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Abstract. Independent component analysis (ICA) is an unmixing method based on a linear model. It has pre-
viously been applied in in vivo multiwavelength photoacoustic imaging studies to unmix the components rep-
resenting individual chromophores by assuming that they are statistically independent. Numerically simulated
and experimentally acquired two-dimensional images of tissue-mimicking phantoms are used to investigate the
conditions required for ICA to give accurate estimates of the relative chromophore concentrations. A simple
approximate fluence correction was applied to reduce but not completely remove the nonlinear fluence distortion,
as might be possible in practice. The results show that ICA is robust against the residual effect of the partially
corrected fluence distortion. ICA is shown to provide accurate unmixing of the chromophores when the absorp-
tion coefficient is within a certain range of values, where the upper absorption threshold is comparable to the
absorption of blood. When the absorption is increased beyond these thresholds, ICA abruptly fails to unmix the
chromophores accurately. The ICA approach was compared to a linear spectroscopic inversion (SI) with known
absorption spectra. In cases where the mixing matrix with the specific absorption spectra is ill-conditioned, ICA is
able to provide accurate unmixing when SI results in large errors. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Biomedical photoacoustic imaging has been a rapidly growing
field of research in the last two decades, with significant devel-
opment in the instrumentation, reconstruction algorithms, and
exogenous contrast agents. This has enabled a range of clinical
applications of photoacoustic imaging, such as breast imag-
ing,1,2 cardiovascular imaging,3–5 and skin imaging,6,7 as well
as preclinical studies using endogenous contrast, such as hemo-
globin, for imaging the vasculature in the mouse brain8–10 and in
tumor models11–13 or exogenous contrast agents14,15 and reporter
genes16,17 for molecular or cellular imaging. To acquire a photo-
acoustic image, the tissue is illuminated with nanosecond laser
pulses, and the optical energy is absorbed by the chromophores
in the tissue. This leads to a small temperature and pressure rise,
generating broadband acoustic waves that propagate to the sur-
face of the tissue where they are detected and used to reconstruct
images of the pressure rise.

By acquiring multiple images using excitation light with dif-
ferent wavelengths, photoacoustic imaging can be extended to
a spectroscopic technique that can in principle quantify the
concentration of the chromophores and hence reveal functional
information about the subject. However, the image contrast
depends on the absorbed optical energy, which is nonlinearly
related to the chromophore concentrations, because it is a prod-
uct of the local light fluence and the absorption coefficient. The
light fluence is not only spatially and spectrally nonuniform

but also depends on the unknown chromophore concentrations.
Therefore, it presents the key challenge for quantitative
photoacoustic imaging. The most straightforward method of
accounting for the nonlinear fluence distortion is to divide the
multiwavelength photoacoustic images by an approximation of
the fluence at each wavelength, which can be obtained by for
example assuming homogeneous optical properties.18,19 In
this way, the effect of the fluence is approximately “cancelled
out,” such that the images represent a linear sum of chromophore
concentrations that can be unmixed using linear spectroscopic
inversion (SI), as in conventional optical spectroscopy, which
uses the pseudoinverse of the matrix of the known specific
absorption spectra. Linear methods with approximate fluence
correction are easy to implement and fast to compute; hence,
they are attractive for in vivo studies. However, the accuracy
of SI is limited for nonsuperficial imaging depths,20 because
it depends on the accuracy of the fluence correction, which
is only an approximation of the true fluence distribution in prac-
tice. Improved quantification accuracy in some scenarios has
been demonstrated using more sophisticated inversion schemes,
including methods involving light source modulation,21 sparse
signal decomposition,22 fluence modeling using light transport
equations,23–25 or generating spectral libraries.26 However, these
methods are more challenging to implement for in vivo images
due to issues such as model mismatch, increased level of com-
plexity, and/or high computational demand.

