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Abstract

CrossMark

Although a relatively new area of nanoscience, nonlinear plasmonics has become a fertile ground
for the development and testing of new ideas pertaining to light—matter interaction under intense
field conditions, ideas that have found a multitude of applications in surface science, active

photonic nanodevices, near-field optical microscopy, and nonlinear integrated photonics. In this

review, we survey the latest developments in nonlinear plasmonics in three-dimensional
(metallic) and two-dimensional (graphene) nanostructures and offer an outlook on future
developments in this field of research. In particular, we discuss the main theoretical concepts,
experimental methods, and computational tools that are used together in modern nonlinear
plasmonics to explore in an integrated manner nonlinear optical properties of metallic and

graphene based nanostructures.

Keywords: nonlinear plasmonics, metasurfaces, surface optics, optical devices, computational

electromagnetics

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Introductory remarks

Nonlinear optics at the nanoscale is becoming one of the
major success stories of modern optics. Its beginnings can
perhaps be traced to the advent of the laser [1], which has
made possible the first demonstration of a nonlinear optical
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process, namely the second-harmonic generation (SHG) [2].
Ever since, we have witnessed a growing research interest in
understanding the nonlinear optical interactions between light
and matter. The scientific interest in nonlinear optical phe-
nomena has been driven not only by the challenges they
present at the fundamental science level, but also by the
plethora of applications they have spawn in the commercial
arena, including wavelength converters for telecommunica-
tions, optical signal processing, all-optical switching, ultrafast
optical modulators, optical microscopy, surface science,
optical tomography, and biosensing applications.

A nonlinear optical process can be viewed as the physical
interaction between one or multiple optical beams and an
optical medium, in which the response of the medium
depends nonlinearly on the electric field of the beams. Much

© 2018 IOP Publishing Ltd  Printed in the UK
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of the research focus during the early stages of nonlinear
optics has been on nonlinear optical phenomena pertaining to
the propagation of interacting near-monochromatic optical
beams in bulk nonlinear optical media. To achieve strong
nonlinear optical effects in this setting, a key prerequisite is to
ensure that the interacting beams are phase-matched. In
particular, the nonlinear medium plays a secondary rdle in
determining the efficiency of the nonlinear optical processes,
as it only facilitates the nonlinear coupling between the
optical beams. As a result, the development of efficient phase-
matching techniques has been a central theme early on in
nonlinear optics. Some of the most used techniques are
birefringent phase matching [3], quasi-phase matching in
periodic media [4, 5], and modal phase matching in nonlinear
optical waveguides [6, 7].

In recent years, advances in nanofabrication techniques and
a dramatic improvement of our ability to probe the optical field at
deep-subwavelength scale have led to a gradual shift in the main
research directions in nonlinear optics, from the study of coher-
ent, phase-matched optical interactions that take place over many
wavelengths to nonlinear optical processes in which the optical
(near-) field interacts with matter over just a few wavelengths or
even at subwavelength scale. In this emerging paradigm of
nonlinear optics, the efficiency of the nonlinear optical processes
is determined not by the quality of the phase matching between
the interacting optical beams but by the degree of confinement
and overlap between the optical near-field and nonlinear optical
structures with subwavelength features. A representative example
of such non-phase-matched nonlinear optical interaction is the
nonlinear scattering of optical waves from dielectric or metallic
particles, a process in which the excitation of Mie resonances
[8, 9] can lead to a significant enhancement of the amount of
light generated at higher harmonics.

Extreme nonlinear optics, which occurs under the condi-
tion of very short laser pulse illumination and intense optical
power, represent another research direction branching out from
traditional nonlinear optics. In this regime, the influence of
laser pulse carrier wave is dominant over that of laser pulse
profile, and consequently many intriguing and unexpected
nonlinear phenomena occur, including high-harmonic genera-
tion in gases, frequency doubling in inversion symmetric
materials, and generation of attosecond electromagnetic pulses
or pulse trains. Whereas this research field does not belong to
the remit of this review, the interested reader is referred to
several excellent references on this topic [10, 11].

Since at the nanoscale the efficiency of nonlinear optical
processes is primarily determined by the overlap between the
optical structure and the optical near-field, significant theor-
etical and experimental research efforts in nonlinear nano-
optics have been focused on designing optimized configura-
tions in which not only that there is a good spatial matching
between the optical near-field and the optical nanostructure
but also the near-field is resonantly enhanced. For example,
advances in optical near-field spectroscopy techniques make
it possible not only to retrieve information about the intensity
of the electric field but also to map full vectorial character-
istics of both the electric and magnetic fields [12], both in the
real-space [13] and the momentum-space (k-space) [14].

Importantly, these experimental developments have been
facilitated by and spurred on research in computational
electromagnetism. This has led to complex and highly accu-
rate finite-difference [15, 16] or finite-element [17] based
numerical methods that can be used to describe the electro-
magnetic field both in the time and frequency domains, at
deep-subwavelength and deep-suboptical-cycle scales.

One well-known and widely studied approach to sig-
nificantly increase the optical near-field, and consequently the
efficiency of nonlinear optical interactions at the nanoscale, is
to employ metallic nanostructures, such as optical diffraction
gratings, nano-apertures, and nanoparticles. This approach
relies on the fact that metal-dielectric interfaces support sur-
face plasmon polaritons (SPPs) [18-22], which are p-polar-
ized strongly localized surface waves associated to
oscillations of free electrons in metals. The generation of
these localized or propagating modes is accompanied by
strong spatial confinement and enhancement of the electric
field at the interface between the two media. Because of this
strong field enhancement and the large contrast between the
permittivity of metals and that of the surrounding dielectric
environment, most parameters defining the physical proper-
ties of SPP resonances, including the spatial distribution of
the optical near-field and the resonance frequency, depend
strongly on the geometry and optical constants of metallo-
dielectric nanostructures. In particular, the tight confinement
of the optical field of SPPs makes the surface effects at metal-
dielectric interfaces distinctly sensitive to variations in the
shape of the plasmonic nanostructures and the dielectric
characteristics of the embedding optical medium.

