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Abstract
We develop a finite element method for the Laplace–Beltrami operator on a surface
with boundary and nonhomogeneous Dirichlet boundary conditions. The method is
based on a triangulation of the surface and the boundary conditions are enforced
weakly using Nitsche’s method. We prove optimal order a priori error estimates for
piecewise continuous polynomials of order k ≥ 1 in the energy and L2 norms that
take the approximation of the surface and the boundary into account.

Mathematics Subject Classification 65M60 · 65M85

1 Introduction

Finite element methods for problems on surfaces have been rapidly developed start-
ing with the seminal work of Dziuk [11]. Different approaches have been developed
including methods based on meshed surfaces [1,9,10,15,17], and methods based on
implicit or embedded approaches [5,20,21], see also the overview articles [3,12], and
the references therein. So far the theoretical developments are, however, restricted to
surfaces without boundary.

In this contribution we develop a finite element method for the Laplace–Beltrami
operator on a surface which has a boundary equipped with a nonhomogeneous Dirich-
let boundary condition. The results may be readily extended to include Neumann
conditions on part of the boundary, which we also comment on in a remark. The
method is based on a triangulation of the surface together with a Nitsche formulation
[19] for the Dirichlet boundary condition. Polynomials of order k are used both in the
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interpolation of the surface and in the finite element space. Our theoretical approach
is related to the recent work [4] where a priori error estimates for a Nitsche method
with so called boundary value correction [2] is developed for the Dirichlet problem on
a (flat) domain in R

n . Boundary value correction consists of using a modified bilin-
ear form that compensates for the approximation of the boundary in such a way that
higher order convergence may be obtained using for instance only piecewise linear
approximation of the boundary. We also mention the work [23] where the smooth
curved boundary of a domain in R2 is interpolated and Dirichlet boundary conditions
are strongly enforced in the nodes.

Provided the error in the position of the approximate surface and its boundary is
(pointwise) of order k+1 and the error in the normals/tangents is of order k, we prove
optimal order error estimates in the L2 and energy norms. No additional regularity of
the exact solution, compared to standard estimates, is required. The proof is based on a
Strang Lemma which accounts for the error caused by approximation of the solution,
the surface, and the boundary. Here the discrete surface is mapped using a closest
point mapping onto a surface containing the exact surface. The error caused by the
boundary approximation is then handled using a consistency argument. Special care
is required to obtain optimal order L2 error estimates and a refined Aubin–Nitsche
duality argument is used which exploits the fact that the solution to dual problem is
small close to the boundary since the dual problem is equipped with a homogeneous
Dirichlet condition. Even though our main focus in this contribution is the weak
Nitsche method to handle the Dirichlet condition a standard strong implementation is
also of interest and we therefore include a detailed description how strong boundary
conditions may be implemented and analysed in our framework.

The outline of the paper is as follows: In Sect. 2 we formulate the model problem
and finite element method. We also formulate the precise assumptions on the approx-
imation of the surface and its boundary. In Sect. 3 we develop the necessary results
to prove our main error estimates. In Sect. 4 we present numerical results confirming
our theoretical findings.

2 Model problem andmethod

2.1 The surface

Let, � ⊂ ˜� be a surface with smooth boundary ∂�, where ˜� is a smooth closed
connected hypersurface embedded inR3. We let n be the exterior unit normal to˜� and
ν be the exterior unit conormal to ∂�, i.e. ν(x) is orthogonal both to the tangent vector
of ∂� at x and the normal n(x) of ˜�. For ˜�, we denote its associated signed distance
function by ρ which satisfies ∇ρ = n, and we define an open tubular neighborhood
of ˜� by Uδ(˜�) = {x ∈ R

3: |ρ(x)| < δ} with δ > 0. Then there is δ0,˜� > 0 such that
the closest point mapping p: Uδ0,˜�

(˜�) → ˜� assigns precisely one point on ˜� to each

point in Uδ0,˜�
(˜�). The closest point mapping takes the form
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p: Uδ0,˜�
(˜�) � x �→ x − ρ(x)n ◦ p(x) ∈ ˜� (2.1)

For the boundary curve ∂�, let ρ∂� be the distance function to the curve ∂�, and
p∂� be the associated closest point mapping with associated tubular neighborhood
Uδ(∂�) = {x ∈ R

3: |ρ∂�(x)| < δ}. Note that there is δ0,∂� > 0 such that the
closest point mapping p∂�: Uδ0,∂�

(∂�) → ∂� is well defined. Finally, we let δ0 =
min(δ0,˜�, δ0,∂�) and introduce Uδ0(�) = {x ∈ R

3: |ρ(x)| � δ0}.

Remark 2.1 Clearly we may take ˜� to be a surface that is only slightly larger than �

but for simplicity we have taken ˜� closed in order to obtain a well defined closest
point mapping without boundary effects in a convenient way.

2.2 The problem

Tangential calculus For each x ∈ ˜� let Tx (˜�) = {y ∈ R
3: (y, n(x))R3 = 0} and

Nx (�) = {y ∈ R
3: αn(x), α ∈ R} be the tangent and normal spaces equippedwith the

inner products (v,w)Tx (˜�) = (v,w)R3 and (v,w)Nx (˜�) = (v,w)R3 . Let P�: R3 →
Tx (˜�) be the projection of R3 onto the tangent space given by P� = I − n ⊗ n and
let Q�: R3 → Nx (˜�) be the orthogonal projection onto the normal space given by
Q� = I − P� = n ⊗ n. The tangent gradient is defined by ∇�v = P�∇v. For a
tangential vector field w, i.e. a mapping w: ˜� � x �→ w(x) ∈ Tx (˜�), the divergence
is defined by div�w = tr(w ⊗ ∇�). Then the Laplace–Beltrami operator is given by
��v = div�∇�v. Note that we have Green’s formula

(−��v,w)� = (∇�v,∇�w)� − (ν · ∇�v,w)∂� (2.2)

where (·, ·)ω denotes the usual L2 inner product on ω ⊂ ˜�.

Model problem Find u: � → R such that

− ��u = f in � (2.3)

u = g on ∂� (2.4)

where f ∈ H−1(�) and g ∈ H1/2(∂�) are given data. Thanks to the Lax–Milgram
theorem, there is a unique solution u ∈ H1(�) to this problem. Moreover, we have
the elliptic regularity estimate

‖u‖Hs+2(�) � ‖ f ‖Hs (�) + ‖g‖Hs+3/2(�), s ≥ −1 (2.5)

since � and ∂� are smooth. Here and below we use the notation � to denote less or
equal up to a constant. We also adopt the standard notation Hs(ω) for the Sobolev
space of order s on ω ⊂ ˜� with norm ‖ · ‖Hs (ω). For s = 0 we use the notation L2(ω)

with norm ‖ · ‖ω, see [24] for a detailed description of Sobolev spaces on smooth
manifolds with boundary.
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2.3 The discrete surface and finite element spaces

To formulate our finite element method for the boundary value problem (2.3)–(2.4) in
the next section, we here summarize our assumptions on the approximation properties
of the discretization of �.

Discrete surface Let {�h, h ∈ (0, h0]} be a family of connected triangular surfaces
with, mesh parameter h, that approximates � and let Kh be the mesh associated
with �h . For each element K ∈ Kh , there is a bijection FK : ̂K → K such that
FK ∈ [̂Vk]3 = [Pk(̂K )]3, where ̂K is a reference triangle in R

2 and Pk(̂K ) is the
space of polynomials of order less or equal to k. We assume that the mesh is quasi-
uniform. For each K ∈ Kh , we let nh |K be the unit normal to �h , oriented such that
(nh, n ◦ p)R3 > 0. On the element edges forming ∂�h , we define ν∂�h to be the
exterior unit conormal to ∂�h , i.e. ν∂�h (x) is orthogonal both to the tangent vector
of ∂�h at x and the normal nh(x) of �h . We also introduce the tangent projection
P�h = I − nh ⊗ nh and the normal projection Q�h = nh ⊗ nh , associated with �h .

Geometric approximation property We assume that {�h, h ∈ (0, h0]} approximate
� in the following way: for all h ∈ (0, h0] it holds

�h ⊂ Uδ0(�) (2.6)

∂�h ⊂ Uδ0(∂�) (2.7)

‖ρ�‖L∞(�h) � hk+1 (2.8)

‖n ◦ p� − nh‖L∞(�h) � hk (2.9)

‖ρ∂�‖L∞(∂�h) � hk+1 (2.10)

‖ν ◦ p∂� − ν�h‖L∞(�h) � hk (2.11)

Note that it follows that we also have the estimate

‖t∂� ◦ p∂� − t∂�h‖L∞(∂�h) � hk (2.12)

for the unit tangent vectors t∂� and t∂�h of ∂� and ∂�h .

Finite element spaces Let Vh = Vh(�h) be the space of parametric continuous piece-
wise polynomials of order k defined on Kh , i.e.

