Synthetic biology and engineered live biotherapeutics: towards increasing system complexity

Tanel Ozdemir^{1,a}, Alex J H Fedorec^{1,3,a}, Tal Danino^{5,6,7}, and Chris P Barnes^{* 1,2}

¹Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK ²UCL Genetics Institute, University College London, London, WC1E 6BT, UK

³Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, WC1E 6BT, UK

⁵Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA ⁶Data Science Institute, Columbia University, New York, NY 10027, USA

⁷Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA ^aThese authors contributed equally

*Corresponding author: <u>christopher.barnes@ucl.ac.uk</u>

Abstract

Recent advances in synthetic biology and biological system engineering have allowed the design and construction of engineered live biotherapeutics targeting a range of human clinical applications. In this review, we outline how systems approaches have been used to move from simple constitutive systems, where a single therapeutic molecule is expressed, to systems that incorporate sensing of the *in vivo* environment, feedback, computation and biocontainment. We outline examples where each of these capabilities are achieved in different human disorders including cancer, inflammation and metabolic disease in a number of environments including the gastrointestinal tract, the liver and the oral cavity. Throughout we highlight the challenges of developing microbial therapeutics that are both sensitive and specific. Finally we discuss how these systems are leading to the realisation of engineered live biotherapeutics in the clinic.

Introduction

Systemically administered drugs can often lead to significant off-target delivery, giving rise to high doses in unintended locations and toxic side-effects (Bae & Park 2011). The goal of targeted drug delivery is to maximise drug accumulation within a target area and minimise off-target effects. This requires four key components; a delivery vehicle, sufficient stability to reach the target site, retention within the intended site, and timely drug release for the effective function of the drug (Bae & Park 2011). Recent advances in biotechnology have enabled the use of nanoparticles and biopolymers for targeted delivery and remote activation (Farokhzad & Langer 2009, Timko et al. 2011), but these also face significant challenges (Kwon et al. 2012). The human microbiota refers to the ecosystem of microorganisms living on or within the human body, and is increasingly being implicated as a regulator of health and disease (Li et al. 2016, Wu et al. 2010, Vijay-Kumar et al. 2010, Wang et al. 2011). This community consists of a wide variety of well-tolerated microorganisms such as bacteria, yeast and phages that occupy a large and interactive buffer zone between the host and the external environment. The habitability of niches in the body to such microorganisms can in principle allow for their use in the delivery of therapeutics in a targeted and controllable fashion. There are three broad approaches to achieve this; application of natural organisms that have therapeutic properties (live biotherapeutics), artificially assembled microbial consortia, and genetically engineered commensal microbes (herein referred to as engineered live biotherapeutics).

A live biotherapeutic is a product that contains a live microorganism and is applicable to the prevention, treatment or cure of human diseases (Olle 2013). The discovery of commensal relationships between microbes and humans led to the clinical investigation of the therapeutic effects of ingestion of natural microbial probiotic strains such as *E. coli* Nissle 1917 (Henker et al. 2007) and *Lactobacillus* (Grüber et al. 2007, Drouault-Holowacz et al. 2008). The development of live biotherapeutic products (LBPs) is rapidly evolving. Historically, exploration of these strains was confined to the fields of microbiology and nutritional supplementation. The most commonly used microorganisms were those closely linked to food processing such as *Lactobacillus* spp. *Bifidobacterium* spp. and *Saccharomyces*. The increasingly fine-detailed characterisation of the human microbiota is leading to the identification of many other strains for therapeutic interventions including *Bacillus* spp., *Weissella* spp. and *Escherichia coli* (O'Toole et al. 2017). Another development is in the use of synbiotics, a combination of a probiotic

and a prebiotic, with a recent study demonstrating that *Lactobacillus plantarum* plus fructooligosaccharide can prevent infant sepsis in a randomized placebo controlled trial (Panigrahi et al. 2017).

It is becoming increasingly apparent that the host-microbiota interaction constitutes a complex ecosystem between the microbes and the immune system. The potential benefit of communities of probiotic bacteria has been recognised for some time, although their effectiveness has yet to be conclusively demonstrated (Chapman et al. 2011). A classic example is the VL#3 formulation of eight strains of *Bifidobacterium*, *Lactobacillus* and *Streptococcus*, which is prescribed for inflammatory bowel disease. More recently, the clinical potential of wild-type bacterial communities was demonstrated through the use of faecal microbiota transplantation (FMT) in combating recurrent *C. difficile* infections (van Nood et al. 2013). Leading on from these findings, Seres Therapeutics (MA, USA) is running human clinical trials with an oral drug cocktail mimicking the wild-type bacterial composition of these faecal transplants (Khanna et al. 2016).

The third approach - and the main focus of this review article - is to leverage the tools of synthetic biology to engineer microbes and their communities to perform targeted therapeutic delivery with much greater control of location and timing. This approach has many advantages over the other two including the ability to direct therapeutics to particular niches, ultimately allowing for higher doses with lower systemic effects (Claesen & Fischbach 2014). In addition, the reciprocal interactions between the microbiota, immune system, diet and genome makes it extremely difficult to distinguish cause and effect in several pathologies (Cerf-Bensussan & Gaboriau-Routhiau 2010, Serino et al. 2012, Blekhman et al. 2015). Engineered microbes can be used to explore these interactions and modulate their effects, opening up many avenues to new biology and, ultimately, new therapeutic strategies.

In this review, we begin by outlining foundational work in the therapeutic use of engineered bacteria then discuss the latest synthetic and systems biology approaches taken with engineered live biotherapeutics for human health. We discuss the complexity of these methods and future directions in which cutting edge synthetic biology can enable the design of robust and multi-layered system tools to effectively engineer the human microbiome for therapeutics.

3

Constitutive Therapeutic Delivery Systems

A fundamental approach in engineering microorganisms is the constitutive expression of an effector protein. Upon ingestion and colonisation with an engineered commensal strain, the protein produced directly acts upon the host or the resident microbial population to elicit a physiological response (Figure 1). This method has been used to target several different conditions such as obesity (Chen et al. 2014), diabetes (Duan et al. 2008), colitis (Steidler et al. 2000), cancer (Yoon et al. 2017, Forbes 2010), and infection by pathogenic bacteria (Focareta et al. 2006, Liu et al. 2016) (Table 1). A recent example includes the engineering of S. typhimurium to express the Vibrio vulnificus flagellin protein to act as a toll-like receptor ligand, triggering an immunogenic anti-cancer response from the host (Zheng et al. 2017). A further example of this approach involved the use of engineered E. coli Nissle to disrupt the quorum sensing pathways of V. cholerae (Duan & March 2010). This pathogen is known to control its population density and the amount of cholera toxin being produced via quorum sensing molecules cholera autoinducer 1 (CAI-1) and autoinducer 2 (AI-2). At high concentrations of both CAI-1 and AI-2, virulence factors such as cholera toxin are no longer expressed. To reduce virulence, E. coli Nissle was transformed with a plasmid that constitutively expresses CqsA, the gene for CAI-1. In a mouse model, the ingestion of this engineered strain before V. cholerae administration significantly reduced cholera toxin production and mortality (Duan & March 2010). Another recent study, demonstrated E. coli Nissle harbouring a modular expression system that could produce seven different antimicrobial proteins to target several gastrointestinal pathogens in the intestines (Geldart et al. 2016). An exciting approach to colorectal-cancer chemoprevention was recently detailed in which E. coli Nissle was engineered to express histone-like protein A (HlpA) on the cell surface, allowing it to bind to cancer cells with upregulated heparan sulfate proteoglycan (HSPG) on their cell surface (Ho et al. 2018). At the same time, the engineered bacteria secreted an enzyme, myrosinase, which converts dietary glucosinolate from cruciferous vegetables into the known anti-cancer molecule sulphoraphane. This system was capable of killing colorectal cancer cell lines in vitro and preventing tumour progression in a murine colorectal cancer model (Ho et al. 2018).

In these constitutive expression systems, the amount of therapeutic delivered depends on several factors, such as the population size of the engineered microorganism. The parameter that is perhaps

most under the control of the system designer is the strength of the promoter. A number of different constitutive promoters have been used, such as the lac (Paton et al. 2005), tac (Chaudhari et al. 2017), fliC (Duan & March 2010), slpA (Duan et al. 2015), and Anderson promoters (Ho et al. 2018). Rarely is any reason for promoter choice given and often it seems to be due to ease of cloning rather than consideration for promoter strength. It has been shown that using a weaker promoter, with a lower metabolic burden, can lead to an increased therapeutic yield (Din et al. 2016) and as such, greater consideration of promoter strength should be intrinsic to system design.

