
1 

 

EVALUATING AND DESIGNING STUDENT LOAN SYSTEMS: AN OVERVIEW OF EMPIRICAL 

APPROACHES

Lorraine Dearden 

University College London and Institute for Fiscal Studies 

 

Abstract  

To understand and design student loan systems, it is important to have appropriate earnings 

and/or income projections for current and future graduates. In this paper, Current Population 

Survey (CPS) data from the US is used to demonstrate empirical approaches that can be 

exploited to simulate lifetime income and earnings profiles that are needed to understand and 

design effective and sustainable student loan systems. The crucial element in getting this 

analysis right, is having reliable simulations of the whole distribution of future graduate 

earnings and income. Typically in this literature, the repayment burdens (RBs) of student loans 

are calculated at different percentiles of the graduate income or earnings distribution. Often 

unconditional quantile regression (UQR) are used to calculate age earning/income profiles for 

different quantiles. The paper shows that this approach has its limitations when evaluating 

student loans and simple raw quantile estimates by age with some age smoothing is preferable. 

This approach can be used even in countries where income is censored and recorded in income 

bands. The paper shows a simple way of incorporating dynamics using these quantile profiles 

even when individuals only have access to very short panel data. This involves using copula 

functions drawing on earlier work by Dearden et. al (2008) and Bonhomme and Robin (2009). 

Having reliable dynamic estimates turns out to be important in assessing not only the taxpayer 

costs of designing an ICL but for correctly assessing the extent of loan repayment hardship for 

individuals.  
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1 Introduction 

 

To understand and design student loan systems, it is important to have appropriate earnings and 

income projections for current and future graduates. In this paper, Current Population Survey 

(CPS) data from the US is used to demonstrate some empirical approaches that can be used to 

simulate lifetime income and earnings profiles that are needed to both understand and design 

effective and sustainable student loan systems. The crucial element in getting this analysis 

right, is having reliable simulations of the whole distribution of current and future graduate 

earnings or income. Using income or earnings of example or average or median graduates is 

almost always not sufficient and often misleading.   

 

Chapman and Lounkaew (2015) in their paper on US Stafford loans showed the importance of 

looking at loan repayment burdens (RBs) across the entire income distribution of US graduates 

by age to understand the current crisis in the US student loan system. The RB of a loan is the 

proportion of income1 each period that is used by the debtor to repay a loan. Chapman and 

Lounkaew (2015) used Current Population Survey (CPS) data from 2009 (uprated to 2015) and 

showed convincingly that the RBs involved with the current US Stafford Loan system are very 

high and unsustainable for low earning graduates. The innovation in their paper was to 

calculate the entire distribution of graduate incomes by age and sex. For this, they used the 

unconditional quantile regression (UQR) method proposed by Firpo, Fortin and Lemieux 

(2009).  

 

Many other authors now routinely use quantile methods to calculate RBs at different parts of 

the income distribution and to design alternative loan systems including income contingent 

loans (ICLs). Most of the papers in this special issue have used national cross-sectional data to 

estimate RBs for a particular country across the distribution of income or earnings using 

different methods including UQRs. These papers then use the result from this exercise to 

design ICL systems and to estimate the potential subsidies involved in such schemes.  

 

This paper contributes to the literature in three important ways. First it shows that whilst UQRs 

are generally fine in this context, there can problems for the unwary, particularly if the UQR 

                                                 

1 In this paper graduate income and earnings by age are simulated. Income is generally used for repayment burden 

analysis whereas income contingent loan systems generally apply to labour earnings.  
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model is incorrectly specified. This contrasts with most other applications using quantile 

regression approaches where UQR is more appropriate. This is demonstrated using pooled 

2014-2017 US CPS data and shows that calculating raw percentiles conditional on age coupled 

with some age smoothing procedure gives much more reliable estimates of the quantiles of the 

income and earnings distribution that need to be used for RB analysis and student loan design. 

Moreover, the UQR will underestimate the RB problem.  

  

In some countries, such as Japan (see Dearden and Nagase (2017)), income and earnings data 

are censored and reported in income groups or bands which makes distributional analysis 

problematic. The paper uses CPS data to show that typical grouped income and earnings data 

can be easily turned into reliable percentile estimates by age using either interval regression or 

simply midpoints combined with age smoothing. It is crucial for loan design to have income or 

earnings measured by percentile to capture distributional features of the loan system and for 

estimating the budgetary implications of different loan designs.  The age smoothed predictions 

from this modelling exercise track the actual raw percentiles by age well, except for high 

incomes/earnings for males where the bands are wide or right censored. Fortunately, these 

high-income groups are generally the least important for estimating RBs and designing student 

loan systems.  

 

The paper shows that to get RB analysis and student loan design right, incorporating earning or 

income dynamics is important. This generally requires panel data with reasonably large sample 

sizes (N) which follows individuals over a reasonable time (T). In most countries with ICLs, 

dynamic simulation models are used to estimate taxpayer costs (see for example Crawford, 

Crawford and Jin (2014), Higgins and Sinning (2013) and Britton et. al (2018)).  In a lot of 

countries this type of panel data is not available or sample sizes are very small. In most 

countries, however, there are surveys which are the source of International Labor Organisation 

(ILO) labor force statistics, which may be used for this purpose. In Australia, Japan, France 

and the UK, it is the labour force survey (LFS). In the US it is the Current Population Survey 

(CPS) and in Colombia it is the Gran Encuesta Integrada de Hogares (GEIH). 

 

Most of these surveys have rotating panels which mean that individuals are in the survey for 

several months or quarters. This means the data can be used to look at employment, income 

and wage transitions over a year (very short T). This panel element can be exploited to simulate 
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earnings dynamics in a simple but sophisticated way which involves directly using the 

percentile earnings and income estimates by age used in typical RB analysis. This is done 

using copula functions. Previous examples of using this copula function approach to estimate 

dynamics include Dearden et. al. (2008) for England and Bonhomme and Robin (2009) for 

France. The novelty of what is proposed in this paper is that by using a simple copula function 

method one can easily recast the data used to calculate RBs into dynamic income or earnings 

predictions which appear to match the dependence structure of the observed panel data well.  

This can then be used to simulate income and earnings dynamics for future graduates, crucial 

for loan design and RB analysis. 

 

Estimating income and earnings dynamics has two important implications. First, it allows one 

to look at RBs at different percentiles of income over the term of the loan which adds an extra 

dimension to understanding the RB problem. It turns out that RB problems are likely to affect a 

much larger proportion of graduates than one would estimate using cross-sectional data which 

implicitly assumes no mobility.  Second, it allows one to more reliably estimate the costs of an 

ICL system as incorporating appropriate dynamics is crucial to getting this right as shown in 

papers such as Higgins and Sinning (2013) and Dearden et. al. (2008). This finding is 

confirmed using earning simulations based on US CPS data and shows that the estimated costs 

of income contingent loan schemes are over-estimated if dynamics are not built into these 

earning simulations.  

