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Abstract 

 

Background:   CETP inhibition reduces vascular event rates but confusion surrounds its low-

density lipoprotein (LDL)-cholesterol effects. We sought to clarify associations of genetic 

inhibition of CETP on detailed lipoproteins. 

 

Methods and Results:  We used variants associated with CETP (rs247617) and HMGCR 

(rs12916) expression in 62,400 Europeans with detailed lipoprotein profiling from nuclear 

magnetic resonance spectroscopy. Genetic associations were scaled to 10% lower risk of 

coronary heart disease (CHD). Associations of lipoprotein measures with risk of incident CHD in 

three population-based cohorts (770 cases) were examined.  

 

CETP and HMGCR had near-identical associations with LDL-cholesterol concentration 

estimated by Friedewald-equation. HMGCR had a relatively consistent effect on cholesterol 

concentrations across all apolipoprotein B-containing lipoproteins. CETP had stronger effects on 

remnant and very-low-density lipoprotein cholesterol but no effect on cholesterol concentrations 

in LDL defined by particle size (diameter 18–26 nm) (-0.02SD 95%CI: -0.10, 0.05 

for CETP versus -0.24SD, 95%CI -0.30, -0.18 for HMGCR). CETP had profound effects on lipid 

compositions of lipoproteins, with strong reductions in the triglyceride content of all high-

density lipoprotein (HDL) particles. These alterations in triglyceride composition within HDL 

subclasses were observationally associated with risk of CHD, independently of total cholesterol 

and triglycerides (strongest HR per 1-SD higher triglyceride composition in very-large HDL 

1.35; 95%CI: 1.18, 1.54). 

 

Conclusion:   CETP inhibition does not affect size-specific LDL cholesterol but may lower 

CHD risk by lowering cholesterol in other apolipoprotein-B containing lipoproteins and lowering 

triglyceride content of HDL particles. Conventional composite lipid assays may mask 

heterogeneous effects of lipid-altering therapies. 

 

Keywords:  CETP, HMGCR, lipoproteins, drug target Mendelian randomization 
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Introduction 

Definitive evidence on the causal role of low-density lipoproteins (LDL) in cardiovascular 

disease comes from trials of LDL cholesterol lowering compounds,1 which have shown 

beneficial effects on risk of coronary heart disease (CHD) and stroke. Consistent effects have 

been seen for drugs acting on related pathways, such as 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase (HMGCR) inhibitors, i.e., statins, and proprotein convertase subtilisin-kexin type 9 

(PCSK9) inhibitors,2 both of which upregulate hepatic LDL receptor expression, and for drugs 

acting on other pathways, such as ezetimibe, which inhibits intestinal absorption of cholesterol.3  

 

However, trials of drugs primarily designed to alter concentrations of lipids other than LDL 

cholesterol have had mixed results.4 One such example is the class of drugs designed to inhibit 

cholesteryl ester transfer protein (CETP), a lipid transport protein responsible for the exchange of 

triglycerides and cholesteryl esters between apolipoprotein B-containing particles and high-

density lipoprotein (HDL) particles. CETP inhibitors were developed initially on the basis of 

their HDL cholesterol raising effects. While accumulating genetic evidence suggests that HDL 

cholesterol concentration is unlikely to be causally related to CHD,5 there were two strong 

reasons to believe that CETP inhibition may still reduce vascular risk: (i) genetic studies of 

CETP variants have shown associations with CHD6 and (ii) some CETP inhibitors not only 

increase HDL cholesterol but also appear to lower LDL cholesterol as measured by conventional 

assays.7 

 

The recent findings from the phase III REVEAL trial showed that treatment with the CETP 

inhibitor anacetrapib led to a reduction in risk of coronary events that was proportional to the 

reduction in non-HDL cholesterol.8 Interestingly, anacetrapib appeared to have discrepant effects 

based on the assay used to quantify LDL cholesterol (using beta-quant, direct or Friedewald 

estimation).7 This discrepant effect was also identified in a genetic study that approximated a 

factorial clinical trial of CETP inhibition and statin therapy.9 Thus, while both CETP inhibitors 

and statins lower Friedewald-estimated LDL cholesterol, which also includes cholesterol carried 

by other lipoprotein particles, it is possible that the drugs have differential effects on the 

concentration and content of lipids in different apolipoprotein-B containing lipoproteins.  
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In this study, we used the established approach of exploiting genetic variants near the protein-

coding genes of drug targets to investigate detailed lipid and lipoprotein subclass signatures of 

CETP inhibition. We compared the association of variants in CETP with HMGCR10 (to proxy 

statin treatment) to gauge insight into how these two therapies alter the lipoprotein milieu. We 

also present findings that the triglyceride composition, in contrast to circulating concentrations, 

of HDL particles is associated with CHD and may relate to a new mechanism by which CETP 

inhibition reduces risk of CHD. 