The export of active therapeutics from the engineered microorganism into the environment has been approached in two ways: by lysing the producing cells to release the intra-cellular therapeutic or by using secretion machinery to transport the therapeutic out of the cell. Lysis is generally not used in simpler systems as there needs to be a mechanism for ensuring lysis only occurs once enough protein has been produced within a cell or once a desired population density has been reached (Din et al. 2016). Several secretion mechanisms have been used and often those already present in the bacterial strain are commandeered, such as ABC transporters (Choi et al. 2012, Geldart et al. 2016), Sec systems (Zheng et al. 2017), and the flageller secretion apparatus (Duan et al. 2008, Gupta et al. 2013). However, it should be noted that the efficiency of secretion of active folded proteins is not 100%, with the flageller system secreting as little as 5% of total protein produced (Gupta et al. 2013). As such, consideration needs to be taken as to whether pushing cells to express as much of a therapeutic protein as possible is sensible if it cannot be exported in to the environment.

A synthetic circuit, whether a simple constitutive expression system or a more complex system, will place a burden on the host microorganism. The greater the burden, the greater the selective pressure to remove the system or to develop mutations that reduce its function (Sleight & Sauro 2013). Tools to help us understand how designed synthetic circuits will interact with their bacterial hosts (Weiße et al. 2015, Liao et al. 2017) and methods to identify less burdensome designs (Ceroni et al. 2015) are being developed. A system has been developed which attempts to reduce the metabolic burden on the host by limiting the production of a protein until the host has grown enough and there is sufficient substrate in the environment (Lo et al. 2016). However, this approach subsequently changes the dynamics of gene expression and, therefore, may not be appropriate for more complex systems with tighter parameters.

While these approaches are developing alongside our understanding of disease biology, they solely capitalise on the capability of the engineered strains to transiently occupy the relevant niche, such as the intestines or the hypoxic microenviroment of a tumour, and recombinantly express a protein. However, bacteria also occupy niches other than those desired. When administered intravenously, bacteria can be found in a range of organs including the spleen, kidneys, liver, brain, lungs and heart (Forbes et al. 2003, Zheng et al. 2017). If an LBP was engineered to constitutively express an anticancer drug, low level accumulation in untargeted healthy tissue would lead to systemic toxicity (Forbes et al. 2003, Forbes 2010). An example in which a constitutive expression system showed off-target effects was in the delivery of a therapeutic gene to epithelial cells in a mouse model of colitis (Castagliuolo et al. 2005). In this case, a system was developed where a non-pathogenic E. coli strain could invade epithelial cells and deliver functional DNA. However, when the gene was expressed constitutively, transcripts of the therapeutic gene were discovered in other tissues. Replacing the constitutive promoter with an inflammation-inducible promoter led to the mRNA transcripts only being detectable within the inflamed tissue. In line with this, there has been a subsequent effort to design systems that can detect and respond to environmental factors for regulated expression. These systems could enable the production of therapeutic proteins to be targeted to specific locations through the sensing of environmental stimuli, and to regulate expression using feedback to prevent overproduction.

Systems approaches with increased functionality

Through the integration of synthetic biology tools and circuit design principles, researchers have been able to devise and implement systems approaches with greater complexity (Table 2, Figure 2). An underlying thread of these efforts is the use of robust biological components and system designs to create reproducible and consistent outcomes. Insulation of promoters (Davis et al. 2011) and ribosome binding sites (Lou et al. 2012) reduce the contextual effects of the surrounding DNA sequences, allowing for greater interchangeability of parts. Furthermore, the development of standardised transcription and translation elements (Mutalik et al. 2013), and terminators (Chen et al. 2013), has improved our ability to produce circuits that behave predictably. The use of

computational methods to determine the optimal strengths of components or optimal circuit designs to produce desired behaviours (Otero-Muras & Banga 2017, Leon et al. 2016, Woods et al. 2016), in conjunction with these more reliable parts, has allowed the pace of development and attainable complexity to greatly increase.

Systems that can sense and respond

The next step up in complexity from the simple design of an engineered strain expressing a recombinant effector protein is a system that can detect a stimulus and produce a designated response (Figure 2). The stimuli can be detectable molecules or conditions in the host environment, or externally provided signals. This approach enables a more precisely localised or timed effect on the host. Such spatiotemporal control is a vital facet in the design of a therapeutic product.

A system capable of detecting native, therapeutically relevant stimuli was demonstrated using *Lactococcus lactis* to treat *E. faecium* infection (Borrero et al. 2015). The *L. lactis* strain was engineered to produce an antimicrobial bacteriocin when it detected the cCF10 enterococcal sex pheromone produced by *E. faecium*. Similar systems have been developed to sense and destroy *Pseudomonas aeruginosa* using engineered *E. coli* (Saeidi et al. 2011, Gupta et al. 2013). These both involved production of an antimicrobial bacteriocin upon detection of a quorum sensing molecule from *P. aeruginosa*, followed by release of the bacteriocin, either through lysis (Saeidi et al. 2011) or the use of a secretion tag (Gupta et al. 2013). The system of Saeidi et al. has been expanded to include the rewiring of the CheZ chemotaxis pathway to respond to the quorum sensing molecules produced by *P. aeruginosa* (Hwang et al. 2013), plus the incorporation of the anti-biofilm dispersin B protein (Hwang et al. 2017).

The collection of available sensors to detect therapeutically relevant information is expanding. Sensors for markers of gut inflammation such as nitric oxide (Archer et al. 2012), and thiosulfate and tetrathionate (Daeffler et al. 2017) have been developed. A thermo-sensitive expression system has also been demonstrated to be able to detect a fever in a mouse model (Piraner et al. 2017).

The rapid advancement of bioinformatics tools and genome sequencing has enabled the discovery of novel sensors but other approaches are also possible. A series of modular transcription factors have been

developed in which ligand binding domains, which recognise different sugars, can be attached to a DNA binding domain to produce novel repressors (Shis et al. 2014). A more general modular approach, using single-domain antibodies coupled to a DNA binding domain, has recently been described that aims to vastly increase the repertoire of ligands that can be detected (Chang et al. 2017). Tools such as feedback-regulated evolution of phenotype (FREP) (Chou & Keasling 2013) or compartmentalised partnered replication (CPR) (Ellefson et al. 2014) can be used to evolve more responsive sensors.

In addition to the detection of native molecules and conditions, a number of systems have been developed that allow for deliberate, external stimulation. This was demonstrated in mice with *E. coli* Nissle where a luminescent reporter circuit was controlled with the ingestion of synthetic inducers in drinking water (Loessner et al. 2009). In an alternative approach, a synthetic circuit in *E. coli* Nissle enabled the strain to sense an *in vivo* liver metastasis signal and report on the finding with an easily detectable reporter in urine (Danino et al. 2015). In addition to being able to sense host fever, the thermo-sensitive expression system mentioned previously was shown to be capable of being induced externally through ultrasound (Piraner et al. 2017).

Instead of transiently occupying a destined niche after ingestion or intravenous injection, live biotherapeutics can also be engineered to invade the surrounding host cells in response to environmental signals. Engineered invasiveness paves the way for new drug delivery strategies with a more precise targeting capability. Using the invasin coding *inv* gene from *Yersinia pseudotuberculosis*, several groups have shown the ability of engineered bacteria to invade host cells. The *inv* invasion system was shown to allow engineered *E. coli* to invade intestinal mucosal cells after colonisation (Critchley et al. 2004) and even deliver a therapeutic gene under an inflammation-inducible promoter (Castagliuolo et al. 2005). A further approach was shown that incorporated the *inv* gene into a quorum sensing circuit to create a live biotherapeutic that only invaded tumours after a certain population density was reached (Anderson et al. 2006).

Species from the *Bacteroides* genus are now known to be much more abundant and stable in the human intestinal microbiota than model strains such as *E. coli* and *S. typhimurium*, which are only capable of occupying the niche transiently (Consortium 2012). However, *Bacteroides* do not possess a rich library of catalogued genetic parts like those of the model strains (Mutalik et al. 2013) and

therefore pose a greater challenge to engineer. In light of their relative stature in the intestines, the therapeutic functionality of *Bacteroides* strains with complex synthetic circuits has the potential to be much wider than that of model strains. In a demonstration of the expanding toolbox for engineering the *Bacteroides*, a series of orthogonal inducible promoters using rhamnose, chondroitin sulfate, arabinogalactan and isopropyl β -D-1-thiogalactopyranoside (IPTG) were designed and characterised (Mimee et al. 2015). Furthermore, the rhamnose inducible system was coupled with an integrase element to create an inducible memory switch that detected and recorded *in vivo* the addition of the sugar into the diet of the colonised mice. In a more recent example, a finely tuned anhydrotetracycline (aTc) promoter system with a 9,000-fold dynamic range was characterised in *Bacteroides* (Lim et al. 2017). Due to aTc being a synthetic inducer not found naturally in the mouse diet or microbiota, it is possible to use this system to precisely investigate dynamic host-microbe interactions. In this case, the inducible system was used in *Bacteroides* to investigate the effect of sialidase expression on the liberation of host mucosal sialic acid, a nutrient linked to pathogens such as antibiotic-associated *Clostridium difficile* (Ng et al. 2013).

Systems with feedback

The overproduction of certain therapeutic molecules can cause harm. If an engineered strain is designed to express a therapeutic protein, either constitutively or through induction, without consideration for the concentration of that protein currently in the environment, there is a risk of overproduction. Designing a system with feedback, in which the system senses its effect on the environment and uses that information to modulate its expression, prevents overexpression.

