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Abstract

The photoelectron spectrum for the two lowest ionisation bands of phenol has been
simulated using quantum dynamic methods. A vibronic coupling Hamiltonian was
set up consisting of seven vibrational modes and the first two ionised states. Param-
eters for the model are obtained by fitting adiabatic surfaces to a series of points
calculated using ab initio methods. Such a model allows non-adiabatic couplings
between the states to be included. CASSCF calculations used in this work provide
reliable quantum chemical information for the model and the calculated photoelec-
tron spectrum shows good agreement to experiment. The vibrational fine structure
of both bands are reassessed and different assignments to those previously reported
are detailed. The existence of a conical intersection between the ionised states is
reported and its role in the dynamics of phenol upon ionisation is examined.

Key words: phenol photochemistry, wavepacket dynamics, conical intersection,
photoelectron spectrum

1 Introduction

Like benzene, phenol and its derivatives are abundant in compounds found
naturally and synthesised industrially. As a result, phenol has been exten-
sively studied through theoretical and experimental means. In recent decades,
much attention has been given to the photochemistry and photodissociation of
phenol [1–6]. The dynamics along the O-H stretching mode involving different
electronic states provide examples of non-adiabaticity and conical intersec-
tions. The two lowest lying excited states (1ππ∗ and 1πσ∗) have been shown
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to contain a conical intersection seam [1, 7]. This enables ultrafast internal
conversion from the bright 1ππ∗ state to the 1πσ∗ state, which leads to the
dissociation of hydrogen to form the phenoxyl radical. There is also evidence to
suggest the O-H dissociation bypasses the conical intersection through hydro-
gen tunnelling [3,8]. There also exists another conical intersection between the
1πσ∗ and S0 state, which provides an alternative pathway of rapid relaxation
to the electronic ground state.

Following the seminal work of Sobolewski and Domcke [9], the existence of
dissociative 1πσ∗ states has been shown for a range of aromatic molecules.
They are dark states, characterised at the Franck-Condon (FC) point as a 3s
Rydberg state, that forms a conical intersection with the ground-state. More-
over, their repulsive nature is responsible for hydrogen transfer or dissociation
in many bioaromatic molecules [10] and is thought to provide photostability.
Whilst this state cannot be directly accessed, its position relative to the 1ππ∗

state dictates the dynamics that occurs and the location of the crossing points.
This has been observed in a variety of planar organic molecules [9, 11]. This
difference in positions of the two states and the effect becomes apparent when
comparing the photodissociation of phenol with pyrrole [10, 12, 13]. The shift
in relative energy of the 1πσ∗ with respect to the 1ππ∗ state in phenol has
also been investigated when complexed with water and ammonia clusters [14].
While the photo-excited dynamics of neutral phenol has been extensively stud-
ied, the photo-ionisation and subsequent dynamics has received little attention
and the ion states are usually only included as a continuum for the theoretical
description of pump-probe measurements on the excited states [15, 16]. Re-
cent work has also recorded the effect of aqueous solvation on the ionisation
and excited states of phenol [17]. The photoelectron spectrum has been mea-
sured and the ionisation potentials determined to be 8.5 and 9.28 eV for the
first two ion states [18–21]. The symmetry of the ion states have been deter-
mined to be 2B1 and 2A2 and result from the removal of a π electron. The full
He(I)/He(II) spectra were measured with the aim of obtaining all the valence
ionisation potentials and the vibrational fine structure of the photoelectron
spectrum has been largely overlooked. The possibility of non-adiabaticity and
coupling associated with the ionised states has also not been explored.

Quantum dynamics simulations, which solve the time-dependent Schrödinger
equation, are a powerful way to probe the photodynamics of a system and
provide rationale behind experimental observables [22]. Examples are the use
of simulated spectra and population dynamics to support pump-probe time-
resolved photoelectron spectra (TR-PES) [23, 24]. These calculations require
a potential energy function in the form of a set of coupled surfaces to model
the excited-state dynamics. In some studies the time-resolved signal from a
TR-PES experiment has been directly modelled [25–27] and in this case the
potential surfaces of the ion are also required.
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Coupled potential surfaces are impossible to obtain accurately for more than
a few atoms due to large number of high level quantum chemistry calculations
required and the difficulty of fitting these points using multi-dimensional func-
tions. For this reason, model Hamiltonians are a useful approach to capture the
essential physics in a simple way. For the coupled surfaces involved in photo-
excited systems the vibronic coupling model Hamiltonian [28,29] has become a
standard approach. This involves a low-order Taylor expansion of diabatic po-
tentials and couplings with parameters obtained by fitting to quantum chem-
istry calculations and experimental data. Making use of the vibronic coupling
Hamiltonian thus allows for explicit consideration of vibronic couplings and
non-adiabatic photochemistry. We have already applied the vibronic coupling
Hamiltonian to a range of aromatic systems [30–34].