 

 

Methods 

Prospective and cross-sectional studies and lipoprotein quantification 

We used genetic and lipoprotein data from four population-based Finnish cohorts and one cross-

sectional study in the UK (cohort characteristics are presented in Online Table 1 and study 

descriptions are given in the Supplementary Note in the Supplementary Appendix). For 

prospective analyses we used two of the abovementioned Finnish cohorts and additionally a UK-

based multiethnic SABRE (Southall And Brent REvisited) cohort. Briefly, the cohorts used were 

the Northern Finland Birth Cohort 1966 (NFBC66) (n = 4,702 individuals aged 31 y at blood 

draw),11 the Cardiovascular Risk in Young Finns Study (YFS, n = 1,948 individuals aged 24–39 

y in 2007),12 two population based Finnish cohorts FINRISK 1997 (n = 6,942 individuals aged 

24–74 y) and DILGOM subsample of FINRISK 2007 (n = 4,124 individuals aged 24–74 y),13 a 

study of healthy blood donors from the UK (INTERVAL: n = 40,958 individuals aged 18–80 

y)14 and a tri-ethnic UK community-based cohort SABRE (n = 4,857 individuals aged 40–69 

y).15 A nuclear magnetic resonance (NMR)-based methodology was used to quantify lipoprotein 

lipids and subclasses. Details of this platform have been published previously,16, 17 and it has 

been widely applied in genetic and epidemiological studies.10, 18  

 

Where possible, we excluded individuals receiving lipid lowering medication, pregnant women 

and those who had a high proportion (>30%) of values missing across the lipid traits. All 

measures were first adjusted for sex, age (if applicable), genotyping batch (if applicable) and ten 

first principal components from genomic data and the resulting residuals were transformed to 
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normal distribution by inverse rank-based normal transformation. Details of study-specific 

genotyping are provided in Online Table 2 in the Supplementary Appendix. 

  

SNP analysis 

We selected variants as genetic proxies of CETP and HMGCR inhibition on the basis of robust 

associations with circulating lipids in GWAS consortia19, 20 and target gene expression. The 

HMGCR variant (rs12916) LDL cholesterol lowering T allele (-0.24 SD LDL cholesterol per T 

allele; P=1.3x10-14) has been shown to lower HMGCR expression21 and the CETP variant 

(rs247617) HDL cholesterol increasing A allele (0.84 SD HDL cholesterol per A allele; 

P=5.4x10-94) associates with lower gene expression across several tissues, verified through 

Genotype To Expression (https://gtexportal.org) project data.22 We used an additive model for 

each cohort separately (see Online Table 1 for details of analysis software). In order to make the 

lipoprotein and lipid estimates comparable, the estimates for CETP rs247617 and HMGCR 

rs12916 were scaled to the same CHD association as reported by the CARDIoGRAMplusC4D 

GWAS Consortium.23 The per-allele log odds (logOR) for CHD was 0.0358 for HMGCR 

rs12916 and 0.0309 for CETP rs247617; subsequently the summary statistics of each individual 

cohort and each metabolite were scaled to -0.105 logOR of CHD (equivalent to an odds ratio 

[OR] of CHD of 0.90) to align the estimates to a 10% lower risk of CHD. The cohort specific 

association results of lipoprotein and lipid measures with both variants were then combined 

using an inverse variance weighted fixed effect meta-analysis.  

  

Our focus for this study was to evaluate the impact of variants in CETP and HMGCR on the 

entire cascade of apolipoprotein B-containing lipoproteins and HDL subclasses. Therefore, we 

decided a priori to examine 191 lipoprotein and lipid traits available from the NMR platform.18, 

24 Focusing on these 191 traits, we estimated that 28 principal components explain 99% of their 

variation in the Finnish cohorts and therefore we used a P-value threshold of 0.05/28=0.002 to 

denote evidence in favor of an association. Abbreviations and full descriptions of the lipoprotein 

measures studied are listed in Online Table 3. 