One way to enable quantification in a wider range of appli-
cations would be to retain the simplicity of a linear model but
increase the robustness to errors in the fluence correction. This*Address all correspondence to: Lu An, E-mail: lu.an.13@ucl.ac.uk
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may, in some cases, be achieved using independent component
analysis (ICA),27–29 which is a linear source separation method
that decomposes the multiwavelength image data into compo-
nents representing the individual chromophores by assuming
that they are mutually statistically independent. ICA has the
advantages of being fast, easy to implement, and computation-
ally inexpensive. It was first proposed for unmixing photoacous-
tic images by Glatz et al.,28 who showed that it can provide
spectral unmixing with less cross talk error than SI. It has
also been shown in some cases that applying ICA to the loga-
rithm of the photoacoustic images can result in more accurate
estimations of the relative concentrations compared to using
ICA on the images without taking the logarithm.30 However,
since the components of interest are represented as a ratio to
the background chromophore concentration, this approach
requires that the chromophore concentration in the background
tissue is known. ICA has been used in an in vivo multiwave-
length photoacoustic imaging study of near-infrared fluorescent
protein-expressing glioma cells,31 as well as in studies using
exogenous probes that bind to injured cells32 or cells undergoing
apoptosis.33 In the above-mentioned studies, the main purpose
of applying ICA was to aid the visualization of the probe by
distinguishing it from the background tissue, rather achieving
quantitatively accurate representation of the relative chromo-
phore concentrations. As a result, despite having been applied in
several in vivo studies, the quantitative accuracy of ICA has been
not rigorously assessed for photoacoustic imaging. Therefore,
the aim of this paper is to investigate the conditions required
for ICA to provide quantitatively accurate unmixing, which
required an approximate fluence correction step. Simulated
multiwavelength photoacoustic images are used to assess the
robustness of ICA against inaccuracies in the fluence correction
and demonstrate the effect of retaining different numbers of
dimensions as a preprocessing step to ICA. The results of ICA
are also compared to SI for experimentally acquired images of
a tissue-mimicking phantom. Furthermore, the performances of
ICA and SI are analyzed for inversions using the experimental
images with varying spectral ranges. We demonstrate both the
advantages of ICA and its limitations, by including examples of
cases where it provides accurate quantification, as well as cases
where it breaks down.

2 Principles of Independent Component
Analysis

Assuming that the acoustic reconstruction of the initial pressure
rise due to the absorption of optical energy is perfect, so there
are no image artifacts, a set of photoacoustic images with M
voxels acquired at N wavelengths, whose contrast originates
from K chromophores, can be described using matrix notation
as

EQ-TARGET;temp:intralink-;e001;63;200P ¼ Φ ∘ ½AðΓ ∘ CÞ�; (1)

where ∘ denotes the Hadamard product, P is a ðN ×MÞ matrix
with each row corresponding to the reconstruction of the initial
pressures at one of the wavelengths, Φ is the ðN ×MÞ fluence
matrix with each row representing the spatially varying fluence
at one of the wavelengths, A is the ðN × KÞ mixing matrix with
each column representing the wavelength-dependent specific
absorption coefficient of one of the chromophores, C is the
ðK ×MÞ concentrations matrix with each row representing
the concentration distribution of one of the chromophores, and

Γ is a ðK ×MÞ matrix, where all rows are identical and equal to
the spatially varying Grüneisen parameter.

Both ICA and SI are unmixing methods based on a linear
model. The initial photoacoustic pressure is, however, non-
linearly related to the concentrations, due to the spectrally and
spatially varying fluence matrix in Eq. (1). An approximation
to linearity can be achieved by dividing P element-wise by an

approximate estimate of the fluence, Φ
̮
, such that

EQ-TARGET;temp:intralink-;e002;326;662

P

Φ
̮ ¼ P

̮
≈ AðΓ ∘ CÞ: (2)

In SI, the mixing matrix with the specific absorption coeffi-
cients is known. Hence, the chromophore concentrations can be
estimated using the pseudoinverse of the mixing matrix, A†

EQ-TARGET;temp:intralink-;e003;326;585A†P
̮
≈ Γ ∘ C: (3)

SI cannot separate Γ from the concentrations in general, as Γ
does not vary with wavelength and scales with the concentra-
tions. In in vivo imaging studies, Γ is often assumed to be
a spatially constant scaling factor, even though it may vary
significantly between different tissue types.34

Unlike in SI, the mixing matrix is not known in ICA. Instead,
ICA aims to decompose the multiwavelength photoacoustic
images into the source components, which represent the indi-
vidual chromophores, based on the assumption that they are
statistically mutually independent of each other. Statistical
independence is defined as follows: two events, X and Y, are
independent of each other if the probability of X occurring
does not in any way influence the probability of Y occurring.
In quantitative photoacoustic imaging, this requires that the
knowledge of the concentration of a chromophore at a location
is not affected by the information provided about another
chromophore at the same location. In other words, if the distri-
butions of certain probes are unrelated to other chromophores,
such as blood and lipids, then the concentration of the probe
does not reveal any information about the amount of blood in
the same pixel; hence, they are independent from each other.
Example of such independent probes can be found in the imag-
ing of reporter genes, such as genetically encoded fluorescent
proteins18 or tyrosinase-expressing cells,35 and exogenous con-
trast agents that accumulate in regions unrelated to the blood
distribution, such as in lymphatic vessels and lymph nodes.36

Examples of chromophores that are unlikely to be independent
include oxy- and deoxyhemoglobin, as their distributions are
typically highly correlated. Therefore, ICA is not suitable for
unmixing oxy- and deoxyhemoglobin for the estimation of
blood oxygenation.