An example of a system in which feedback could be used is a circuit that responds to the production of butyrate in the gut. The short chain fatty acid butyrate is beneficial for gut health (Hamer et al. 2009, Furusawa et al. 2013) and therapeutic approaches have been demonstrated with butyrate producing strains (Geirnaert et al. 2017). Furthermore, synthetic systems have been used to produce butyrate in *E. coli* (Saini et al. 2014). However, there is also evidence that high levels of butyrate have an adverse effect on the intestines (Hamer et al. 2008). In this example, the use of a butyrate sensor in the system could be used to provide feedback on the level of butyrate in the

environment and turn off butyrate production when a threshold is met.

In addition to the problems caused by protein overproduction, overgrowth of the engineered bacterial strains themselves can set off a systemic inflammatory response in the host. Feedback can be used to control population density and prevent population overgrowth. An example of this form of population feedback and control was demonstrated with a clinically relevant strain of *S. typhimurium* (Din et al. 2016). Using a quorum sensing system, previously developed to produce synchronised population oscillations (Danino et al. 2010, Prindle et al. 2011, 2012), a synchronised lysis circuit was developed that enabled the population to repeatedly grow and lyse in a synchronous fashion once a population threshold was reached. This system was used to deliver three cancer therapeutics in a mouse hepatic colorectal metastases model while the population density feedback prevented overgrowth of the bacterial population (Din et al. 2016).

Systems that compute

To mimic the complexity of some natural responses to external stimuli, researchers are incorporating novel biological components into synthetic circuits that allow strains to integrate multiple signals and perform higher order functionalities (Figure 2). Through the rational design and coupling of genetic components, a plethora of examples exist demonstrating a wide spectrum of functionalities. The importance of being able to integrate multiple signals to control therapeutic delivery can be seen in a system developed to target obesity. An *E. coli* Nissle strain engineered to secrete N - acylphosphatidylethanolamines (NAPEs) was able to reduce the obesity of mice fed a high fat diet when added to drinking water (Chen et al. 2014). However, it has been shown that elevated levels of N-acylethanolamide (NAE), of which NAPEs are a precursor, in plasma and the brain led to decreased energy expenditure (Brown et al. 2012). By using multiple external stimuli, such as pH or levels of bile acids, to determine the location of the live biotherapeutic, future systems could limit NAPE production to key areas of the colon.

The most notable recent leap in the realization of complex circuits has been the automated design of transcriptional networks, as was demonstrated with Cello, which utilizes a specification language based on Verilog for implementing design of gene circuits that perform Boolean logic

functions (Nielsen et al. 2016). Using this system, the authors were able to demonstrate a functioning three-input consensus circuit, involving 55 biological components. Circuits such as these allow for the integration of several stimuli which in turn allows for greater control over therapeutic delivery. In addition to transcriptional logic gates, translational logic circuits are being developed (Rodrigo et al. 2012) with ever increasing complexity (Green et al. 2017). With the addition of modules that provide functionality such as memory (Yang et al. 2014), oscillation (Stricker et al. 2008), counting (Friedland et al. 2009), and orthogonal communication (Scott & Hasty 2016), the diversity of types of computation that are theoretically possible is continually expanding (Table 3).

The incorporation of a phage-lambda-based memory circuit was used to show that an engineered *E. coli* strain could detect, record and report on intestinal inflammation *in vivo* over 6 months (Riglar et al. 2017). Recombinase based memory was used to create a simple finite state machine (Roquet et al. 2016), though returning to prior states does not yet seem to be possible using this method. New memory devices are being developed that allow for the recording of information over long periods of time on genomic "tape" using either CRISPR (Sheth et al. 2017) or recombinases (Farzadfard & Lu 2014).

Integrating memory with logic gates allows for the construction of sequential logic circuits rather than solely the combinational logic that Cello enables. A conditioning system was constructed using a bistable toggle switch as a memory module that allowed for a Pavlovian-like association to be built between two unrelated inducible inputs such as salicylate ("food") and arabinose ("ring"), and a specific fluorescent output ("salivation") (Zhang et al. 2014). By taking advantage of a heterogeneous population response, the Pavlovian-like response to the "ring" stimulus was only reinforced by rounds of simultaneous training with the "food" input.

The sensitivity of a live biotherapeutic is crucial to its function. The addition of an integrase switch element into a sensor circuit was shown to digitise and significantly improve the signal to noise ratio in the detection of pathological nitrate by an *E. coli* biosensor (Courbet et al. 2015). Using quorum sensing communication systems to link logic gates together in different bacteria allows for the distribution of parts of larger logic circuits across a population (Tamsir et al. 2011).

Systems that modify native gene expression

11

More recently, live biotherapeutics have been developed that are capable of interfering with gene expression within the host genome or microbiome. This approach can allow the engineering of host or microbiota biology on a sequence specific level. Initial attempts have consisted of *E. coli* or *S. typhimurium* expressing short hairpin RNAs (shRNAs) for trans-kingdom RNA interference in mucosal tissues after intestinal colonisation (Xiang et al. 2006, Guo et al. 2011). The demonstrations with *E. coli* showed that the system could be used in the intestinal epithelium to knockdown the expression of *CTNNB1*, an oncogene implicit in the initiation of colorectal cancer (Xiang et al. 2006)

With recent advancements in the use of CRISPR-Cas technologies, it has also been possible to devise live biotherapeutic approaches to engineer the microbiome on a sequence specific level. Through the use of phages that can inject DNA directly into bacterial cells, sequence-specific RNA guided nucleases (RGNs) can be expressed that precisely target the host genome. This method was used to specifically differentiate virulent and avirulent *Staphylococcus aureus*, and to function in an *in vivo* mouse skin colonisation model after topical administration of engineered phage lysates (Bikard et al. 2014). In another recent example, engineered phages were used to target antibiotic resistance harbouring *Enterobacteriaceae* (Citorik et al. 2014). In this example, it was also shown that *E. coli* could be engineered with conjugative plasmids to deliver RGNs to the surrounding bacterial population and subsequently control the compostion of a synthetic consortium based on the presence of a single gene. With the capability of targeting specific genetic signatures, this approach provides the power to eventually engineer and remodel complex bacterial populations such as the intestinal microbiome with an incredible level of resolution and precision.

Systems for biocontainment

As with any therapeutic, safety concerns must be addressed when constructing live biotherapeutics. Several approaches have been developed to tackle the challenge of biocontainment; ensuring that any engineered strain is not allowed to escape from a well-defined environment (Figure **3**A). The most often explored method is the use of an environmental input for the survival of the engineered strain. This is primarily achieved through the use of auxotrophic strains (Steidler et al. 2003), however metabolic cross-feeding in environments such as the gut must be taken into consideration when

designing the auxotroph (Germerodt et al. 2016). As such, auxotrophs that require supplementation with non-standard or synthetic amino acids for production of essential proteins have been developed that show greater robustness to escape (Mandell et al. 2015, Rovner et al. 2015). The Deadman and Passcode systems, although not auxotrophs, also require environmental input to enable survival (Chan et al. 2016). These work through the two-layered transcriptional repression of a toxic gene and the targeted degradation of an essential gene. This system, as with the auxotrophic systems, requires the delivery of a molecule into the environment. Another approach is to use an environmental input already present in the target environment but not present outside of it. The temperature dependent production of an antitoxin, active against a constitutively produced toxin was shown to reduce survival of engineered bacteria unless they were incubated at 37C, even after having passed through the mouse gut (Piraner et al. 2017).

Preventing the escape of engineered bacteria into the environment is not the only biocontainment concern when designing live biotherapeutics. The transfer of genes from the engineered strain to wild strains present in the environment is a further challenge that must be addressed. This is particularly problematic in the inflamed gut due to increased horizontal gene transfer (Stecher et al. 2012). The GeneGuard system takes a three-pronged approach to prevent the escape of engineered plasmids into wild species by designing a strain and plasmid that could not survive without each other (Wright et al. 2014). They designed an auxotrophic strain that could not survive without an essential gene encoded on the plasmid. This prevents the genetically modified strain ejecting the plasmid and outcompeting the plasmid-carrying strain. Secondly, the plasmid produces a toxin which is nullified by a genomically produced antitoxin, preventing the survival of wild strains that acquire the plasmid (Figure **3B**). Finally, the plasmid cannot replicate without a genomically encoded protein. This prevents the amplification of the engineered DNA if a wild strain manages to acquire the plasmid and not be susceptible to the toxin (Figure **3C**).