Despite the fact that SPPs are eminently surface phe-
nomena, their generation in metals requires three-dimensional
(3D) configurations as metallic nanostructures are 3D physi-
cal systems. The recent discovery of two-dimensional (2D)
materials, however, has facilitated the study of SPPs and other
nano-optics related phenomena in purely 2D physical sys-
tems. One such 2D material with salient physical properties is
graphene, a monolayer of carbon atoms distributed in a
hexagonal lattice [23, 24]. This 2D nanomaterial has metallic
characteristics and relatively low optical losses at terahertz
and mid-IR frequencies, and thus it supports SPPs [25, 26].
Equally important, due to the 2D nature of graphene, the
optical field enhancement of graphene SPPs is much larger
than that achievable in metallic systems. In conjunction with
its unusually large nonlinear optical constants, this makes
graphene an ideal material platform to study nonlinear optical
interactions in 2D physical systems. More specifically, gra-
phene, as a centrosymmetric material, exhibits large third-
harmonic generation (THG) [27, 28], strong optical Kerr
nonlinearity [29, 30], and induced second-order nonlinearity
[31-33] in a single atomic layer.

As SPPs are bound at an interface and are sensitive to its
dielectric properties, they represent an important surface diag-
nostic tool in surface science and colloidal chemistry. They are
ideally suited for noninvasive probing of buried interfaces and
sensing surface-interfacial properties, especially when non-
linear optical or chemical processes are employed. Equally
important, the specific dielectric properties of metals provide
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unique functionalities to be employed in ultrasmall nanode-
vices. Thus, metallic nanostructures have found widespread use
for optical sensors [34—40], nonlinear plasmonic nanodevices
[41-46], metallic nanotips for near-field optical microscopy
[47-50], nanoscale antennae [51, 52], surface probing
via linear and nonlinear scattering of SPPs [53-55], and
basic building blocks of complex plasmonic systems, such as
Y-splitters, Mach—Zehnder interferometers, and waveguide-ring
resonators [56, 57]. Importantly, in addition to their technolo-
gical applications, SPPs are instrumental in a series of funda-
mental science related phenomena, such as single-molecule
detection via surface-enhanced Raman scattering [58], plasmon
blockade [59, 60], and plasmonic solitons [61-64].

1.2. Scope and outline of this review

Although it is a relatively new nanoscience discipline,
research in nonlinear plasmonics has produced a large body of
results and thus has already been the topic of a few excellent
review articles. Some notable examples are reviews of non-
linear metasurfaces [65, 66], a review of second- and third-
order nonlinear optical phenomena in plasmonic systems
[67], and a review of nonlinear plasmonic antennas [68]. We
considered, however, that a comprehensive review of non-
linear plasmonics, which would cover in-depth and in an
integrated way the main experimental techniques, theoretical
concepts, and computational methods that play the central
role in modern nonlinear plasmonics is still missing. Equally
important, we wanted to collect in the same place information
about nonlinear plasmonic phenomena in the two most
common physical systems where such effects are studied,
namely metallic structures and graphene. Because of these
characteristics, we hope that our review article will provide
valuable knowledge both for experienced scientists who
wants to keep abreast with the latest developments in non-
linear plasmonics as well as young researchers who ponder
about entering this dynamic and exciting field of research.

Our review is organized as follows: first, we review in
section 2 the theoretical concepts and tools used to investigate
the nonlinear optical properties of plasmonic systems, with a
particular focus on second- and third-order nonlinear optical
processes. In section 3, we present experimental results in key
areas of nonlinear plasmonics, including nonlinear SPPs at
metal surfaces, plasmon-enhanced nonlinear response of
single and arrays of metallic nanoparticles, phase-controlled
nonlinear optics in plasmonic metasurfaces, mode-matching
enhanced harmonics generation in plasmonic nanoantennas,
and plasmon-enhanced nonlinear effects in nonlinear active
materials. We then present in section 4 main results pertaining
to nonlinear optical phenomena associated to the generation
of SPPs in graphene. In section 5, we present the main
numerical methods used to model nonlinear optical properties
of plasmonic systems and illustrate how they can be used for
specific nonlinear plasmonic nanostructures and active plas-
monic devices. In particular, we discuss both time- and fre-
quency-domain numerical methods. Future perspectives and
the main conclusions of our review are summarized in
section 6.

2. Nonlinear optical processes: theoretical
background

In this section, we introduce the main theoretical concepts
pertaining to nonlinear optics in plasmonic nanostructures.
We start with a brief description of wave propagation in bulk
nonlinear optical media, and continue with a more in-depth
discussion of nonlinear light-matter interaction in the sub-
wavelength regime, which is particularly relevant in the
context of nonlinear plasmonics. We will focus on the two
main types of nonlinear optical processes, namely second-
and third-order nonlinear optical interactions.

2.1. Wave interactions in nonlinear optical media

The electromagnetic response of an optical medium is pre-
dominantly determined, at optical frequencies, by the polar-
ization of the medium, P(r, ¢t). In order to examine the
nonlinear response of an optical medium, one expands in
power series the polarization of the medium in terms of the
electric field,

P(r, 1) = e [xV(r, 1) - E(r, 1) + x@(r, 1): E(r, 1)E(r, 1)
+ x®(, t) ‘E(r, )E(r, HE(r, 1],
()

where x®(r, t) is the ith-order bulk optical susceptibility,
which is generally an (i 4+ 1)th-rank tensor, and ¢, is the
vacuum permittivity. Susceptibilities depend on the crystal
structure of the medium, as in the case of graphene, whereas
for homogeneous and isotopic materials, such as noble metals
that play a central r6le in plasmonics, the susceptibilities are
characterized by scalar quantities.

The polarization of the medium can be divided in a linear
and nonlinear part, P(r, t) = Py(r, t) + P,(r, 1), according to
its power dependence on the electric field, where

P(r, 1) = eox(x, 1) - E(r, 1), @)

P, 1) = ey xP, 1): E(r, HE(r, 1)
+ eox® @, 1) E, HEr, HE, 1) +...
— PO, 1) + PO(E, 1) + ... 3)

In the equation above, the second- and third-order polariza-
tions are, respectively:

PA(r, t) = eoxP(r, t): E(r, )E(r, 1), (4a)

PO(r, 1) = eox®(r, 1) E(r, DE(, HE(, 1).  (4b)

Let us now assume that the incident electromagnetic field
is the superposition of two monochromatic plane waves.
Under these circumstances, the incident electric field can be
written as:

E(r, 1) = Ejeir—ein  Eyeiter—wan 4 cc, 5)

where w; and w, are the frequencies of the interacting waves,
k; and k, are the corresponding wave vectors, and ‘cc’ means
complex conjugation.
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Figure 1. [llustration of second-order nonlinear optical processes. (a) From the top to the bottom configurations, schematic illustration of the
SHG, SFG, and SDG, respectively. (b) From the left to right diagrams, energy-level representation of the SHG, SFG, and SDG, respectively.