 

Indeed, assuming graduates stay in the same percentile of the earnings or income distribution 

over their working life will provide an upper bound on likely costs of an ICL scheme and a 

lower bound on RB problems with a TBRL. In a country like the US with high earnings 

mobility, this is especially important. In a low mobility country like Japan this will be less 

important.  

 

Section 2 describes the CPS data used in the paper.  In section 3 unconditional quantile 

regression methods are compared to smoothed raw percentiles by age and the paper shows that 

UQR is not always appropriate and probably should not be used in this context. The section 

also demonstrates how researchers can effectively deal with earnings or income survey data 

that has been banded (or partially banded) using either interval regression techniques or 

midpoints, coupled with age smoothing to get age earning profiles across the distribution that 
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match the actual age earning profiles well. Section 4 shows a simple but sophisticated approach 

to estimating dynamic lifetime earnings/income profiles when good longitudinal data is not 

available which involves a simple extension of the approach developed by Chapman and 

Lounkaew (2015) and copula functions. Section 5 shows the implications of incorporating 

income dynamics for RB analysis and ICL loan design. Section 6 concludes. 

2 US Current Population Survey (CPS) data 

 

All the analysis in this paper uses data from the March income supplement of the US Current 

Population Survey (CPS) from 2014, 2015, 2016 and 2017. From the CPS a sample of 

individuals who have completed a 4 year BA degree or higher degree who are aged 23 to 65 

are chosen. Data on individual income (from all sources) and labour earnings are used in the 

analysis in the paper.   

 

The total CPS sample across these 4 years consists of 142,385 observations of whom 64,376 

(46 percent) are males and 78,009 (54 percent) are females. A panel is constructed for those 

subset of BA graduates that are observed in two consecutive years, that is March 2014 and 

2015, March 2015 and 2016 or March 2016 and 2017, removing all clearly anomalous cases.2 

This results in a panel of 30,917 individuals (61834 observations) of whom 13,979 are males 

(46 percent) and 16,938 are females (54 percent). Summary statistics for the income and 

earnings variables for the whole CPS sample and the CPS panel are given in Table 1 below.  

 

The sample sizes mean that for the panel, we have an average of 330 individuals per age 

transition for men and 400 per age transition for women. For the CPS cross-sectional data we 

have around 1500 observations per age for men and 1800 for women. There is of course 

variation by age in both datasets with the lowest numbers concentrated among young male BA 

graduates aged 23 to 25 and female graduates aged 60 and above.  

 

  

                                                 

2 This includes change in sex, age going up by more than two years, change in ethnicity, change in where 

individual and/or parents were born.    
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Table 1: Summary Statistics for BA graduates: CPS 2014-2017  

 

 Income Earnings 
Gender Whole sample Panel Whole sample Panel 

Mean SD Mean SD Mean SD Mean SD 
Females 54496 62315 54527 50445 48651 60297 48849 48330 
Males 96585 112710 97553 95012 87831 109654 88858 91996 
Observations 142385 61834 142385 61834 

2 Estimating Age earnings profiles across the income and earnings distribution 

 

Typically, in the repayment burden/student loan literature, unconditional quantile regressions 

(UQRs) have been use to estimate smoothed age earnings profiles across the distribution of 

income and/or earnings. UQRs are important for lots of important questions where causal 

impact is at the heart of the question. But this is not true for RB analysis or student loan design. 

To estimate RBs at each age across the distribution of earnings, knowledge of how the qth 

quantile of actual or ‘raw’ earnings or income conditional on age Qq(y|A) changes by age. This 

is because the repayment burden is measured as the loan repayment at age t as a proportion of 

actual income at age t.  An UQR instead identifies the impact of the population aging by one 

year on the qth quantile of the unconditional earnings Qq(y) distribution across all ages.  

 

When regression (mean) techniques are used then E[y|A] averages up to the unconditional 

mean E[y] over the range of A because of the law or iterated expectations i.e. E[E[y|A]]= E[y]. 

The estimated coefficient on age (and any polynomials) gives the impact of a change in age on 

both E[y] and E[y|A].  However, for quantile regression this does not hold.  Firpo et. al. (2009) 

show that to get the unconditional effect of your variable of interest (A) on the outcome of 

interest (y) you need to perform conditional quantile regression (CQR) and then integrate out 

over all the conditioning variables to get the unconditional effect. They show how this can be 

done using the re-centered influence function (RIF). This however is not needed for RB 

analysis. 

 

With only one regressor (age and polynomials in age), it turns out not to be generally critical, 

as long as the polynomial in age is correctly specified. This is sometimes not true at low and 

high quintiles of the earnings or income distribution and is particularly unstable for percentiles 

which at some age have zero income or earnings and at other ages non-zero observations.  
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To illustrate potential problems, age earnings profiles for BA graduates are estimated for every 

year of the CPS data used in the paper, that is for 2014, 2015, 2016 and 2017 from the age of 

23 until 65.3 The data is used to calculate the raw percentiles of income and earnings by age, 

sex and year.4  This is all that is needed to calculate RBs but typically in the RB literature, 

these profiles are smoothed by using polynomials in age which can help reduce measurement 

error in income and earnings. Because zero earnings and income are included in these quantile 

estimates, a quintic in age is necessary to capture the drop-off in earnings during child-rearing 

ages for women but also for earnings/incomes at the bottom of the distribution where 

fluctuations in earnings and income are more likely. This is compared to the UQR method 

advocated by Chapman and Lounkaew (2015). UQR methods turn out to be very sensitive to 

the functional form used (whether log income/earnings are used or levels and the polynomial in 

age used) as well as the age range over which the model is estimated. For low and high 

quantiles it proves to be very unstable. 5 

 

Most papers in the RB literature use log linear UQR models and set zero earnings to one so 

that logs can be obtained and then obtain predictions from these models. To do this, one can 

simply exponentiate the predictions (cf the case with linear regressions) since unlike with 

regression, there is equivariance of quantiles under log linear transformations (or indeed any 

weakly increasing monotonic transformations) i.e. exp(Qq(logy|A)) = Qq(y|A). whereas 

exp(E[logy|A]) ≠ E(y|A).  