Conclusions

The examples discussed here demonstrate that as our understanding of host biology and circuit designs

evolve, we can integrate a variety of approaches to devise live biotherapeutics that act in a systematic, precise and robust manner. The growing repertoire of genetically tractable strains, genetic parts and system design tools will enable us to target human pathologies such as cancer and metabolic conditions to which there is still an urgent unmet need. Increasing the complexity of live biotherapeutics can allow us to, in theory, bypass and overcome traditional hurdles to effective pharmaceutical therapeutics such as cost, dosing, side-effects and efficient delivery. The ability to precisely control a mixed population of bacteria could also allow us to use engineered strains with communication modules that enable a tunable division of labour *in vivo*. However, it is also apparent that increasing the complexity of these systems could potentially hinder the therapeutic efficacy of engineered LBPs, particularly in respect to host metabolic burden and genetic circuit stability. The method of genetic engineering used is also critical in the clinical translation of LBPs. A number of different approaches have reached human clinical trials, including Intrexon's (VA, USA) engineered L. lactis strain with chromosomal integration (Limaye et al. 2013) and Marina Biotech's (CA, USA) engineered E. coli strain incorporating plasmid based systems (Xiang et al. 2006). A topic of discussion is whether the use of plasmid based approaches are safe considering the risk of horizontal gene transfer (Stecher et al. 2012) and the chance of mutations disrupting plasmid copy number and subsequently effecting the dose of the therapeutic. These clinical trials demonstrate that live biotherapeutics show great promise, emphasised by increased recent investment in this area of biotechnology (Olle 2013, Maxmen 2017). Although there are still regulatory challenges to be addressed, history is rife with examples of new technologies that faced similar issues, such as in vitro fertilisation (IVF), which then became widely accepted once the potential dangers were studied and understood. Continued research into live biotherapeutics can not only provide clear biomedical advances in areas such as the treatment of cancer, obesity and type 2 diabetes, but also allow the development of precision tools to facilitate experimental investigation. These tools will further elucidate the convoluted and multifaceted relationship between the human host, metabolome and microbiota.

Declaration of Interests

The authors declare no competing interests.

Acknowledgements

T.O. is funded through the BBSRC LIDo doctoral training partnership. A.J.H.F is funded through the UCL CoMPLEX doctoral training centre. T. D. was supported by an NIH R00 (CA197649) and DoD Era of Hope Award (BC160541). C.P.B. is supported through a Wellcome Trust Research Career Development Fellowship (097319/Z/11/Z).

Figure Legends

Figure 1. The gastro-intestinal tract is an example of an environment in which live biotherapeutics can provide targeted benefit. Engineered strains have been designed to target (a) pathogenic microbes,(b) molecules that may lead to pathological condition, and (c) specific disease states.

Figure 2. Increasing complexity of synthetic systems allows for improved levels of control and robustness. Constitutive production of a therapeutic from a host is the simplest form of engineered live biotherapeutic. Linking expression of the therapeutic to an exogenous signal allows for more spatially or temporally targeted delivery. Logic circuits allow for the integration of several exogenous signals, enabling greater control and robustness. Incorporating memory and clock systems further expands the computational capabilities of engineered strains. Similarly, incorporating signalling systems, allowing communication allows for synchronised behaviour. With several orthogonal communication systems, complex heterogeneous engineered populations can be built that allow for distribution of function.

Figure 3. Biocontainment of engineered strains and recombinant DNA is a significant challenge. (A) Several efforts have been made to limit the environment under which engineered strains are viable through auxotrophy, temperature range, and pH level. Even if an engineered strain is no longer viable the engineered DNA can prove to be a risk through horizontal gene transfer. (B) Producing a toxin from

the engineered plasmid prevents survival of transformed wild bacteria. (C) Requiring specific proteins for replication of the engineered plasmid prevents the amplification of engineered DNA outside of specific strains.

Table 1.	Constitutive	therapeutic	delivery	systems
----------	--------------	-------------	----------	---------

Target	Location	Model	Chassis	Mechanism	Ref.
		Organism			
Cancer	GI tract	Mouse	B. longum	Production of Tumstatin,	(Wei et al.
				inhibiting proliferation and	2016)
				inducing apoptosis of	
				tumorous vascular endothelial	
				cells	
Cancer	GI tract	Mouse	E. coli	Production of tumour-specific	(Piero-
				modular synthetic adhesins to	Lambea et
				enhance targeting	al. 2015)
Cancer	GI tract	Mouse	E. coli Nissle	Expression of HlpA to enable	(Ho et al.
			1917	specific binding to cancer cell	2018)
				and secretion of myrosinase to	
				convert dietary glucosinolates	
				in to sulphoraphane	
Cancer	Mammaries	Rat and	B. longum	Production of an enzyme	(Sasaki et
		Guinea pig		which converts the pro-drug 5-	al. 2006)
				FC to the toxic 5-FU within	
				tumours	
Cancer	Subcutaneous	Mouse	<i>S</i> .	Production of the interferon-	(Yoon et al.
			typhimurium	gamma cytokine to enhance	2017)
				tumour death after invading	

				melanoma cells	
Cholesterol	GI tract	Human	L. reuteri	Reduction of absorption of	(Jones et al.
				non-cholesterol sterols by bile	2012)
				salt hydrolase-active capsules	
Colitis	GI tract	Mouse	L. lactis	Secretion of	(Hanson et
				immunosuppressive cytokine	al. 2014)
				interleukin (IL)-27	
Colitis	GI tract	Mouse	L. lactis	Treatment of Crohn's disease	Steidler et
				with expression synthetic	al. 2000)
				human IL-10, with effective	
				containment strategy	
Diabetes	GI tract	Rat	L. gasseri	Secretion of GLP-1(1-37) to	(Duan et al.
				stimulate conversion of	2015)
				intestinal epithelial cells in to	
				insulin-secreting cells	
E. coli	GI tract	Mouse	L. casei	Expression of human	(Chen et al.
				lactoferrin (hLF) to protect the	2010)
				host against bacterial infection	
Enterotoxigenic	GI tract	Rabbit	E. coli	Production of chimeric	(Paton et
E. coli				lipopolysaccharide capable of	al. 2005)
				binding heat-labile enterotoxin	
H. pylori	GI tract	Mouse	B. subtilis	Display of <i>H. pylori</i> urease B	(Zhou et al.
				protein on spore coat	2015)
HIV	Vaginal tract	Mouse	E. coli Nissle	Production of an antiviral	(Rao et al.
			1917	peptide (HIV-gp41-hemolysin	2005)
				A) that block HIV entry	
HIV	Vaginal tract	-	Streptococcus	Expression of a antiviral	(Giomarelli
				protein to block entry of HIV	et al. 2002)

				into the vaginal mucosa	
Liver disease	GI tract	Rat	E. coli Nissle	Secretion of PQQ (an	(Singh et
			1917	antioxidant) to prevent EtOH	al. 2014)
				induced oxidative damage in	
				liver and other tissues	
Lyme disease	GI tract	Mouse	<i>S</i> .	Expression of a major surface	(Dunne et
			typhimurium	protein, OspA, to enable the	al. 1995)
				production of anti-OspA	
				antibodies	
Mucosal	GI tract	-	E. coli Nissle	Production of human EGF and	(Choi et al.
injuries			1917	lipase ABC transporter	2012)
				recognition domain to enhance	
				wound healing	
Obesity	GI tract	Mouse	E. coli Nissle	Expression of NAPE, a lipid	(Chen et al.
			1917	hormone which is released in	2014)
				response to food in the	
				intestines	
S. enteritidis	GI tract	Turkey	E. coli Nissle	Secretion of the bacteriocin	(Forkus et
			1917	microcin J25	al. 2017)
S. typhimurium	GI tract	Mouse	B. longum	Display of Salmonella-antigen	(Yamamoto
				protects mice from lethal	et al. 2010)
				challenge of S. typhimurium in	
				a murine typhoid fever model	
Streptococcal	Oral cavity	Rat	Lactobacillus	Expression of an antibody	(Krüger et
				fragment which recognizes a	al. 2002)
				streptococcal antigen	
Tetanus	GI tract and	Mouse	L. plantarum	Engineering Lactobacillus to	(Shaw et al.
	Nasal			produce a 50,000MW	2000)

				fragment of tetanus toxin to	
				immunise mice	
V. cholerae	GI tract	Mouse	E. coli	Production of chimeric	(Focareta et
				lipopolysaccharide capable of	al. 2006)
				binding cholera toxin	
V. cholerae	GI tract	Mouse	E. coli Nissle	Expression of cholera	(Duan &
			1917	autoinducer 1 (CAI-1) to	March
				prevent V. cholerae virulence	2010)
				gene expression	

Target	Locatio	Model	Chassis	Mechanism	Ref.
	n	Organis			
		m			
Cancer	Liver	Mouse	E. coli	Engineered strain secretes an enzyme to	(Danino et al.
			Nissle	cleave a substrate which can be detected in	2015)
			1917	urine.	
Cancer	Subcuta	Mouse	<i>S</i> .	Synchronised population lysis to release	(Din et al.
	neous		typhimur	triple combination of cancer therapeutics.	2016)
	and		ium		
	Liver				
Cancer	Liver	Mouse	Salmone	Quorum sensing to only produce protein	(Swofford et
			lla	when population threshold has been reached,	al. 2015)
				reducing off-target therapeutic delivery.	
Cancer	Subcuta	Mouse	<i>S</i> .	Inducible expression of flagellin B (FlaB) in	(Zheng et al.
	neous		typhimur	tumour tissue to stimulate an immune	2017)
			ium	response.	
Colitis	GI tract	Mouse	E. coli	Use inv to invade intestinal mucosal cells	(Castagliuolo
				and deliver therapeutic under control of	et al. 2005)
				inflammation-inducible promoter.	
Enterohemo	-	<i>G</i> .	Bacterio	Delivery of CRISPR-Cas9 based, targeted	(Citorik et al.
rrhagic <i>E</i> .		mellonell	phage	antimicrobial.	2014)
coli		а			
Fever	Subcuta	Mouse	E. coli	Use thermo-sensitive promoters to detect	(Piraner et al.
	neous			fever and remote-control gene expression	2017)
	and GI			using ultrasound.	
	tract				