Inserting (5) into the equation (4a) for the second-order
nonlinear polarization, P®)(r, ¢), one obtains:

]?(2)(1-7 1) = fOX(z)(r, 1): [E]E]eZi(kl-l‘—w]t)
+ EyEyelitker—wit) 4 oF E,ellkitk)r—(witw)i]
+ 2E1E§ei[(kl—kz)'l‘—(wl—wz)t] _|_ CC]
+ 260x@(r, 1): (BEf + EoE).
(6)

The terms in the right hand side of this equation describe
SHG at 2w, SHG at 2w,, sum-frequency generation (SFG) at
w) + w,, difference-frequency generation (DFG) at w; — wy,
and optical rectification, respectively. Note that the last term
in (6) describes a static polarization.

The polarization P@(r, t) in (6) can be used to describe a
multitude of important nonlinear optical processes in bulk
optical media, including SHG, SFG, DFG, optical parametric
amplification, and optical parametric oscillations. In all of
these nonlinear interactions, the phase-matching between the
interacting waves plays an important role. On the other hand,
in nonlinear optics at the nanoscale, wave phase-matching
between interacting optical fields does not affect the nonlinear
optical interactions, and therefore in what follows the wave
vector dependence of the optical fields is dropped.

If we express the second-order nonlinear polarization
PO(r, 1) as:

PO, 1) =) PO(wy)e ™, (M

the nonlinear polarizations in (6) describing different second-
order nonlinear optical processes can be written as:

P{lcw) = cox@: EiE,, (8a)

P{ic2w)) = eox@: EsEy, (8D)
PQo(wi + wr) = 260x?: E|Es, (8¢)
PCo(wi — wa) = 269x®: E\EX, (8d)
PR0) = 2e0x?: (E(Ef + EoE3). (8e)

The most common second-order nonlinear optical processes
of those described by the equations above, namely SHG,
SFG, and DFG, are schematically illustrated in figure 1.

In practice, in bulk media it is not possible to observe
simultaneously all nonlinear effects described by the non-
linear polarizations in the above equations because usually
only one nonlinear process is phase-matched. In nonlinear
nano-optics, however, it is no longer necessary to achieve
phase-matching and therefore more frequencies can be gen-
erated as a result of nonlinear optical interactions.

The most common third-order nonlinear optical process
investigated in nonlinear plasmonics and more generally
nonlinear optics is the Kerr effect. It amounts to a change of
the index of refraction of a nonlinear optical medium upon the
interaction with an optical field. The third-order nonlinear
polarization describing the Kerr effect can be expressed as:

P®

Kerr

(W) = 36XV (W; w, w, —w) [E(W) *E(w), )
whereas the corresponding change of the index of refraction
is:

An = 2m|E(w) . (10)

In these equations, x is the third-order susceptibility and 7,
is the nonlinear-index coefficient. Sometimes one defines this
coefficient in terms of the field intensity, /, via An = n21 I, the
two nonlinear coefficients being related by n! = n, /(ngeoc),
with ny being the index of refraction of the medium.

2.2. Quadratic nonlinear optical interactions in
centrosymmetric media

Most metals used in plasmonics are centrosymmetric, namely
their crystal lattice remains invariant upon inversion sym-
metry transformations. As far as quadratically nonlinear
optical interactions are concerned, this property implies that
the second-order susceptibility x® is identically equal to
zero. This property can be easily demonstrated by considering
that the field —E is applied to a crystal with inversion sym-
metry. Under these conditions, the nonlinear polarization can
be written as —P® = ¢, x®: (—E)(—E), which in conjunc-
tion with (4a) leads to x® = 0.

Since the (local) dipole-allowed bulk nonlinear polar-
ization cancels in a centrosymmetric optical medium, the
quadratically nonlinear optical response in such nonlinear
optical media is defined by higher-order effects. In particular,
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according to a model that is widely used in the study of the
SHG in centrosymmetric media [69], the nonlinear polariza-
tion consists of two components. First, a (local) dipole-
allowed surface nonlinear polarization, P(Sz) (r), defined within
a surface layer several ngstroms thin where the inversion
symmetry property is broken. Second, a (nonlocal) bulk
nonlinear polarization, Pf)(r), which is generated inside the
nonlinear optical medium by electric quadrupoles and
magnetic dipoles. In what follows, we briefly discuss the
physical properties of these two nonlinear polarizations.

2.2.1. Surface contribution to the nonlinear optical response of
centrosymmetric media. The surface contribution to the
nonlinear optical response of centrosymmetric media is
described by a nonlinear polarization, which can be written as:

PP 1) = ex?: E(w; DEW; Dér — 1), (11)
where ) = 2w is the second-harmonic (SH) frequency, r;
defines the surface, X(Sz) is the surface second-order
susceptibility tensor, and the Dirac delta-function expresses
the surface characteristic of the nonlinear polarization. Note
that in (11) the fields are evaluated just inside the
centrosymmetric medium [69-71].

Except for the case when the surface contains chiral
structural features, the surface of centrosymmetric media
possesses an isotropic mirror-symmetry plane perpendicular
onto the interface. Then, the surface nonlinear susceptibility

x? has only three independent components, that is, X% | .

Xf)um’ and X(fﬁ = Xfﬁ” | » where the symbols Land |refer to
the directions normal and tangent to the surface, respectively.
As most theoretical models predict that Xfi”“ =0 [72, 73],
this assumption is commonly made in studies of SHG from
plasmonic structures.

Using the tensor components of the nonlinear surface
susceptibility, the surface nonlinear polarization can be cast in
the following form:

PO 1) = ex7) | Afh + x&) | (Bt + Abbo)
+ X @it + Ak E(w; E(W; 1), (12)

where n is the outwardly pointing normal to the surface of the
scatterer and t; and t, are the two orthonormal vectors defining
the plane tangent to the surface.

