Attractor Repeller Solutions

A fK → 0;Ω → 0; X → − 1
4
; Z → 0g Always Never a → a0

ffiffiffiffiffiffiffiffiffiffiffi
t − t0

p
B fK → 0;Ω → 0; X → 0; Z → 1ffiffi

2
p g A > 2 1 < A < 4

3
a → a0ðt − t0ÞA−1

A ≠ Aþ
0

A ≠ A−
0

C fK → 3;Ω → 0; X → 1
2
; Z → 0g Never Never a → a0ðt − t0Þ

D fK → 2−A
A ;Ω → 0; X → 0; Z → 1

2
g 1 < A < 2 Never a → a0

ffiffiffiffiffiffiffiffiffiffiffi
t − t0

p
Fi fK → 0;Ω →

6AwZ2
0;iþ6AZ2

0;i−3w−5
4ð2AwZ3

0;i−wZ0;iþ2Þ ; X → 0; Z → Z0;ig Never Never a → a0ðt − t0Þ
2

3ð1þwÞ

1
wZ0;ið2AZ2

0;i−1Þþ2
f2wZ3

0;i½3Aðwþ 1Þ þ 2� þ 6ðwþ 1ÞZ2
0;i½Að3w − 1Þ þ 2� − wð3wþ 7ÞZ0;i − 9wðwþ 2Þ − 1g ¼ 0

A�
0 ¼ 1

9
ð20� 4

ffiffiffi
7

p Þ
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