In ICA, the independent components are found from the
multiwavelength images by searching for a mixing matrix, W,
whose inverse can be multiplied by the matrix with the mixed
signals to give the matrix of the source components, S

EQ-TARGET;temp:intralink-;e004;326;166W†P
̮
¼ S; (4)

where the rows of S have maximal statistical independence.
The unmixed component in each row of S corresponds to
one of the chromophores, such that S ≈ Γ ∘ C, provided that
the true spatial distributions of the chromophore concentrations
are independent.
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In the widely used ICA algorithm FastICA,27 the search for
the most independent components is based on the central limit
theorem, which states that the probability distribution of the sum
of multiple independent variables will always be more Gaussian
than the distribution of one of the independent variables alone.
The Gaussianity of the probability distribution of the output
components is measured using negentropy, which is a normal-
ized version of entropy. Hence, the independent source compo-
nents are found by iteratively searching for a mixing matrix that
maximizes the negentropy of each row of S.

Unlike SI, ICA does not recover the concentrations for differ-
ent chromophores to a common scale, because the magnitude of
each independent source is unknown. It is clear from the ICA
model in Eq. (4) that since neither W nor S is fixed, the mag-
nitude of each source component can be arbitrarily changed
by multiplying any row in S and dividing the corresponding col-
umn in W† with the same constant. This means that while the
relative concentration to other spatial locations for each chromo-
phore can be recovered, the concentration of one chromophore
cannot be compared to that of another chromophore.

3 Generating Multiwavelength Photoacoustic
Images

If the fluence was estimated exactly, such that Φ
̮
¼ Φ, the

approximate model in Eq. (2) would be an exact equality,
and if the chromophore distributions were independent, both
ICA and SI would achieve accurate unmixing of the chromo-
phores, such that the outputs of both inversions are exactly
equal to Γ ∘ C. In practice, however,Φ

̮
is only an approximation

of Φ, and both methods will lead to errors. Both experimental
and numerically simulated multiwavelength photoacoustic
images of tissue-mimicking phantoms were generated to inves-
tigate the accuracy of ICA for various levels of absorption and
heterogeneity in the tissue structure, as well as the effect of
dimension reduction and wavelength selection, in order to
understand the extent to which ICA can be used as a reliable
quantification method. The same data sets are also unmixed
with SI for comparison. The experimental and numerical phan-
toms were designed such that the following criteria were
satisfied:

1. The spatial distributions of the chromophores are in-
dependent, so that when the fluence adjustment is
perfect, ICA results in accurate unmixing.

2. The specific absorption spectra of the chosen chromo-
phores are such that the mixing matrix A is full rank,
so that when the fluence adjustment is perfect, SI also
results in accurate unmixing.

Hence, using these phantoms, it is possible to see how the
inaccuracies in an approximate fluence adjustment affect the
performance of the unmixing methods.

3.1 Experimental Photoacoustic Image Acquisition

Eight capillary tubes (Paradigm Optics, Morcap 83) with inner
diameter 590 μm and wall thickness 66.5 μm were used to con-
struct the tissue-mimicking phantom. The tubes were arranged
horizontally in two vertical lines as shown in Fig. 1, which
shows a cross section of the phantom in the experimental
setup. The left column of tubes was filled with four different
concentrations of copper(II) chloride dihydrate (CuCl2 · 2H2O)

dissolved in deionized water. The concentrations were in the
ratios 1:2:3:4, where the uppermost tube had the lowest concen-
tration of 5.2 gL−1 while the bottom tube had the highest con-
centration of 20.8 gL−1. The right column of tubes was filled with
solutions of nickel(II) chloride hexahydrate (NiCl2 · 6H2O), also
with concentration ratio of 1:2:3:4. These contrast agents simulate
different absorbers in the tissue and will be referred to as CuCl2
andNiCl2. The absorption spectra of all chromophores are shown
in Fig. 2. Since the specific absorption coefficient of NiCl2 is
approximately one order of magnitude lower than that of
CuCl2 [see Fig. 2(a)], the concentrations of NiCl2 were set to
be ∼10 times higher than CuCl2 to give similar optical absorp-
tion. Therefore, the uppermost and bottom tubes in the right
column had NiCl2 concentrations of 55.1 and 220.3 gL−1,
respectively. The average absorption of all tubes was
0.25 mm−1 at 810 nm.