2.2.2. Bulk contribution to the nonlinear optical response of
centrosymmetric media. The second component of the
nonlinear polarization is generated in the bulk of the
material. It can be expressed as [69]:

PP 1) = YVI[E(w; 1) - E(w; 1)]
+ ¢'[E(w; 1) - VIEi{(w; 1) + B[V - E(w; D)]Ei(w; 1)
+ CEi(w; r) VEi(w; 1),
(13)

where v, ¢, (3, and ( are material parameters. This (nonlocal)
polarization originates from electric quadrupoles and
magnetic dipoles located in the bulk of the medium [74].
The third term in (13) can usually be neglected, as in
homogeneous media V - E(w; r) = 0. Also, most theoretical
models [75] predict that the second term is negligible, too. For
example, in the case of plane wave propagation in a
homogeneous medium this term exactly cancels due to the
transverse character of the field at the (fundamental
frequency) FF. Moreover, in the case of noble metals the
ratio between &' and ~ is of the order of v/w [70], where v is
the damping frequency, and this ratio is negligible at optical
frequencies. We note, however, that the degree to which the
term proportional to ¢’ influences the SHG is still a matter of
debate [70]. Based on these considerations, in practice one
sets & = 0 and neglects the third term in (13). Furthermore, in
the case of noble metals, the anisotropy parameter, (, has a
negligible value, so that one usually sets ( = 0, too.

3. Experimental aspects of nonlinear plasmonics

By squeezing the incident electromagnetic radiation into a
nanoscale near-field region, metallic nanostructures provide a
prominent nanoplasmonic platform for boosting up various
nonlinear optical effects. In addition, well-established nano-
fabrication techniques, including top-down approaches, such as
electron-beam lithography and focused ion beam milling, and
bottom-up methods, which include wet chemistry and colloidal
self-assembly, allow for flexible design and preparation of
plasmonic nanostructures with tailored nonlinear optical
response. In the past two decades, a variety of nonlinear optical
effects have been experimentally exploited with distinctive
plasmonic nanostructures, including mainly the second-order
nonlinear response such as second-harmonic generation, sum-/
difference- frequency generation, and third-order ones like
third-harmonic generation, two-photon absorption induced
luminescence (TPL), and four-wave mixing (FWM).

To clearly illustrate the role of plasmonic resonances in
the nonlinear optical processes, as well as the opportunities
they could offer for advanced nonlinear applications, in this
section, we focus our attention mainly on the most repre-
sentative and experimentally readily-performed ones—sec-
ond-harmonic generation, third-harmonic generation, and
FWM (see figure 2). The main text body will review many
important and representative experimental studies on the
nonlinear optical effects in various plasmonic nanostructures,
and the content covers the following sub-topics: nonlinear
SPPs at metal surfaces; localized surface-plasmon (LSP)-
enhanced nonlinear response of individual metallic nanos-
tructures and arrays; phase-controlled nonlinear optics in
plasmonic metasurfaces; mode-matching enhanced harmonics
generation in plasmonic nanoantennas; and plasmon-
enhanced nonlinear effects in nonlinear active materials.

3.1. Nonlinear surface plasmon-polaritons at metal surfaces

Compared to conventional bulk nonlinear crystals, metals
with considerably lower optical nonlinearities are seemingly



J. Opt. 20 (2018) 083001

Topical Review

evanescent
waves

surface
plasmon

plane waves !

75 50 =25 0 25
6, ()

50 75

Figure 2. Nonlinear excitation of surface plasmon polaritons at metal surfaces. (a) The SPP wave at the FWM frequency 2w, — w; is
launched at a planar metal surface by properly selecting the incidence angles of two pump beams, w; and w,. Reproduced with permission
from [83] by permission of the Royal Society. (b) Coupling the surface FWM wave with a nano-grating efficiently converts the FWM
emission to outgoing waves in free space. Reprinted figure with permission from [84], Copyright (2010) by the American Physical Society.
(c) A nano-patterned metal surface strongly scattering the SPP waves at the FWM frequency enables a nonlinear dark-field microscopy
approach. Reprinted with permission from [85]. Copyright (2010) American Chemical Society.

not a suitable choice for nonlinear optics research and
applications. In addition, the shallow penetration of electro-
magnetic waves in metals leads to the optical response of bulk
metals mainly governed by the weak light-matter interaction
in the region near the metal-dielectric interface. At the
nanoscale, however, the light-matter interaction can be sig-
nificantly enhanced in the presence of surface plasmons,
which can leverage various nonlinear optical processes.
Because of the centrosymmetric lattice structure of metals, the
second-order nonlinear response of metals vanishes for the
bulk and the dominant contribution originates from the lat-
tice-constants-thick layer near the surface. In contrast, the
third-order nonlinear response of metals is allowed in the bulk
region and originates predominantly from the oscillating
nonlinear dipoles in a surface layer with thickness of the order
/2w, which is evidently much larger than the lattice con-
stant. Importantly, excitation of SPPs can create surface
waves traveling along the metal surface [76, 77] and thus
confine the free-space waves into the subwavelength-thick
surface layer for enhanced nonlinear response.

Surface plasmon-polariton induced nonlinear polariza-
tion in metals was first reported for second harmonic gen-
eration in 1974, where by exciting the surface mode at a Ag-
air interface enhanced the overall nonlinear polarization [78].
It has been found that the SPPs can modify the SHG response
of the metal film in two different ways. First, the SPP exci-
tation at the pump wavelength results in an enhanced electric
field near the interface, which can significantly increase the
nonlinear polarization in the interfacial region [79]. Second,
the surface waves can be launched at the second-harmonic
wavelength under the right phase-matching conditions [79].
This harmonic surface waves can then constructively interfere
with other interfacial second-harmonic radiation, leading to
an enhanced overall SH emission into the far-field [80].

Except for SHG, optical excitation of surface polaritons
and SPPs at semiconductor and metal surfaces has also been
demonstrated to affect the third-order nonlinear optical pro-
cesses, such as FWM and THG. For instance, simultaneously
exciting the surface polaritons in GaP at the pump frequencies
wy; and w, dramatically enhanced the nonlinear emission
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signal at the FMW frequency 2w; — w, [81]. In addition,
launching surface polaritons at the FWM frequency can also
be expected to generate strong nonlinear optical interaction if
the wave-vector matching condition is fulfilled at the inter-
face. Different from the SHG process, which only occurs at
the metal surface, the surface polaritons mediated FWM
emission can extend over the penetration depth of surface
modes into the materials, which enables a sensitive
spectroscopy probe for the third-order bulk nonlinear sus-
ceptibility, x.