Vh =
{

v ∈ C(�h,R): v|K ∈ ̂Vk ◦ F−1
K

}

(2.13)

where ̂Vk = Pk(̂K ) is the space of polynomials of order less or equal to k defined
on the reference triangle ̂K defined above. We study the approximation properties
of Vh in Sect. 3.4, where we define an interpolation operator and present associated
interpolation error estimates.
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2.4 The finite element method

The finite element method for the boundary value problem (2.3)–(2.4) takes the form:
find uh ∈ Vh such that

a�h (uh, v) = l�h (v), ∀v ∈ Vh (2.14)

where

a�h (v,w) = (∇�hv,∇�hw)�h

− (ν∂�h · ∇�hv,w)∂�h − (v, ν∂�h · ∇�hw)∂�h

+ βh−1(v,w)∂�h (2.15)

l�h (w) = ( f ◦ p, w)�h − (g ◦ p∂�, ν∂�h · ∇�hw)∂�h + βh−1(g ◦ p∂�,w)∂�h

(2.16)

Here β > 0 is a parameter, and f is extended from � to � ∪ p(�h) ⊂ ˜� in such a way
that f ∈ Hm(� ∪ p(�h)) and

‖ f ‖Hm (�∪p(�h)) � ‖ f ‖Hm (�) (2.17)

where m = 0 for k = 1 and m = 1 for k ≥ 2.

Remark 2.2 Note that in order to prove optimal a priori error estimates for piecewise
polynomials of order k we require u ∈ Hk+1(�) and thus f ∈ Hk−1(�). For k = 1
we have f ∈ L2(�) and for k ≥ 2 we require f ∈ Hk−1(�) ⊆ H1(�). Thus we
conclude that (2.17) does not require any additional regularity compared to the standard
situation. We will also see in Sect. 3.4 below that there indeed exists extensions of
functions that preserve regularity.

3 A priori error estimates

We derive a priori error estimates that take both the approximation of the geometry
and the solution into account. The main new feature is that our analysis also takes the
approximation of the boundary into account.

3.1 Lifting and extension of functions

We collect some basic facts about lifting and extensions of functions, their derivatives,
and related change of variable formulas, see for instance [5,10,11], for further details.

• For each function v defined on ˜� we define the extension

ve = v ◦ p (3.1)

toUδ
˜�
(˜�). For each function v defined on�h we define the lift to�l

h = p(�h) ⊂ ˜�

by
vl ◦ p = v (3.2)
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Here and below we use the notation ωl = p(ω) ⊂ ˜� for any subset ω ⊂ �h .
• The derivative dp: Tx (�h) → Tp(x)(�) of the closest point mapping p: �h → ˜�

is given by
dp(x) = P�(p(x))P�h (x) + ρ(x)H(x)P�h (x) (3.3)

where Tx (�) and Tp(x)(�h) are the tangent spaces to� at x ∈ � and to�h at p(x) ∈
�h , respectively. Furthermore, H(x) = ∇ ⊗ ∇ρ(x) is the � tangential curvature
tensor which satisfies the estimate ‖H‖L∞(Uδ(˜�)) � 1, for some small enough
δ > 0, see [14] for further details. We use B to denote a matrix representation of
the operator dp with respect to an arbitrary choice of orthonormal bases in Tx (�h)

and Tp(x)(�). We also note that B is invertible.
• Gradients of extensions and lifts are given by

∇�hv
e = BT∇�v, ∇�vl = B−T∇�hv (3.4)

where the gradients are represented as column vectors and the transpose
BT : Tp(x)(˜�) → Tx (�h) is defined by (Bv,w)Tp(x)(˜�) = (v, BTw)Tx (�h), for

all v ∈ Tx (�h) and w ∈ Tp(x)(˜�).
• We have the following estimates

‖B‖L∞(�h) � 1, ‖B−1‖L∞(�) � 1 (3.5)

• We have the change of variables formulas

∫

ωl
gld� =

∫

ω

g|B|d�h (3.6)

for a subset ω ⊂ �h , and

∫

γ l
gld� =

∫

γ

g|B∂�h |d�h (3.7)

for a subset γ ⊂ ∂�h . Here |B| denotes the absolute value of the determinant of
B (recall that we are using orthonormal bases in the tangent spaces) and |B∂�h |
denotes the norm of the restriction B∂�h : Tx (∂�h) → Tp(x)(∂�l

h) of B to the one
dimensional tangent space of the boundary curve. We then have the estimates

| |B| − 1 | � hk+1, | |B−1| − 1 | � hk+1 (3.8)

and
| |B∂�h | − 1 | � hk+1, | |B−1

∂�h
| − 1 | � hk+1 (3.9)

Estimate (3.8) appear in several papers, see for instance [10]. Estimate (3.9) is less
common but appears in papers on discontinuous Galerkin methods on surfaces,
see [6,9,17]. For completeness we include a simple proof of (3.9).
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Verification of (3.9) Let γ�h : [0, a) → ∂�h ⊂ R
3 be a parametrization of the

curve ∂�h in R3, with a some positive real number. Then p ◦ γ�h (t), t ∈ [0, a), is
a parametrization of ∂�l

h . We have

|dtγ�l
h
|R3 = |dt p ◦ γ�h |R3 = |dpdtγ�h |R3 = |B∂�h ||dtγ�h |R3 (3.10)

and since dtγ�h ∈ Tx (�h) also

|dpdtγ�h |R3 − |dtγ�h |R3 = |(P� + ρH)dtγ�h |R3 − |dtγ�h |R3 (3.11)

= |P�dtγ�h |R3 − |dtγ�h |R3
︸ ︷︷ ︸

�=O(h2k )

+O(hk+1) (3.12)

Here we estimated � by first using the identity

|P�dtγ�h |2 = |dtγ�h − Q�dtγ�h |2 (3.13)

= |dtγ�h |2 − 2dtγ�h · Q�dtγ�h + |Q�dtγ�h |2 (3.14)

= |dtγ�h |2 − |Q�dtγ�h |2 (3.15)

≥ (1 − Ch2k)|dtγ�h |2 (3.16)

and then using the estimate |(1 + δ)1/2 − 1| � |δ|, for −1 ≤ δ, to conclude that

||P�dtγ�h | − |dtγ�h || � h2k |dtγ�h | (3.17)

• The following equivalences of norms hold (uniformly in h)

‖v‖Hm
(

�l
h

) ∼ ‖ve‖Hm (�h), m = 0, 1, v ∈ Hm(�) (3.18)

‖vl‖Hm
(

�l
h

) ∼ ‖v‖Hm (�h), m = 0, 1, v ∈ Hm(�h) (3.19)

These estimates follow from the identities for the gradients (3.4), the uniform
bounds (3.5) of B, and the bounds (3.8) for the determinant |B|.

3.2 Norms

We define the norms

|||v|||2�h
= ‖∇�hv‖2�h

+ |||v|||2∂�h
, |||v|||2∂�h

= h‖∇�hv‖2∂�h
+ h−1‖v‖2∂�h

(3.20)

|||v|||2
�l
h

= ‖∇�v‖2
�l
h
+ |||v|||2

∂�l
h
, |||v|||2

∂�l
h

= h‖∇�v‖2
∂�l

h
+ h−1‖v‖2

∂�l
h

(3.21)
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Then the following equivalences hold

|||vl |||�l
h

∼ |||v|||�h , |||vl |||∂�l
h

∼ |||v|||∂�h , v ∈ H1(�h) (3.22)

|||v|||�l
h

∼ |||ve|||�h , |||v|||∂�l
h

∼ |||ve|||∂�h , v ∈ H1
(

�l
h

)

(3.23)

Remark 3.1 We will see that it is convenient to have access to the norms ||| · |||∂�h

and ||| · |||∂�l
h
, involving the boundary terms since that allows us to take advantage of

stronger control of the solution to the dual problem in the vicinity of the boundary,
which is used in the proof.

Verification of (3.22) In view of (3.19) it is enough to verify the equivalence
|||vl |||∂�l

h
∼ |||v|||∂�h , between the boundary norms. First we have using a change of

domain of integration from ∂�l
h to ∂�h and the bound (3.9),

h−1‖vl‖2
∂�l

h
= h−1(vl , vl)∂�l

h
= h−1(v, v|B∂�h |)∂�h ∼ h−1‖v‖2∂�h

(3.24)

Next again changing domain of integration from ∂�l
h to ∂�h , using the identity for

the gradient (3.4), the uniform boundedness of B−1, and (3.9) we obtain

h
∥

∥

∥∇�vl
∥

∥

∥

2

∂�l
h

= h
∥

∥

∥B−T∇�hv

∥

∥

∥

2

∂�l
h

= h
(

B−T∇�hv, B−T∇�hv
)

∂�l
h

(3.25)

= h
(

B−T∇�hv, B−T∇�hv|B∂�h |
)

∂�h
∼ h‖∇�hv‖2∂�h

(3.26)

3.3 Coercivity and continuity

Using standard techniques, see [19] or Chapter 14.2 in [16], we find that a�h is coercive

|||v|||2�h
� a�h (v, v) ∀v ∈ Vh (3.27)

provided β > 0 is large enough. Furthermore, it follows directly from the Cauchy–
Schwarz inequality that a�h is continuous

a�h (v,w) � |||v|||�h |||w|||�h ∀v,w ∈ Vh + V e(�h) (3.28)

where V e(�h) = {w: �h → R: w = v ◦ p, v ∈ Hs(�), s > 3/2}. We also note
that l�h (v) � h−1/2|||v|||�h for v ∈ Vh , and thus for fixed h ∈ (0, h0], existence and
uniqueness of the solution uh ∈ Vh to the finite element problem (2.14) follows from
the Lax–Milgram lemma.
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3.4 Extension and interpolation

ExtensionWe note that there is an extension operator E : Hs(�) → Hs(Uδ0(�) ∩˜�)

such that
‖Ev‖Hs (Uδ0 (�)∩˜�) � ‖v‖Hs (�), s ≥ 0 (3.29)

This result follows by mapping to a reference neighborhood in R
2 using a smooth

local chart and then applying the extension theorem, see [13], and finally mapping
back to the surface. For brevity we shall use the notation v for the extended function
as well, i.e., v = Ev on Uδ0(�) ∩ ˜�. We can then extend v to Uδ0(�) by using the
closest point extension, we use the notation ve = (Ev)e.