 

Association of lipoprotein measures with risk of incident CHD 
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Cohorts contributing to the associations of lipoprotein lipid concentration and composition 

measures and the hazard of incident CHD were FINRISK 1997, DILGOM and SABRE. 

Participants with prevalent CHD were excluded from the analysis. Following exclusion, data 

were available from FINRISK 1997 for 7,076 individuals (291 cases / 6,785 controls) and 4,736 

individuals from DILGOM (192 cases / 4,544 controls) and for SABRE 4,689 individuals with 

non-missing data (287 cases / 4,402 controls). The follow up time of FINRISK 1997 and SABRE 

were censored to 8 years to match the follow up time in DILGOM.  

 

Prior to statistical analyses, metabolic measures were log-transformed and scaled to standard 

deviations (SD) in each cohort. The relationships of lipid measures with the risk of CHD were 

analysed using Cox proportional hazards regression models with age, sex, mean arterial pressure, 

smoking, diabetes mellitus, lipid medication and geographical region (Finnish cohorts), ethnicity 

(SABRE), total cholesterol and total triglyceride concentrations as covariates. The cohort-

specific association results of 191 lipid measures were then combined using an inverse variance 

weighted fixed effect meta-analyses. Analyses were conducted in R studio (version 1.0.153, R 

version 3.3.3). As above, we used a P-value threshold of ≤0.002 to denote evidence in favor of 

an association. 
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Results 

Data from 62,400 individuals with extensive lipoprotein subclass profiling and genotypes were 

available. We combined data from five adult cohorts (mean age range from 31 to 52 years) and 

one cohort of adolescents (mean age 16 years) for the genetic analyses where 51% of participants 

of all six studies were female. Study specific and pooled estimates from meta-analyses of genetic 

and observational analyses for all 191 traits are presented in Online Figures 1-15. 

 

Scaled to a 10% lower risk of CHD, CETP rs247617 and HMGCR rs12916 had near-identical 

associations with Friedewald estimated LDL cholesterol  (Fig. 1) and similar associations for 

apolipoprotein B. In contrast, when LDL cholesterol was defined on the basis of cholesterol 

transported in LDL based on particle size (diameter 18–26 nm), and measured via NMR 

spectroscopy, CETP had no association with this size-specific LDL cholesterol (0.02 SDs; 

95%CI: -0.10, 0.05). While HMGCR had a relatively consistent association with individual 

apolipoprotein B-containing lipoproteins (effect estimates ranging from -0.25 for IDL cholesterol 

to -0.18 for VLDL cholesterol), CETP had the most pronounced associations with VLDL 

cholesterol, a weaker association with IDL cholesterol but no association with LDL cholesterol 

defined by particle size or cholesterol transported by any of the large, medium or small LDL 

subclasses (Fig. 1).  

 

When examining triglycerides in apolipoprotein B-containing particles, CETP associated with 

lower circulating triglyceride concentrations in VLDL and IDL subclasses, while HMGCR had 

weaker effects on these measures, except in LDL subclasses (Fig. 2). CETP had a very strong 

association with higher HDL cholesterol (0.84; 95%CI: 0.76, 0.92) but HMGCR did not (0.04; 

95%CI: -0.02, 0.10) (Fig. 3). Similarly, CETP was inversely associated with the total quantity of 

triglycerides in HDL particles (-0.23; 95%CI: -0.31,-0.15) but HMGCR was not (-0.03; 95%CI: -

0.09, 0.02).  