In addition to the surface FWM waves, the intrinsic
FWM originating from the metal bulk also contributes to the
total emission, although the SPP-enhanced FWM can be
dominant in proper experimental configurations [82]. Similar
phenomena have also been observed for third-harmonic
generation. More specifically, it has been demonstrated in
recent experiments [80, 83] that launching SPP modes at the
FWM frequency was achievable by carefully selecting the
incidence angles of the pump beams, as per figure 2(a). In this
experimental configuration, the incidence waves were not
directly coupled to the surface waves and thus enabled free-
space excitation of SPP modes at the metal surface. In part-
icular, the FWM signal can be further increased by coupling
surface FWM waves with a nanostructured metal surface
which is capable of more efficiently transferring the surface
waves into outgoing, free-space propagating waves, as indi-
cated in figure 2(b) [84]. Finally, the same group also
demonstrated that a metal surface with locally structured
features can dramatically enhance FWM, which has conse-
quently inspired the development of nonlinear dark-field
microscopes as depicted in figure 2(c) [85].

3.2. Localized surface plasmon-enhanced nonlinear response
of individual metallic nanostructures and arrays

Distinct from the SPPs propagating at metal surfaces, loca-
lized surface plasmons supported by metallic nanostructures
are non-propagating localized modes consisting primarily of
evanescent waves. By efficiently confining the incident light
into the nanoscale volume near the nanostructure surface, the
LSP excitation creates substantially enhanced near-field
intensities, which lays the ground for strongly leveraging
various nonlinear effects both in plasmonic metals themselves
and active nonlinear materials placed in their close vicinity.
As perhaps the simplest model to understand the non-
linear response from plasmonic nanostructures, a metallic
nanosphere has been extensively investigated to reveal the
origins of the nonlinearly generated signal, as illustrated in
figure 3(a). According to the symmetry selection rule, the
second-order nonlinear response originates from both the
surface and bulk contributions [86]. Within the electrostatic
approximation, the bulk nonlinear polarization, which dom-
inates the total nonlinear emission intensity such as THG of
individual plasmonic nanoparticles [87], has generally a
dipolar character. The dipolar bulk second-order nonlinear
response, however, is forbidden for most metals because of

Figure 3. Second-harmonic generation in Ag nanospheres.

(a) Schematic illustration of the second-harmonic generation in a Ag
nanosphere. (b)—(d) Polar plots of the HRS intensity as a function of
the incident beam polarization angle for Ag nanoparticles of
diameters 40 nm (b), 60 nm (c) and 80 nm (d). (b)—(d) Reprinted
with permission from [88]. Copyright (2007) American Chemical
Society.

their structural inversion centrosymmetry. Thus, observable
second-order nonlinear emission, like SHG in bulk metals,
originates mainly from the nonlinear polarization at the metal
surface where symmetry breaking occurs. Specifically, the
total SH emission from a plasmonic nanoparticle can be
viewed as the interference between all the nonlinear dipoles
distributed on the particle surface.

For a perfectly spherical nanoparticle that is much smaller
than the wavelength, the local nonlinear dipoles at the opposite
sides of the sphere surface cancel out between each other,
leading to negligible SH emission into the far-field. Indeed, the
hyper-Rayleigh scattering results pertaining to spherical metal
nanoparticles show a weak dipolar SH response for very small
particles, as shown in figure 3(b), but a quadrupolar response for
relatively large particles (see figures 3(c) and (d)) [88]. Close
inspection reveals that the dipolar response for the small parti-
cles originates from geometry asymmetry associated with shape
deviation from a perfect sphere [89, 90], and that the retardation
effect is responsible for the quadrupole SH emission observed in
the larger particles [91, 92]. For metal nanoparticles of other
shapes and more complex geometries, the multipolar characters
of their nonlinear response can be derived following the same
approach as for the spherical nanoparticles and the signature of
their mode characters can be more pronounced due to plasmonic
amplification and modulation [93, 94].

It is generally believed that the following two enhance-
ment mechanisms are critical in typical nonlinear spectroscopy
of plasmonic nanostructures. The first one is the plasmon
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induced excitation enhancement of the incident field at the
fundamental frequency, which substantially strengthens the
multi-waves coupling in the nonlinear conversion process.
The second mechanism is related to the plasmon-amplified
nonlinear emission efficiency, which is realized by coupling
the outgoing nonlinear signals to radiative LSP modes or
manipulating the local interference between the nonlinear
sources at the subwavelength scale. In the first mechanism,
complex metallic nanostructures having near-field plasmon
coupling are favorable candidates for boosting the nonlinear
effects (see figure 4). These coupled nanostructures having
nanometer-sized gaps possess stronger field localization than
individual nanoparticles and typically display a few orders of
magnitude field enhancement within the gap region. Since the
nonlinear polarization strength scales quadratically or cubically
with the fundamental field intensity for second- and third-order
nonlinear interactions, respectively, the plasmonic field inten-
sity enhancement can result in at least tens of thousands times
stronger nonlinear emission intensities [95, 96].

When the near-field coupling across the nanoscale inter-
particle gap increases the nonlinear excitation rate, the dif-
fractive long-range coupling occurring in metallic nano-
particle arrays can also modify the nonlinear response. As
indicated in figure 5(a), two samples with subtle differences in
ordering are found to have SH responses differing by a factor
of up to 50 [97]. In these arrays, the linear optical properties
are predominantly determined by the long-range diffractive
coupling between the elemental particles. Since the nonlinear
properties are strongly dependent on the linear optical prop-
erties, the orientational distribution and detailed ordering of
the nanoparticles modify the plasmon resonance character-
istics and thus affect the nonlinear excitation efficiency.
Similar effects have also been demonstrated in periodically
distributed nanodisk monomers and dimers [98]. The

coexistence of localized plasmon modes and far-field photo-
nic modes creates a Fano-type electromagnetic coupling in
such arrays, which is responsible for the enhanced second-
harmonic generation, as per figure 5(b).