The tubes were submerged at depths between 1.0 and 6.1 mm
in a background solution containing India ink (951 black,
Winsor & Newton) and 1% Intralipid diluted in deionized
water, such that they provide an absorption of ∼0.013 mm−1

at 810 nm and a scattering coefficient of ∼1 mm−1, which are
comparable to realistic values in soft tissue.38 The Grüneisen
parameter of CuCl2 and NiCl2 is both known to scale with
their concentrations such that

EQ-TARGET;temp:intralink-;e005;326;299Γi ¼ ΓH2O
ð1þ βiciÞ; i ¼ CuCl2 or NiCl2; (5)

where the βi coefficients are 5.80 × 10−3 Lg−1 and
2.25 × 10−3 Lg−1 for CuCl2 or NiCl2, respectively,

39 ci denotes
the concentrations of CuCl2 or NiCl2, and ΓH2O

is the Grüneisen
parameter of water, which is 0.12 Lg−1 at 22°C.40 The phantom
was illuminated at the surface using pulsed laser radiation
(SpitLight 600 OPO, InnoLas Laser GmbH) of 6-ns duration.
The beam diameter was ∼10 mm and the pulse energy was
7 to 13 mJ at the surface of the phantom depending on wave-
length. A small fraction of the excitation light was reflected into
an integrating sphere with a photodiode to measure the laser
pulse energy, which was used to normalize the photoacoustic
signals. A planar Fabry–Perot polymer film interferometer
(FPI)41 situated at the bottom of the tray containing the phantom
was used for ultrasound detection. The acoustic pressure waves
that propagate to the sensor modulate the thickness and hence
the reflectivity of the FPI. Thus, by scanning the surface of the
FPI with an interrogation laser and recording the reflected inten-
sity, a time-varying spatial mapping of the photoacoustic signals

5.2 gL–1

10.4 gL–1

15.6 gL–1

55.1 gL–1

110.2 gL–1

165.2 gL–1

220.3 gL–1

Water
Intralipid
India ink

Sensor CuCl2 NiCl2 Tray

20.8 gL–1

Fig. 1 A cross section of the experimental phantom which consisted
of eight tubes filled with different concentrations of CuCl2 (left column)
and NiCl2 (right column). The center of the tubes was positioned at
depths 1.0, 2.7, 4.4, and 6.1 mm in a scattering and absorbing back-
ground solution of water, 1% Intralipid, and India ink. The distance
between the water surface, where the phantom was illuminated, and
the acoustic sensor at the bottom of the tray was 7.3 mm.
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was generated. The sensor was interrogated along a 20-mm line
with 10-μm step size to reconstruct two-dimensional (2-D)
images of the cross section of the tubes at 18 equally spaced
wavelengths between 750 and 1090 nm.

3.2 Numerically Simulated Photoacoustic Images

A total of 37 sets of simulated 2-D multiwavelength photoacous-
tic images based on the same structure and chromophores as
the experimental phantom were generated to evaluate the perfor-
mance of ICA for different levels of absorption. The dimensions
of the simulated images were 7.4 × 20.0 mm2 and spacing
between the elements was 20 μm. The main differences to
the experimental phantom are the absence of the tube walls
and the fact that the India ink and Intralipid are also present
within the tubes. The concentration ratios of 1:2:3:4 between
the tubes in each column, as well as the 10-fold ratio between
CuCl2 and NiCl2 concentrations were kept constant for all data
sets, while the absolute concentrations of CuCl2 and NiCl2 were
varied in different ways in three case studies:

Case I consists of 15 data sets, where the concentrations
inside the tubes were increased such that the average
absorption coefficient of all tubes increased from 0.05
to 0.75 mm−1 at 810 nm in equal steps. The ink concen-
tration was kept constant for all data sets such that its
absorption coefficient is the same as shown in Fig. 2(b).

Case II consists of 11 data sets, where the concentration of
the ink was increased such that the absorption coeffi-
cient of the background solution at 810 nm was
increased from 0.003 to 0.20 mm−1. The CuCl2 and
NiCl2 concentrations inside the tubes were kept constant
at the same values as the experimental phantom, such
that the average absorption of the tubes was 0.25 mm−1

at 810nm.
Case III aims to investigate the impact of spatially inhomo-

geneous absorption in the background. A region con-
taining CuCl2 which surrounded two of the tubes was
included, as shown in Fig. 3. The CuCl2 concentration
in this region was increased such that its absorption
coefficient was increased from 0.015 to 0.362 mm−1

at 810 nm in 11 data sets. The concentrations of the
chromophores outside this additional region were

kept constant at the same values as the experimental
phantom.

The absorption coefficient was calculated for the same 18
wavelengths as the experimental phantom for each data set
based on the chromophore concentrations and their known spe-
cific absorption coefficients. The reduced scattering coefficient
was kept the same as the experimental phantom for all data
sets. Based on the distribution of the absorption and reduced
scattering coefficients, the fluence was modeled using the dif-
fusion approximation to the radiative transfer equation with the
MATLAB software package TOAST++42 for a 10-mm wide
Gaussian light source at the top of the phantom. The initial pres-
sure was found by multiplying the fluence by the optical absorp-
tion coefficient and the Grüneisen parameter.