 

The lipoprotein particle structure is biophysically constrained, generating strong correlations 

between lipid measures within individual lipoprotein subclasses.25-28 Notable differences in lipid 

concentrations in subclass particles would therefore suggest changes in the compositional 

proportions of these lipids. For genetic inhibition of CETP, the effects on circulating triglyceride 
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concentrations in all HDL subclasses were weaker (XL-HDL and L-HDL) or even in the 

opposite direction (M-HDL and S-HDL) than the effects on cholesterol concentration in these 

subclasses  (Fig. 3). Examining the genetic associations with the particle lipid compositions, the 

relative amount of triglycerides (in relation to all lipid molecules in the particles) was remarkably 

diminished in all HDL subclass particles by genetic inhibition of CETP (Fig. 4). Genetic 

inhibition of HMGCR did not associate with the triglyceride concentration or composition of any 

HDL subclass. These associations are in line with the known physiological roles of CETP and 

HMGCR and their inhibition.29, 30 In addition, as expected, CETP associated with higher 

compositions of triglycerides in most VLDL subclass particles and HMGCR showed 

directionally similar, albeit weaker associations. 

 

To understand the clinical relevance of these HDL-related compositional changes arising from 

CETP inhibition, beyond reductions in cholesterol concentrations of apolipoprotein B-containing 

lipoprotein particles, we studied the observational associations of lipoprotein subclass lipid 

concentrations and compositions with CHD in three prospective population cohorts. The 

triglyceride concentration of HDL was associated with incident CHD when adjusted for non-

lipid cardiovascular risk factors (Fig. 5)., However, when serum cholesterol and serum 

triglycerides were added to the model, as expected, the associations attenuated. In contrast, the 

triglyceride compositions of all the HDL subclass particles were positively associated with CHD, 

independent of circulating concentrations of cholesterol and triglycerides, with hazard ratios 

around 1.3 for all HDL subclasses (Fig. 5). In addition, compositional enrichment of cholesteryl 

esters in the largest VLDL particles (XXL-VLDL and XL-VLDL) was associated with risk of 

CHD (Online Fig. 11); genetic inhibition of CETP also impacted on these traits (Online Fig. 2). 
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Discussion 

We used genetic variants in CETP and HMGCR to gain insight into the expected effects of 

therapeutic inhibition of CETP and HMG-coA reductase on circulating lipoproteins and lipids. 

Our data show that while CETP and HMGCR have near identical effects on Friedewald-

estimated LDL cholesterol, this result masks a very different association of CETP and HMGCR 

with size-specific LDL cholesterol. Genetic inhibition of HMGCR showed similar effects with 

cholesterol across the apolipoprotein B-containing lipoproteins but genetic inhibition of CETP 

showed stronger associations with larger apolipoprotein B particles, namely VLDL and remnant 

cholesterol,31 but no association with cholesterol carried specifically in LDL particles defined by 

size. 

 

Friedewald-estimated LDL cholesterol (and other assays such as ‘direct’ and betaquant) are non-

specific measures of cholesterol.32-34 For example, in addition to the cholesterol in size-specific 

LDL particles, Friedewald LDL cholesterol also includes, to varying degrees, cholesterol in IDL, 

VLDL and lipoprotein(a).35 This non-specificity of commonly-used “LDL” cholesterol assays is 

under-recognized and underlies the prevailing opinion that inhibitors of HMGCR and CETP both 

alter LDL cholesterol. However, our data show this not to be the case: using NMR spectroscopy-

based lipoprotein particle quantification, which defines individual lipoprotein subclasses based 

on particle size,18, 25, 27 our findings demonstrate that CETP has negligible effect on cholesterol in 

size-specific LDL particles. In this way, the use of a composite lipid measure can obscure 

differential associations of a therapy or gene26 with individual constituents of the composite, and 

can have clinical ramifications. For example, if a trial is powered to a given reduction in 

Friedewald LDL cholesterol, under the naïve assumption that the drug uniformly alters all the 

subcomponents, then the trial may not have the expected result if the drug has differential effects 

on these subcomponents. This is exemplified in the recent phase III ACCELERATE trial of 

evacetrapib, which was terminated for futility, and was powered to a difference in LDL 

cholesterol based on a composite assay.36 The differential effects of CETP inhibition on 

composite markers such as Friedewald and directly-quantified LDL cholesterol compared to 

apolipoprotein B concentrations identified in the subsequent phase III REVEAL trial of 

anacetrapib7 suggest that had ACCELERATE used an alternative measure of pro-atherogenic 
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lipoproteins (e.g. apolipoprotein B or non-HDL-C8) to gauge the expected vascular effect, the 

trial may have been more appropriately powered. 