Another important representative manifestation of the
geometry-ordering influence on the nonlinear response of
plasmonic nanostructures is the presence of circular dichroism
(CD) in second-harmonic generation (termed as SHG-CD)
from structures with geometry chirality [99-101]. As depicted
in figure 5(c), the chiral structure consisting of G-shaped gold
elements exhibits a pronounced SHG-CD effect. The distinct
SHG intensity patterns (see the four micrographic images
rendered with false color) resolved by nonlinear microscopy
with circularly polarized pump beams indicate that the CD
effect originates from the enantiomerically sensitive plasmon
modes. When all the G-shaped nano-elements in the two
arrays are replaced with the same elements (the same geo-
metry and orientation), the SHG-CD effect vanishes because
of the identical plasmonic response of the reordered arrays.

3.3. Phase-controlled nonlinear optics in nonlinear plasmonic
metasurfaces

Inspired by the concept of spin—orbit coupling of light in
linear optics, we have recently witnessed growing research
interest in nonlinear geometrical phase control, which opens
up new ways for manipulating the harmonic generations at the
nanoscale [102].

Upon excitation by a circularly polarized pump wave, the
phase of the nonlinear polarization of a plasmonic nanos-
tructure can be controlled by using the structure geometry and
orientation-dependent spin—orbit coupling. Thus, for a circu-
larly polarized pump beam propagating in the +z direction
(see figure 6), the electric field can be described by
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response of non-centrosymmetric metal nanoparticles by manipulating their mutual ordering in an array. The green bars in the bottom give
the SH intensity of the two arrays, respectively. Reprinted with permission from [97]. Copyright (2012) American Chemical Society.

(b) Fano-type photonic-plasmonic coupling in an array of gold nanoparticle dimers for polarization-dependent enhanced second-harmonic
generation. The asymmetrical excitation dependence of the enhanced SH intensity (red dots) manifests the coupling effect. Reprinted with
permission from [98]. Copyright (2013) American Chemical Society. (c) Circular dichroism effect in the second-harmonic generation of
planar chiral nanostructures consisting of G-shaped gold nanoparticles. The upper panels show the SEM images of two arrays with G- and

mirror-G

shaped structures, and the polar plots at the bottom present the SHG intensity of the two arrays as a function of the quarter-wave

plate orientation in the pump beam path. The four false-color images are the measured SHG microscopy images upon excitation by LCP or
RCP beams. Reprinted with permission from [99]. Copyright (2009) American Chemical Society.

Figure 6. Illustration of the geometry-phase-controlled nonlinear
harmonic responses of individual metal nanostructures in plasmonic
metamaterials. (a) Rotating a nanostructure induces a nonlinear
geometry phase of (n — 1)af or (n + 1)o6 to the nth-order non-
linear harmonic waves with the same or opposite circular
polarization to that of the pump wave. (b) Third-harmonic generation
of opposite circular polarization and geometry phases of 206 and
400 are both allowed in the forward direction for a C,-symmetry
nanorod. (c) For a C4-symmetry nano-cross, only the third-harmonic
signal with circular polarization opposite to that of the pump wave is
allowed with an induced nonlinear phase of 406. Reprinted by
permission from Springer Nature: Nature Materials [102], (2015).

E” = E(e, + ioey) / J2, where 0 =1 (=1) represents the
left- (right)-hand circular polarization LCP (RCP) state.

A single metal nanostructure itself or a nonlinear medium
in the close vicinity of the metal nanoparticle locally forms an
effective nonlinear dipole moment expressed by:

P = a(E7Y", (14)

where w denotes the angular frequency of the pump wave,
and « is the nth-order harmonic nonlinear polarizability
tensor of the individual nanostructure with an orientation
angle of 6.

Coordinate rotation can be employed to facilitate the
analysis of orientation angle dependent nonlinear dipole
moment of the nanostructure. As depicted in figure 6(a),
the local coordinate frame is fixed to the nanostructure. When
the local coordinate system (x, y') of the nanostructure is
rotated by an angle of 6, the pump wave acquires a geometric
phase through the spin—orbit coupling of the incident light,

EJ = E°", (15)

Here, the symbol ‘L’ denotes the local coordinate of the
nanostructure.
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In the local frame, the nth-order harmonic nonlinear
polarizability is simply oy = ayly—o, and thus the corresp-
onding nonlinear dipole moment can be written as:

Pﬁ(,nL)w = ag(E{)" = ag(E)"en’. (16)

This nonlinear dipole moment can be decomposed into two
in-plane rotating dipoles (according to the circular polariza-
tion states) as:

P = P + P, (17)
where
P(n)w P(n)w o et

L,o> 1 0,L,—c

After the coordinate transformation from the local frame
to the laboratory frame, these two rotating dipole moments
can be written in the following form:

PH(,na)w _ Pe(rtL)f;e—ioé o e(nfl)iaﬂ’ (18&)
Pe(nlt;) _ H(Qigeiaﬁ o e(n+l)i09. (18b)

As aresult, the nonlinear polarizabilities of the individual
nanostructure can be expressed as:

a(ﬁr’l();:)(f o e =Diot, (19a)
a(e’j):;,—,g o em+Diot (19b)

Obviously, a geometry phase equal to either (n — 1)ic6
or (n + 1)iof is introduced in the nonlinear polarizability of
the nth-order harmonic generation from the nanostructure
with the same or opposite circular polarization to that of the
pump wave. According to the selection rules for harmonic
generation of circularly polarized pump waves, a single
nanostructure with m-fold rotational symmetry allows only
harmonic orders of n = Im + 1, where [ is an integer and the
signs ‘4’ and ‘—’ correspond to harmonic generation of the
same and opposite circular polarization, respectively
[103, 104]. For example, a single nanorod with two-fold
rotational symmetry (symmetry group C,) allows for third-
harmonic generation with both the same and opposite circular
polarization to that of the pump wave, as per figure 6(b), and
the spin-dependent phases of the harmonic waves are 206 and
400, respectively. However, a nanostructure with four-fold
rotational symmetry (symmetry group Cy), like the nano-cross
in figure 6(c), permits only third-harmonic signals with cir-
cular polarization state opposite to the incident polarization.
According to equation (19b), the introduced geometry phase
of this nonlinear wave is 406.

