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Purpose: Unexpected fetal abnormalities occur in 2–5% of
pregnancies. While traditional cytogenetic and microarray
approaches achieve diagnosis in around 40% of cases, lack of
diagnosis in others impedes parental counseling, informed decision
making, and pregnancy management. Postnatally exome sequen-
cing yields high diagnostic rates, but relies on careful phenotyping
to interpret genotype results. Here we used a multidisciplinary
approach to explore the utility of rapid fetal exome sequencing for
prenatal diagnosis using skeletal dysplasias as an exemplar.

Methods: Parents in pregnancies undergoing invasive testing
because of sonographic fetal abnormalities, where multidisciplinary
review considered skeletal dysplasia a likely etiology, were
consented for exome trio sequencing (both parents and fetus).
Variant interpretation focused on a virtual panel of 240 genes
known to cause skeletal dysplasias.

Results: Definitive molecular diagnosis was made in 13/16 (81%)
cases. In some cases, fetal ultrasound findings alone were of
sufficient severity for parents to opt for termination. In others,
molecular diagnosis informed accurate prediction of outcome,
improved parental counseling, and enabled parents to terminate or
continue the pregnancy with certainty.

Conclusion: Trio sequencing with expert multidisciplinary review for
case selection and data interpretation yields timely, high diagnostic
rates in fetuses presenting with unexpected skeletal abnormalities. This
improves parental counseling and pregnancy management.
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INTRODUCTION
Unexpected fetal abnormalities occur in around 2–5% of
pregnancies1 and, while diagnosis can be achieved in up to
40% of cases using traditional cytogenetic and microarray
approaches,2 the majority remain undiagnosed, many of
which have a genetic etiology.3 Definitive genetic diagnosis of
abnormalities during an ongoing pregnancy is challenging in
the absence of a family history. It is generally only possible
and timely in selected conditions where the phenotype is well
described and there are limited numbers of disease-causing
variants, for example, skeletal abnormalities caused by the
FGFR2 and 3 pathogenic variants.4 Inability to make a definite
diagnosis makes parental counseling and decision making
difficult, complicates pregnancy management, and results in
an emotional burden for couples.5

In the postnatal setting, exome sequencing is now part of
routine clinical genetic practice,6 adding around 25–30% to
the diagnostic yield in pediatric and adult patients suspected
to have a genetic condition but with no diagnosis after
traditional testing.7 However, limited data are available with

regard to performance of exome sequencing for the diagnosis
of fetal abnormalities although several small series of selected
cases report diagnostic rates of between 6.2 and 80%.8 The
majority of these studies report small numbers of selected
cases with results returned to parents after the pregnancy
ended. Nevertheless, the use of exome sequencing for the
prenatal diagnosis of the dysmorphic fetus using trio testing
of parents and abnormal fetus is gaining momentum,9,10

albeit with lower diagnostic yields of around 6–8% reported in
larger consecutive case series of unselected fetuses.9,10

Prenatal investigations need to deliver accurate results with
a high detection rate and in a timely fashion if they are to be
clinically useful for informing parental decision making and
pregnancy management. Skeletal dysplasias are a complex
group of disorders that are particularly challenging to
diagnose in the prenatal setting as they are individually rare,
many of the ultrasound findings are not necessarily
pathognomic for a specific condition, and most arise de
novo. Furthermore, they are very heterogeneous with variable
outcomes, some of which can be severe even in the presence
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of relatively minor prenatal findings. Thus, with the exception
of achondroplasia and thanatophoric dysplasia, which have
distinctive prenatal findings and limited numbers of causative
variants,4 definitive diagnosis must often await the result of
postnatal investigations or postmortem examination, the
latter of which is not always accepted by parents. Further-
more, definitive molecular diagnosis will be a prerequisite for
novel in utero treatment trials such as the Boost Brittle Bones
Before Birth study (BOOSTB4),11 which will offer in utero
mesochymal stem cell therapy for osteogenesis imperfecta
(OI) types III and IV.12 A high-throughput multigene
sequencing approach is the only way to achieve rapid
diagnoses in this time-limited situation.13 Here, we explored
the use of targeted exome sequencing for the rapid genetic
diagnosis of fetuses with a suspected skeletal dysplasia as an
exemplar of how exome sequencing can be used as an aid to
prenatal diagnosis and pregnancy management.