The photoacoustic wave propagation from the initial pressure
distribution was modeled using the MATLAB toolbox k-Wave43

based on a k-space pseudospectral method. The time-varying
photoacoustic pressure was recorded at the bottom of the
numerical phantom.

3.3 Image Processing

Both the experimental and simulated images were reconstructed
using the time-reversal method,44 which backpropagates the
recorded time series of the photoacoustic pressure into the
image domain to form an image of the initial pressure.
Gaussian noise with standard deviation equal to 3% of the
peak intensity of data set in Case I with the same concentrations
as the experimental phantom was added to all simulated images.
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Fig. 2 (a) The specific absorption coefficient of CuCl2 (asterisks) is approximate one order of magnitude
larger than that of NiCl2 (circles). (b) The crosses indicate the absorption of the background solution,
which is the sum of the absorption coefficients of water (dash and dotted curve) and India ink (dashed
curve). The absorption of the Intralipid is negligible in this wavelength range. The absorption spectra
of CuCl2, NiCl2, and India ink are based on spectrophotometer measurements (Lambda 750S,
PerkinElmer), and the absorption spectra of water were published by Kou et al.37
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Fig. 3 The structure of the numerical phantom. The white circular
regions represent the tubes and the gray region represents the
additional region with increasing CuCl2 concentration in Case III.
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An approximate fluence adjustment was performed by divid-
ing the reconstructions of the initial pressure by the estimation
of the fluence, Φ

̮
. The Φ

̮
was calculated based on the simplify-

ing assumptions that the medium is a semi-infinite optically
homogeneous slab illuminated by infinitely wide plane waves,
such that the one-dimensional (1-D) solution to the diffuse
approximation can be applied

EQ-TARGET;temp:intralink-;e006;63;287Φðz; λÞ ¼ Φ0 exp½−μeffðλÞz�; (6)

where z is the depth from the illuminated surface, Φ0 is the flu-
ence at the illuminated surface, and μeff is the effective absorp-
tion coefficient given by μeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðμa þ μ 0

sÞ
p

, where the μa
and μ 0

s are assumed to be known and equal to that of the back-
ground solution. This exponential fluence adjustment is chosen
in this study because it can be applied straightforwardly in prac-
tice for in vivo photoacoustic images, with μeff estimated as an
average parameter for the tissue. A similar correction can also be
applied for imaging systems with circular illumination, in which
case the fluence can be approximated as a radially symmetric
function.45 While the fluence correction step is necessary for
obtaining accurate estimates of the relative chromophore con-
centrations, it is still an approximate method and does not
fully remove the fluence distortion.

The fluence adjustment overamplifies the noise in the regions
away from the light source where the values of Φ

̮
are small.

To avoid this, a 6.5 × 6.5-mm2 region of interest in the fluence

adjusted experimental images was decomposed using ICA and
SI. The raw experimental images, as well as the fluence estima-
tions and the fluence adjusted images, are shown in Fig. 4. As
expected based on the specific absorption coefficients of the
chromophores, the raw images at 750 and 1090 nm show higher
intensity for the right column of tubes containing NiCl2, while
the image acquired at 810 nm shows higher intensity for the left
column of tubes containing CuCl2. The streak patterns extending
from the tubes and the negative values in the reconstruction are
artifacts due to the limited detection aperture of the planar sensor.
The bottom row of figures shows that after the fluence adjust-
ment, the image intensity at the tubes increases with depth,
which is expected as the chromophore concentrations are higher
inside the deeper tubes. Since the negative values in the images
lack physical meaning, they were set to zero before the unmixing.

The FastICA algorithm requires further preprocessing of
the multiwavelength fluence adjusted images before unmixing.
The images are mean subtracted and whitened using principal
component analysis, and the dimensions of the image data are
reduced such that only the three principal components (PCs)
with the largest eigenvalues of the covariance matrix of P

̮
are

unmixed with FastICA. Since the ordering of the estimated in-
dependent components is arbitrary, the output components are
identified to the corresponding chromophores by calculating the
sum of squared differences between the normalized columns in
the estimated mixing matrix and the normalized known absorp-
tion spectra of the chromophores of interest.
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Fig. 4 (a) The experimental photoacoustic images of the tube phantom acquired at three different wave-
lengths, (b) the fluence estimations based on the 1-D exponential decay, and (c) the fluence adjusted
photoacoustic images. The fluence adjusted images are more similar to the expected absorption
coefficients than the raw images.
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For comparison, the fluence adjusted images were also
unmixed using SI, based on the known specific absorption
spectra of CuCl2, NiCl2, and the background solution.