 

                                                 

3 Chapman and Lounkaew (2015) started their earning profiles at the age of 22. The number of 22 year old 

graduates in the CPS data is relatively small, so in this paper the base category is 23 year olds and 22 year old 

graduates are recoded as being 23. Having a sufficiently large sample size is important when calculating 

percentiles of the income distribution. Like Chapman and Lounkkaew (2015) military personnel are excluded but 

self-employed and BA graduates who go onto to do further post-graduate study are retained. This makes very little 

difference to the analysis but increases sample sizes for the dynamic simulation methods employed later in the 

study.   

4 For all the work either Stata 15 and R are used. The CPS data requires weighting so the _pctile function in Stata 

with sample weights is used to calculate the raw percentiles of income and earnings.  

5 The CPS data shows that using UQR with incorrectly specified polynomials in age performs particularly badly at 

low and high quintiles and is extremely unstable at low and high incomes if mis-specified. For instance, the 

estimates at the 5th centile for male income varies hugely by CPS year with 3 of the 4 years not producing credible 

estimates (predicted income way too high).  With RB analysis it is crucial to get estimates of profiles at low 

quantiles correct, hence why the observed instability in these estimates is a major issue for UQR methods.  
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In Figure 1 estimates from UQR and the preferred approach are compared for the 10th 

percentile of the male income distribution using 2014-2017 US CPS data in 2017 prices. ‘Raw 

percentile data’ is the qth quantile of income at each age. ‘Exponential UQR quadratic’ is the 

model used by Chapman and Lounkaew (2015). ‘Exponential UQR quintic’ is the same model, 

but includes a much more flexible polynomial in age (quintic). ‘Quintic raw percentile data’ is 

the predictions from a linear regression of the raw percentile level data on a quintic in age.  

 

Figure 1 shows that all of the UQR approaches approximate the raw 10th percentile data very 

poorly over the full range of ages. The best fit is given by running a regression with the raw 

conditional quantile data as the dependent variable and a quintic polynomial in age as the 

independent variable and obtaining the prediction from this regression. A quadratic performs 

equally as well in this case (not shown).  

 

Figure 1: Male BA Graduate 10th percentile of income distribution: comparing methods 
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In Figure 2, the same exercise is repeated for female BA graduates in the 25th percentile of the 

income distribution.6 Again the UQR with either a quadratic or quintic does not replicate the 

raw percentile data well and the preferred model does much better. The importance of having a 

quintic specification is also evident here.  

 

Figure 2: Female BA Graduate 25th percentile of income distribution: comparing 

methods 

 

 

In Figures 3 the estimates of median income (50th percentile) for male BA graduates in the 

sample are shown. Whilst UQR with both quadratic and quintic specification performs quite 

well for most ages it overestimates income at young ages which is crucial for RB work.  For 

example, at age 23 the overestimate with the quadratic UQR approach is just over £10,000 or 

45 percent. 

                                                 

6 Females below the 20th centile have a very high proportion of zero incomes due to being out of the labour market 

so these diagrams are not particularly instructive. The UQR approach is also highly unstable at this percentile and 

produces unrealistically high predictions of smoothed income. 
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Figure 3: Male BA Graduate 50th percentile of income distribution: comparing quantile 

approaches 

 

 

In Figure 4 the implications for high earning graduates are considered by looking at estimates 

for women in the 95th percentile of graduate earnings. Both specifications of the UQR model 

over-estimate earnings up until about the age of 35 and at low ages this is substantial (by 

around 60% or just over $32,000 at the age of 23 with the quadratic UQR specification).  

 

This process has been repeated for every percentile of the US income distribution for men and 

women and the approach which best approximates the raw percentile data, essential for RB 

analysis, involves smoothing the raw percentile estimates by age using a flexible polynomial in 

age.  UQR methods are unreliable for this exercise. Moreover, these preferred estimates 

approximate the empirical marginal distribution at each age by percentile well and this feature 

can be used in conjunction with Copula methods to simulate earnings and income dynamics. 

This is discussed further in section 4. Using UQR methods also means that the cross sectional 

RB problem is understated. This is also shown in Section 4.  
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Figure 4: Female BA Graduate 95th percentile of earnings distribution: comparing 

quantile approaches 
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answer is not necessarily. The analysis presented here and papers such as Borah and Basu 
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7 Where earnings and incomes are zeroes this is not the case but it is true for low values of positive income or 

earnings and relatively high values of income or earnings. For instance the UQR estimates for the 20th centile of 

female income were not sensible (way too high) in all years except 2016 and simply not credible.  
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The US CPS data has all its income and earnings data measured without banding, although to 

preserve confidentiality there is income swapping procedure applied to prevent the 

identification of individuals with extremely low or high incomes. However, this is not true for 

all countries. In Japan for example, all Labour Force Survey earnings and income data is 

banded into around 20 bands.  

 

Banded data, particularly when the number of bands is small, may limit the ability to look at 

the entire distribution of income across ages for BA graduates with any accuracy and the 

estimates will be heavily influenced by the distribution of respondents within each band by 

age. With appropriate age smoothing of raw quantile data, this problem may be ameliorated but 

it is an open question.   In the Japanese LFS data, like the CPS data, there are lots of rich 

covariates which should be able to reliably position individuals within their known (log) 

income band and this can easily be done using interval regression (see Stewart (1983)), and 

then predicting income, conditional on the band that the individual is in.  This can be 

compared with simple age smoothing of midpoint estimates of income for the case where data 

does not have rich background characteristics.  

 

This is tested by banding the full CPS’s income data into 20 income groups. The income 

groups and the proportion of males and female BA graduates falling into each category is 

shown in Appendix A Table A1. For non-zero incomes, logs of the lower and upper bands are 

taken and interval regression8 performed and then the predicted log income conditional on 

being within the observed band gives us our log income prediction. These predictions are then 

converted into income levels. 9 The covariates include a cubic in age, year dummies, dummies 

of grouped total family income, a quadratic in hours of work, detailed industry and 

occupational dummy variables, ethnicity dummy variables, whether the individual was US 

born, whether their father and mother were US born, regional dummy variables as well as a 

metropolitan dummy variable. Clearly these variables are highly endogenous, but the sole 

purpose of this exercise is to get good predictions of income within bands so endogeneity is 

highly desirable for this exercise unlike most applications.  

 

                                                 

8 Stewart (1983) calls this type of estimation grouped dependent variable estimation.  

9 This prediction includes an estimated residual therefore one can simply exponentiate this within band prediction.  
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From these predictions and the midpoint estimates raw percentiles by age are calculated and a 

quintic polynomial in age is used to smooth these raw percentile estimates by age, gender and 

year as was done earlier in this section of the paper.10 Figure 5 shows the raw and smoothed 

quantile earnings profiles for males at the 5th, 15th, 25th, 50th, 75th, 85th and 95th percentile based 

on the interval regression and midpoint age smoothed predictions. Figure 6 shows the 

corresponding diagram for females.  