MATERIALS AND METHODS
This study was approved under “New methods of detecting
problems in pregnancy” Research Ethics Committee reference
01/0095.

Patients
Pregnant women who had had, or who were undergoing, an
invasive procedure to exclude chromosomal abnormalities
following ultrasound detection of fetal abnormalities sugges-
tive of a skeletal dysplasia in UK fetal medicine units were
identified prospectively. Inclusion criteria included short long
bones with or without evidence of bowing or fracturing of
bones, hypomineralization, hydrops, or thoracic hypoplasia.
Ultrasound images were reviewed by the local fetal medicine
teams and clinical geneticists with expertise in fetal dysmor-
phology. Where there was agreement that the findings were

suspicious of an underlying skeletal dysplasia, written
informed consent was obtained to take parental blood and
use excess fetal amniocytes or chorionic villi following
quantitative fluorescent polymerase chain reaction for the
common aneuploidies, which was also used to exclude
maternal cell contamination, and karyotyping or microarray
analysis (Figure 1). There was sufficient DNA available with
the exception of case 12 (Table 1), in which parents and
sibling were sequenced and the diagnosis confirmed in the
fetus using Sanger sequencing. Fetuses were excluded if other
etiological causes were considered likely, for example
intrauterine growth restriction.

Rapid clinical exome sequencing in trios
Parental and fetal DNA was sequenced simultaneously (trio
testing) to expedite interpretation of results. A modified
“clinical exome” sequencing method was adopted; a custom-
designed 20-Mb region of the exome, including all known
disease-causing genes was captured (referred to as the
“GOSHome”). In this study, with the exception of case 15,
we restricted our analysis to a virtual “panel” of 240 genes
known to cause skeletal dysplasias and which is updated as
knowledge changes (Supplementary Table S1 online).

Library preparation
DNA was extracted from parental whole blood and directly
from excess chorionic villi or amniocytes; remaining chor-
ionic villi or amniocytes were cultured and extracted
DNA was stored for further testing if required. An Agilent
(Agilent Technologies, Santa Clara, CA, USA) SureSelect
Focused Exome Plus 1 (GOSHome_v3) enriched a 20-Mb
genomic region. Following the manufacturer recommended
protocol “SureSelect Target Enrichment System for Illumina
(Illumina, Inc., San Diego, CA, USA) Paired-End Multiplexed
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Figure 1 Work flow for rapid prenatal exome-sequencing protocol. bp, basepair; CVS, chorionic villus sampling; gDNA, genomic DNA; GOSH,
Great Ormond Street Hospital; USS, ultrasound scan.
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Sequencing Library (G7530–90000, version B5)” a starting
input of 200 ng total genomic DNA was used per sample.
After library preparation the trio of libraries were pooled
equally and loaded at a final concentration of 1.4 pMol. We
performed next-generation sequencing of 150 base pair
paired-end reads using a 300-cycle mid output cartridge on
the Illumina NextSeq500.

Data analysis
Data were analyzed using our in-house designed Genesis
pipeline, which aligned FASTQ files with Burrows–Wheeler
Aligner, called variants with FreeBayes v0.9.21, and per-
formed variant annotation with Ensemble Variant Effect
Predictor and Alamut-Batch v1.3.1 (Interactive Biosoftware,
Rouen, France). Variant interpretation focused on a virtual
panel of 240 genes known to cause skeletal dysplasias curated
using panelApp (https://panelapp.genomicsengland.co.uk/).
The pipeline output was limited to variants within 20 base
pairs of the donor and acceptor splice sites of consensus
coding sequence exons, and filtering of variants was
conducted examining only those with a minor allele frequency
of o2% in ExAC (overall frequency), Exome Variant Server,
or 1000 Genomes data sets.