4 Unmixing Using Independent Component
Analysis and Spectroscopic Inversion

4.1 Accuracy as a Function of Absorption

The fluence adjusted and preprocessed simulated photoacoustic
images at 18 wavelengths were decomposed using ICA and SI.
The unmixed components were normalized to their average
value at the tube with the highest concentration of the relevant
chromophore. The normalized components were compared to
the expected components, which are the true concentrations
of the relevant chromophores multiplied by the Grüneisen

parameter. Three types of errors are defined to provide a quan-
titative assessment of the accuracy of the unmixing methods:

1. The concentration error, δc, is defined as the average
error at the pixels in the tubes where the chromophore
of interest is present.

2. The average error at the tubes where the relevant
chromophore is absent is defined as the “false posi-
tive” error, δf .

3. The background error, δb, is the average error outside
the eight tubes.

For example, in the estimated CuCl2 component, δc is the
average error at the left column of tubes, δf is the average
error at the right column of tubes, and δb is the average error
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Fig. 5 The left, center, and right columns of plots show the δc , δf , and δb errors, respectively, for the
chromophore components unmixed from the simulated images at 18 wavelengths from (a) Case I,
(b) Case II, and (c) Case III using ICA (dots) and SI (asterisks). The x -axis indicates the average absorp-
tion of the eight tubes for Case I, the absorption of the background solution for Case II, and the absorption
of the additional region with CuCl2 for Case III, all at 810 nm. For Case I, the δc error for ICA is ≲10% for
μtubesa between 0.15 and 0.55 mm−1, while the δc error for SI increases approximately constantly with
μtubesa . The circles indicate the ICA errors for manual selection of the corresponding components.
Case II shows that the errors associated with ICA and SI are both relatively low for physiologically realistic
range of absorption in the background tissue. The δc and δf errors in Case III increase with the absorption
in the additional region for both ICA and SI. The δc , δf , and δb errors in the plot represent the average error
at the pixels in the relevant regions. The variability (standard deviation) of the δc and δf errors between
the individual tubes typically scales with the size of the errors and is on average 3% for errors <10% for
both ICA and SI.
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outside the tubes. For Case III, the errors in the additional region
are included in the definition of δc and δf.

The three types of errors are plotted in Fig. 5 as functions of
the average absorption of the tubes at 810 nm, μtubesa , for Case I,
the absorption of the background solution at 810 nm, μbkga , for
Case II, and the absorption of the additional region at 810 nm,
μadda , for Case III. In Case I, the δc error for SI increases with
μtubesa at a nearly constant rate for the whole range of absorptions
between 0.05 and 0.75 mm−1, as shown with asterisks. This is
expected as the estimated fluence is based on an optically homo-
geneous region, and therefore, the accuracy of Φ

̮
is reduced

for increasing μtubesa . The δf and δb of SI errors remain below
7% for this entire range of absorption. The errors of ICA are
represented with dots and all three types of errors are >10%
for μtubesa < 0.15 mm−1 in Case I. The large errors at low absorp-
tion may be due to the lower signal-to-noise ratio (SNR), which
leads to the first three PCs containing a smaller fraction of the
total variance of the data (see Sec. 4.2). When μtubesa is increased
beyond 0.15 mm−1, the errors of ICA are comparable to SI for
the data points with relatively low μtubesa , and as μtubesa is further
increased, ICA results in smaller δc than SI. However, when
μtubesa > 0.55 mm−1, the performance of ICA abruptly deterio-
rates as the errors increase to large values beyond the scale of the
plots. This is because beyond this threshold, the accuracy of the
fluence estimation is sufficiently low to lead to nonlinearities so
severe that the independent components found by ICA cannot be
correctly identified to the relevant chromophores based on the
estimated absorption spectra, hence resulting in a significant
increase in errors. This absorption level is comparable to that
of blood, which is 0.46 mm−1 at 810 nm38 (assuming a total
hemoglobin concentration of 150 gL−1 and 100% oxygenation).
The blue circles show the errors that would have been obtained
if the correct components were manually selected. This manual
selection may not be possible in practical applications because
prior knowledge of the expected chromophore distribution may
not be available.