Inflammatio	GI tract	Mouse	E. coli	phage-lambda-based memory circuit to	(Riglar et al.
n				record markers of inflammation, stable for	2017)
				200 days in vivo.	
Inflammatio	GI tract	Mouse	E. coli	Detection of inflammation using	(Daeffler et al
n			Nissle	tetrothionate and thiosulfate sensors.	2017)
			1917		
Inflammatio	-	-	E. coli	Thresholding, digitising and amplifying	(Courbet et al
n and				circuit for the sensitive detection of nitrogen	2015)
glycosuria				oxides and glucose in pathological samples.	
Р.	GI tract	С.	L. casei	Sense quorum molecule and produce	(Hwang et al.
aeruginosa		elegans		bacteriocin and dispersin B for lysing.	2017)
		and			
		Mouse			
S. aureus	Skin	Mouse	Bacterio	Delivery of CRISPR-Cas9 based, targeted	(Bikard et al.
			phage	antimicrobial.	2014)

Module	Mechanism
function	
Boolean	Transcriptional (Nielsen et al. 2016), translational (Green et al. 2017), recombinase (Siuti et al.
logic	2013)
Memory	Recombinase/integrase (Yang et al. 2014, Mimee et al. 2015), toggle switch (Zhang et al. 2014),
	CRISPR (Sheth et al. 2017)
Oscillator	Single cell (Stricker et al. 2008, Potvin-Trottier et al. 2016), population (Danino et al. 2010)
Amplifier	Recombinase/integrase (Courbet et al. 2015, Bonnet et al. 2013), transcriptional (hrp) (Wang et al.
	2014)
Counter	Ribo-regulated transcriptional or recombinase cascade (Friedland et al. 2009)
Digitiser	Recombinase/integrase (Courbet et al. 2015, Rubens et al. 2016)
Filter	Spatial bandpass (Kong et al. 2017), recombinase-based bandpass (Rubens et al. 2016)

 Table 3. Modules available for building computational synthetic circuits

References

Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. (2006), 'Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria', *Journal of Molecular Biology* **355**(4), 619-627.

Archer, E. J., Robinson, A. B. & Sel, G. M. (2012), 'Engineered E. coli That Detect and Respond to Gut Inflammation through Nitric Oxide Sensing', *ACS Synthetic Biology* **1**(10), 451-457.

Bae, Y. H. & Park, K. (2011), 'Targeted drug delivery to tumors: myths, reality and possibility', *Journal of Controlled Release* **153**(3), 198.

Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A. & Marraffini, L. A. (2014), 'Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials', *Nature Biotechnology* **32**(11), 1146-1150.

Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., Spector, T. D., Keinan, A., Ley, R. E., Gevers, D. & Clark, A. G. (2015), 'Host genetic variation impacts microbiome composition across human body sites', *Genome Biology* **16**, 191.

Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. (2013), 'Amplifying genetic logic gates', *Science* **340**(6132), 599-603.

Borrero, J., Chen, Y., Dunny, G. M. & Kaznessis, Y. N. (2015), 'Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci', *ACS Synthetic Biology* **4**(3), 299-306.

Brown, W. H., Gillum, M. P., Lee, H.-Y., Camporez, J. P. G., Zhang, X.-m., Jeong, J. K., Alves, T. C., Erion, D. M., Guigni, B. A., Kahn, M. et al. (2012), 'Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism', *Proceedings of the National Academy of Sciences* **109**(37), 14966-14971.

Castagliuolo, I., Beggiao, E., Brun, P., Barzon, L., Goussard, S., Manganelli, R., Grillot-Courvalin, C. & Pal, G. (2005), 'Engineered E. coli delivers therapeutic genes to the colonic mucosa', *Gene Therapy* **12**(13), 1070-1078.

Cerf-Bensussan, N. & Gaboriau-Routhiau, V. (2010), 'The immune system and the gut microbiota: friends or foes?', *Nature Reviews Immunology* **10**(10), 735-744.

Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. (2015), 'Quantifying cellular capacity identifies gene expression designs with reduced burden', *Nature methods* **12**(5), 415-418.

Chan, C. T. Y., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. (2016), 'Deadman' and 'Passcode' microbial kill switches for bacterial containment', *Nature Chemical Biology* **12**(2), 82-86.

Chang, H.-J., Mayonove, P., Zavala, A., De Visch, A., Minard, P., Cohen-Gonsaud, M. & Bonnet, J. (2017), 'A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria', *ACS synthetic biology*.

Chapman, C. M. C., Gibson, G. R., & Rowland, I. (2011). Health benefits of probiotics: are mixtures more effective than single strains?. *European journal of nutrition*, *50*(1), 1-17.

Chaudhari, A. S., Raghuvanshi, R. & Kumar, G. N. (2017), 'Genetically engineered Escherichia coli Nissle 1917 synbiotic counters fructose-induced metabolic syndrome and iron deficiency', *Applied Microbiology and Biotechnology* **101**(11), 4713-4723.

Chen, H.-L., Lai, Y.-W., Chen, C.-S., Chu, T.-W., Lin, W., Yen, C.-C., Lin, M.-F., Tu, M.-Y. & Chen, C.-M. (2010), 'Probiotic Lactobacillus casei Expressing Human Lactoferrin Elevates Antibacterial Activity in the Gastrointestinal Tract', *BioMetals* **23**(3), 543-554.

Chen, Y.-J., Liu, P., Nielsen, A. A. K., Brophy, J. A. N., Clancy, K., Peterson, T. & Voigt, C. A. (2013), 'Characterization of 582 natural and synthetic terminators and quantification of their design constraints', *Nature Methods* **10**(7).

Chen, Z., Guo, L., Zhang, Y., Walzem, R. L., Pendergast, J. S., Printz, R. L., Morris, L. C., Mata- fonova, E., Stien, X., Kang, L., Coulon, D., McGuinness, O. P., Niswender, K. D. & Davies, S. S. (2014), 'Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity', *The Journal of Clinical Investigation* **124**(8), 3391-3406.

Choi, H. J., Ahn, J. H., Park, S.-H., Do, K. H., Kim, J. & Moon, Y. (2012), 'Enhanced Wound Healing by Recombinant Escherichia coli Nissle 1917 via Human Epidermal Growth Factor Receptor in Human Intestinal Epithelial Cells: Therapeutic Implication Using Recombinant Probiotics', *Infection and Immunity* **80**(3), 1079-1087.

Chou, H. H. & Keasling, J. D. (2013), 'Programming adaptive control to evolve increased metabolite production', *Nature communications* **4**, 2595.

Citorik, R. J., Mimee, M. & Lu, T. K. (2014), 'Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases', *Nature Biotechnology* **32**(11), 1141-1145.

Claesen, J. & Fischbach, M. A. (2014), 'Synthetic microbes as drug delivery systems', ACS synthetic biology **4**(4), 358-364.

Consortium, T. H. M. P. (2012), 'Structure, function and diversity of the healthy human microbiome', *Nature* **486**(7402), 207-214.

Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. (2015), 'Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates', *Science Translational Medicine* 7(289), 289ra83-289ra83.

Critchley, R. J., Jezzard, S., Radford, K. J., Goussard, S., Lemoine, N. R., Grillot-Courvalin, C. & Vassaux, G. (2004), 'Potential therapeutic applications of recombinant, invasive E. coli', *Gene Therapy* **11**(15), 1224-1233.

Daeffler, K. N.-M., Galley, J. D., Sheth, R. U., Ortiz-Velez, L. C., Bibb, C. O., Shroyer, N. F., Britton, R. A. & Tabor, J. J. (2017), 'Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation', *Molecular Systems Biology* **13**(4), 923.

Danino, T., Mondragn-Palomino, O., Tsimring, L. & Hasty, J. (2010), 'A synchronized quorum of genetic clocks', *Nature* **463**(7279), 326-330.

Danino, T., Prindle, A., Kwong, G. A., Skalak, M., Li, H., Allen, K., Hasty, J. & Bhatia, S. N. (2015), 'Programmable probiotics for detection of cancer in urine', *Science Translational Medicine* **7**(289), 289ra84.

Davis, J. H., Rubin, A. J. & Sauer, R. T. (2011), 'Design, construction and characterization of a set of insulated bacterial promoters', *Nucleic Acids Research* **39**(3), 1131-1141.

Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring,
L. S., Bhatia, S. N. & Hasty, J. (2016), 'Synchronized cycles of bacterial lysis for in vivo delivery', *Nature* 536(7614), 81-85.

Drouault-Holowacz, S., Bieuvelet, S., Burckel, A., Cazaubiel, M., Dray, X. & Marteau, P. (2008), 'A double blind randomized controlled trial of a probiotic combination in 100 patients with irritable bowel syndrome', *Gastroenterologie Clinique Et Biologique* **32**(2), 147-152.

Duan, F., Curtis, K. L. & March, J. C. (2008), 'Secretion of Insulinotropic Proteins by Commensal Bacteria: Rewiring the Gut To Treat Diabetes', *Applied and Environmental Microbiology* **74**(23), 7437-7438. Duan, F. F., Liu, J. H. & March, J. C. (2015), 'Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes', *Diabetes* **64**(5), 1794-1803.

Duan, F. & March, J. C. (2010), 'Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model', *Proceedings of the National Academy of Sciences* **107**(25), 11260-11264.

Dunne, M., al Ramadi, B. K., Barthold, S. W., Flavell, R. A. & Fikrig, E. (1995), 'Oral vaccination with an attenuated Salmonella typhimurium strain expressing Borrelia burgdorferi OspA prevents murine Lyme borreliosis.', *Infection and Immunity* **63**(4), 1611-1614.

Ellefson, J. W., Meyer, A. J., Hughes, R. A., Cannon, J. R., Brodbelt, J. S. & Ellington, A. D. (2014), 'Directed evolution of genetic parts and circuits by compartmentalized partnered replication', *Nature Biotechnology* **32**(1), 97-101.

Farokhzad, O. C. & Langer, R. (2009), 'Impact of nanotechnology on drug delivery', ACS nano 3(1), 16-20.

Farzadfard, F. & Lu, T. K. (2014), 'Genomically encoded analog memory with precise in vivo DNA writing in living cell populations', *Science* **346**(6211), 1256272.

Focareta, A., Paton, J. C., Morona, R., Cook, J. & Paton, A. W. (2006), 'A recombinant probiotic for treatment and prevention of cholera', *Gastroenterology* **130**(6), 1688-1695.

Forbes, N. S. (2010), 'Engineering the perfect (bacterial) cancer therapy', *Nature Reviews Cancer* **10**(11), 785-794.

Forbes, N. S., Munn, L. L., Fukumura, D. & Jain, R. K. (2003), 'Sparse Initial Entrapment of Systemically Injected Salmonella typhimurium Leads to Heterogeneous Accumulation within Tumors', *Cancer Research* **63**(17), 5188–5193.

Forkus, B., Ritter, S., Vlysidis, M., Geldart, K. & Kaznessis, Y. N. (2017), 'Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts', *Scientific Reports* 7, 40695.

Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. & Collins, J. J. (2009), 'Synthetic Gene Networks That Count', *Science* **324**(5931), 1199–1202.

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C.,
Kato, K., Kato, T., Takahashi, M., Fukuda, N. N., Murakami, S., Miyauchi, E., Hino, S., Atarashi, K.,
Onawa, S., Fujimura, Y., Lockett, T., Clarke, J. M., Topping, D. L., Tomita, M., Hori, S., Ohara, O., Morita,
T., Koseki, H., Kikuchi, J., Honda, K., Hase, K. & Ohno, H. (2013), 'Commensal microbe-derived butyrate
induces the differentiation of colonic regulatory T cells', *Nature* 504(7480), 446–450.

Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., Vos, M. D., Boon, N. & Wiele, T. V. d. (2017), 'Butyrate-producing bacteria supplemented in vitro to Crohns disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity', *Scientific Reports* **7**(1), 11450.

Geldart, K., Forkus, B., McChesney, E., McCue, M. & Kaznessis, Y. N. (2016), 'pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics', *Pharmaceuticals* **9**(4), 60.

Germerodt, S., Bohl, K., Lück, A., Pande, S., Schröter, A., Kaleta, C., Schuster, S. & Kost, C. (2016), 'Pervasive selection for cooperative cross-feeding in bacterial communities', *PLoS computational biology* **12**(6), e1004986.

Giomarelli, B., Provvedi, R., Meacci, F., Maggi, T., Medaglini, D., Pozzi, G., Mori, T., McMahon, J. B., Gardella, R. & Boyd, M. R. (2002), 'The microbicide cyanovirin-N expressed on the surface of commensal

bacterium Streptococcus gordonii captures HIV-1', AIDS (London, England) 16(10), 1351-1356.

Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J. & Yin, P. (2017), 'Complex cellular logic computation using ribocomputing devices', *Nature* **548**(7665), 117–121.

Grüber, C., Wendt, M., Sulser, C., Lau, S., Kulig, M., Wahn, U., Werfel, T. & Niggemann, B. (2007), 'Randomized, placebo-controlled trial of Lactobacillus rhamnosus GG as treatment of atopic dermatitis in infancy', *Allergy* **62**(11), 1270–1276.

Guo, H., Zhang, J., Inal, C., Nguyen, T., Fruehauf, J. H., Keates, A. C. & Li, C. J. (2011), 'Targeting tumor gene by shRNA-expressing Salmonella-mediated RNAi', *Gene therapy* **18**(1), 95–105.

Gupta, S., Bram, E. E. & Weiss, R. (2013), 'Genetically Programmable Pathogen Sense and Destroy', ACS Synthetic Biology **2**(12), 715–723.

Hamer, H. M., Jonkers, D. M. A. E., Bast, A., Vanhoutvin, S. A. L. W., Fischer, M. A. J. G., Kodde, A., Troost, F. J., Venema, K. & Brummer, R.-J. M. (2009), 'Butyrate modulates oxidative stress in the colonic mucosa of healthy humans', *Clinical Nutrition (Edinburgh, Scotland)* **28**(1), 88–93.

Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J. & Brummer, R.-J. (2008), 'Review article: the role of butyrate on colonic function', *Alimentary Pharmacology & Therapeutics* **27**(2), 104–119.

Hanson, M. L., Hixon, J. A., Li, W., Felber, B. K., Anver, M. R., Stewart, C. A., Janelsins, B. M., Datta, S. K., Shen, W., McLean, M. H. et al. (2014), 'Oral delivery of il-27 recombinant bacteria attenuates immune colitis in mice', *Gastroenterology* 146(1), 210–221.

Henker, J., Laass, M., Blokhin, B. M., Bolbot, Y. K., Maydannik, V. G., Elze, M., Wolff, C. & Schulze, J. (2007), 'The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and

toddlers', European Journal of Pediatrics 166(4), 311–318.

Ho, C. L., Tan, H. Q., Chua, K. J., Kang, A., Lim, K. H., Ling, K. L., Yew, W. S., Lee, Y. S., Thiery, J.
P. & Chang, M. W. (2018), 'Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention', *Nature Biomedical Engineering* 2(1), 27.

Hwang, I. Y., Koh, E., Wong, A., March, J. C., Bentley, W. E., Lee, Y. S. & Chang, M. W. (2017), 'Engineered probiotic *Escherichia coli* can eliminate and prevent *Pseudomonas aeruginosa* gut infection in animal models', *Nature Communications* **8**, 15028.

Hwang, I. Y., Tan, M. H., Koh, E., Ho, C. L., Poh, C. L. & Chang, M. W. (2013), 'Reprogramming Microbes to Be Pathogen-Seeking Killers', *ACS Synthetic Biology* **3**(4), 228–237.

Jones, M. L., Martoni, C. J. & Prakash, S. (2012), 'Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial', *European Journal of Clinical Nutrition* **66**(11), 1234–1241.

Khanna, S., Pardi, D. S., Kelly, C. R., Kraft, C. S., Dhere, T., Henn, M. R., Lombardo, M.-J., Vulic, M., Ohsumi, T., Winkler, J., Pindar, C., McGovern, B. H., Pomerantz, R. J., Aunins, J. G., Cook, D. N. & Hohmann, E. L. (2016), 'A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium difficile Infection', *The Journal of Infectious Diseases* **214**(2), 173–181.

Kong, W., Blanchard, A. E., Liao, C. & Lu, T. (2017), 'Engineering robust and tunable spatial structures with synthetic gene circuits', *Nucleic acids research* **45**(2), 1005–1014.

Krüger, C., Hu, Y., Pan, Q., Marcotte, H., Hultberg, A., Delwar, D., van Dalen, P. J., Pouwels, P. H., Leer,
R. J., Kelly, C. G. et al. (2002), 'In situ delivery of passive immunity by lactobacilli producing single-chain antibodies', *Nature biotechnology* 20(7), 702–706.

Kwon, I. K., Lee, S. C., Han, B. & Park, K. (2012), 'Analysis on the current status of targeted drug delivery to tumors', *Journal of Controlled Release* **164**(2), 108–114.

Leon, M., Woods, M. L., Fedorec, A. J. & Barnes, C. P. (2016), 'A computational method for the investigation of multistable systems and its application to genetic switches', *BMC systems biology* **10**(1), 130.