Trio analysis
Candidate variants within the gene panel were identified using
the variant interpretation platform, Sapientia v1.5.13. This
software platform filters variants by Exomiser score (a Sanger
Institute–designed Java program that searches for likely
pathogenic variants in whole-exome data), population fre-
quency, and mode of inheritance. Previous reports of a variant
were determined using HGMD Professional (http://www.hgmd.
cf.ac.uk/ac/index.php), ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), and locus-specific databases. Variants were classified
according to the UK best practice guidelines14 prior to the
adoption of the American College of Medical Genetics and
Genomics/Association for Molecular Pathology guidelines6 and
then using the American College of Medical Genetics and
Genomics guidelines for the more recent cases. Pathogenic,
likely pathogenic, and novel variants of uncertain clinical
significance were shortlisted as candidate variants.

Confirmation of suspected pathogenic variants
Candidate variants were reviewed by the referring clinical
geneticists, fetal medicine experts, and clinical scientists, and
any variants considered to be disease-causing were confirmed
using Sanger sequencing. Initially confirmation was per-
formed on all members of the maternal–paternal–fetus trio to
validate next-generation sequencing data including determin-
ing parental inheritance and for additional evidence in de
novo cases. Later, in cases where the fetus was homozygous
for a pathogenic variant found in both parents, the report was
issued without confirmation to expedite return of results to
parents. Results were issued to the patient’s clinician in the
form of a research diagnostic report.

RESULTS
A total of 19 cases were referred, and after case review 16
were sequenced and a definitive molecular diagnosis was
made in 13 (81%) (Table 1). Of the three cases excluded,
one pregnancy was terminated before sequencing and
investigations were performed postnatally. The second,
thought unlikely to have a skeletal dysplasia, was
subsequently found to have a chromosomal rearrangement.
The third pregnancy is ongoing with growth restriction. Of
the three cases sequenced without a definitive diagnosis one
(case 1) had a paternally inherited variant, in COL1A1,
c.1168G>A p.(Ala390Thr), that is found in ~ 1% of the
population and does not disrupt a GLY residue. This was
paternally inherited and because the father was of normal
stature, had no signs of OI, and no history of fracturing, this
was classified as a variant of unknown significance and not
reported. After birth the baby was found to have normal long
bones with very mild bowing of the femora detected
radiologically. No diagnosis was made after expert genetic
review. The second case (case 6) had a heterozygous variant,
GDF5 c.902G>A p.(Arg301Gln), which was inherited from
the mother who was normal and so too was classified as a
variant of unknown significance. The baby was delivered at
29 weeks because of poor growth and decreased fetal
movements, with an etiology of placental insufficiency. At
3 months of age she is developing normally and her height
remains below the third percentile. In the third (case 15) no
pathogenic variants were identified using the skeletal dysplasia
panel, but in view of the ultrasound findings indicating possible
craniosynostosis, analysis was extended to include a panel
including 8 genes associated with craniosynostosis and 123
genes associated with ciliopathies. A single, maternally inherited
likely pathogenic variant was identified in the RECQL4 gene
that causes Baller–Gerold syndrome, which is compatible with
the fetal ultrasound findings. However, as no second pathogenic
variant was identified this could not be confirmed as the
diagnosis before birth. This pregnancy ended in an intrauterine
death and details of the postmortem are awaited.
In all other cases, sequencing results could explain the

prenatal phenotype enabling definitive diagnoses to be made.
There were four recessive conditions with pathogenic variants
inherited from both unaffected parents, six de novo dominant
pathogenic variants, and two dominant pathogenic variants
inherited maternally (Table 1). In one, (case 7) diagnosis was
complicated as the mother had short stature and a maternally
inherited 10q26 deletion was demonstrated by microarray
analysis. This was initially interpreted as a possible cause for
the short stature. A maternally inherited ALPL c.331G>A p.
(Ala111Thr) likely pathogenic variant was also identified
during sequencing. The mother had no evidence of
hypophosphatasia clinically and had normal blood levels of
alkaline phosphatase while pregnant but had an increased
urinary phosphoethanolamine, raising the possibility of
hypophosphatasia. However, biochemical and clinical
findings in the newborn baby were consistent with a
diagnosis of hypophosphatasia. The second case with an
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inherited variant (case 8) was referred at 25 weeks’ gestation
as the fetus had short, bowed long bones. At genetic
consultation, the mother was of short stature, had mild
discoloration of her teeth, and a history of two fractures as a
child. Recurrent fractures in some relatives were subsequently
reported and a possible diagnosis of OI was discussed. Exome
sequencing identified the heterozygous pathogenic variant
COL1A2 c.2835+1G>A inherited from the mother,
confirming a diagnosis of autosomal dominant OI type IV.
The turnaround times from receipt of samples in the