In this paper, a simple vibronic linear coupling model is constructed to simu-
late the photoelectron spectrum of the two lowest ionisation bands of phenol.
This model allows the dynamics to be elucidated in terms of normal modes
and couplings between the diabatic electronic states. It was found that a mod-
est, seven mode model was sufficient to replicate the necessary photodynamic
behaviour. The vibrational structure of the obtained photoelectron spectrum
has been assigned and compared with previous studies. Differences between
the assignments have been noted and discussed. The possibility of a conical
intersection between the states is investigated, and its affect on the dynamics
can be observed by following the relative diabatic state populations. These
surfaces can be used, together with potential surfaces for phenol [1,6] to help
support the TR-PES of phenol measured in recent work by Riley et al. [17]
which requires ionisation to two closely lying ion states.

2 Methodology

2.1 Computer Simulation Details

2.1.1 Model Hamiltonian

By making use of the vibronic coupling Hamiltonian [28], the diabatic po-
tentials can be expressed, through a Taylor series, in terms of dimensionless
normal modes around a particular point, Q0, usually taken as the equilibrium
geometry. At this point, the diabatic electronic wavefunction is assumed to be
equal to the adiabatic. The Hamiltonian can therefore be written

H = H(0) + W(0) + W(1) + . . . (1)
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with the zeroth-order Hamiltonian expressed as the ground state Hamiltonian
in the Harmonic approximation

H(0) =
∑
α

ωα
2

(
∂2

∂Q2
α

+Q2
α

)
(2)

and ω representing the frequency of mode Q. The set of diabatic coupling
matrices, W describe the changes in excited state surfaces compared with
the ground state. W (0) is the ground state Harmonic oscillator displaced to
excitation energy, Ei. The first order matrix elements are expressed as

W
(1)
ii =

∑
α

κ(i)α Qα (3)

W
(1)
ij =

∑
α

λ(i,j)α Qα ; i 6= j (4)

Here, the κ parameters are related to the gradients of the adiabatic potential
at Q0 with respect to nuclear coordinates and the λ parameters are the non-
adiabatic elements, again at Q0, which provide coupling between the electronic
states. Included also were the on-diagonal second order matrix elements,

W
(2)
ii =

∑
α

1

2
γ(i)α Q

2
α +

∑
α<β

γ
(i)
αβQαQβ (5)

where γ are the second derivatives of the adiabatic potentials at Q0. These
parameters provide changes in the frequencies and Duschinsky rotation by
coupling the modes.

For modes exhibiting strong anharmonicity it becomes necessary to express
the diabatic potentials as Morse potentials in place of the harmonic form
above. These have the following form

V = D0 [exp(α(Q−Q0)− 1)]2 + E0 (6)

with parameters D0 for the dissociation energy, Q0 for the equilibrium geom-
etry, and E0 an energy shift.

Consideration of molecular symmetry is important as many of the matrix
elements vanish due to symmetry arguments

κ(i)α 6= 0 if Γα ⊃ ΓA (7)

λ(i,j)α 6= 0, if Γα ⊗ Γi ⊗ Γj ⊃ ΓA (8)
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γ
(i)
αβ 6= 0, if Γα ⊗ Γβ ⊗ Γi ⊃ ΓA (9)

where Γα,Γβ are the symmetry irreps of the vibrations, Γi,Γj the irreps of
the electronic states and ΓA the totally symmetric irrep. Phenol possesses Cs

symmetry, however for determining the modes that couple the 2B1 and 2A2

ionised states and give rise to vibrational fine structure, the symmetry was
ascended to C2v. From the symmetry arguments only the totally symmetric
a1 modes and the b2 coupling modes need to be considered.