 

This highlights the need to understand, in detail, the consequences of lipid modifying therapies 

on lipoproteins and lipids in order to be able to gauge whether a composite measure (such as 

Friedewald LDL cholesterol) can be reliably used as an indicator of the likely beneficial effect of 

a therapy. This is unlikely to be limited to assays for LDL cholesterol. For example, assays that 

quantify triglycerides, measure the summation of triglycerides across multiple lipoprotein 

particle categories. Drugs currently under development that target triglycerides (such as 

apolipoprotein C-III inhibitors37) have differential effects on triglycerides in lipoprotein subclass 

particles as demonstrated in a recent genetic study.38 If triglycerides within different lipoprotein 

subclasses have heterogeneous effects on vascular disease, a clinical trial powered to the overall 

concentration of circulating triglycerides may give an inaccurate portrayal of the cardiovascular 

consequences arising from apolipoprotein C-III inhibition.  

 

Another key finding is that the lipid compositions of lipoprotein particles can associate with 

disease risk independently of total lipid concentrations. While genetic inhibition of CETP 

increased circulating concentrations of cholesterol in all HDL subclasses, the triglyceride 

composition, i.e. the percentage of triglyceride molecules of all the lipid molecules in the 

particle, was markedly lower in all HDL particles. Intriguingly, our observational analyses, the 

first to explore lipoprotein particle lipid composition with CHD outcomes, revealed that 

triglyceride enrichment of HDL particles associates with higher risk for future CHD, 

independently of total circulating cholesterol and triglycerides. The largest hazard ratio for the 

triglyceride enrichment in medium HDL subclass particles was of a similar magnitude (~1.3) as 

that for LDL cholesterol and apolipoprotein B.39 These findings suggest that lipoprotein particle 

compositions, independent of circulating lipid concentrations, could have a role in the 

development of CHD. While the causal role of these lipoprotein compositions remains unclear, 

these findings advocate the importance of moving from simple composite lipid measures towards 

more detailed molecular phenotyping of lipoprotein metabolism.  

 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295394doi: bioRxiv preprint first posted online Apr. 5, 2018; 

http://dx.doi.org/10.1101/295394
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 13 (24) - 

Key strengths of our analyses include the availability of detailed measurements of blood 

lipoprotein subclass concentrations and compositions from general population studies with 

incident CHD events, together with the availability of genome-wide genotyping. While we used 

CETP and HMGCR variants as genetic proxies for therapeutic inhibition, we note that the CETP 

genetic variant recapitulated the effects of CETP enzyme activity in relation to the role the 

enzyme has in shuttling esterified cholesterol from HDL to apolipoprotein B-containing particles 

in exchange for triglycerides.29 Furthermore, prospective population-based data of patients taking 

statins with blood sampling before and after the commencement of therapy showed that genetic 

variants in HMGCR robustly recapitulated the effects of statin therapy on lipoprotein subclasses 

and lipids.10 

 

In conclusion, we have shown that, in contrast to genetic inhibition of HMG-CoA (proxying 

statin therapy), genetic inhibition of CETP does not alter circulating size-specific LDL 

cholesterol concentrations. This is masked by using conventional, non-specific assays for LDL 

cholesterol and may be problematic for ongoing and future clinical trials of lipid lowering 

therapies, especially when a non-specific marker of lipids is used to derive an expected effect of 

a drug with risk of disease. Our findings suggest potential additional mechanisms by which 

CETP inhibition could prevent CHD through reductions in the triglyceride composition of HDL 

particles. Our findings also call attention to the need for metabolic precision in measurements of 

lipoprotein lipids and in assessing the role of lipoprotein metabolism in cardiovascular disease in 

relation to ongoing treatment trials of novel lipid-altering therapies. 
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Figure 1. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 

(blue) with circulating apolipoprotein B and cholesterol concentrations in size-specific 

apolipoprotein B particles. Estimates represent the standardized difference in lipoprotein trait, 

with per-allele associations scaled to a 10% lower risk of CHD. Analyses were adjusted for age, 

sex, genotyping batch and ten genetic principal components. Closed circles represent statistical 

significance of associations at P<0.002 and open circles associations that are non-significant at 

this threshold. The lipoprotein subclasses are defined by particle size:17, 18, 25 potential 

chylomicrons and the largest very-low-density lipoprotein particles (XXL-VLDL; average 

particle diameter ≥75 nm); five different VLDL subclasses, i.e. very large (average particle 

diameter 64.0 nm), large (53.6 nm), medium (44.5 nm), small (36.8 nm) and very small VLDL 
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(31.3 nm); intermediate-density lipoprotein (IDL; 28.6 nm); and three LDL subclasses, i.e. large 