Interpolation We may now define the interpolation operator

πh : L2(�) � v �→ πh,SZ (Ev)e ∈ Vh (3.30)

where πh,SZ is a Scott–Zhang interpolation operator, see [22] and in particular the
extension to triangulated surfaces in [8], without special treatment of the boundary
condition. More precisely each node xi is associated with a triangle Si such that
xi ∈ Si . Let {ϕi,k} be the Lagrange basis on Si and let {ψi,l} be the dual basis such
that (ϕi,k, ψ j,l)Si = δi, j , and let ψi be the dual basis function associated with node i .
Then the nodal values are defined by

πhv(xi ) = (

(Ev)e, ψi
)

Si
(3.31)

Remark 3.2 We need no particular adjustment of the interpolant at the boundary since
we are usingweak enforcement of the boundary conditions. In Remark 3.9we consider
strong boundary conditions and also use a Scott–Zhang interpolation operator which
interpolates the boundary data at the boundary.

Then the following interpolation error estimate holds

∥

∥ve − πhv
e
∥

∥

Hm (K )
� hs−m‖v‖Hs (N l

h(K )), 0 ≤ m ≤ s ≤ k + 1 (3.32)

where N l
h(K ) is the patch of elements which are node neighbors to K lifted onto

�l
h ⊂ ˜�. See Theorem 3.2 in [8] for a proof.
Using the trace inequality

‖w‖2∂K � h−1
K ‖w‖2K + hK ‖∇�hw‖2K , v ∈ H1(K ), K ∈ Kh (3.33)

where hK ∼ h is the diameter of element K , to estimate the boundary contribution in
|||·|||�h , followed by the interpolation estimate (3.32) and the stability of the extension
operator (3.29), we conclude that

∣

∣

∣

∣

∣

∣

∣

∣

∣v − (

πhv
e)l

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

∼ ∣

∣

∣

∣

∣

∣ve − πhv
e
∣

∣

∣

∣

∣

∣

�h
� hk‖v‖Hk+1(�) (3.34)
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We will use the short hand notation π l
hv = (πhv

e)l for the lift of the interpolant.
We refer to [10,18] for further details on interpolation on triangulated surfaces.

3.5 Strang Lemma

In order to formulate a Strang Lemma we first define auxiliary forms on �l
h corre-

sponding to the discrete form on �h as follows

a�l
h
(v,w) = (∇�v,∇�w)�l

h

−
(

ν∂�l
h
· ∇�v,w

)

∂�l
h

−
(

v, ν∂�l
h
· ∇�w

)

∂�l
h

+ βh−1 (v,w)∂�l
h

(3.35)

l�l
h
(w) = ( f , w)�l

h
−

(

g ◦ p̃∂�, ν∂�l
h
· ∇�hw

)

∂�l
h

+ βh−1 (g ◦ p̃∂�,w)∂�l
h

(3.36)

Here the mapping p̃∂�: ∂�l
h → ∂� is defined by the identity

p̃∂� ◦ p(x) = p∂�(x), x ∈ ∂�h (3.37)

Then we find that p̃∂� is a bijection since p: ∂�h → ∂�l
h and p∂�: ∂�h → ∂� are

bijections. Note that a�l
h
, l�l

h
, and p̃∂� are only used in the analysis and do not have

to be implemented.

Lemma 3.1 With u the solution of (2.3–2.4) and uh the solution of (2.14) the following
estimate holds

∣

∣

∣

∣

∣

∣

∣

∣

∣u − ulh

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

�
∣

∣

∣

∣

∣

∣

∣

∣

∣u − (πhu)l
∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

+ sup
v∈Vh\{0}

a�h (πhu, v) − a�l
h

(

(πhu)l , vl
)

|||v|||�h

+ sup
v∈Vh\{0}

l�l
h
(vl) − l�h (v)

|||v|||�h

+ sup
v∈Vh\{0}

a�l
h
(u, vl) − l�l

h
(vl)

|||v|||�h

(3.38)

Remark 3.3 In (3.38) the first term on the right hand side is an interpolation error, the
second and third terms account for the approximation of the surface � by �h and can
be considered as quadrature or geometric errors, finally the fourth term is a consistency
error term which accounts for the approximation of the boundary of the surface.
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Proof We have

∣

∣

∣

∣

∣

∣

∣

∣

∣u − ulh

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

�
∣

∣

∣

∣

∣

∣

∣

∣

∣u − (

πhu
e)l

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

+
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

πhu
e)l − ulh

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

(3.39)

Using equivalence of norms (3.22) and coercivity of the bilinear form ah we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

πhu
e)l − ulh

∣

∣

∣

∣

∣

∣

∣

∣

∣

�l
h

∼ ∣

∣

∣

∣

∣

∣πhu
e − uh

∣

∣

∣

∣

∣

∣

�h
� sup

v∈Vh\{0}
a�h (πhue − uh, v)

|||v|||�h

(3.40)

Next we have the identity

a�h

(

πhu
e − uh, v

) = a�h

(

πhu
e, v

) − l�h (v) (3.41)

= a�h

(

πhu
e, v

) − a�l
h

(

u, vl
)

+ l�l
h

(

vl
)

− l�h (v)

+ a�l
h

(

u, vl
)

− l�l
h

(

vl
)

(3.42)

= a�h

(

πhu
e, v

) − a�l
h

(

(

πhu
e)l , vl

)

︸ ︷︷ ︸

I

+ l�l
h

(

vl
)

− l�h (v)
︸ ︷︷ ︸

I I

+ a�l
h

(

(

πhu
e)l − u, vl

)

︸ ︷︷ ︸

I I I

+ a�l
h

(

u, vl
)

− l�l
h

(

vl
)

︸ ︷︷ ︸

I V

(3.43)

where in (3.41) we used the equation (2.14) to eliminate uh , in (3.42) we added and
subtracted a�l

h
(u, vl) and l�l

h
(vl), in (3.43) we added and subtracted a�l

h
((πhue)l , v),

and rearranged the terms. Combining (3.40) and (3.43) directly yields the Strang
estimate (3.38). ��

3.6 Estimate of the consistency error

In this section we derive an estimate for the consistency error, i.e., the fourth term
on the right hand side in the Strang Lemma 3.1. First we derive an identity for the
consistency error in Lemma 3.2 and then we prove two technical results in Lemma
3.3 and Lemma 3.4, and finally we give a bound of the consistency error in Lemma
3.5. In order to keep track of the error emanating from the boundary approximation
we introduce the notation

δh = ‖ρ̃∂�‖L∞(∂�l
h)

� hk+1 (3.44)

where
ρ̃∂�(x) = | p̃∂�(x) − x |R3, x ∈ �l

h (3.45)

and we recall that p̃∂� is defined in (3.37). The estimate in (3.44) follows from the
triangle inequality and the geometry approximation properties (2.8) and (2.10).
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Lemma 3.2 Let u be the solution to (2.3–2.4), then the following identity holds

a�l
h

(

u, vl
)

− l�l
h

(

vl
)

= −
(

f + ��u, vl
)

�l
h\�

+
(

u ◦ p̃∂� − u, ν∂�l
h
· ∇�vl

)

∂�l
h

− βh−1
(

u ◦ p̃∂� − u, vl
)

∂�l
h

(3.46)

for all v ∈ Vh.