The potential energy surfaces and parameters are obtained through a least-
squares fitting procedure to a series of ab initio points calculated along each
normal mode. This is done using the VCHAM program [35] within the Quan-
tics package [36]. Energies at each of these points were calculated at the
CASSCF level of theory, employing an (7,8) active space with a 6-31+G∗

basis. The active space comprises the oxygen lone pair, ππ, ππ∗ and πσ∗ or-
bitals. All electronic structure calculations were run using the Gaussian 09
program [37].

2.1.2 Calculating the spectrum

The photoelectron spectrum is obtained by taking the Fourier transform

I(ω) ∝ ω
∫ ∞
−∞

dtC(t)eiωt (10)

of the autocorrelation function

C(t) = 〈Ψ(0)|Ψ(t)〉 (11)

= 〈Ψ(t/2)∗|Ψ(t/2)〉 (12)

To reduce spurious structures (Gibbs phenomenon) that result from the fi-
nite propagation time in the Fourier transform, the autocorrelation function
is multiplied by a weight function cos(πt/2T ). The broadening seen in experi-
mental spectra can then be simulated by further multiplying with a damping
function exp(−t/τ).

The quantum dynamics were performed with the Quantics package which
uses the MCTDH method, a highly efficient algorithm for the propagation of
wavepackets [38]. The wavepacket propagations were initiated from separate
excitations to the 2B1 and 2A2 states and were performed using seven modes.
Initially each wavepacket was prepared as a Gaussian with a defined width
and centred on the Franck-Condon point. Each propagation was performed for
200 fs. Each mode in the simulation was described using a Harmonic oscillator
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discrete variable representation (DVR) [38]. Details of the basis sets used are
given in Table 1.

3 Results

3.1 Fitted Parameters

The calculated vertical ionisation energies are shown in Table 2. Compared
with experimental data, the energies obtained are underestimated but have a
good agreement in the relative energetic difference between the 2B1 and 2A2

states. For use in the model Hamiltonian, the energies were shifted to match
those experimentally measured [21,39].

The vibrational frequencies, evaluated at the MP2/aug-cc-pVDZ level of the-
ory are listed in Table 3. The assignment of these frequencies to C2v symmetry
followed those outlined by Evans [40] and correspond well to other reported
values [41–44]. We do note however that in this work phenol has been defined
along a plane such that the b2 modes are in plane vibrations and the b1 modes
are out of plane. Vibrational modes with significant motion of the phenyl ring
and C-O moiety are described as X-sensitive modes and are greatly affected
by the substituent X [40, 45], which in this case is oxygen. These modes are
Q1, Q2, Q7, Q13, Q27 and Q29.

A quantum dynamics model containing all 33 normal modes of phenol would
be prohibitively demanding and so only those important in describing the
photochemistry of phenol were included. From symmetry arguments the a1
and b2 modes are likely to contribute most to the dynamics. From these there
are seven modes important to the phenol model. They are the low frequency
b2 in plane C-O-H bend and ring deformation modes, the lowest frequency
a1 ring deformation/C-O stretch mode and the a1 modes corresponding to
the O-H bend, C-O and C-C stretch, C-C ring stretch and the O-H stretch.
These are illustrated in Figure 1. Previous models to study the excited states
of phenol consider two nuclear degrees of freedom r and θ corresponding to
the O-H bond length and O-H torsion [1, 4, 46]. These degrees of freedom are
present in the model described here as vibrational normal modes.

The parameters obtained from fitting the vibronic coupling model Hamilto-
nian to the adiabatic surfaces are shown in Table 4 and in the supplementary
information. Cuts along the seven important normal modes are shown in Fig-
ure 2. The quality of the fitting is evident by how well the curves pass through
the calculated points, particularly around points of interest such as the mini-
mum or crossing points. Quantitatively the quality of fitting can be assessed
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by the root mean square displacement (RMSD) between the fitted surfaces
and the ab initio points. For the fitted surfaces in the model Hamiltonian the
RMSD was 0.022 eV.

The on-diagonal linear coupling constants, κα, are shown in Table 4. For the
totally symmetric a1 modes the values are all non-zero. The three highest
frequency modes were subsequently fitted as Morse potentials to account for
anharmonicity. Details of these parameters can be found in the supplementary
information. Consideration of the parameter ratio κα/ωα is important for de-
termining how displaced the ionised state minima are from the ground state
minimum. This parameter becomes important for lower frequency modes thus
is largest for ν1 with important contributions coming from ν6 and ν7. The C-C
ring stretch mode, ν9 was also chosen as being important. Despite having a
lower parameter ratio, the size of the displacement from the equilibrium ge-
ometry was significant. An adjustment to the value of this mode improved the
simulated spectrum and also increased the parameter ratio. The new value is
listed in Table 5.