Li, D., Achkar, J.-P., Haritunians, T., Jacobs, J. P., Hui, K. Y., D'Amato, M., Brand, S., Radford-Smith, G., Halfvarson, J., Niess, J.-H., Kugathasan, S., Bning, C., Schumm, L. P., Klei, L., Ananthakrishnan, A., Aumais, G., Baidoo, L., Dubinsky, M., Fiocchi, C., Glas, J., Milgrom, R., Proctor, D. D., Regueiro, M., Simms, L. A., Stempak, J. M., Targan, S. R., Trkvist, L., Sharma, Y., Devlin, B., Borneman, J., Hakonarson, H., Xavier, R. J., Daly, M., Brant, S. R., Rioux, J. D., Silverberg, M. S., Cho, J. H., Braun, J., McGovern, D. P. B. & Duerr, R. H. (2016), 'A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition', *Gastroenterology* **151**(4), 724–732.

Liao, C., Blanchard, A. E. & Lu, T. (2017), 'An integrative circuit–host modelling framework for predicting synthetic gene network behaviours', *Nature microbiology* **2**(12), 1658.

Lim, B., Zimmermann, M., Barry, N. A. & Goodman, A. L. (2017), 'Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut', *Cell* **169**(3), 547–558.

Limaye, S. A., Haddad, R. I., Cilli, F., Sonis, S. T., Colevas, A. D., Brennan, M. T., Hu, K. S. & Murphy, B. A. (2013), 'Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy', *Cancer* **119**(24), 4268–4276.

Liu, W., Tan, Z., Xue, J., Luo, W., Song, H., Lv, X., Zheng, T., Xi, T. & Xing, Y. (2016), 'Therapeutic efficacy of oral immunization with a non-genetically modified Lactococcus lactis-based vaccine CUE-GEM induces local immunity against Helicobacter pylori infection', *Applied Microbiology and Biotechnology* **100**(14), 6219–6229.

Lo, T.-M., Chng, S. H., Teo, W. S., Cho, H.-S. & Chang, M. W. (2016), 'A two-layer gene circuit for decoupling cell growth from metabolite production', *Cell systems* **3**(2), 133–143.

Loessner, H., Leschner, S., Endmann, A., Westphal, K., Wolf, K., Kochruebe, K., Miloud, T., Altenbuchner, J. & Weiss, S. (2009), 'Drug-inducible remote control of gene expression by probiotic Escherichia coli Nissle 1917 in intestine, tumor and gall bladder of mice', *Microbes and Infection* **11**(1415), 1097–1105.

Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C. (2012), 'Ribozyme-based insulator parts buffer synthetic circuits from genetic context', *Nature Biotechnology* **30**(11), 1137-1142.

Mandell, D. J., Lajoie, M. J., Mee, M. T., Takeuchi, R., Kuznetsov, G., Norville, J. E., Gregg, C. J., Stoddard, B. L. & Church, G. M. (2015), 'Biocontainment of genetically modified organisms by synthetic protein design', *Nature* **518**(7537), 55–60.

Maxmen, A. (2017), 'Living therapeutics: scientists genetically modify bacteria to deliver drugs', *Nature Medicine* 23, 5-7.

Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. (2015), 'Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota', *Cell Systems* 1(1), 62–71.

Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q.-A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P. & Endy, D. (2013), 'Precise and reliable gene expression via standard

transcription and translation initiation elements', Nature Methods 10(4), 354–360.

Ng, K. M., Ferreyra, J. A., Higginbottom, S. K., Lynch, J. B., Kashyap, P. C., Gopinath, S., Naidu, N., Choudhury, B., Weimer, B. C., Monack, D. M. & Sonnenburg, J. L. (2013), 'Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens', *Nature* **502**(7469), 96–99.

Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., Ross, D., Densmore, D. & Voigt, C. A. (2016), 'Genetic circuit design automation', *Science* **352**(6281), aac7341.

Olle, B. (2013), 'Medicines from microbiota', Nature Biotechnology 31(4), 309-315.

Otero-Muras, I. & Banga, J. R. (2017), 'Automated design framework for synthetic biology exploiting pareto optimality', ACS Synthetic Biology 6(7), 1180–1193.

O'Toole, P. W., Marchesi, J. R. & Hill, C. (2017), 'Next-generation probiotics: the spectrum from probiotics to live biotherapeutics', *Nature Microbiology* **2**(5), 17057.

Panigrahi, P., Parida, S., Nanda, N. C., Satpathy, R., Pradhan, L., Chandel, D. S., ... & Chaudhry, R. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. *Nature*, *548*(7668), 407.

Paton, A. W., Jennings, M. P., Morona, R., Wang, H., Focareta, A., Roddam, L. F. & Paton, J. C. (2005), 'Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea', *Gastroenterology* **128**(5), 1219–1228.

Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. (2017), 'Tunable thermal bioswitches for in vivo control of microbial therapeutics', *Nature chemical biology* **13**(1), 75–80.

Piero-Lambea, C., Bodeln, G., Fernndez-Periez, R., Cuesta, A. M., Ivarez Vallina, L. & Fernndez, L.

(2015), 'Programming Controlled Adhesion of E. coli to Target Surfaces, Cells, and Tumors with Synthetic Adhesins', *ACS Synthetic Biology* **4**(4), 463–473.

Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. (2016), 'Synchronous long-term oscillations in a synthetic gene circuit', *Nature* **538**(7626), 514–517.

Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S. & Hasty, J. (2011), 'A sensing array of radically coupled genetic 'biopixels'', *Nature* **481**(7379), 39–44.

Prindle, A., Selimkhanov, J., Danino, T., Samayoa, P., Goldberg, A., Bhatia, S. N. & Hasty, J. (2012), 'Genetic Circuits in Salmonella typhimurium', *ACS synthetic biology* **1**(10), 458–464.

Rao, S., Hu, S., McHugh, L., Lueders, K., Henry, K., Zhao, Q., Fekete, R. A., Kar, S., Adhya, S. & Hamer, D. H. (2005), 'Toward a live microbial microbicide for HIV: Commensal bacteria secreting an HIV fusion inhibitor peptide', *Proceedings of the National Academy of Sciences of the United States of America* **102**(34), 11993–11998.

Riglar, D. T., Giessen, T. W., Baym, M., Kerns, S. J., Niederhuber, M. J., Bronson, R. T., Kotula, J. W., Gerber, G. K., Way, J. C. & Silver, P. A. (2017), 'Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation', *Nature Biotechnology* **35**(7), 653–658.

Rodrigo, G., Landrain, T. E. & Jaramillo, A. (2012), 'De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells', *Proceedings of the National Academy of Sciences* **109**(38), 15271–15276.

Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. (2016), 'Synthetic recombinase-based state machines in living cells', *Science* **353**(6297), aad8559.

Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J.
R., Gallagher, R. R., Rinehart, J. et al. (2015), 'Recoded organisms engineered to depend on synthetic amino acids', *Nature* 518(7537), 89–93.

Rubens, J. R., Selvaggio, G. & Lu, T. K. (2016), 'Synthetic mixed-signal computation in living cells', *Nature communications* **7**, 11658.

Saeidi, N., Wong, C. K., Lo, T.-M., Nguyen, H. X., Ling, H., Leong, S. S. J., Poh, C. L. & Chang, M. W. (2011), 'Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen', *Molecular systems biology* **7**, 521.

Saini, M., Wang, Z. W., Chiang, C.-J. & Chao, Y.-P. (2014), 'Metabolic Engineering of Escherichia coli for Production of Butyric Acid', *Journal of Agricultural and Food Chemistry* **62**(19), 4342–4348.

Sasaki, T., Fujimori, M., Hamaji, Y., Hama, Y., Ito, K. I., Amano, J. & Taniguchi, S. (2006), 'Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats', *Cancer Science* **97**(7), 649–657.

Scott, S. R. & Hasty, J. (2016), 'Quorum sensing communication modules for microbial consortia', ACS synthetic biology **5**(9), 969.

Serino, M., Luche, E., Gres, S., Baylac, A., Berg, M., Cenac, C., Waget, A., Klopp, P., Iacovoni, J., Klopp,
C., Mariette, J., Bouchez, O., Lluch, J., Ouarn, F., Monsan, P., Valet, P., Roques, C., Amar, J., Bouloumi,
A., Thodorou, V. & Burcelin, R. (2012), 'Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota', *Gut* 61, 543-553.

Shaw, D. M., Gaerth, B., Leer, R. J., Van Der Stap, J. G. M. M., Smittenaar, C., Heijne Den Bak-Glashouwer, M.-J., Thole, J. E. R., Tielen, F. J., Pouwels, P. H. & Havenith, C. E. G. (2000), 'Engineering

the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli', *Immunology* **100**(4), 510–518.

Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. (2017), 'Multiplex recording of cellular events over time on CRISPR biological tape', *Science* **358**(6369), 1457–1461.

Shis, D. L., Hussain, F., Meinhardt, S., Swint-Kruse, L. & Bennett, M. R. (2014), 'Modular, multi-input transcriptional logic gating with orthogonal LacI/GalR family chimeras', *ACS synthetic biology* **3**(9), 645.