Proof For v ∈ Vh we have using Green’s formula

(

f , vl
)

�l
h

=
(

f + ��u, vl
)

�l
h

−
(

��u, vl
)

�l
h

(3.47)

=
(

f + ��u, vl
)

�l
h\�

+
(

∇�u, ∇�vl
)

�l
h

−
(

ν∂�l
h
· ∇�u, vl

)

∂�l
h

(3.48)

=
(

f + ��u, vl
)

�l
h\�

+ a�l
h

(

u, vl
)

+
(

u, ν∂�l
h
· ∇�vl

)

∂�l
h

− βh−1
(

u, vl
)

∂�l
h

(3.49)

where we used the fact that f + ��u = 0 on � and the definition (3.35) of a�l
h
. Next

using the boundary condition u = g on ∂� we conclude that

(

f , vl
)

�l
h

=
(

f + ��u, vl
)

�l
h\�

+ a
�l
h

(

u, vl
)

+
(

u, ν
∂�l

h
· ∇�vl

)

∂�l
h

− βh−1
(

u, vl
)

∂�l
h

−
(

u ◦ p̃∂� − g ◦ p̃∂�, ν
∂�l

h
· ∇�vl

)

∂�l
h

+ βh−1
(

u ◦ p̃∂� − g ◦ p̃∂�, vl
)

∂�l
h

(3.50)

Rearranging the terms we obtain

(

f , vl
)

�l
h

−
(

g ◦ p̃∂�, ν∂�l
h
· ∇�vl

)

∂�l
h

+ βh−1
(

g ◦ p̃∂�, vl
)

∂�l
h

=
(

f + ��u, vl
)

�l
h\�

+ a�l
h

(

u, vl
)

−
(

u ◦ p̃∂� − u, ν∂�l
h
· ∇�vl

)

∂�l
h

+ βh−1
(

u ◦ p̃∂� − u, vl
)

∂�l
h

(3.51)

where the term on the left hand side is l�l
h
and the proof is complete. ��

Lemma 3.3 The following estimate holds

‖v ◦ p̃∂� − v‖∂�l
h

� δh‖v‖H2(�), v ∈ H2(�) (3.52)

where v|∂�l
h

= (Ev)∂�l
h
.
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Proof For each x ∈ �l
h let Ix be the line segment between x and p̃∂�(x) ∈ ∂�, tx

the unit tangent vector to Ix , and let x(s) = (1 − s/ρ∂�(x))x + (s/ρ∂�(x)) p̃∂�(x),
s ∈ [0, ρ∂�], be a parametrization of Ix . Then we have the following estimate

|v ◦ p̃∂�(x) − v(x)| �
∣

∣

∣

∣

∣

∫ ρ∂�(x)

0
∇ve(x(s)) · txds

∣

∣

∣

∣

∣

(3.53)

� ‖∇ve · tx‖Ix |ρ∂�(x)|1/2 (3.54)

� ‖(∇�v) ◦ p‖Ix |ρ∂�(x)|1/2 (3.55)

� ‖∇�v‖I lx |ρ∂�(x)|1/2 (3.56)

where we used the following estimates: (3.54) the Cauchy–Schwarz inequality, (3.55)
the chain rule to conclude that ∇ve · tx = ∇(v ◦ p) · tx = ((∇�v) ◦ p) · dp · tx , and
thus we have the estimate

‖∇ve · tx‖Ix � ‖(∇�v) ◦ p‖Ix (3.57)

since dp is uniformly bounded in Uδ0(
˜�), (3.56) changed the domain of integration

from Ix to I lx = p(Ix ) ⊂ ˜�. Integrating over ∂�l
h gives

‖v ◦ p∂� − v‖2
∂�l

h
�

∫

∂�l
h

‖∇�v‖2I lx |ρ∂�(x)|dx (3.58)

� ‖ρ∂�‖L∞(

�l
h

)

∫

∂�l
h

‖∇�v‖2I lx dx (3.59)

� δh

∫

∂�

‖∇�v‖2I ly dy (3.60)

� δh‖∇�v‖2
Uδh (∂�)∩˜�

(3.61)

where we used the following estimates: (3.59) we used Hölder’s inequality, (3.60) we
used the fact that ‖ρ∂�‖L∞(�l

h)
� δh and changed domain of integration from ∂�l

h to

∂�, and (3.61) we integrated over a larger tubular neighborhoodUδh (∂�)∩˜� = {x ∈
˜�: |ρ∂�(x)| � δh} of ∂� of thickness 2δh . We thus conclude that we have the estimate

‖v ◦ p∂� − v‖2
∂�l

h
� δh‖∇�v‖2

Ul
δh

(∂�)∩˜�
(3.62)

In order to proceed with the estimates we introduce, for each t ∈ [−δ, δ], with
δ > 0 small enough, the surface

�t =
{

� ∪ (Ut (∂�) ∩ ˜�) t ≥ 0

�\(U|t |(∂�) ∩ ˜�) t < 0
(3.63)
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and its boundary ∂�t . Starting from (3.62) and using Hölder’s inequality in the normal
direction we obtain

‖v ◦ p∂� − v‖∂�l
h

� δh sup
t∈[−δ,δ]

‖∇�v‖∂�t

︸ ︷︷ ︸

�

(3.64)

� δh‖v‖H2(�) (3.65)

Here we estimated � using a trace inequality

sup
t∈[−δ,δ]

Ct‖∇�v‖∂�t ≤ sup
t∈[−δ,δ]

‖∇�v‖H1(�t )
(3.66)

≤
(

sup
t∈[−δ,δ]

Ct

)

︸ ︷︷ ︸

�1

‖v‖H2(�δ)
(3.67)

� ‖v‖H2(�) (3.68)

where we used the stability (3.29) of the extension of v from �0 = � to �δ . To
see that the constant Ct is uniformly bounded for t ∈ [−δ, δ], we may construct
a diffeomorphism Ft : �0 → �t that also maps ∂�0 onto �t , which has uniformly
bounded derivatives for t ∈ [−δ, δ], see the construction in [7]. For w ∈ H1(�t ) we
then have

‖w‖∂�t � ‖w ◦ Ft‖∂�0 � ‖w ◦ Ft‖H1(�0)
� ‖w‖H1(�t )

(3.69)

where we used the uniform boundedness of first order derivatives of Ft in the first and
third inequality and applied a standard trace inequality on the fixed domain �0 = �

in the second inequality. ��
Lemma 3.4 The following estimates hold

‖v‖2
�l
h\�

� δh‖v‖2∂� + δ2h‖∇�v‖2
�l
h\�

(3.70)

‖v‖2
�l
h\�

� δh‖v‖2
∂�l

h
+ δ2h‖∇�v‖2

�l
h\�

(3.71)

for v ∈ H1(Uδ0(∂�) ∩ ˜�) and δh ∈ (0, δ0].
Proof Using the same notation as in Lemma 3.3 and proceeding in the same way as
in (3.53)–(3.56) we obtain, for each y ∈ Ix ,

|v(y)| � |v ◦ p̃∂�(x)| +
∣

∣

∣

∣

∣

∫ ρ∂�(y)

0
∇ve(x(s)) · txds

∣

∣

∣

∣

∣

(3.72)

� |v ◦ p̃∂�(x)| + ‖∇�v‖I lx |ρ∂�(x)|1/2 (3.73)
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� |v ◦ p̃∂�(x)| + δ
1/2
h ‖∇�v‖I lx (3.74)

Integrating along Ix we obtain

∫

Ix
v2(y)dy �

∫

Ix
(|v ◦ p̃∂�(x)|2 + δh‖∇�v‖2I lx )dy (3.75)

� δh |v ◦ p̃∂�(x)|2 + δ2h‖∇�v‖2I lx (3.76)

Finally, let ∂�l
h,out = ∂�l

h\�, be the part of ∂�l
h that resides outside of�, then we have

�l
h\� = ∪x∈∂�l

h,out
I lx , and using the estimate (3.76) together with suitable changes of

variables of integration we obtain

‖v‖2
�l
h\�

�
∫

∂�l
h,out

(

δh |v ◦ p̃∂�(x)|2 + δ2h‖∇�v‖2I lx
)

dx (3.77)

� δh

∫

∂�l
h,out

|v ◦ p̃∂�(x)|2dx + δ2h

∫

∂�l
h,out

‖∇�v‖2I lx dx (3.78)

� δh‖v‖2∂� + δ2h‖∇�v‖2
�l
h\�

(3.79)

Thus the first estimate follows. The second is proved using the same technique. ��
Lemma 3.5 Let u be the solution to (2.3–2.4), then the following estimates hold

∣

∣

∣a�l
h
(u, vl) − l�l

h
(vl)

∣

∣

∣ � δh‖u‖Hk+1(�)

(

‖∇�vl‖�l
h
+ h−1/2|||v|||∂�l

h

)

(3.80)

� h−1/2δh‖u‖Hk+1(�)|||v|||�h ∀v ∈ Vh (3.81)

Remark 3.4 Here (3.80) will be used in the proof of the L2 norm error estimate and
(3.81) in the proof of the energy norm error estimate. As mentioned before we will
use stronger control of the size of solution to the dual problem, which is used in the
proof of the L2 error estimate, close to the boundary to handle the additional factor of
h−1/2 multiplying |||v|||∂�l

h
.

Proof Starting from the identity (3.46) and using the triangle and Cauchy–Schwarz
inequalities we obtain

∣

∣

∣alh(u, vl) − llh(v
l)

∣

∣

∣ � ‖ f + ��u‖�l
h\�

∥

∥

∥vl
∥

∥

∥

�l
h\�

+ ‖u ◦ p̃∂� − u‖∂�l
h

∥

∥

∥ν∂�l
h
· ∇�vl

∥

∥

∥

∂�l
h

+ h−1 ‖u ◦ p̃∂� − u‖∂�l
h

∥

∥

∥vl
∥

∥

∥

∂�l
h

(3.82)

� ‖ f + ��u‖�l
h\�

︸ ︷︷ ︸

I

∥

∥

∥vl
∥

∥

∥

�l
h\�

︸ ︷︷ ︸

I I
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+ ‖u ◦ p̃∂� − u‖∂�l
h

︸ ︷︷ ︸

I I I

h−1/2|||vl |||∂�l
h

(3.83)

� hδ
m+1/2
h

︸ ︷︷ ︸

I V�δh

‖u‖Hm+2(�)

( ∥

∥

∥∇�vl
∥

∥

∥

�l
h

+ h−1/2|||vl |||∂�l
h

)

+ δh ‖u‖H2(�) h
−1/2|||vl |||∂�l

h
(3.84)

for all v ∈ Vh and m = 0, 1. Here we used the following estimates.