Table 4 lists the off-diagonal linear coupling constants, λα, the coupling be-
tween electronic states. Based on the symmetries of the two ionised states,
non-zero values are expected for the b2 modes. Making use of the ratio λα/ωα
again indicates low frequency modes to be of most importance. The only modes
to exhibit significant coupling are the two lowest frequency b2 modes. On in-
spection, it was found the initial values for these modes to be insufficient to
reproduce the experimental spectrum. The values listed have been adjusted
(Table 5) such that good agreement with experiment is achieved.

The on-diagonal second order quadratic parameters, γαα, and the bi-linear
parameters, γαβ, are listed in the supplementary information. The former pa-
rameters correspond to changes in frequency from the ground state to the
ionised states, whilst the latter are responsible for intramolecular vibrational
relaxation (IVR). These values are typically small although several of the bi-
linear parameters exhibited large values. It was necessary to adjust some of
these parameters to obtain spectra with good experimental agreement.

A Morse potential was required to fit several of the high frequency a1 modes,
parameters of which can be found in the supplementary information. These
modes were the C-H stretches ν10 and ν11 and the O-H stretch, ν12. The lin-
ear coupling constants (gradient at the Franck-Condon point) obtained from
the fitting are again useful indicators of the importance of these modes. All
the values are very small except for the upper ionised state of ν12 and only
this mode, the O-H stretch, was included in the model. Based on these argu-
ments, the remaining modes were neglected from the model Hamiltonian as
they exhibit little coupling and would not be expected to contribute to the
spectrum.
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3.2 Cuts through the potential energy surface

Figure 2(a) shows the cut along the ring deformation/C-O stretch ν1 mode. As
expected for a totally symmetric mode, the on-diagonal linear coupling value
is non-zero and a large shift is observed in the 2B1 state. Another significant
feature seen along this mode is the crossing of the states suggesting a conical
intersection to be present. The existence and location of such a crossing is
discussed later. The two b2 coupling modes are shown in Figure 2(b,c). Being
non totally symmetric modes there is no shift away from Q0, however a small
change in frequency is noted for both modes.

The totally symmetric O-H bend mode (Figure 2(d)) and C-O stretch (Figure
2(e)) show little significance aside from the expected shift away from the equi-
librium geometry. Both cuts, particularly mode ν7 contain calculated points
in the 2A2 state that lie away from the fitted curve. Calculated points along
the next ionised state energetically present no crossing or interaction between
states and we attribute the awry points as minor failings of the low level
CASSCF calculations. As these points are located far from the equilibrium
geometry, they are expected to have little effect.

Of particular interest was the cut along the C-C ring stretch mode, ν9, Figure
2(f). A significant shift in equilibrium geometry is seen for the 2B1 state whilst
a smaller shift in the opposite direction for the 2A2 causes the two states to
become close. As expected, the cut along the O-H stretch (Figure 2(g)) is
anharmonic for each state and best fitted as a Morse potential. Unlike in the
S1, S2 and S3 excited states of neutral phenol, the ionised states show no
evidence of crossing or photodissociation of the hydrogen.

It is evident that for the totally symmetric modes large shifts are present
only for the lower 1B2 states and this is reflected in the values of on-diagonal
linear coupling parameters. The consequence of this is likely to appear in a
spectrum containing significant vibrational structure from several progressions
whilst the 2A2 spectrum may lack structure.

The photoelectron spectrum calculated using the parameters obtained directly
from the fitting is shown in Figure 3. When compared with experiment (repro-
duced in Figure 6(a)), it is clear the simulation does not accurately reproduce
the spectrum. The likely causes for this are inadequacies in the fitted val-
ues and therefore require adjustments. Table 5 lists the parameters where
an adjustment from the fitted values was necessary in order to successfully
reproduce the experimental spectra.