Importantly, under circularly polarized illumination, the
linear optical response of a single nanostructure with rotational
symmetry is independent of its spatial orientation [102]. Thus,
by properly assembling of rotation-symmetrical nanostructures
with spatially varied orientation in a 3D or 2D lattice, one can
form a nonlinear metamaterial or metasurface which shows
homogeneous linear optical properties but well-defined local
nonlinear polarizability distribution [102, 103, 105]. In part-
icular, plasmonic nanostructure based nonlinear metasurfaces
are the most suitable candidates for manipulating the local
phase-controlled nonlinear response. This is because the
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resonant excitation of localized surface plasmons in the con-
stituent nano-elements can substantially increase the pump
efficiency that consequently leverages the generated harmonic
signals from the nonlinear metasurface.

As indicated in figure 7(a), the measured diffractive TH
intensity patterns for the orientation-varied nanorod (C,
symmetry) array suggest that TH waves with the same cir-
cular polarization are mainly diffracted into the first-order
grating angle while those with the opposite circular polar-
ization are concentrated in the second-order diffraction angle.
In comparison, the metasurface consisting of nano-crosses
with C4 symmetry diffracts TH waves with opposite circular
polarization into the first-order grating angle. Similarly, the
efficient nonlinear responses for a C3-type metasurface, such
as the triangle-hole-arrayed 2D metamaterial shown in
figure 7(b) [103], are limited to the second-harmonic gen-
eration with opposite circular polarization to that of the pump
wave. Since this geometry-phase tunable nonlinear response
is particularly sensitive to the pumping wavelength and
polarization state, plasmonic metasurfaces with multiple-fold
rotational symmetry can therefore be appealing candidates for
applications in optical data storage, information encryption
and background-free image reconstruction.

An illustrative such application is the image encoding
technique realized with an ultrathin nonlinear metasurface,
which has been recently demonstrated by controlling the
phase difference of nonlinear polarization between two
neighboring meta-atoms in a pixel, the details being presented
in figure 7(c) [105]. Because of the plasmon-assisted non-
linear pumping efficiency and controlled local SH response of
the C3-nanostruture pair in a pixel, the image burned into the
metasurface can only be read by a circularly polarized laser
beam with wavelength at the plasmon resonance and then
reconstructed through detection at the SH wavelength. For
comprehensive reviews on nonlinear photonic metasurfaces,
interested readers are referred to two excellent, recently
published articles [65, 66].

3.4. Mode-matching enhanced harmonics generation in single
plasmonic nanoantennas

Nonlinear spectroscopy of single nanostructures is instru-
mental for fully understanding their nonlinear response
[92, 106]. In this context, it is more proper to treat a single
plasmonic nanostructure as an optical antenna in the nonlinear
regime, and the associated emission of harmonic waves can
be viewed as a nonlinear scattering process. Note that many
arrayed plasmonic nanostructures can be classified into this
group, provided that the lattice distance between neighboring
elements is properly designed such that they neither couple
with each other in the near-field domain nor interfere in the
far-field region [107, 108].

The quest for efficient nonlinear light sources at the
nanoscale in the past two decades has driven extensive efforts to
enhance the nonlinear optical effects in plasmonic nanoanten-
nas. It has been well known that plasmonic nanostructures
possessing resonances are the preferred candidates for lever-
aging the nonlinear response by exploiting the huge near-field
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Figure 7. Tailored nonlinear optical response in plasmonic nanoparticle arrays and plasmonic metasurfaces. (a) The spin—orbit coupling of light
in two plasmonic metasurfaces with different symmetries (here nanorod with C, symmetry and nano-cross with C4) renders geometry-phase
controlled third-harmonic generation. Reprinted by permission from Springer Nature: Nature Materials [102], (2015). (b) A metal nanohole
array with Cz unit cell exhibits second-harmonic emission with circular polarization state opposite to that of the fundamental light. The scale bar
is 1 pum. Reprinted figure with permission from [103], Copyright (2014) by the American Physical Society. (c) Optical image encoding with a
Cs-type nonlinear metasurface. To visualize the image of characters META written on the metasurface, the read laser beam has to be circularly
polarized and with wavelength at the plasmon resonance of the single pixel—a C; nanostructure pair; in the meanwhile, it requires the detection
wavelength at half that of the pump beam. Reprinted with permission from [105]. Copyright (2017) American Chemical Society.

enhancement upon resonant optical excitation. In general, the
plasmon resonance of an individual nanostructure can be tuned
to spectrally overlap with either the excitation wavelength at the
FF, to increase the nonlinear pump efficiency (see figure 8(a),
[109]), or with the harmonic wavelength to enhance the emis-
sion cross-section (see figure 8(b), [110]).

In nonlinear frequency-conversion applications, near-
infrared pump lasers are frequently used to drive coherent
frequency upconversion processes. Plasmonic nanostructures
based on noble metals such as Au and Ag, possess plasmon
resonances that are radiative dipolar modes, located within the
near-infrared band. This indicates that significant radiation
losses are present for the pump energy and hence only limited
nonlinear conversion efficiencies can be achieved. To tackle
this issue, Fano-type plasmon resonances can be created in
metal nanostructures with controlled interference between a
super-radiant dipolar mode and a sub-radiant higher-order
plasmon mode [111]. As shown in figure 8(c), at the Fano
resonance wavelength in a gold split-disk nanostructure, the
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radiative loss of the dipolar component is significantly sup-
pressed due to near-field coupling mediated excitation of the
dark plasmon mode, resulting in strong near-field localization
and enhanced second-harmonic generation [108].

Plasmonic nanostructures with multiple Fano resonances
are indeed required to achieve field enhancement at multiple
frequencies, which particularly benefits the multiple-wave
mixing process. In such systems, the plasmonic coupling
between the constituent elements provides multiple sub-
radiant high-order modes to destructively interfere with a
broad dipolar mode [112, 113]. Employing symmetry con-
siderations, we have observed that a plasmonic cross-
bar nanostructure sustains multiple Fano resonances and
polarization independent second-harmonic generation, as per
figure 9(a) [107].