Singh, A. K., Pandey, S. K. & Naresh Kumar, G. (2014), 'Pyrroloquinoline quinone-secreting probiotic Escherichia coli Nissle 1917 ameliorates ethanol-induced oxidative damage and hyperlipidemia in rats', *Alcoholism, Clinical and Experimental Research* **38**(7), 2127–2137.

Siuti, P., Yazbek, J. & Lu, T. K. (2013), 'Synthetic circuits integrating logic and memory in living cells', *Nature Biotechnology* **31**(5), 448–452.

Sleight, S. C. & Sauro, H. M. (2013), 'Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits', *ACS synthetic biology* **2**(9), 519-528.

Stecher, B., Denzler, R., Maier, L., Bernet, F., Sanders, M. J., Pickard, D. J., Barthel, M., Westendorf, A. M., Krogfelt, K. A., Walker, A. W. et al. (2012), 'Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae', *Proceedings of the National Academy of Sciences* **109**(4), 1269-1274.

Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W. & Remaut, E. (2000), 'Treatment of murine colitis by Lactococcus lactis secreting interleukin-10', *Science (New York, N.Y.)* Steidler, L., Neirynck, S., Huyghebaert, N., Snoeck, V., Vermeire, A., Goddeeris, B., Cox, E., Remon, J. P.
& Remaut, E. (2003), 'Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10', *Nature Biotechnology* 21(7), 785–789.

Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. & Hasty, J. (2008), 'A fast, robust and tunable synthetic gene oscillator', *Nature* **456**(7221), 516–519.

Swofford, C. A., Dessel, N. V. & Forbes, N. S. (2015), 'Quorum-sensing Salmonella selectively trigger protein expression within tumors', *Proceedings of the National Academy of Sciences* **112**(11), 3457–3462.

Tamsir, A., Tabor, J. J. & Voigt, C. A. (2011), 'Robust multicellular computing using genetically encoded nor gates and chemical 'wires'', *Nature* **469**(7329), 212–215.

Timko, B. P., Whitehead, K., Gao, W., Kohane, D. S., Farokhzad, O., Anderson, D. & Langer, R. (2011), 'Advances in drug delivery', *Annual Review of Materials Research* **41**, 1–20.

van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., de Vos, W. M., Visser, C. E., Kuijper, E. J., Bartelsman, J. F., Tijssen, J. G., Speelman, P., Dijkgraaf, M. G. & Keller, J. J. (2013), 'Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile', *New England Journal of Medicine* **368**(5), 407–415.

Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., Sitaraman, S. V., Knight, R., Ley, R. E. & Gewirtz, A. T. (2010), 'Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5', *Science (New York, N.Y.)* **328**(5975), 228–231.

Wang, B., Barahona, M. & Buck, M. (2014), 'Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks', *Nucleic acids research* **42**(14), 9484–9492.

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y.-M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H. W., DiDonato, J. A., Lusis, A. J. & Hazen, S. L. (2011), 'Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease', *Nature* **472**(7341), 57–63.

Wei, C., Xun, A. Y., Wei, X. X., Yao, J., Wang, J. Y., Shi, R. Y., Yang, G. H., Li, Y. X., Xu, Z. L., Lai,
M. G., Zhang, R., Wang, L.-S. & Zeng, W. S. (2016), 'Bifidobacteria Expressing Tumstatin Protein for
Antitumor Therapy in Tumor-Bearing Mice', *Technology in Cancer Research & Treatment* 15(3), 498–508.

Weiße, A. Y., Oyarzún, D. A., Danos, V. & Swain, P. S. (2015), 'Mechanistic links between cellular tradeoffs, gene expression, and growth', *Proceedings of the National Academy of Sciences* **112**(9), E1038–E1047.

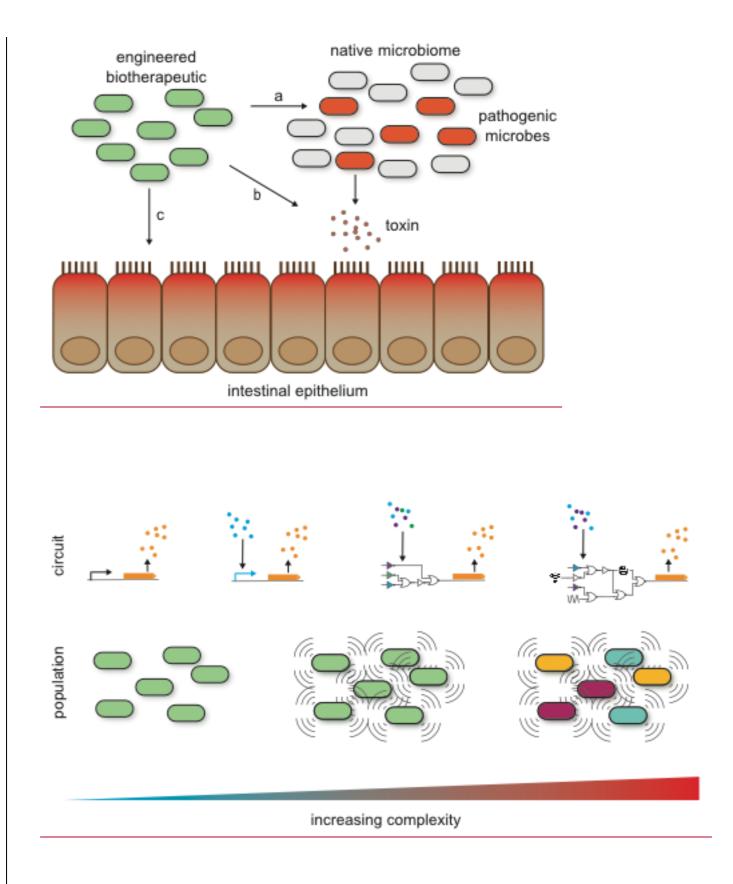
Woods, M. L., Leon, M., Perez-Carrasco, R. & Barnes, C. P. (2016), 'A statistical approach reveals designs for the most robust stochastic gene oscillators', *ACS synthetic biology* **5**(6), 459.

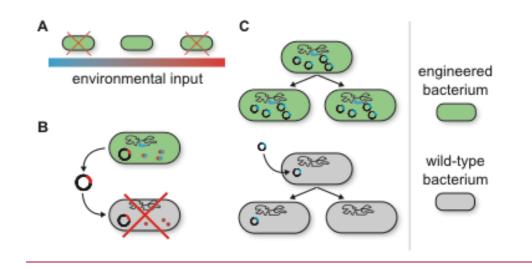
Wright, O., Delmans, M., Stan, G.-B. & Ellis, T. (2014), 'GeneGuard: a modular plasmid system designed for biosafety', *ACS synthetic biology* **4**(3), 307–316.

Wu, H.-J., Ivanov, I. I., Darce, J., Hattori, K., Shima, T., Umesaki, Y., Littman, D. R., Benoist, C. & Mathis,
D. (2010), 'Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells', *Immunity* 32(6), 815–827.

Xiang, S., Fruehauf, J. & Li, C. J. (2006), 'Short hairpin RNA-expressing bacteria elicit RNA interference in mammals', *Nature Biotechnology* **24**(6), 697–702.

Yamamoto, S., Wada, J., Katayama, T., Jikimoto, T., Nakamura, M., Kinoshita, S., Lee, K.-M., Kawabata, M. & Shirakawa, T. (2010), 'Genetically modified Bifidobacterium displaying Salmonella-antigen protects


mice from lethal challenge of Salmonella typhimurium in a murine typhoid fever model', *Vaccine* **28**(41), 6684–6691.


Yang, L., Nielsen, A. A. K., Fernandez-Rodriguez, J., McClune, C. J., Laub, M. T., Lu, T. K. & Voigt, C. A. (2014), 'Permanent genetic memory with >1-byte capacity', *Nature Methods* 11(12), 1261–1266.
Yoon, W., Park, Y. C., Kim, J., Chae, Y. S., Byeon, J. H., Min, S.-H., Park, S., Yoo, Y., Park, Y. K. & Kim, B. M. (2017), 'Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma', *European Journal of Cancer* 70, 48–61.

Zhang, H., Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y. & Ouyang, Q. (2014), 'Programming a Pavlovianlike conditioning circuit in *Escherichia coli*', *Nature Communications* **5**, 3102.

Zheng, J. H., Nguyen, V. H., Jiang, S.-N., Park, S.-H., Tan, W., Hong, S. H., Shin, M. G., Chung, I.-J., Hong, Y., Bom, H.-S., Choy, H. E., Lee, S. E., Rhee, J. H. & Min, J.-J. (2017), 'Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin', *Science Translational Medicine* **9**(376), eaak9537.

Zhou, Z., Gong, S., Li, X.-M., Yang, Y., Guan, R., Zhou, S., Yao, S., Xie, Y., Ou, Z., Zhao, J. et al. (2015), 'Expression of helicobacter pylori urease b on the surface of bacillus subtilis spores', *Journal of medical microbiology* **64**(1), 104–110.

