Monypenny, J;
Milewicz, H;
Flores-Borja, F;
Weitsman, G;
Cheung, A;
Chowdhury, R;
Burgoyne, T;
... Ng, T; + view all
(2018)
ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation.
Cell Reports
, 24
(3)
pp. 630-641.
10.1016/j.celrep.2018.06.066.
Preview |
Text
Ng 1-s2.0-S2211124718309938-main.pdf - Published Version Download (3MB) | Preview |
Abstract
The immunosuppressive transmembrane protein PD-L1 was shown to traffic via the multivesicular body (MVB) and to be released on exosomes. A high-content siRNA screen identified the endosomal sorting complexes required for transport (ESCRT)-associated protein ALIX as a regulator of both EGFR activity and PD-L1 surface presentation in basal-like breast cancer (BLBC) cells. ALIX depletion results in prolonged and enhanced stimulation-induced EGFR activity as well as defective PD-L1 trafficking through the MVB, reduced exosomal secretion, and its redistribution to the cell surface. Increased surface PD-L1 expression confers an EGFR-dependent immunosuppressive phenotype on ALIX-depleted cells. An inverse association between ALIX and PD-L1 expression was observed in human breast cancer tissues, while an immunocompetent mouse model of breast cancer revealed that ALIX-deficient tumors are larger and show an increased immunosuppressive environment. Our data suggest that ALIX modulates immunosuppression through regulation of PD-L1 and EGFR and may, therefore, present a diagnostic and therapeutic target for BLBC.
Archive Staff Only
![]() |
View Item |