Term I For m = 0 we have using the triangle inequality, followed by the stability
(2.17) and (3.29) of the extensions of f and u,

‖ f + ��u‖�l
h\� � ‖ f ‖�l

h\� + ‖��u‖�l
h\� � ‖ f ‖� + ‖u‖H2(�) (3.85)

� ‖��u‖� + ‖u‖H2(�) � ‖u‖H2(�) (3.86)

where we finally replaced f by −��u on �.
Form = 1 we note that it follows from assumption (2.17) that f +��u ∈ H1(�l

h ∪
�) and f + ��u = 0 on �, which implies f + ��u = 0 on ∂� since the trace is
well defined. We may therefore apply the Poincaré estimate (3.70) to extract a power
of δh , as follows

‖ f + ��u‖�l
h\� � δh‖ f + ��u‖H1(�l

h\�) � δh(‖ f ‖H1(�∪�l
h)

+ ‖��u‖H1(�∪�l
h)

)

(3.87)

� δh(‖ f ‖H1(�) + ‖u‖H3(�)) � δh(‖��u‖H1(�) + ‖u‖H3(�)) � δh‖u‖H3(�)

(3.88)

where again we used the triangle inequality, the stability (2.17) and (3.29), and finally
replaced f by −��u on �.

Term I I We used the Poincaré estimate (3.71) as follows

∥

∥

∥vl
∥

∥

∥

2

�l
h\�

� δ2h

∥

∥

∥∇�vl
∥

∥

∥

2

�l
h\�

+ δh

∥

∥

∥vl
∥

∥

∥

2

∂�l
h

(3.89)

� δ2h

∥

∥

∥∇�vl
∥

∥

∥

2

�l
h\�

+ h2δhh
−2

∥

∥

∥vl
∥

∥

∥

2

∂�l
h

(3.90)

� (δ2h + h2δh)
︸ ︷︷ ︸

�h2δh

( ∥

∥

∥∇�vl
∥

∥

∥

2

�l
h\�

+ h−2
∥

∥

∥vl
∥

∥

∥

2

∂�l
h

)

(3.91)

� h2δh
( ∥

∥

∥∇�vl
∥

∥

∥

2

�l
h

+ h−1|||vl |||2
∂�l

h

)

(3.92)

Term I I I We used the bound (3.52) to estimate ‖u ◦ p̃∂� − u‖∂�l
h
.

Factor IV We note that since δh � h2 and h ∈ (0, h0] we have hδ
m+1/2
h � δh for

m = 0 and m = 1.
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This concludes the proof of estimate (3.80). Estimate (3.81) follows by a direct
estimate of the right hand side of (3.80). ��

3.7 Estimates of the quadrature errors

Lemma 3.6 The following estimates hold

∥

∥

∥|B|B−1B−T − P�h

∥

∥

∥

L∞(�h)
� hk+1 (3.93)

and ∥

∥

∥|B∂�h |B−1ν∂�l
h
− ν∂�h

∥

∥

∥

L∞(∂�h)
� hk+1 (3.94)

Remark 3.5 Recall that B(x): Tx (�h) → Tp(x)(�) and BT (x): Tp(x)(�) → Tx (�h)

and therefore B−1B−T : Tx (�h) → Tx (�h). In (3.93) we thus estimate the deviation
of |B|B−1B−T from the identity P�h operator on Tx (�h).

Proof (3.93): We have the estimate

∥

∥

∥|B|B−1B−T − P�h

∥

∥

∥

L∞(�h)
�

∥

∥

∥|B|P� − BP�h B
T
∥

∥

∥

L∞(�)
(3.95)

�
∥

∥P� − P�P�h P�

∥

∥

L∞(�)
+ hk+1 (3.96)

where we used the uniform boundedness of B−1, the identity |B| = 1+ O(hk+1), see
(3.8), and, the identity B = P� + O(hk+1), see (3.3). Next we have the identity

P� − P�P�h P� = P�(I − P�h )P� = P�Q�h P� = (P�nh) ⊗ (P�nh) (3.97)

and thus

‖P� − P�P�h P�‖L∞(�) � ‖P�nh‖2L∞(�) � ‖nh − n‖2L∞(�) � h2k (3.98)

which together with (3.96) concludes the proof.
(3.94): Using the uniform boundedness of B−1 we obtain

‖|B∂�h |B−1ν∂�l
h
− ν∂�h‖L∞(�h) �

∥

∥

∥|B∂�h |ν∂�l
h
− Bν∂�h

∥

∥

∥

L∞(

�l
h

)
(3.99)

Next let t∂�h be the unit tangent vector to ∂�h and t∂�l
h
the unit tangent vector to ∂�l

h ,
oriented in such a way that ν∂�h = t∂�h × nh and ν∂�l

h
= t∂�l

h
× n. We then have
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Bν∂�h = (P�P�h + ρH)ν∂�h (3.100)

= P�(t∂�h × nh) + O(hk+1) (3.101)

= P�((P� + Q�)t∂�h × (P� + Q�)nh) + O(hk+1) (3.102)

= P�(P�t∂�h × Q�nh + Q�t∂�h × P�nh
︸ ︷︷ ︸

O(h2k )

) + O(hk+1) (3.103)

= P�t∂�h × Q�nh + O(hk+1) (3.104)

where we used the fact that P�t∂�h × P�nh is normal to ˜� and Q�t∂�h × Q�nh = 0
since the vectors are parallel. Using (3.104) and adding and subtracting a suitable term
we obtain

|B∂�h |ν∂�l
h
− Bν∂�h = |B∂�h |t∂�l

h
× n − P�t∂�h × Q�nh + O(hk+1) (3.105)

= (|B∂�h |t∂�l
h
−P�t∂�h )

︸ ︷︷ ︸

I=O(hk+1)

×n+P�t∂�l
h
× (n − Q�nh)

︸ ︷︷ ︸

I I=O(h2k )

+O(hk+1)

(3.106)

= O(hk+1) (3.107)

Here we used the estimates: (I) We have |B∂�h |t∂�l
h

= Bt∂�h and thus

|B∂�h |t∂�l
h
− P�t∂�h = (B − P�)t∂�h = ρHt∂�h = O(hk+1) (3.108)

(II) n − Q�nh = (1 − n · nh)n = 2−1|n − nh |2n = O(h2k). ��
Lemma 3.7 The following estimates hold

∣

∣

∣a�l
h
(vl , wl) − a�h (v,w)

∣

∣

∣

� hk+1
(

‖∇�hv‖�h + h1/2|||v|||∂�h

)(

‖∇�hw‖�h + h−1/2|||w|||∂�h

)

(3.109)

� hk+1/2|||v|||�h |||w|||�h ∀v,w ∈ Vh (3.110)

and
∣

∣

∣l�l
h
(vl) − l�h (v)

∣

∣

∣ � hk+1
(

‖ f ‖� + ‖g‖∂�

)(

‖∇�hv‖�h + h−1/2|||v|||∂�h

)

(3.111)

� hk+1/2
(

‖ f ‖� + ‖g‖∂�

)

|||v|||�h ∀v ∈ Vh (3.112)

Remark 3.6 In fact the estimate (3.110) holds also with the factor hk+1, which is easily
seen in the proof below. However, (3.110) is only used in the proof of the energy norm
error estimate which is of order hk so there is no loss of order. We have chosen this
form since it is analogous with the estimates of the right hand side (3.111)–(3.112).
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Remark 3.7 Wenote that the estimates in Lemma3.7 have similar form as the estimates
in Lemma 3.5, which are adjusted to fit the L2 and energy norm estimates.

Proof (3.109)–(3.110): Starting from the definitions of the forms (2.15) and (3.35) we
obtain

a�l
h

(

vl , wl
)

− a�h (v,w) =
(

∇�vl ,∇�wl
)

�l
h

− (∇�hv,∇�hw
)

�h

−
(

ν∂�l
h
· ∇�vl , wl

)

∂�l
h

+ (

ν∂�h · ∇�hv,w
)

∂�h

−
(

vl , ν∂�l
h
· ∇�wl

)

∂�l
h

+ (

v, ν∂�h · ∇�hw
)

∂�h

+ βh−1
(

(vl , wl)∂�l
h
− (v,w)∂�h

)

(3.113)

= I + I I + I I I + I I I (3.114)

Term I We have the estimates

|I | =
∣

∣

∣

(

B−T∇�hv, B−T∇�hw|B|
)

�h
− (∇�hv,∇�hw

)

�h

∣

∣

∣ (3.115)

=
∣

∣

∣

((

|B|B−1B−T − P�h

)

∇�hv,∇�hw
)

�h

∣

∣

∣ (3.116)

� hk+1‖∇�hv‖�h‖∇�hw‖�h (3.117)

where we used the estimate (3.93).