Examination of the 2B1(D0) band shows the simulated spectrum to be domi-
nated by a progression of a single mode, ν1 only. In contrast, the experimental
spectrum shows there to be several different progressions present. The general
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shape and range of this band in the simulated spectrum matches well with
experiment but the correct fine structrue is lacking. This indicates adjust-
ments are needed to the on-diagonal linear coupling constants of the other
totally-symmetric modes to incorporate the fine structure. A change to the
on-diagonal linear coupling constant for ν9 for the 2B1 state ensured the first
peak in this progression conformed correctly to being the most intense peak.
This change, whilst retaining a similar value to the fitted value, is particularly
notable as a change in sign was required.

In altering the sign of κ
(1)
9 , the implication is a change in the direction of the

gradient and a large shift in the minimum along this mode. This alludes to a
failing in the CASSCF potential energy surfaces. It is, however, a necessary
change as simulations performed with a positive value of 0.2 eV produce a
spectrum similar to Figure 3, devoid of any additional fine structure except a
single progression from ν1. Support for this change is given by calculations at
the MP2/6-31+G* level of theory. Here, the gradient along ν9 for the 2B1(D0)

state at the neutral equilibrium geometry calculated gives a value of κ
(1)
9 =

−0.214 eV, close to the altered value for this parameter. This points to the
potential importance of electron correlation for this mode.

The change in this parameter also serves to change the ν1 progression, pre-
venting it from dominating the fine structure and moving the position of the
most intense peak. As such, the emergence of other peaks, from different vi-
brational progressions, without changing any other on-diagonal linear coupling
constants supports the need to change the ν9 parameter in such a way.

The 2A2(D1) band simulated using the unaltered parameters is vastly differ-
ent to experiment. Instead of a featureless spectrum comprising two peaks,
the simulation incorrectly produces addition peaks of differing intensities. It
was found that no adjustments to the κ values were required to reproduce
experiment, but rather alterations to the off-diagonal linear, λα and bi-linear,
γαβ coupling constants.

The changes to the off-diagonal bi-linear parameters prevented the spurious
progressions from occurring and ensured the relative peak heights were in
good agreement. The presence of large values in these parameters would often
result in too much broadening to the 2A2 band and loss of the little structure
present. Furthermore, these adjustments make certain the origin is the most
intense peak in the band and occurs at the correct energy. These changes,
despite being successful in reproducing the correct structure, however, often
resulted in spectra that are too structured and lacked broadness. As discussed
above, an increase in the coupling between the electronic states from the low
frequency b2 modes was needed to broaden the spectrum. This increase in
coupling had no effect on the the 2B1(D0) band but was required for the
2A2(D1) band, although the effect on the spectrum is small, but important.
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Since the strength of the coupling corresponds to the square of the parameter,
then increasing the parameter by a magnitude is needed in order to increase
the coupling sufficiently.

3.3 Conical Intersection

To check whether a conical intersection exists between the 2B1 and 2A2 states a
CAS(7,8) conical intersection minimisation was performed using Gaussian09.
The point in normal mode space corresponding to the intersection is denoted
QCI. As a function of the normal modes coordinates, the conical intersection
energy minimum can be expressed as: Q1 = −1.31, Q2 = 0.88, Q3 = 0.15,
Q4 = −0.14, Q5 = −0.59, Q6 = 1.52, Q7 = 0.51, Q9 = 0.96, Q10 = 0.14,
Q11 = 0.40, Q12 = −1.86, Q13 = 1.33, Q14 = 0.61, Q17 = −0.54, Q18 = 0.58,
Q19 = −0.41, Q20 = −0.66, Q21 = −0.11, Q22 = 0.13. Cartesian coordinates
for the geometry of the minimum energy conical intersection can be found in
supplementary information.

The conical intersection was calculated to be 0.54 eV above the Franck-Condon
point of the 2B1 state. The geometry is distorted away from the Franck-Condon
point but remains planar. The distortion is similar to the quinoid-type vibra-
tion observed for benzene and phenyl derivatives. There is a lengthening of
the ortho to meta C-C bonds and contraction of the remaining C-C bonds.
The C-O and the O-H bonds both contract and the C-O-H angle increases.
The derivative coupling and gradient difference vectors, showing the direction
of the distortion by which the degeneracy is lifted, are illustrated in Figure 4.

A series of equal step points were generated from the Franck-Condon point,
Q0, to QCI and the energies at each point calculated using CASSCF(7,8). The
fitted points along the vector to the intersection are shown in Figure 5. The
fitting was up to second order only. As far as the authors are aware, this is the
first reported observation of a conical intersection between these two states.
The intersection is relatively high energy from the minima of the 2B1 and 2A2

states and is shifted far from Q0, nevertheless a small amount of population
transfer between states is possible.