 

Figure 5 shows that the age smoothed profiles perform well at all quintiles up until the 75th 

percentile. With the interval regression approach, earnings are too high for the 85th from the 

age of 35 and too low for the 95th percentile from the age of 45. The midpoint age smoothed 

estimates are too high for the 85th percentile and fine for the 95th percentile but this is purely 

because income is arbitrarily set to be $250,000 if men earned above $150,000, the top income 

group.  The US Stafford Loan generally has to be repaid within 10 years so the estimated 

income profiles are accurate for the terms of these loans and RB analysis. Further, as Barr et. al 

(2018) show, high earning graduates actually pay off loans quicker with an ICL than with 

Stafford Loan so again this will have no implications for ICL loan design work. The problem at 

high percentiles arises because there is a large proportion of men earning above $100,000 (see 

Table A1 in Appendix 1) and there are only 3 income bands for this group covering just over 

30% of male graduates in the CPS sample. This, however, is less of a problem at lower ages.  

 

  

                                                 

10 For the top band Females are assigned $150,000 and Males $250,000.  
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Figure 5:  Male BA graduates earnings by quantile using aged smooth interval 
regression and midpoint predictions 

 

For females the interval regression procedure works well for all but the 95th percentile. This 

reflects the fact that women are more equally distributed in the constructed income bands as 
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regressions. But in most countries with banded data it is unlikely to cause any significant 

problems. 
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Figure 6:  Female BA graduates earnings by quantile using aged smooth interval 
regression and midpoint predictions 
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corollary of this is that if simulated earning or income dynamics have too much mobility they 

will exaggerate RB problems and underestimate the cost of designing an ICL.  

 

With long panels, sophisticated methods can be used to get dynamics correct such as the 

approach outline in Britton et. al (2018) section 3.1. But these methods are not feasible with 

short panels and simple egression models will not be reliable as they assume linear dependence 

across the income or earnings distribution which is simply not realistic.  It is better to use 

methods that rely on estimating rank dependence that allow for dependence to vary across the 

income or earnings distribution and can partially overcome issues with measurement error.  

This can be done using Copula functions and involves modelling the joint cumulative 

distribution of the two marginal cumulative distribution functions of income or earnings 

(including zeros) at adjacent ages. This is a simplified version of the approach used by Dearden 

et. al. (2008) and Bonhomme and Robin (2009) and provides a simple parametric way of 

estimating income transition matrices (of any dimension).  Hence it is related to the to the 

dynamic simulation approach used by Higgins and Sinning (2013) using rich Australian 

longitudinal data. Of course, the approach involves the assumption that an individuals’ rank in 

the income or earnings distribution next period only depends on their current rank (i.e. is first 

order Markov). Bonhomme and Robin (2009) show that for French LFS data with three income 

observations this assumption is reasonable and matches the observed transitions over one and 

two years well, despite the first order Markov assumption.  

 

The copula function approach is so named as it defines the way two (or indeed many) 

continuous univariate marginal distributions can be ‘coupled together’ to form their joint 

bivariate (or multivariate) distribution F. It is assumed that earnings and income are continuous 

and observed for every individual at age t (yit) and age t+1 (yit+1).  These earnings and incomes 

are turned into their cumulative distribution function (cdf) at each age, uit and uit+1. These, by 

definition, are standard uniform and can easily be mapped onto the percentile estimates from 

the previous section by rounding. From Sklar’s theorem (see Sklar (1959)) if these cdfs are 

continuous and have joint distribution F(ut,ut+1) and marginal distributions F(ut) and F(ut+1) 

there is a unique copula function Ct, such that: 

  

F(ut,ut+1)  = �� (F(ut),F(ut+1)) = �� (ut,ut+1) ,  t=23, 24, …64 (1) 
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noting that in the setting of this paper, F(ut)= ut  and F(ut+1)= ut+1  since ut  and ut+1  are the 

cdfs of the income or earnings variable at each age t and hence the marginals are also standard 

uniform.  More generally the marginal distributions of income can be modelled at each age 

using any distribution or mixture but the approach used in this paper is to use the empirical 

marginal distribution by age11 estimated in the previous section. In this example �� is a 2-

dimensional copula but the method extends to higher dimensions.12 Another attraction of the 

Copula function is that it makes simulation very easy. This involves: 

 

1. Estimating the conditional distribution of ut+1 given ut which is given by: 

���(����) =
�

���
��(��, ����) 

2. Generating a random standard uniform variable r with the same dimension as ��  

3. Generate ���� = ���
��(�) to get our uniformly distributed predicted rank at age t+1 

which has a stochastic element due to the rank prediction being determined by the draw 

from the random uniform 

 

Typically,  parametric copula functions are used and different copula functions allow for 

different types of dependence (including symmetric and non-symmetric tail dependence cf 

regression). Goodness of fit criterion, such as the Akaike information criteria (AIC) can be 

used to choose the model that best fits the data.  

 

To operationalize the copula estimation the CPS panel of BA graduates from 2014-2017 is 

used which contain the weighted cumulative distributions of incomes and earnings by age, year 

and gender as well as actual income and earnings including zeros.  

 

The basic dependence characteristics of our panel data are shown in Table 2. It shows the rank 

correlation of the cumulative distribution function at adjacent ages, measured by Kendall’s tau, 

                                                 

11 In section 2, 100 percentiles of the income and earnings distribution at each age have been estimated by gender 

for BA graduates which can be mapped onto the cdf by rounding up the cdf to the nearest percentile. This appears 

to fit the continuous data well as shown later in the section.  

12 Moreover, this joint distribution can be decomposed as a function of the Copula function and the marginal 

densities, that is f(uit, uit+1) = ct(F(uit), F(uit+1)) ft(uit) ft(uit+1) =  ct(uit,uit+1) where ct is the copula density and ft and 

ft+1 are the marginal densities of the copula which are equal to one as the marginals are standard uniform. 
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varies by age groups in our sample as well as the correlation of income and log income. 

Kendall’s tau correlation is used to measure rank dependence as this can be easily estimated 

from the estimated parameters of our Copula model for comparative purposes and is less prone 

to bias due to earnings or income/earnings measurement error which is not true with correlation 

parameters13 (see Appendix B  for full details of the Kendall tau). It is important to emphasise, 

that if a person has zero earnings or income, then they are randomly distributed at the bottom 

of the cumulative income distribution at each age. For comparison, income and log income 

correlations for those with non-zero income in both periods are also shown.  

Table 2:  Measures of income dependence in CPS panel.  