(25.5 nm), medium (23.0 nm) and small LDL (18.7 nm).   
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Figure 2. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 

(blue) with circulating triglyceride concentrations in size-specific apolipoprotein B 

particles. The estimates and lipoprotein subclasses are as defined in the caption for Fig. 1.  
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Figure 3. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 

(blue) with circulating apolipoprotein A-I as well as cholesterol and triglyceride 

concentrations in size-specific HDL particles. The estimates are as defined in the caption for 

Fig. 1. The four size-specific HDL subclasses are very large (average particle diameter 14.3 nm), 

large (12.1 nm), medium (10.9 nm) and small HDL (8.7 nm).  
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Figure 4. Associations of genetic variants in CETP rs247617 (red) and HMGCR rs12916 

(blue) with the triglyceride composition of size-specific lipoprotein particles. The estimates 

are as defined in the caption for Fig. 1 and the lipoprotein subclasses are as defined in the 

captions for Fig. 1 and Fig. 3. 
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Figure 5. Observational associations of circulating triglyceride concentrations and 

triglyceride composition in lipoprotein subclass particles and risk of incident coronary 

heart disease.  

Left pane:  Black: Hazard ratios for incident CHD per-SD higher triglyceride concentration 

within each size-specific lipoprotein subclass adjusted for traditional risk factors. Pink: adjusted 

for traditional risk factors, serum cholesterol and serum triglycerides. Right pane: Black: Hazard 

ratios for incident CHD per-SD higher percentage of triglycerides (of all lipid molecules) within 

each size-specific lipoprotein subclass adjusted for traditional risk factors. Pink: adjusted for 

traditional risk factors, serum cholesterol and serum triglycerides. Basic risk factors include age, 

sex, mean arterial pressure, smoking, type 2 diabetes mellitus, lipid medication, geographical 

region (FINRISK) and ethnicity (SABRE). Closed circles represent statistical significance of 

associations at P<0.002 and open circles associations that are non-significant at this threshold. 

 
 

0.7 0.9 1 1.2 1.4 1.6

Apo B particles

HDL particles

XXL−VLDL−TG

XL−VLDL−TG

L−VLDL−TG

M−VLDL−TG

S−VLDL−TG

XS−VLDL−TG

IDL−TG

L−LDL−TG

M−LDL−TG

S−LDL−TG

XL−HDL−TG

L−HDL−TG

M−HDL−TG

S−HDL−TG

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.7 0.9 1 1.2 1.4 1.6

Apo B particles

HDL particles

XXL−VLDL−TG

XL−VLDL−TG

L−VLDL−TG

M−VLDL−TG

S−VLDL−TG

XS−VLDL−TG

IDL−TG

L−LDL−TG

M−LDL−TG

S−LDL−TG

XL−HDL−TG

L−HDL−TG

M−HDL−TG

S−HDL−TG

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Basic Basic + total triglycerides +  total cholesterol

0.7 0.9 1 1.2 1.4 1.6

Apo B particles

HDL particles

XXL−VLDL−TG%

XL−VLDL−TG%

L−VLDL−TG%

M−VLDL−TG%

S−VLDL−TG%

XS−VLDL−TG%

IDL−TG%

L−LDL−TG%

M−LDL−TG%

S−LDL−TG%

XL−HDL−TG%

L−HDL−TG%

M−HDL−TG%

S−HDL−TG%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.7 0.9 1 1.2 1.4 1.6

Apo B particles

HDL particles

XXL−VLDL−TG%

XL−VLDL−TG%

L−VLDL−TG%

M−VLDL−TG%

S−VLDL−TG%

XS−VLDL−TG%

IDL−TG%

L−LDL−TG%

M−LDL−TG%

S−LDL−TG%

XL−HDL−TG%

L−HDL−TG%

M−HDL−TG%

S−HDL−TG%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Triglyceride composition
RISK OF INCIDENT CORONARY HEART DISEASE 
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