3.4 The Calculated spectra

Figure 6 shows the calculated photoelectron spectrum (b and c) for transitions
to the lowest ionised states with comparison to experiment (a). The band
between 8.2 and 9 eV is the transition to the 2B1 state and between 9.2 and 10
eV to the 2A2 state. The spectrum was calculated using the Quantics package,
with the parameters describing the potential energy surfaces obtained from the
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fitting using VCHAM as described previously. For calculating the spectrum, a
two state, seven mode model Hamiltonian was required including the D0 (2B1)
and D1 (2A2) ionised states. Both spectral bands have been shifted to account
for the zero point energy of the neutral molecule. The simulated spectrum
shows good agreement with experiment. The electronic origins, 00

0, for each
band located at 8.33 and 9.31 eV also show good agreement. For the 2B1

spectrum in Figure 6(b), a damping time of 30 fs was used whereas 14 fs was
used for the 2A2 spectrum. The differences indicate that the modes ignored
contribute less broadening to the 2B1 portion of the spectrum. The presence
of the conical intersection also adds broadening to the 2A2 band.

The 2B1 ←− X̃1A1 spectrum (left band in Figure 6) is well structured with
progressions from several vibrational modes. Figure 7(a) shows this band with
an applied damping of 150 fs. This provides higher resolution to the spec-
trum and allows analysis of the peak progressions. In their assignment for
this band, Debies and Rabalais attributed the structure to the symmetric ring
deformation/C-O stretch and ring stretching modes with frequencies 530cm−1

and 1608cm−1, respectively [18]. In this work these correspond to modes ν1
and ν9, however only including these modes is not sufficient to fully assign, or
indeed reproduce, the spectrum. The band origin 00

0 is located at 8.33 eV with
the ν1 progression 1n0 immediately following, replicating well both the spacing
and relative peak height. The most intense peak in the spectrum forms from
the C-C ring stretch progression 91

0. These modes on the own, however, are
insufficient to explain the vibrational structure of the band and we therefore
assign a peak to the C-O stretch progression, 71

0. Observed on both the 71
0 and

91
0 peak is a shoulder peak forming part of the long 1n0 progression.

The 2A2 ←− X̃1A1 spectrum (right band in Figure 6) is broader and lacks
structure. In the original assignment, what little vibrational structure is present
was assigned to another ring deformation/C-O stretch mode with a frequency
of 814cm−1. In our model this corresponds to mode ν2. From the cut along
this mode and subsequent fitted parameters, it seems unlikely this mode is
responsible for the observed structure and therefore we disagree in this as-
signment. Instead, the peak at ∼ 9.47 eV is attributed to the C-O stretch,
71
0. The shoulder peak on the 00

0 transition, which can be observed in the ex-
perimental spectrum, results from the 11

0 progression. Figure 7(b) shows there
to be underlying vibrational structure, however both the ν1 and ν7 progres-
sions rapidly decrease in intensity and are obscured in the broadness of the
spectrum. The high resolution spectrum also show the presence of a peak cor-
responding to the 91

0, which is not observable in the experimental or lower
resolution simulated spectrum.

Dynamical information and the effect of the conical intersection were also
investigated. Figure 8 shows the diabatic state populations of the 2B1 and
2A2 states during the simulation time of 200 fs, following ionisation to the 2A2
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state. Within 10 fs significant population transfer occurs, indicating transfer of
the wavepacket onto the lower state. Following this initial burst, the population
of the 2B1 state increases gradually during the simulation, reaching a final
population value of 0.3 at 200 fs. This supports the involvement of the conical
intersection in the dynamics of phenol ionisation.

Conclusions

The study and rationalisation of molecular photodynamics can be explained
through the topology of the potential energy surfaces. Consideration of these
surfaces are especially critical where non-adiabaticity is present and vibronic
coupling plays an important role. Accurately calculating the potential energy
surfaces is vital for capturing the coupling correctly. Despite lacking dynamic
electron correlation, the CASSCF method performs reasonably well in repro-
ducing the surfaces. Even though the calculated ionisation energies are lower
than those determined from experiments, the method correctly predicts the
ordering of states and relative energetic difference.