 

Age 

Group 

first year 

Kendall’s 

tau  

Income 

correlation 

including zero 

incomes 

Income 

correlation  

for non-zero 

income 

Log income  

correlation  

for non-zero 

income 

FMalese  Females FMalese  Females FMalese  Females FMalese  Females 

All ages 0.414 0.489 0.435 0.441 0.430 0.420 0.526 0.634 

< 25 0.286 0.273 0.148 0.144 0.096 0.125 0.200 0.358 

25-29 0.379 0.446 0.256 0.321 0.237 0.262 0.491 0.522 

30-34 0.411 0.511 0.391 0.405 0.384 0.371 0.457 0.639 

35-39 0.443 0.544 0.355 0.480 0.351 0.446 0.501 0.706 

40-44 0.448 0.526 0.411 0.507 0.407 0.486 0.516 0.680 

45-49 0.415 0.508 0.475 0.450 0.479 0.428 0.547 0.669 

50-54 0.413 0.492 0.414 0.361 0.408 0.351 0.517 0.603 

55-59 0.387 0.463 0.435 0.466 0.425 0.454 0.492 0.599 

60-65 0.433 0.443 0.447 0.483 0.463 0.472 0.505 0.572 

 

What is evident from the table is that dependence varies by age and there is a lot more mobility 

at younger ages. This will need to be captured in the estimation and simulations. The life cycle 

patterns of correlation exhibited for men and women are also different. It is also evident that 

the (linear) income and log income correlations are quite different, though show similar 

patterns by age as the rank correlation. The difference between the income and log income 

correlations strongly suggests non-linear dependence. Hence observed dependence is better 

captured by a rank correlation measure such as kendall tau (τ) which does not impose linearity 

                                                 

13 The calculations use Kendall’s tau-b where ties are counted as concordant rather than discordant, see Appendix 

B for more details. This makes no difference in reality with continuous marginal CDFs, but does if these are made 

discrete, e.g. turned into 100 percentiles. 
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and just evaluates the monotonic relationship between the ranks of two adjoining income or 

earnings variables (see Appendix B for details). Not requiring linear dependence highlights the 

huge advantage of the copula approach with short panels.  

 

The estimation strategy involves finding a copula function which best captures the dynamics 

between the cdfs of marginal income or earnings at adjacent ages from 23 to 64.14 For almost 

all ages,  the t-Copula provides the best fit for the CPS data and this is true whether modelling 

earning or income dynamics.15 Dearden et. al. (2008) also found that the t-Copula worked best 

with UK earnings data from the UK Labour Force Survey. The t-copula has the dependence 

structure implicit in a bivariate t-distribution.16 It has two parameters – the correlation 

parameter, ρ, and the degrees of freedom parameter, ν. These can be broadly interpreted as 

describing the overall level of immobility in the distribution (higher ρ) and the excess 

immobility in the tails of the distribution (lower v). From the model estimates Kendall tau can 

be estimated which in the case of the t-Copula is given by τ =2v(arcsin(ρ)).  

 

To take account of the observed change in dependence, the t-copula model is estimated 

separately by gender as well for every age transition from 23 to 64.17  The estimates of the two 

t-Copula parameters rho (ρ)  and degrees of freedom (v) and the associated confidence intervals 

by age, gender and for both income and earnings are shown in Figures 7, 8, 9 and 10. The 

estimates of rho are shown in Figures 7 (Males) and Figure 8 (Females),  and the degrees of 

freedom estimates in Figure 9 (Males)  and Figure 10 (Females). Smoothed estimates by age 

are also shown and it is these smoothed estimates that are used in the simulations.  

 

  

                                                 

14 The R ‘copula’ and ‘VineCopula’ packages are used to do this.   Transitions are modelled at every age and then 

goodness of fit tests are used to see which Copula best fits the data using ‘fitCopula’ from the ‘copula’ package. 

15 E.g.  For male income dynamics, the  t-Copula is best for 33 age transitions, the Frank copula for 6 age 

transitions and BB1, BB7 and survival BB8 for one each. 

16 For detailed information on the t-copula, including a formal definition, see Demarta and McNeil (2005). 

17 In Dearden (2008) this was explicitly built this into the Maximum Likelihood Estimation procedure but this is 

not available the R copula packages used. Instead separate estimates are obtained for each age transition and then 

these are smoothed before simulation.  
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Figure 7: Estimates of rho (ρ)  from t-Copula: Males 

  

 

Figure 8: Estimates of rho (ρ) from t-Copula: Females 
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Figure 9: Estimates of degrees of freedom (v) from t-Copula: Males 

 

Figure 10: Estimates of degrees of freedom (v) from t-Copula: Females 
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The figure shows that whilst the estimates are reasonably similar for income and earnings and 

by gender, there are important differences, particularly at older ages but also to a lesser extent 

at younger ages. 

 

The model performance is tested for the CPS panel where the one age ahead predictions of 

income and earnings from the t-Copula model are compared with actual earnings and income 

outcomes. Quantile transition matrices are also compared. The simulation method proposed 

involves mapping the age earning/income profiles by percentile, age, year and gender to the 

estimated percentile from the t-Copula model which is constructed by rounding the standard 

uniform cdf to the respective percentile. Figure 11 shows how this performs when comparing 

actual income at age t, with the profiles matched onto actual percentile at time t for Males and 

Females. Figure 11 shows that the distribution of income is replicated closely using this simple 

approximation and the quantile age earning profiles from the previous section. It performs 

equally well for earnings (not illustrated). 

 

Figure 11: Kernel density estimates of Actual vs Percentile approximated income (Ages 

23 to 64).  
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But the way dependence is modelled matters crucially for the distribution of the difference in 

income between age t and age t+1 and from Figures 12and 13 it appears the t-Copula model 

performs well for both income and earnings for men and women respectively.18 This is 

illustrated for income in Figure 12 and earnings in Figure 13. 

 

Figure 12: Predicted difference in incomes at adjacent ages 

 

  

                                                 

18 If the panel member was observed in March 2014 and March 2015, March 2014 income or earnings profiles by 

percentile are merged to their actual percentile observed in 2014 and March 2015 income or earnings profiles are 

merged to both their actual and predicted percentile (from t-Copula estimate) in March 2015. This is repeated for 

panel members observed in March 2015 and March 2016 and for those observed in March 2016 and March 2017. 

Figure 10 just shows the mapping of their actual income and mapped percentile income in the base year. 
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Figure 13: Predicted difference in earnings at adjacent ages 

 

The simulations to not capture small changes in earnings or income completely but 

interestingly the overall rank correlation of the transitions in the simulations are always slightly 

higher than that observed in the actual data.  