In Case II, accurate unmixing with all three types of errors
≲10% was obtained for μbkga < 0.06 mm−1 at 810 nm using
ICA and <0.10 mm−1 using SI. When μbkga is increased further,
the errors for both unmixing methods increase rapidly. However,
these thresholds are significantly higher than the absorption
coefficient of the common types of biological tissue, which
is typically ≈0.01 mm−1 at 810 nm.38

The performance of both ICA and SI is dependent on the
accuracy of the fluence adjustment, which in this study is mainly
determined by the level of spatial inhomogeneity in the optical

properties of the phantom. This is highlighted by the fact that
both methods fail to produce accurate results in the presence
of the additional region with increasing concentration of CuCl2
in Case III, where the errors increase with μadda .

4.2 Component Selection

The thresholds above which the independent components can-
not be identified to the correct chromophores can potentially be
shifted toward higher absorption levels if the multiwavelength
image data are decomposed into fewer independent compo-
nents. This can be realized by keeping fewer PCs in the prepro-
cessing stage to reduce the dimensions of the data.

Figure 6 shows the δc, δf, and δb errors from unmixing the
images in Case I with ICA using two, three, or four PCs. The
results show that if only two PCs were processed with ICA, the
unmixed independent components can be correctly identified as
CuCl2 or NiCl2 for the full range of absorption levels investi-
gated in Case I, and no abrupt increase in error is observed.
However, using only two PCs also results in larger unmixing
errors for the higher absorption levels. When four PCs are
used, the error trends are similar to using three PCs, but a slight
lower shift of the range of the absorption in which ICA results in
accurate unmixing is observed. This shift may be explained by
the fact that, when the main features in the image have lower
contrast, a smaller fraction of the total variance of the data is
included in the first three PCs.

4.3 Experimental Images and the Condition Number
of the Mixing Matrix

The experimental images were acquired at 18 wavelengths over
a spectral range where the absorption spectra of the chromo-
phores have distinct features. However, in in vivo imaging appli-
cations, some chromophores in the tissue may have flatter and/
or less unique absorption spectra. To investigate how the unmix-
ing methods deal with poorly conditioned absorption spectra,
ICA and SI were applied on data sets with reduced spectral
ranges. The spectral range was reduced in 15 steps by removing
the images of the longest wavelengths, such that in the final
inversion (the inversion with the fewest wavelengths) only
the images at the wavelengths 750, 770, and 790 nm were
used. The condition number of the mixing matrix is plotted
as a function of the longest wavelength, λmax, used in the inver-
sion in Fig. 7. The figure shows that the condition number
increases significantly when the range of wavelengths is limited
to λmax < 830 nm.
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The unmixed components were normalized and the errors δc,
δf, and δb are defined in the same way as for the simulated
images. The three types of errors are plotted as a function of
λmax used in ICA and SI in Fig. 8. When the full range of wave-
lengths between 750 and 1090 nm is used, both methods result
in accurate unmixing with the δc, δf, and δb errors equal to 11%,
4%, and 3% for ICA and 10%, 5%, and 3% for SI, respectively.
This result is in agreement with the simulated data which
showed high accuracy for lower absorption levels for both
ICA and SI. The high accuracy is maintained for the inversions
using λmax > 930 nm. When λmax is further reduced, the accu-
racy of SI rapidly deteriorates, while the errors associated with
ICA remain relatively low. An example of the unmixed compo-
nents is shown in Fig. 9, where λmax ¼ 850 nm. Both the CuCl2
and NiCl2 components are estimated accurately with ICA.

On the other hand, SI is able to unmix the NiCl2 component
with relatively low errors, but its estimate of the CuCl2 compo-
nent is noisy and contains large errors.

Two key factors are likely to affect the unmixing results
when the spectral range is reduced: first, due to the spectral
variation in the absorption of the contrast agents in the tubes
and the background solution, the fluence correction is more
accurate for some wavelength combinations than others. This
results in variations in the accuracy of SI when certain wave-
lengths are excluded. Second, the condition number of the
known mixing matrix increases by several orders of magnitude
when λmax < 830 nm, as shown in Fig. 7. Therefore, the fact that
the inversion is more ill-conditioned is likely to be the dominant
cause of the large errors of SI for the inversions where
λmax < 830 nm. However, both these factors affect ICA less sig-
nificantly. As shown with the simulated image data in Sec. 4.1,
ICA is more robust against nonlinearities caused by poor fluence
correction, and therefore, the errors of ICA remain low when
wavelength range changes. Furthermore, the low errors of ICA
when λmax < 830 nm suggest that unmixing based on statistical
independence can potentially be used to obtain accurate sepa-
ration of the chromophores when SI performs poorly due to
ill-conditioning of the mixing matrix. This is possible because
ICA does not rely on the known spectra for unmixing and can,
therefore, tolerate ill-conditioning better than SI.