Terms I I and I I I Terms I I and I I I have the same form and may be estimated as
follows

|I I | =
∣

∣

∣

(

ν∂�l
h
· ∇�vl , wl

)

∂�l
h

− (

ν∂�h · ∇�hv,w
)

∂�h

∣

∣

∣ (3.118)

=
∣

∣

∣

(

ν∂�l
h
· B−T∇�hv,w|B∂�h |

)

∂�h
− (

ν∂�h · ∇�h , w
)

∂�h

∣

∣

∣ (3.119)

=
∣

∣

∣

((

|B∂�h |B−1ν∂�l
h
− ν∂�h

)

·∇�hv,w
)

∂�h

∣

∣

∣ (3.120)

≤
∥

∥

∥|B∂�h |B−1ν∂�l
h
− ν∂�h

∥

∥

∥

L∞(∂�h)
‖∇�hv‖∂�h‖w‖∂�h (3.121)

� hk+1h1/2|||v|||�h h
−1/2|||w|||∂�h (3.122)

where we used (3.94) and the inverse estimate

h‖∇�hv‖2∂�h
� ‖∇�hv‖2Kh(�h)

� ‖∇�hv‖2�h
(3.123)

for all v ∈ Vh . Thus we conclude that

|I I | + |I I I | � hk+1h1/2|||v|||�h h
−1/2|||w|||∂�h (3.124)
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Term IV We have

|I V | = βh−1
∣

∣

∣(v
l , wl)∂�l

h
− (v,w)∂�h

∣

∣

∣ (3.125)

= βh−1
∣

∣

∣((|B∂�h | − 1)v,w)∂�h

∣

∣

∣ (3.126)

� h−1‖|B∂�h | − 1‖L∞(∂�h)‖v‖∂�h‖w‖∂�h (3.127)

� hk+1h1/2|||v|||∂�h h
−1/2|||w|||∂�h (3.128)

Estimate (3.110) follows by a direct estimate of the right hand side of (3.109).
(3.111) and (3.112): We have

∣

∣

∣l�l
h

(

wl) − l�h

(

w
)

∣

∣

∣ =
∣

∣

∣

(

f , wl)

�l
h
− (

f ◦ p�,w
)

�h

− (

g ◦ p̃∂�, ν∂�l
h
· ∇�wl)

∂�l
h
+ (

g ◦ p∂�, ν∂�h · ∇�hw
)

∂�h

+ βh−1(g ◦ p̃∂�,wl)

∂�l
h
− βh−1(g ◦ p∂�,w

)

∂�h

∣

∣

∣ (3.129)

≤
∣

∣

∣

(|B| − 1
)

f ◦ p�,w
)

�h

∣

∣

∣

+
∣

∣

∣

(

g ◦ p∂�,
(|B∂�h |B−1ν∂�l

h
− ν∂�h

) · ∇�hw
)

∂�h

∣

∣

∣

+ βh−1
∣

∣

∣

((|B∂�h | − 1
)

g ◦ p∂�,w
)

∂�h

∣

∣

∣ (3.130)

� hk+1‖ f ‖�‖w‖�h + hk+1‖g‖∂�‖∇�hw‖∂�h + hk‖g‖∂�‖w‖∂�h

(3.131)

where we used (3.8), (3.94) and (3.9). Next using the Poincaré estimate

‖w‖�h � ‖∇�hw‖�h + ‖w‖∂�h � ‖∇�hw‖�h + h1/2|||w|||∂�h (3.132)

we obtain

∣

∣

∣l�l
h
(wl) − l�h (w)

∣

∣

∣ � hk+1‖ f ‖�‖w‖�h

+ hk+1‖g‖∂�h
−1/2|||w|||∂�h + hk‖g‖∂�h

1/2|||w|||∂�h

(3.133)

� hk+1‖ f ‖�

(

‖∇�hw‖�h + h1/2|||w|||∂�h

)

+ hk+1‖g‖∂�h
−1/2|||w|||∂�h (3.134)

� hk+1
(

‖ f ‖� + ‖g‖∂�

)(

‖∇�hw‖�h + h−1/2|||w|||∂�h

)

(3.135)

� hk+1/2
(

‖ f ‖� + ‖g‖∂�

)

|||w|||�h (3.136)

which are the desired estimates. ��
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3.8 Error estimates

With the Strang Lemma 3.1 and the estimates for the interpolation, quadrature, and
consistency errors at hand, we are now prepared to prove the main a priori error
estimates.

Theorem 3.1 With u the solution of (2.3)–(2.4) and uh the solution of (2.14) the follow-
ing estimate holds

|||u − ulh |||�l
h

� hk
(

‖u‖Hk+1(�) + ‖ f ‖� + ‖g‖∂�

)

(3.137)

Proof Starting from the Strang Lemma and using the interpolation estimate (3.34),
the quadrature error estimates (3.110) and (3.112), and the consistency error estimate
(3.81), we obtain

|||u − ulh |||�l
h

� hk‖u‖Hk+1(�) + hk+1/2|||πhu
e|||�h + hk+1/2

(

‖ f ‖� + ‖g‖∂�

)

+ h−1/2δh‖u‖H2(�) (3.138)

� hk‖u‖Hk+1(�) + hk+1/2
(

‖ f ‖� + ‖g‖∂�

)

+ hk+1/2‖u‖H2(�) (3.139)

Here, in (3.139), we used the estimate

|||πhu
e|||�h � |||πhu

e − ue|||�h + |||ue|||�h (3.140)

� hk‖u‖Hk+1(�) + h−1/2‖u‖H2(�) (3.141)

where, in (3.141), we used the interpolation estimate (3.34) to estimate the first term
and a trace inequality to estimate the second term, and finally the inequality h−1/2δh �
hk+1/2. Thus the proof is complete since k ≥ 1 and h ∈ (0, h0]. ��
Theorem 3.2 With u the solution of (2.3–2.4) and uh the solution of (2.14) the follow-
ing estimate holds

‖u − ulh‖�l
h

� hk+1
(

‖u‖Hk+1(�) + ‖ f ‖� + ‖g‖∂�

)

(3.142)

Proof Let φ ∈ H1
0 (�) be the solution to the dual problem

a(v, φ) = (v, ψ), v ∈ H1
0 (�) (3.143)

where ψ = e = u − ulh on �l
h and ψ = 0 on �\�l

h , and we extend φ using the
extension operator to Uδ0(�) ∩ ˜�. Then we have the stability estimate

‖φ‖H2(�∪�l
h)

� ‖φ‖H2(�) � ‖ψ‖�l
h

= ‖e‖�l
h

(3.144)
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where the first inequality follows from the stability (3.29) of the extension of φ and
the second is the elliptic regularity of the solution to the dual problem.

We obtain the following representation formula for the error

‖e‖2
�l
h

= (e, ψ + �φ)�l
h
− (e,�φ)�l

h
(3.145)

= (e, ψ + �φ)�l
h\� + (∇e,∇φ)�l

h
− (e, ν∂�l

h
· ∇φ)∂�l

h
(3.146)

= (e, ψ + �φ)�l
h\�

︸ ︷︷ ︸

I

+ a�l
h
(e, φ)

︸ ︷︷ ︸

I I

+ (ν∂�l
h
· ∇�e, φ)∂�l

h
− βh−1(e, φ)∂�l

h
︸ ︷︷ ︸

I I I

(3.147)

��
Term I We have the estimates

|I | = |(e, ψ + �φ)�l
h\�| (3.148)

� ‖e‖�l
h\�‖ψ + �φ‖�l

h\� (3.149)

�
(

δ2h‖∇�e‖2�l
h\�

+ δh‖e‖2∂�l
h

)1/2(‖ψ‖�l
h\� + ‖�φ‖�l

h\�
)

(3.150)

�
(

(δ2h + hδh)|||e|||2�l
h

)1/2(‖e‖�l
h\� + ‖φ‖H2(�)

)

(3.151)

� (h−2δh + h−1δh)
1/2

︸ ︷︷ ︸

�1

h|||e|||�l
h
‖e‖�l

h
(3.152)

Here we used the Poincaré estimate (3.71) together with the definition of the energy
norm to conclude that ‖e‖�l

h\� � h|||e|||�l
h
, the stability (3.144) of the dual problem

to conclude that ‖ψ + �φ‖�l
h\� � ‖e‖�l

h
, and finally the fact δh � hk+1.