laboratory to diagnosis ranged from 11 to 41 days, with times
decreasing as we streamlined the multidisciplinary approach
and clinical exome-sequencing interpretation protocol.
While in some cases the fetal ultrasound findings alone

were of sufficient severity for parents to decide to terminate
pregnancies, in others confirmation of molecular diagnosis
enabled more accurate prediction of outcome allowing
parents more certainty to make a decision to terminate. In
at least one case (cases 12) definitive molecular diagnosis
enabled the parents to continue the pregnancy. This case was
referred at 20 weeks following an ultrasound scan, which
showed significant shortening of all long bones, a small chest
with normal ossification, and no evidence of bowing or
fractures. A previous child had been born with short stature
but no definitive diagnosis. The parents were anxious to know
if the current pregnancy was an unrelated, de novo, severe
skeletal dysplasia or if the fetus had short stature similar to
their first child. Amniocentesis had been performed already
but there was insufficient DNA available for sequencing. Trio
sequencing of the previous child and the parents detected a
homozygous frameshift insertion in OBSL1 c.1273dup p.
(Thr425Asnfs*40), which was heterozygous in the parents.
Sanger sequencing of the remaining amniocyte DNA sample
in the current pregnancy showed that the fetus was also
homozygous for this pathogenic variant and on this basis the
parents elected to continue the pregnancy.

DISCUSSION
Here we describe for the first time the establishment of a rapid
diagnostic service for families with the unexpected finding of
a possible severe skeletal fetal dysplasia, such that it can be
used to influence pregnancy management. It required close
collaboration between the fetal medicine teams making the
ultrasound diagnosis, and clinical geneticists and clinical
scientists both for case selection and interpretation of
genomic results. Good communications with local genetic
and fetal medicine teams, and sharing of digital images and
ultrasound reports enabled inclusion of cases from across the
United Kingdom without the need for patients to travel.
Knowledge of the genetic diagnosis allowed better prenatal
counseling by pediatricians with expertise in managing
children with these conditions. Ultrasound alone can suggest
a diagnosis and in two cases these findings were of sufficient
severity for parents to decide to terminate pregnancies.
However, a definitive diagnosis can only be made by
molecular analysis or other pathological investigations after

birth. In this series, the molecular diagnosis in some cases
indicated a less severe prognosis and allowed parents to
continue the pregnancy. In some, molecular confirmation of a
diagnosis gave increased certainty of poor prognosis, giving
parents more confidence to make a decision to terminate an
affected pregnancy. With experience, the time to diagnosis fell
to less than 2 weeks for the most recent cases, making results
more useful in prenatal counseling and parental decision
making. A definitive diagnosis was made in 13 of the 16 (81%)
cases sequenced, demonstrating the value of careful case
selection by multidisciplinary review. In one further case, a
molecular diagnosis was thought highly likely following
detection of a maternally inherited likely pathogenic variant
in a recessive gene in which pathogenic variants are
compatible with the phenotype seen. While six arose de
novo, we identified four families where the fetus had inherited
a pathogenic variant from both parents. In two cases, the
condition was inherited from their mothers, both of whom
were unaware they had a genetic condition (cases 7 and 8).
These cases highlight the need for careful and expert pretest
genetic counseling to include the possibility of detecting subtle
features of parental carrier status or family history.
Prenatal diagnosis is beneficial for reproductive counseling