A full multi-dimensional potential energy surface encompassing all the vi-
brational modes of a molecule is computationally demanding for all but the
smallest systems. For phenol this means that explicit consideration of all 33
vibrational modes is unfeasible. Taking a smaller, select number of modes con-
taining all the totally symmetric modes and the b2 coupling modes, creates
a more tractable model. The automatic fitting procedure is able to provide
all the necessary parameters, but the linear optimisation used in the fitting
does not guarantee the parameters obtained are optimal and a different set
of parameters may be better. This is evident by the need to adjust several
parameters to accurately reproduce the experimental spectrum.

In addition to the coupling between states, a conical intersection was found
to exist. Whilst a cut along the lowest frequency totally symmetric mode
showed the states to cross, the actual intersection was located along a vector
comprising a large number of normal modes. Diabatic state populations during
the simulation showed that ionisation into the 2A2 state leads to transfer and
population of the lower ionised state.

The model described here, consisting of seven modes, is complete enough to
reproduce the experimental photoelectron spectrum and thus describes the
regions around the Franck-Condon point well. The analysis of the vibrational
fine structure differs here to that proposed alongside the experimental data.
An extra mode is needed to fully assign the first ionisation band. The little
structure observed in the second ionisation band was suggested to correspond
to the second lowest totally-symmetric vibrational mode. From the linear cou-
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pling parameters and cuts along the potential energy surface, an alternative
assignment is suggested.
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Table 1
Computational details for the quantum dynamic simulations. The DVR type HO
corresponds to Harmonic oscillator DVR, Ni are the number of primitive DVR
functions used to describe each mode and ni are the number of single particle
functions used for the wavepacket on each state

Mode DVR Type Ni n1, n2

Excitation to 2B1 Q1 HO 31 6,7

Q6 HO 31 6,7

Q7 HO 31 6,7

Q9 HO 31 6,7

Q12 HO 31 6,7

Q13 HO 31 6,7

Q14 HO 31 6,7

Excitation to 2A2 Q1 HO 31 6,7

Q6 HO 31 6,7

Q7 HO 31 6,7

Q9 HO 31 6,7

Q12 HO 31 6,7

Q13 HO 31 10,7

Q14 HO 31 10,7

Table 2
Vertical ionisation energies of phenol, calculated from the equilibrium geometry.
The CAS(7,8) calculations used a 6-31+G∗ basis. All values in eV.

State CAS(7,8) Experimental

2B1 7.986 8.508 [39]

2A2 8.670 9.280 [21]
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Table 3
Theoretically calculated frequencies of vibrational modes, in cm-1 and electron volts,
for X̃1A1 state of phenol calculated at the MP2/aug-cc-pVDZ level of theory and
ordered by their C2v symmetries.

Frequency Symmetry Description

Mode / cm-1 / eV (Cs) (C2v) [40]