 

Next quintile transition matrices from the t-Copula model and the observed CPS panel data are 

compared for income in Tables 3 for men and Table 4 for women. The model replicates the 

observed income transitions well, although does not quite get the slight asymmetry observed in 

the female income transition matrix which show higher dependence at lower incomes than 

higher incomes.  
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Table 3: Male income transition matrices: Actual vs Predicted  

   

 
Quintile  
at age t 

Actual Predicted from t-Copula model 

Quintile at age t+1 Quintile at age t+1 

1 2 3 4 5 1 2 3 4 5 

1 54.79 21.22 10.13 7.49 6.11 53.21 22.22 12.34 6.49 5.46 

2 20.61 39.59 21.11 10.20 8.70 22.84 32.60 23.15 14.59 7.05 

3 10.20 19.47 37.45 21.75 11.29 10.74 24.32 29.39 25.46 10.24 

4 7.72 11.70 18.58 40.41 21.82 7.18 14.41 24.75 30.92 22.97 

5 6.68 8.02 12.73 20.15 52.08 6.03 6.46 10.38 22.54 54.28 

 

Table 4: Female income transition matrices: Actual vs Predicted  

 

 
Quintile  
at age t 

Actual Predicted from t-Copula model 

Quintile at age t+1 Quintile at age t+1 

1 2 3 4 5 1 2 3 4 5 

1 65.76 18.55 6.77 4.77 4.00 58.89 22.35 9.34 5.21 4.03 

2 18.14 43.34 19.85 10.81 7.92 22.55 34.39 25.33 12.69 5.19 

3 7.01 19.96 40.56 22.06 10.50 8.91 25.41 30.96 25.50 10.32 

4 4.76 10.22 22.71 41.90 20.58 5.62 12.31 24.45 36.04 21.77 

5 4.32 7.83 10.10 20.47 57.00 4.02 5.54 9.93 21.55 58.69 

 

The age smoothed model estimates are then used to recursively simulate lifetime income and 

earnings ranks for 10,000 male and 10,000 females who are assumed to have started college in 

2017.  The earnings and income age earning profiles averaged over all four years are merged to 

these ranks by percentile, age and gender. The simulated sample is re-weighted by gender to 

reflect latest US BA completions.19 This is important when working out the budgetary 

implications of different ICL systems.  In Figure 13 the estimates of Kendall tau (τ) from the 

CPS panel, from the actual model estimates (where τ =2v(arcsin(ρ)) and from the simulated 

income sample (where smoothed model estimates of ρ and v were used) are compared.  

                                                 

19 BA degrees conferred in 2015 were 812,669 men and 1,082,253 women (see 

https://nces.ed.gov/programs/digest/d16/tables/dt16_301.10.asp ).   

https://nces.ed.gov/programs/digest/d16/tables/dt16_301.10.asp
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Figure 14.  Comparison of Kendall tau from CPS sample, t-Copula estimates and 

Simulated sample 

 

 

 

Figure 14 illustrates that the model estimates replicated the raw CPS rank dependence well. As 

a result, the dependence structures over adjacent ages of the simulated sample which use 

smoothed parameter estimates of ρ and v also mirror the CPS panel rank dependence well.   

5. Implications for estimating RBs and analysing the design and costs of an ICL 

 

The final section of the paper considers how including income dynamics impacts on the 

analysis of RBs as well as estimating the taxpayer costs of an ICL. In the illustrations it is 

assumed that the average US graduate takes out a loan of $35,000 over a 4 year BA degree 

which is just under the current average of all US student loans for 2016 graduates of $37,172.20 

These loans are assumed to be log-normally distributed and have a standard deviation of 

                                                 

20 See https://studentloanhero.com/student-loan-debt-statistics/ 
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$20,000. It is also assumed that the amount of loan a BA student takes out is positively 

correlated with the first 10 years of their total graduate earnings. In these simulations a 

correlation of 0.3 is assumed but the sensitivity of results to this assumption are tested. Papers 

which have access to US administrative student loan data and tax records confirm that there is 

a positive correlation between debt levels and later earnings (see Looney and Yanellis (2018)).  

  

Figure 15 shows the average repayment schedule for a Stafford student loan of £35,000 in 

$2017 US prices (the average in the simulated sample). Stafford loans are time based 

repayment loans (TBRLs) that in 2017/18 have a nominal interest of 4.45% and the majority 

must be paid within 10 years. In the first year of the loan an average student must pay back just 

over $4,700 regardless of income as shown in Figure 15. Typically in RB analysis,  the 

repayment burden is shown by age and percentile. However this implicitly assumes that a 

graduate stays in the same percentile of the income distribution at each age, i.e. it assumes no 

income rank mobility. This is the approach taken in Chapman and Lounkaew (2015) and has 

been followed in some of the papers in this issue. This approach clearly demonstrates that with 

most TBRLs there is generally a significant problem at low incomes particularly at young ages.  
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Figure 14: Loan Repayment Schedule for Stafford Loan of $35,000 

 

 

There is another way of looking at this problem when simulated incomes/earnings of 

individuals over their lifetime are available. The simulations from section 4 are used and it is 

assumed that there will be 1% real income growth per year over their lifetime.21 The loan 

amount is assigned to individuals using our baseline correlation of 0.3 with the first 10 years of 

graduate earnings. Using these simulations, the number of times over the ten year term of the 

Stafford loan an individual will face RBs of more than 18% and more than 40% is calculated 

(so this could be 0,1,2,...10 times). Males and females are pooled together using the weight 

constructed earlier which reflect current BA graduation rates and in Table 5 the percentage of 

the cohort of borrowers falling into each category is shown. A comparison is made with the 

case where no income dynamics are assumed with the case where income dynamics are 

included. A comparison is also made with the no dynamic case using the quadratic UQR 

approach.  

                                                 

21 Chapman and Laenkow (2015) assumed 1.5%. In fact there is evidence in the US that income growth varies 

across the distribution of earnings with higher growth for those in the higher part of the income distribution and 

lower (or even negative) real growth at the bottom of the distribution. Hence for this illustration a lower figure of 

1 pecent is assumed.  
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As pointed out at the beginning of Section 4, assuming no mobility will necessarily 

underestimate the RB problem. Table 5 shows that if no mobility is assumed, it is estimated 

that around 48% graduates would never face RBs of greater than 18% and 70%  would never 

face RBs greater than 40%. If the UQR approach was used then these estimates would be even 

higher – 60% and 78% respectively. The estimates from the dynamic model suggest that the 

correct figures are closer to 15% and 32% respectively. Further, just under 50% of graduates 

are likely to face 3 or more years of having RBs greater than 18% and just under 25% are 

likely to face 3 or more years of having RBs greater than 40%.   