Term I I Adding and subtracting an interpolant we obtain

|I I | =
∣

∣

∣a�l
h

(

e, φ − π l
hφ

)

+ a�l
h

(

e, π l
hφ

)∣

∣

∣ (3.153)

� |||e|||�l
h
|||φ − π l

hφ|||�l
h
+

∣

∣

∣a�l
h

(

e, π l
hφ

)∣

∣

∣ (3.154)

� h|||e|||�l
h
‖φ‖H2(�) +

∣

∣

∣a�l
h

(

e, π l
hφ

)∣

∣

∣ (3.155)

� h|||e|||�l
h
‖e‖�l

h
+

∣

∣

∣a�l
h

(

e, π l
hφ

)∣

∣

∣ (3.156)

For the second term on the right hand side we first note that using Lemma 3.5 and
Lemma 3.7 we have the estimates

a�l
h

(

e, π l
hφ

)

= a�l
h

(

u, π l
hφ

)

− a�l
h

(

ulh, π
l
hφ

)

(3.157)

= a�l
h

(

u, π l
hφ

)

− l�l
h

(

π l
hφ

)
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+ l�l
h

(

π l
hφ

)

− l�h (πhφ)

+ a�h (uh, πhφ) − a�l
h

(

ulh, π
l
hφ

)

(3.158)

� δh‖u‖Hk+1(�)

(

‖∇�π l
hφ‖�l

h
+ h−1/2|||π l

hφ|||∂�l
h

)

︸ ︷︷ ︸

I I1

+ hk+1
(

‖ f ‖� + ‖g‖∂�

) (

‖∇�hπhφ‖�h + h−1/2|||πhφ|||∂�h

)

︸ ︷︷ ︸

I I2

+ hk+1
(

‖∇�h uh‖�h + h1/2|||uh |||∂�h

)

︸ ︷︷ ︸

I I3

(

‖∇�hπhφ‖�h + h−1/2|||πhφ|||∂�h

)

︸ ︷︷ ︸

I I2

(3.159)

� (δh + hk+1)‖u‖Hk+1(�)‖e‖�l
h
+ hk+1

(

‖ f ‖� + ‖g‖∂�

)

‖e‖�l
h

(3.160)

where we finally used the estimates

I I1 ∼ I I2 � ‖e‖�l
h
, I I3 � ‖u‖Hk+1(�) (3.161)

In order to verify the estimates of Terms I I1 − I I3, we first prove the trace inequality

‖v‖∂�l
h

� ‖v‖H1(�) v ∈ H1(�) (3.162)

where the hidden constant is independent of h ∈ (0, h0], for h0 small enough. Adding
and subtracting v ◦ p∂� , using the triangle inequality, we obtain

‖v‖2
∂�l

h
� ‖v − v ◦ p∂�‖2

∂�l
h
+ ‖v ◦ p∂�‖2

∂�l
h

(3.163)

� δh‖v‖2
H1

(

Ul
δh

(

∂�
)

∩˜�
) + ‖v‖2∂� (3.164)

� δh‖v‖2
H1

(

Ul
δh

(

∂�
)

∩˜�
) + ‖v‖2

H1
(

�
) (3.165)

� ‖v‖2
H1

(

Ul
δh

(

∂�
)

∩˜�
)

∪�
(3.166)

� ‖v‖2
H1

(

�
) (3.167)

where in (3.164) we used equivalence of norms (3.18) for the second term and for the
first term we used estimate (3.62), in (3.165) we used the trace inequality ‖v‖∂� �
‖v‖H1(�), v ∈ H1(�), for the second term, in (3.166) we used the bound δh � hk+1 �
hk+1
0 � 1 collected the two contributions in one norm, and in (3.167) we used the

stability (3.29) of the extension of v. This concludes the proof of (3.162).

Terms I I1 and I I2 Using equivalence of norms

I I1 = ‖∇�hπhφ‖�h + h−1/2|||πhφ|||∂�h ∼ ‖∇�π l
hφ‖�l

h
+ h−1/2|||π l

hφ|||∂�l
h

= I I2
(3.168)
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The first term on the right hand side is handled as in (3.174)–(3.177) and the second
is bounded as follows

h−1|||π l
hφ|||2

∂�l
h

� h−1|||π l
hφ − φ|||2

∂�l
h
+ h−1|||φ|||2

∂�l
h

(3.169)

� h‖φ‖2
H2

(

�l
h

) + ‖∇�φ‖2
∂�l

h
+ h−2‖φ‖2

∂�l
h

(3.170)

� h‖φ‖2
H2

(

�l
h

) + ‖φ‖2H2(�)
+ h−2δ2h‖φ‖2H2(�)

(3.171)

� (h + 1 + h−2δ2h)
︸ ︷︷ ︸

�1

‖φ‖2H2(�)
(3.172)

where we added and subtracted the exact solution, used the interpolation error estimate
(3.34) for the first term on the right hand side, the trace inequality (3.162) for the
second term, the fact that φ = 0 on � together with (3.52) for the third term, and
finally stability of the extension operator (3.29). Thus we conclude that

‖∇�π l
hφ‖�l

h
+ h−1/2|||π l

hφ|||∂�l
h

� ‖φ‖H2(�) � ‖e‖�l
h

(3.173)

Term I I3 We have

‖∇�h uh‖�h + h1/2|||uh |||∂�h ∼ ‖∇�u
l
h‖�l

h
+ h1/2|||ulh |||∂�l

h
(3.174)

≤ ‖∇�(ulh − u)‖�l
h
+ h1/2|||(ulh − u)|||∂�l

h

+ ‖∇�u‖�l
h
+ h1/2|||u|||∂�l

h
(3.175)

� hk‖u‖Hk+1(�) + ‖u‖H2(�) (3.176)

� ‖u‖Hk+1(�) (3.177)

where we used equivalence of norms, added and subtracted the exact solution, used
the triangle inequality and the energy norm error estimate (3.137), and the estimate

h|||u|||2
∂�l

h
= h2‖∇�u‖2

∂�l
h
+ ‖u‖2

∂�l
h

(3.178)

� h2‖∇�u‖2H1(�)
+ ‖u‖2H1(�)

(3.179)

� ‖u‖2H2(�)
(3.180)

where we used (3.162).

Term I I I Using the Cauchy–Schwarz inequality we get

|I I I | ≤ h|||e|||�l
h
h−3/2‖φ‖∂�l

h
� h|||e|||�l

h
h−3/2δh‖φ‖H2(�) � h|||e|||�l

h
‖e‖�h

(3.181)

Remark 3.8 Our results directly extends to the case of a Neumann or Robin condition

ν · ∇�u = gN − κu (3.182)
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where κ ≥ 0 on a part of the boundary. Essentially we need to modify the quadrature
term estimates to account for the terms involved in the weak statement of the Robin
condition. These terms are very similar to the terms involved in theNitsche formulation
for the Dirichlet problem and may be estimated in the same way.

Remark 3.9 Strong implementations of the Dirichlet boundary condition may also be
considered in our framework. In this remark we summarize the main modifications
in the formulation of the method and in the analysis. To formulate a finite element
method with strong Dirichlet boundary conditions we need to interpolate the Dirichlet
data and construct a suitable interpolation operator. Then we formulate the method
and finally we discuss the modifications in the theoretical results.

Interpolation We recall that in the construction of the Scott–Zhang interpolation
operator, see [22], to each Lagrange node xi we associate a simplex Si , such that
xi ∈ Si and Si is a triangle for nodes xi ∈ �h\∂�h in the interior of the discrete
domain and Si is an edge on the boundary ∂�h when xi ∈ ∂�h . Let {ϕi,k} be the
Lagrange basis associated with the simplex Si and let {ψi,l} be the dual basis such that
(ϕk, ψl)Si = δkl . We let ψi denote the dual basis function ψi,l associated with node
i , then the nodal value v(xi ) = (v, ψi )Si , for v ∈ Vh . The interpolation operator is
defined by

Ihu =
N

∑

i=1

Ihu(xi )ϕi (3.183)

where N is the number of nodes and the nodal values are defined by

Ihu(xi ) =
{

(u ◦ p(xi ), ψi )Si xi ∈ �h\∂�h

(g ◦ p∂�(xi ), ψi )Si xi ∈ ∂�h
(3.184)

wherewe note that we use the closest pointmapping p∂� for the nodes on the boundary
and p for the nodes in the interior. We have the interpolation error estimate

∥

∥

∥u − (Ihu)l
∥

∥

∥

Hm
(

�l
h

)
� hk+1−m‖u‖Hk+1(�), m = 0, 1 (3.185)

To verify that (3.185) holds we note that it follows from (3.32) and the stability of the
extension operator (3.29), that the Scott–Zhang interpolation operator πh , defined in
(3.30), satisfies the estimate

∥

∥

∥u − (πhu)l
∥

∥

∥

Hm
(

�l
h

)
� hk+1−m‖u‖Hk+1(�) (3.186)

for m = 0, 1.
We next note that Ihu(xi ) − πhu(xi ) = 0 for xi ∈ �h\∂�h , see the definition of

the nodal values (3.31) and (3.184), and we have the inverse estimate

‖Ihu − πhu‖2�h
� h‖Ihu − πhu‖2∂�h

(3.187)
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since for any element K with at least one vertex at the boundary ∂�h we have the
inverse estimates

‖v‖2K � h2‖v‖2L∞(K ) � h2 max
xi∈∂K∩∂�h

|v(xi )|2 � h‖v‖2Si (3.188)

To estimate the boundary term on the right hand side in (3.187) we proceed as
follows

‖Ihu − πhu‖2∂�h
�

Nb
∑

i=1

h|(u ◦ p, ψi )Si − (u ◦ p∂�, ψi )Si |2 (3.189)