1 520 0.0645 A′ a1 Ring deformation + C-O stretch

2 812 0.1007 A′ a1 Ring deformation + C-O stretch

3 998 0.1238 A′ a1 Breathing mode

4 1035 0.1284 A′ a1 C-H bend in plane

5 1176 0.1458 A′ a1 C-H bend

6 1194 0.1480 A′ a1 OH bend

7 1267 0.1571 A′ a1 C-O stretch + C-C stretch

8 1501 0.1861 A′ a1 C-C ring stretch

9 1646 0.2041 A′ a1 C-C ring stretch

10 3192 0.3957 A′ a1 C-H stretch

11 3236 0.4013 A′ a1 C-H stretch

12 3806 0.4719 A′ a1 O-H stretch

13 397 0.0492 A′ b2 In plane C-O-H bend

14 612 0.0758 A′ b2 Ring deformation

15 1083 0.1343 A′ b2 C-H bend in plane

16 1161 0.1440 A′ b2 C-H bend in plane

17 1332 0.1652 A′ b2 C-H bend

18 1471 0.1823 A′ b2 C-C ring stretch

19 1482 0.1837 A′ b2 C-C ring stretch

20 1635 0.2027 A′ b2 C-C ring stretch

21 3207 0.3977 A′ b2 C-H stretch

22 3217 0.3988 A′ b2 C-H stretch

23 3230 0.4004 A′ b2 C-H stretch

24 406 0.0504 A′′ a2 C-C twist

25 817 0.1013 A′′ a2 C-H bend

26 910 0.1129 A′′ a2 C-H bend out of plane

27 223 0.0277 A′′ b1 Out of plane C-O bend + ring torsion

28 332 0.0412 A′′ b1 Out of plane O-H bend

29 496 0.0615 A′′ b1 Out of plane C-O bend + ring torsion

30 613 0.0760 A′′ b1 Ring deformation

31 742 0.0920 A′′ b1 C-H bend out of plane

32 864 0.1071 A′′ b1 C-H bend out of plane

33 926 0.1148 A′′ b1 C-H bend out of plane
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Table 4
On-diagonal linear coupling constants, κα and off-diagonal linear coupling constants,
λα, for the select normal modes of phenol, as determined from fitting the vibronic
coupling model Hamiltonian to adiabatic surfaces calculated at the CASSCF(7,8)/6-
31+G∗ level. All values in eV.

κα λα

Mode 2B1
2A2

ν1 -0.118 0.051 -

ν2 -0.070 -0.074 -

ν3 0.001 -0.011 -

ν4 0.012 0.017 -

ν5 -0.089 0.044 -

ν6 -0.126 -0.122 -

ν7 -0.129 -0.138 -

ν8 -0.045 -0.083 -

ν9 0.111 -0.070 -

ν10 -0.003 -0.012 -

ν11 -0.008 -0.034 -

ν12 -0.035 -0.159 -

ν13 - - -0.0002

ν14 - - 0.0011

Table 5
Values of selected coupling parameters adjusted from those obtained from the fitting
procedure in order to reproduce the experimental spectra. All values in eV.

λ13 -0.100

λ14 0.080

κ
(1)
9 -0.200

γ
(1)
1−6 -0.010

γ
(2)
1−6 0.005

γ
(2)
1−9 -0.010

γ
(2)
6−7 -0.020

γ
(2)
6−9 -0.020
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 1. The normal modes of phenol important in describing its photoelectron spec-
trum: (a) ν1 ring deformation and C-O stretch, (b) ν13 in plane C-O-H bend mode,
(c) ν14 ring deformation mode, (d) ν6 O-H bend mode, (e) ν7 C-O stretch and ring
distortion mode, (f) ν9 C-C ring stretch mode and (g) ν12 O-H stretch.
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Fig. 2. Cuts through the adiabatic potential energy surfaces along select normal
modes for the ionised states, which in order of energy at Q0 are 2B1 and 2A2. The
points are obtained from ab initio calculations at the CASSCF(7,8)/6-31+G∗ level.
The normal modes included are: (a) ν1 ring deformation and C-O stretch, (b) ν13
in plane C-O-H bend mode, (c) ν14 ring deformation mode, (d) ν6 O-H bend mode,
(e) ν7 C-O stretch mode, (f) ν9 C-C ring stretch mode and (g) ν12 O-H stretch.
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Fig. 3. The 2B1 ←− X̃1A1 and 2A2 ←− X̃1A1 photoelectron spectrum calculated
using parameters obtained from the fitting procedure without any adjustments. The
spectrum was calculated using the Quantics program and a seven mode model with
a damping time of 30 fs for the first band and 14 fs for the second band.

a) b)

Fig. 4. The vectors leading to the conical intersection: (a) the derivative coupling
vector and (b) the gradient difference vector.
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Fig. 5. Cut along the vector leading to the 2B1/
2A2 conical intersection. The points

are obtained from ab initio calculations at the CASSCF(7,8)/6-31+G∗ level.
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Fig. 6. The 2B1 ←− X̃1A1 and 2A2 ←− X̃1A1 photoelectron spectrum. (a) the
experimental spectrum as measured by Debais and Rabalais and reproduced with
permission [18]. (b) the calculated spectrum using the Quantics program and a
seven mode model with a damping time of 30 fs for the first band and 14 fs for the
second band. (c) the calculated spectrum with a damping of 100 fs to highlight the
fine structure present. 25
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Fig. 7. High resolution photoelectron spectra for (a) 2B1 ←− X̃1A1 and (b)
2A2 ←− X̃1A1 transition. Assignments of the structure corresponding to the ground
state vibrational modes are also shown. The higher resolution is achieved by setting
the damping time to 150 fs.
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Fig. 8. State populations and transfer between the 2B1 and 2A2 states following a
vertical ionisation into the 2A2 state. At the end of the simulation the population
of 2A2 and 2B1 is approximately 0.7 and 0.3, respectively.
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