 

Table 5: Measures of Years of excessive RBs for average $35,000 US Stafford Loan 

 

Number 
of  years   
of 
excessive  
RBS 

      RB > 18%RR 
(Percentage) 

RB > 40%  
(Percentage) 

No 
dynamics 

UQR  
quadratic 

No 
dynamics 

raw 
smoothed 

quintic  

Dynamics 
raw 

smoothed 
quintic 

No 
dynamics 

UQR  
quadratic 

No 
dynamics 

raw 
smoothed 

quintic 

Dynamics 
raw 

smoothed 
quintic 

0 60.15 47.93 14.71 78.24 69.77 31.90 

1 1.70 13.08 17.93 0.85 10.14 25.72 

2 2.68 5.40 17.71 1.19 2.65 17.69 

3 2.33 4.12 14.68 1.14 1.96 10.30 

4 2.30 3.22 11.35 1.06 1.21 6.76 

5 2.03 2.39 8.55 0.79 0.90 3.62 

6 1.79 1.71 6.12 0.69 0.60 1.94 

7 1.62 1.36 3.87 0.65 0.49 1.25 

8 1.55 1.15 2.54 0.59 0.41 0.50 

9 1.33 0.77 1.48 0.51 0.32 0.22 

10 22.52 18.87 1.08 14.30 11.55 0.10 

       

This nuanced picture is not captured if income dynamics are not included and helps explain the 

current default and delinquency problems with student loans in US which is the topic of the 

paper by Looney and Yannelis (2018). 
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Of course, all approaches fail to account for other factors that will determine whether a person 

faces financial hardship in repaying their loan. A more sophisticated RB analysis would look at 

RBs by household and consider other factors that affect the ability to pay such as number of 

children, and household taxes and benefits. This should be addressed in future work looking at 

student finance.  

 

Including earning dynamics also impacts on the estimated costs of an ICL scheme. This has 

been previously shown in Higgins and Sinning (2013) and Dearden et. al. (2008). To illustrate 

this the Stafford loan interest and government cost of borrowing parameters are used in 

conjunction with other ICL parameters. It is assumed that there is:  

(i) A first income repayment threshold of $17,000 per year, and a second threshold 

of $35,000 (in a policy reality these would both uprated annually with inflation). 

The $17,000 threshold is similar to that used with the current IBR scheme 

currently operating in the US.  

(ii) A marginal 3 percent repayment rate on earnings above the first threshold and 

10 percent marginal for earnings above the second threshold. Again the 10% 

marginal rate is similar to that used with the current IBR scheme.   

(iii) A zero real interest rate whilst a student is at college and below the first income 

threshold (i.e. debt increases with inflation only); and then a real interest rate 

equal to the current Stafford Loan rate which is 4.45% nominal or 2.45% real. 

With the means tested component of the Stafford Loans, a zero real interest rate 

applies whilst students are at college. No means testing is applied for this 

simulation.  

(iv) An inflation rate of 2% and a government cost of borrowing of 2.4% nominal or 

0.4 % real.  

(v) A loan write-off after 25 years.  

 

To compare the full distributional implications of this ICL as well as the size of the taxpayer 

subsidy, the earnings simulations from Section 4 are used. Taxpayer costs are estimated under 

the assumption of no mobility (which provides an upper bound of costs, see Barr et. al. (2018)) 

and realistic dynamics from the earnings simulations described in Section 4. The taxpayer 

subsidy is calculated by pooling the male and female results using current BA enrolment 

proportions as highlighted earlier in the paper. All costs and repayments are discounted back to 
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when the student takes out the loan at age 18 and are in $US 2017 prices. The taxpayer subsidy 

is calculated by comparing the net present value (NPV) of repayments (which depend on future 

earnings simulations and ICL parameters) to the NPV of providing the loans (which depends 

on the amount of loans taken out).  Real earnings growth of 1 per cent is assumed for all 

graduates throughout their working life. 22 Inflation is assumed to be 2 per cent and the 

government cost of borrowing is set to the current 10-year US bond rate. This is currently used 

to determine the Stafford Loan interest rate which is set at the government cost of borrowing 

(currently 2.4% nominal or 0.4% real) plus 2.05 percentage points.23 

 

Figure 15 shows the distributional impact (by deciles of the male and female college lifetime 

income distribution24) under the assumption of no mobility and with dynamics. The analysis 

shows that when income dynamics are ignored, the estimated taxpayer subsidy for this ICL is 

around 15% whereas when dynamics are included the estimated taxpayer subsidy is -7%.  All 

graduates receive a taxpayer subsidy in this scheme whilst they are at college and whilst they 

earn below the first threshold. However, once they are above the first threshold, they receive no 

subsidy as the interest rate is 2.05% above the government cost of borrowing so they are net 

contributors. Those who do not repay their loan within 25 years may also receive a subsidy due 

to the loan write-off. The difference in estimates of the taxpayer subsidy is large as there is 

high earnings mobility in the US for BA graduates and with the ICL operating over 25 years, 

there is a much higher chance of individuals making some repayments. The extent of the 

difference in estimated taxpayer subsidy however, depends crucially on the size of the ICL 

loan and the ICL loan parameters (see Barr et. al. (2018) and Britton et. al. (2018)) as well as 

the correlation between the total student loan taken out and future earnings. For example, if 

there is no correlation between earnings in the first 10 years and loan amount the estimate of 

the taxpayer subsidy increases to 16% (no mobility) and -6% (mobility). If there is perfect 

negative correlation between loan amount and gross earnings in the first 10 years the taxpayer 

                                                 

22 This can be easily adjusted. There is evidence that real earnings growth is higher at the top end of the earnings 

distribution than at the bottom which will therefore underestimate costs.  

23 The current Stafford interest rate of 4.45 percent per annum nominal is the government cost of borrowing or 10 

year bond rate (2.4 percent nominal) plus 2.05 percentage points and hence 0.4 percent real with our assumption 

of 2 percent inflation.  

24 The lifetime earnings of all individuals from the ages of 23 to 65 are summed without discounting and including 

assumed real earnings growth of 1% and deciles constructed from this  measure. 
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subsidy estimates increase to 19% (no mobility) and -4% (mobility). If there is perfect positive 

correlation then the taxpayer subsidy estimate decreases to 10% (no mobility) and -11% 

(mobility).  

 

Figure 15: Proportion of ICL Loan Repaid by Decile of Lifetime Earnings: Dynamic vs 

No dynamic earning simulations 

 

Note: Overall graduate contribution shown by horizonal lines and the subsidy can be calculated by taking this 
amount away from 100%.  