�
Nb
∑

i=1

h|(u − u ◦ p̃∂�, ψ l
i )Sli

|2 (3.190)

�
Nb
∑

i=1

‖u − u ◦ p̃∂�‖Sli h‖ψi‖2Si
︸ ︷︷ ︸

�1

(3.191)

� ‖u − u ◦ p̃∂�‖2
�l
h

(3.192)

� h2(k+1)‖u‖2H2(�)
(3.193)

where we estimated the L2 norm in terms of the nodal values on the boundary with
Nb the number of nodes at the boundary, expressed the difference using p̃∂� , used
the Cauchy–Schwarz inequality and the bound ‖ψi‖2Si � h−1, used the fact that each
simplex (edge) Si occur in the sum a bounded number of times, and finally we used
Lemma 3.3. We thus conclude that

‖Ihu − πhu‖2�h
� h2k+3‖u‖2H2(�)

� h2k+2‖u‖2H2(�)
(3.194)

where we used the fact h ∈ (0, h0]. Adding and subtracting πhu, using the triangle
inequality, followed by the interpolation estimate (3.186) and the estimate of the
difference between the interpolants (3.194) we finally obtain

∥

∥ue − Ihu
e
∥

∥

2
Hm (�h)

�
∥

∥ue − πhu
e
∥

∥

2
Hm (�h)

+ ∥

∥Ihu
e − πhu

e
∥

∥

2
Hm (�h)

(3.195)

�
∥

∥ue − πhu
e
∥

∥

2
Hm (�h)

+ h−2m
∥

∥Ihu
e − πhu

e
∥

∥

2
L2(�h)

(3.196)

� h2(k+1−m)
∥

∥u
∥

∥

2
Hk+1(�)

+ h2(k+1−m)
∥

∥u
∥

∥

2
H2(�)

(3.197)

� h2(k+1−m)
∥

∥u
∥

∥

2
Hk+1(�)

(3.198)

Method To formulate the method we define the discrete Dirichlet data

gh = Ih(g ◦ p∂�) (3.199)
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Introducing the trial and test spaces

Vh,gh = {v ∈ Vh : v|∂�h = gh}, Vh,0 = {v ∈ Vh : v|∂�h = 0} (3.200)

we have the finite element method: find uh ∈ Vh,gh such that

a�h (uh, v) = l�h (v) ∀v ∈ Vh,0 (3.201)

where
a�h (v,w) = (∇�hv,∇�hw)�h , l�h (w) = ( f e, w)�h (3.202)

Error estimates In the analysis the following modifications are done:

• The energy norms are defined by

|||v|||�h = ‖∇�hv‖�h , |||v|||�l
h

= ‖∇�v‖�l
h

(3.203)

• In the Strang Lemma the lifted forms are simplified to

a�l
h
(v,w) = (∇�v,∇�w)�l

h
, l�l

h
(w) = ( f , w)�l

h
(3.204)

and observing that the discrete error Ihu − uh ∈ Vh,0 we have

|||Ihu − uh |||�h � sup
v∈Vh,0\{0}

a�h (Ihu − uh, v)

|||v|||�h

(3.205)

and thus we may derive the Strang Lemma in the same way as for the Nitsche
condition.

• For the consistency error we have the simplified expression

a�l
h
(u, vl) − l�l

h
(vl) = −( f + ��u, vl)�l

h\� (3.206)

and the estimate
∣

∣

∣a�l
h
(u, vl) − l�l

h
(vl)

∣

∣

∣ � δh‖u‖H2(�)|||v|||�h (3.207)

• The quadrature estimates in Lemma 3.7) are simplified to

∣

∣

∣a�l
h
(vl , wl) − a�h (v,w)

∣

∣

∣ � hk+1|||v|||�h |||w|||�h ∀v,w ∈ Vh (3.208)

∣

∣

∣l�l
h
(vl) − l�h (v)

∣

∣

∣ � hk+1
(

‖ f ‖� + ‖g‖∂�

)

|||v|||�h ∀v ∈ Vh (3.209)

Combining these results we obtain energy and L2 error estimates of the same form as
in Theorems 3.1 and 3.2.
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Remark 3.10 It is not necessary to use the same order of polynomials in the mappings
of the elements and the finite element space. We may instead use polynomials of
order kg for the geometry approximation and ku for the finite element space. See
[15] for an example of an application where different approximations order are used
in the context of the Darcy problem on a closed surface. Essentially, this affects the
consistency error estimate in Lemma 3.5, where we will have δh ∼ hkg+1, and the
quadrature error estimates in Lemma 3.7, where we will replace k by kg . Clearly to
obtain optimal order convergence in both the energy and the L2 norm we must use the
same or higher order polynomials in the mappings as in the finite element space, i.e.,
kg ≥ ku .

4 Numerical examples

Model problem We consider the Laplace–Beltrami problem on a torus with a part
removed. To express points on the torus surface we use toroidal coordinates {θ, φ}
defined such that the corresponding Cartesian coordinates are given by

x1 = (R + r cos(θ)) cos(φ), x2 = (R + r cos(θ)) sin(φ), x3 = r sin(θ) (4.1)

with constants R = 1 and r = 0.4. The boundary ∂� is defined by the curves

φ1(θ) = 0.2 cos(N1θ) and φ2(θ) = 0.2 cos(N2θ) + 0.6(2Rπ) (4.2)

where we choose N1 = 4 and N2 = 3. In turn the domain � is given by

� = {θ, φ: 0 ≤ θ < 2π , φ1 ≤ φ ≤ φ2} (4.3)

We manufacture a problem with a known analytic solution by prescribing the solution

u = cos(3φ + 5θ) sin(2θ) (4.4)

and compute the corresponding load f by using the identity f = −��u. TheDirichlet
boundary data on ∂� is directly given by g = u|∂� . Note that (4.4) is smooth and
defined on the complete torus so clearly the stability estimates (2.17) and (3.29) for f
and u both hold.

Geometry discretization �h We construct higher order (k > 1) geometry approxi-
mations �h from an initial piecewise linear mesh (k = 1) by adding nodes for higher
order Lagrange interpolation through linear interpolation between the facet vertices.
All mesh nodes are moved to the exact surface by the closest point map p(x) and then
the boundary is corrected such that the nodes on the discrete boundary ∂�h coincide
with the exact boundary ∂�. A naive approach for the correction is to just move nodes
on the boundary of the mesh to the exact boundary. For our model problem we let the
corrected boundary nodal points be given by the toroidal coordinates {θ, φi (θ)}. This
may however give isoparametric mappings with bad quality or negative Jacobians in
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Fig. 1 Mesh for the model
problem using geometric
interpolation order k = 3 and
meshsize h = 1/4

Fig. 2 Numerical solution for
the model problem using k = 3
and meshsize h = 1/4

some elements, especially in coarser meshes and higher order interpolations where
the element must be significantly deformed to match the boundary. We therefore use a
slightly more refined procedure where interior nodes are positioned inside the element
according to a quadratic map aligned to the boundary, rather than using linear inter-
polation over the facet. In Fig. 1 a coarse mesh for the model problem using k = 3
interpolation is presented.

Numerical study The numerical solution for the model problem with k = 3 and
h = 1/4 is visualized in Fig. 2. We choose the Nitsche penalty parameter β = 104.
This large value was chosen in order to achieve the same size of the error as when
strongly enforcing the Dirichlet boundary conditions and using k = 4.

The results for the convergence studies in energy norm and L2 norm are presented
in Figs. 3 and 4. These indicate convergence rates of O(hk) in energy norm and
O(hk+1) in L2 norm which by norm equivalence is in agreement with Theorem 3.1
and Theorem 3.2, respectively. On coarse meshes we note some inconsistencies in the
energy norm results when using higher order interpolations. We attribute this effect to
large derivatives of themappings used tomake the element fit the boundary whichmay
arise in some elements for coarsemeshes that are large in comparison to the variation of
the boundary. When the boundary is better resolved we retain the proper convergence
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Fig. 3 Convergence study of the model problem in energy norm with reference lines proportional to hk .
Note the instability in convergence rate for coarse meshes and higher order geometry approximation

Fig. 4 Convergence study of the model problem in L2 norm with reference lines proportional to hk+1

rates. Note also that the Jacobian of the mapping is involved in the computation of the
gradient which explains that we see this behavior in the energy norm but not in the L2

norm.
In the special case �l

h = �, such as the simplified model problem, obtained by
taking parameters N1 = N2 = 0 in the boundary description (4.2), illustrated by the
mesh in Fig. 5, no correction of boundary nodes onto ∂� is needed. In that case the
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Fig. 5 Mesh for a simplified
version of the model problem
(N1 = N2 = 0) using geometric
interpolation order k = 3 and
meshsize h = 1/4. For this
problem �l

h = �

Fig. 6 Convergence study for a simplified version of the model problem (N1 = N2 = 0) in energy norm
with reference lines proportional to hk . Note that there is no instability in convergence rate for coarse
meshes

energy error aligns perfectly with the reference lines also for coarse meshes and higher
order geometry approximations, see Fig. 6.
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