5 Summary and Discussion
Accurate unmixing of chromophores from multiwavelength
photoacoustic images in the absence of accurate knowledge of
the fluence is a challenging task. This study has shown that a
simple exponential fluence correction, which is straightforwardly
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Fig. 7 The condition number of the mixing matrix A with the known
specific absorption spectra as a function of the longest wavelength,
λmax, used in the inversion. The shortest wavelength is fixed at
750 nm.
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applicable in practice, allows linear models—ICA and SI—to be
used to unmix the chromophores to useful degree of accuracy
under certain conditions. Experimental and numerical phantoms
were designed for which the assumptions underlying both ICA
(statistical independence) and SI (full rank molar absorption
coefficient matrix) were true. Either approach would, therefore,
give accurate results for a perfect fluence correction. When
using the approximate, but practical, fluence correction
[Eq. (6)], it was shown that ICA results in smaller unmixing
errors compared to SI in two circumstances: first, when the
absorption level of the contrast agents is ∼0.4 to 0.5 mm−1,
ICA is more robust against nonlinearities caused by inaccurate
fluence estimation than SI, because it allows the mixing matrix
to vary in order to produce the most independent components.
Second, when the mixing matrix with the known absorption
spectra is more ill-conditioned, ICA provides significantly
more accurate results as it avoids using the fixed mixing matrix
by searching for the chromophore components based on their
statistical independence instead.

When the average absorption of the features of interest is
higher than a certain threshold (which in this particular phantom
is at 0.55 mm−1), leading to greater differences between the esti-
mated and the true fluence, the errors of ICA were shown to
abruptly increase as the output components corresponding to
the chromophores of interest could not be identified by compar-
ing the estimated spectra with the known. This suggests that,
with sufficient SNR, ICA can provide accurate unmixing for
absorptions up to a threshold. The threshold will likely be
dependent on the absorption spectra, the spatial structure of
the chromophores, and the accuracy of the fluence adjustment.
Given the potential presence of these upper absorption thresh-
olds under which ICA provides relatively low errors, it would be
ideal to use lower concentrations of contrast agents. This would
require the imaging system to have high sensitivity to obtain
sufficient SNR.

ICA is a suitable unmixing method that is robust to the small
errors in the fluence correction that are unavoidable in practical
scenarios, provided that the chromophores are known to be
mutually statistically independent. This assumption is valid for
the chromophores in the phantoms used in this study and in
applications such as unmixing some exogenous contrast agents
from the tissue in the background. However, the independence
criterion is not always fulfilled for all tissue chromophores,
hence limiting the range of applications of ICA.

The approximate fluence correction based on spatially
homogenous optical properties cannot account for highly
absorbing structures in the vicinity of the regions of interest.
This is demonstrated in Case III, where the additional absorbing
region is shown to cause errors for both ICA and SI. Despite this
being an extreme situation where the chromophores of interest
are completely surrounded by the additional absorber, it illus-
trates that the general applicability of linear methods relying on
a simple exponential fluence correction is limited in biological
tissues with large highly absorbing regions.

The number of components that will be estimated is fixed in
SI and determined by the dimensions of the mixing matrix,
which is equal to the number of chromophores. This study
showed that in ICA, it is not straightforward to choose how
many independent components the multiwavelength images
should be decomposed into. Since larger dimensionality leads
to difficulty in identifying the components as chromophores,
one should ideally retain the minimum number of PCs that

contain a sufficient fraction of the total variance to explain
the data well. In this study, PCs representing >75% of the vari-
ance needed to be kept for further processing with ICA to pro-
vide accurate results. However, there are no general guidelines
based on theoretical principles for the optimal choice of dimen-
sion reduction.

As discussed in Sec. 2, the magnitude of the independent
components estimated using ICA is arbitrary because both W
and S are unknown. However, some prior knowledge often
exists for the absorption spectra of the chromophores. These
known specific absorption spectra can potentially be used to
fix the magnitude of the independent components, such that
the relative concentration between different chromophores is
scaled correctly, and hence reducing ambiguities of ICA. One
simple approximate scaling method would be to divide the
estimated independent components by a scaling factor equal
to the ratio between the mean of each estimated spectrum
and the corresponding known spectrum.

6 Conclusion
In conclusion, ICA offers a fast and simple alternative to unmix-
ing multiwavelength photoacoustic images into components
representing individual chromophores, provided that the spatial
distributions of the chromophore concentrations are statistically
independent. When a first-order fluence adjustment has been
applied and the absorption is within certain ranges and relatively
spatially homogeneous, ICA can provide accurate quantification
of the relative chromophore concentrations. The results of ICA
depend on the choice of dimensions retained in the preprocess-
ing step, as accurate results require that the components can be
identified as the correct chromophores. It was shown that ICA
outperforms SI when mixing matrix is ill-conditioned, and that
ICA is more robust to errors in the fluence correction compared
to SI.
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