 

As shown in Barr et. al. (2018) and Britton et. al (2018) this subsidy can be reduced or 

increased very easily by varying the ICL parameters including introducing a surcharge on the 

loan, changing the interest rate and/or changing other ICL parameters such as repayment 

thresholds and repayment rates.  But given the income mobility of BA graduates in the US, it is 

clear that a well designed ICL will work (see Barr et. al. (2018) for more details) and would 

have considerable advantages over the current Stafford Loan system. Additional work 

simulating the earning dynamics of 2-year college graduates and drop-outs suggest a similarly 

designed ICL could work beyond BA graduates. Of course tight regulation of loans would need 
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to be implemented, particularly with the for-profit sector, as is the case with the current US 

loan system.  

6. Conclusions 

 

This paper reviewed the empirical approaches that are needed to both evaluate and design 

student loans systems. A particular innovation of the paper, is that it has suggested relatively 

straight forward methods for improving income and earnings simulation when data is poor (e.g. 

the data has banded income or there is not good panel data available in the country). Another 

innovation is that the method proposed extends work that is already routinely done in countries 

evaluating their student loan system.  

 

The paper shows that for RB analysis it is generally better to use raw percentile estimates of 

income or earnings by age and gender and age smoothing rather than use UQR methods. 

Having banded income data (as is the case in countries like Japan) does not appear to be a 

significant problem for all but the highest earners and RB analysis (or indeed student loan 

design) is not affected by grouping of income or earnings data.  

 

The paper shows how income and earnings dynamics can be easily introduced even with short 

panels which have a minimum of two observations for the same individual. This involves using 

copula functions which better capture the complex dependence between income or earnings 

over one year. With traditional dynamic panel data methods this is only possible to do in a 

reliable way with longer panels (longer T). 

 

Finally the paper highlights the importance of including dynamics in both assessing the RBs 

associated with current loans systems as well as designing ICLs. Ignoring dynamics will firstly 

underestimate the proportion of individuals facing repayment hardship with a TBRL and 

secondly will result in over-estimating the taxpayer costs of an ICL.  

 

  

  



34 

 

References  

 

Barr, N.  Chapman, B., Dearden, L. and Dynarski, S. (2018), ‘Reflections on the US College 

Loans System: Lessons from Australia and England’, submitted to this issue.  

Britton, J., Higgins, T. and van der Erve, L. (2018), Income contingent student loan design: 

Lessons from around the world, submitted to this issue.  

Bonhomme, S. and Robin, J-M, (2009). ‘Assessing the Equalizing Force of Mobility Using 

Short Panels: France, 1990-2000,’ Review of Economic Studies, Oxford University 

Press, vol. 76(1), 63-92. 

Borah and Basu (2013). ‘Highlighting differences between conditional and unconditional 

quantile regression approaches through an application to assess medication adherence’, 

Health Economics, 22(9):1052-70 

Chapman, B and Dearden, L (2017), ‘Conceptual and Empirical Issues for Alternative Student 

Loan Designs: The Significance of Loan Repayment Burdens for the US’, Annals, 

Volume: 671 (1), 249-268. 

Chapman and Doris, (2017), ‘Modelling Higher Education Financing Reform for Ireland’, this 

issue. 

Chapman, B. and Lounkaew, K (2015). ‘An analysis of Stafford loans repayment burdens’, 

Economics of Education Review 45 (3): 89–102. 

Crawford, C. Crawford, R. and  Jin, W (2014), Estimating the Public Cost of Student Loans, 

IFS Report R94, 2014, http:www.ifs.org.uk/comms/r94.pdf 

Dearden, L.  Fitzsimons, E. Goodman, A. and Kaplan, G. (2008), “Higher Education Funding 

Policy”, Economic Journal, vol. 118, no.526, F100-F125. 

Dearden, L. and Nagase, N (2017), ‘Getting higher education finance right in Japan: 

problems and possible solutions’, submitted to this issue.   
Firpo, Fortin and Lemieux (2009). ‘Unconditional quantile regressions’, Econometrica 77(3): 

953–973.  

Higgins, T. and Sinning, M. (2013), ‘Modeling income dynamics for public policy design: An 

application to income contingent student loans’, Economics of Education Review, 37:  

273-285 

Sklar (1959), Fonctions de Répartition à n Dimensions et Leurs Marges. Vol. 8, Institut 

Statistique de l'Université de Paris, Paris, 229-231. 

Stewart, M.B (1983). ‘On Least Squares Estimation when the Dependent Variable is Grouped’, 
Review of Economic Studies, vol. 50(4), 737—753. 

 

 

 

  



35 

 

Appendix A 

Table A1:  Distribution of Grouped Income Variable BA Graduates 2014-2017 CPS 

Income lower bound 

($US per year) 

Income upper bound 

($US per year) 

Proportion 

Males 

Proportion 

Females 

0 0 2.95 6.65 

0 5000 2.49 8.19 

5000 10000 1.79 3.77 

10000 15000 2.24 4.35 

15000 20000 2.56 4.11 

20000 25000 3.14 4.43 

25000 30000 3.14 4.35 

30000 35000 3.66 5.17 

35000 40000 3.74 5.21 

40000 45000 4.29 5.92 

45000 50000 4.23 5.32 

50000 55000 4.80 5.56 

55000 60000 3.61 4.17 

60000 65000 4.35 4.22 

65000 70000 3.36 3.11 

70000 80000 7.38 6.06 

80000 90000 5.94 4.30 

90000 100000 4.73 3.14 

100000 125000 10.80 5.52 

125000 150000 5.63 2.29 
150000  15.17 4.14 

    

Sample Size  64,376 78,009 
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Appendix B: Kendall Tau (τ) 

In the paper all measures of rank correlation/dependence use Kendall tau (τ). This is a measure 

of association based on the number of concordant, discordant and tied paired the cumulative 

distribution of income at age t (ut ) and t+1  (uti ) in the CPS panel. A pair of cdfs { (uti, ut+1i),  

(utj, ut+ji)},  are: 

 concordant  if uti < utj and ut+1i < ut+1j or uti > utj and ut+1i >ut+1j  and the number of 

concordant pairs is denoted by �� 

 discordant if uti >utj and ut+1i < ut+1j or uti < utj and ut+1i >ut+1j and the number of 

discordant pairs is denoted by �� 

 tied if uti = utj or ut+1i = ut+1j and the number of tied pairs are denoted by �� and ���� 

respectively.  

Kendall’s tau-b rank correlation (τ) which is used in the paper is given by  
 

τ =  
�� − ��

�(�� + �� + ��)(�� + �� + ��+1)
 

 
and the total number of pairs that can be constructed and compared for a sample of size T is: 

 n= ½ T*(T-1).  
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