for conditions leading to neonatal death, such as some severe
types of osteogenesis imperfecta. If families decline postmor-
tem, for example for religious reasons, accurate diagnosis can
often not be made postnatally. A genetic diagnosis obtained
during the pregnancy allows for accurate risk counseling,
prenatal diagnosis in future pregnancies, the option of in vitro
fertilization with preimplantation genetic diagnosis, or, in the
most severe cases, justification for terminating the pregnancy.
However, a sequencing approach to prenatal diagnosis is

not without its limitations, which include cost, potential
difficulties in interpretation due to the limited phenotyping
available prenatally in spite of advances in imaging techni-
ques, limited coverage of disease-causing genes, and ethical
issues around the identification of incidental findings if using
whole-genome or whole-exome sequencing.15–17 There are
guidelines for managing these in the postnatal setting,18 but
none exist as yet to guide management prenatally where there
is the additional ethical challenge given the potential to
influence pregnancy decision making based on identifying
variants unrelated to the fetal phenotype. In the United States,
routine use of whole-genome or whole-exome sequencing for
prenatal diagnosis is not recommended outside of the context
of clinical trials.19 Furthermore, if using whole-genome or
whole-exome sequencing, detection of secondary findings,
such as cancer susceptibility genes, denies the unborn child
the right not to know if these are disclosed.17,20 Using a
trio exome approach and targeted panel analysis, as we have
in this study, minimizes this risk of identifying additional
findings,8,21 but an important caveat is the incomplete
coverage of relevant genes that might result. This may be
particularly relevant when one parentally inherited patho-
genic variant is identified in a recessive gene that predicts the
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prenatal phenotype seen as is reported in the literature22,23

and probably demonstrated in case 16.
Simultaneous trio testing increases costs but is also required

to facilitate faster filtering and interpretation of gene variants,
and confirmation of inheritance to allow accurate discussion
of prognosis and recurrence risks in a timely fashion. Cost will
become less of an issue as sequencing costs fall24 but for now,
particularly in public health settings, it is a barrier that can be
minimized by careful multidisciplinary review and case
selection, as we have shown in this series.
Accurate interpretation of genome sequences requires detailed

knowledge of the phenotype, which in the prenatal setting is not
always possible at the time of testing and may be complicated by
variable expressivity or evolution of the full phenotype over time.
Furthermore, some phenotypes are impossible to determine
from prenatal imaging, such as developmental delay, intellectual
disability, and behavioral abnormalities. Finally, there is no
database for fetal abnormalities equivalent to postnatal dysmor-
phology databases to help with phenotyping.25,26

Study limitations
This is a small study of highly selected cases. Further study is
required to demonstrate applicability to other prenatally
detected anomalies to widen eligibility. This study only
considered the practical issues of referral, case review, and
laboratory aspects and did not formally explore ethical issues
or parents’ views, although in our cohort they generally
expressed preference of knowing the diagnosis as it allowed
emotional preparation, information-gathering, and better
preparation for mode and place of delivery. However, even
accurate molecular diagnosis can lead to further uncertainty
due to incomplete penetrance or variability15 and there is
limited information on stakeholder views.16,27 As we consider
wider implementation we must explore further stakeholder
views and develop guidelines to support implementation.
In conclusion, we have shown that using an expert

multidisciplinary approach to case selection and data
interpretation, targeted exome sequencing can yield very
timely and high diagnostic rates in fetuses presenting with
unexpected skeletal abnormalities. In this small series,
delivered across the country, these results aided parental
counseling and decision making in some cases. Trio testing is
required for rapid results, which is expensive, and raises many
ethical issues. However, if carefully handled and with strict
case selection, this development could prove beneficial in
other fetal abnormalities likely to have a genetic etiology. This
is a rapidly developing field, with programs such as the
100,000 Genomes Project driving transformation of care for
those with rare diseases,28 and health-service providers
moving toward implementation of genome sequencing as
a first-line investigation. Thus there is an urgent need to
develop national guidelines to support timely and appropriate
clinical implementation. We believe that this will improve
prenatal diagnosis and counseling for parents faced with
difficult decisions following the detection of unexpected
abnormalities in their unborn baby.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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