Multiple Fano resonances have also been employed to
enhance third-order nonlinear processes in a metal nanodisk
cluster [114]. As shown in figures 9(b) and (c), the two incident
pumps with frequency w; and w, precisely match the two Fano
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Figure 8. Leveraging the nonlinear optical response of metallic nanostructures with resonant excitation of their plasmon modes. (a) Excitation
of resonant plasmons in gold nanorods at the pump wavelength leads to maximal SH emission intensity. Reprinted from [109], with the
permission of AIP Publishing. (b) Strong enhancement of second-harmonic emission from aluminum nanoantennas by spectrally overlapping
the harmonic wavelength with that of the dipolar plasmon resonance. Reprinted with permission from [110]. Copyright (2015) American
Chemical Society. (c) A gold split-disk nanostructure exhibits Fano resonance enhanced second-harmonic generation. Reprinted with

permission from [108]. Copyright (2016) American Chemical Society.

resonance energies of the nanodisk cluster, leading to readily
detectable FWM signal at 2w, — wy. In general, multiple Fano
resonances exist in a relatively large plasmonic nanostructure
that typically possesses a broad dipolar bright mode. Therefore,
a balanced trade-off between the increased dipolar radiation
loss and the strong field localization of sub-radiant modes
needs to be considered for optimized nonlinear enhancement.

Improving the nonlinear excitation efficiency with near-
field enhancement can also be employed to plasmonic nano-
cavities sized down to a few nanometers. A promising class of
such plasmonic platforms consists of metal-film-coupled
nanoparticles, which feature an extremely strong field con-
finement and enhancement within the particle-film gaps
[115-118]. Benefiting from well-established fabrication
technologies and their controllable plasmonic properties,
important advances into the design of these nanostructure
configurations have been made for nanoscale nonlinear optics
[119-121].

More advanced plasmonic nanostructures have been
designed in order to improve the nonlinear frequency-conver-
sion efficiency by simultaneously increasing the pump effi-
ciency at the fundamental wavelength and the scattering

12

efficiency at the harmonic wavelength. For example, a wave-
length-scaled optical antenna with multiple plasmon resonances
across a broad spectral band has been fabricated for this pur-
pose, the corresponding details being presented in figures 10(a)
and (b) [122]. Due to the field enhancement within a wide
spectral range covering both the fundamental and SH wave-
lengths, this plasmonic structure has demonstrated an effective
second-order susceptibility value comparable to that of widely-
used nonlinear inorganic crystals. However, such a broad plas-
mon band is typically not available for a subwavelength metallic
nanostructure chiefly because of the reduced radiation decay.
To realize efficient nonlinear light sources at the nanos-
cale, recent studies have employed mode matching in multi-
resonant plasmonic nanostructures [123—-126]. An early study
with aluminum nanostructures has demonstrated a doubly-
resonant (DR) optical antenna in which two discrete plasmon
resonances spectrally match the fundamental and SH wave-
length, respectively [123]. As a result, both the second-har-
monic generation and its re-emission into the far-field are
significantly increased when compared to the case of a single
dipolar antenna. In addition, the plasmonic mode character is
crucially important for nonlinear DR nanostructures. For



J. Opt. 20 (2018) 083001

Topical Review

(@)

0.8

=
o

3
s H
c 500 600 700 800 900 1000
9 Wavelength (nm)
F 04
£ 350 w w w
2 - z FWM W2 1| 5
S E E
0.2 . = G z
L g 2
en = =
1220 5
Pal 2 )
L 2 2
0.0 3 .z

1000 1500 2000
Wavelength (nm)

500

800

500 600 700
Wavelength (nm)

Figure 9. Plasmonic nanostructures with multiple Fano resonances
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American Chemical Society. (b), (c) Double Fano resonances
supported by a gold nanodisk cluster precisely match the two pump
waves, which simultaneously enhances the excitation efficiency of
both incident waves and thus significantly boosts the optical four-
wave mixing. The excitation of the two Fano resonances is revealed
by the two intensity minima in the scattering spectrum. The scale bar
in the inset of (b) is 100 nm. (b), (¢) Reproduced with permission
from [114].

instance, with the same mode character at the emission
wavelength, a Fano resonance at the fundamental wavelength
can be more efficient to boost the nonlinear excitation effi-
ciency than a dipolar one [124], a feature illustrated in
figure 10(c). Moreover, the plasmon resonance at the har-
monic wavelength of a DR nanostructure is typically a high-
order mode, which is intrinsically sub-radiant and therefore,
limits the scattering efficiency of the harmonic waves.

Thus far, the dipolar second-harmonic emission from DR
nanoantennas has only been demonstrated in a few coupled
plasmonic systems. The V-rod shaped nanostructures of this
type shown in figures 10(d)—(f) can be a representative model
to understand the enhanced dipolar SH response [125]. To be
more specific, the plasmonic response of such nanostructure
possesses a pronounced dipolar resonance V;, which origi-
nates from the dipolar plasmon bonding between the two
constituents, and matches the fundamental wavelength for
nonlinear excitation enhancement. The bonding and anti-
bonding between the quadrupolar mode of the V element and
the dipolar mode of the nanorod create the hybridized modes
VB and V,4, respectively. Through plasmon hybridization,
both of these two modes possess a super-radiant dipolar
character inherited from the nanorod plasmon resonance. By
further matching the radiative V54 mode with the SH wave-
length and providing an excellent spatial mode overlapping
between the fundamental and SH mode, this coupled system
demonstrates a SHG conversion efficiency as large as
5x 107w L

A few recent studies have shed light on the underlying
mechanism responsible for harmonics generation enhance-
ment in DR plasmonic systems and thus provided new design
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guidelines. It has been found that the maximal SHG
enhancement in an aluminum DR nanostructure shown in
figure 11(a) occurs when the quadrupolar and dipolar com-
ponents of the SH mode are strongly coupled with each other
through an intra-antenna gap [127]. More specifically, the SH
quadrupolar mode, which is directly excited by the pump
wave, can resonantly transfer its energy to the SH dipolar
mode supported by the same antenna through near-field
coupling, and then efficiently radiates into the far-field.

Another elegant configuration of a DR nanoantenna for
efficient SHG, presented in figure 11(b) [128], consists of a gold
nanorod as an w-particle and a smaller aluminum nanorod as a
2w-particle. The intra-antenna position dependent SH response
of this coupled nanostructure renders a feasible approach to probe
the near-field of second-harmonic light around the w-particle with
the dipolar 2w-particle. Note that the probing of SHG directly
in the near-filed of plasmonic nanoparticles has been demon-
strated in earlier studies, too [129].

Similar conclusion has also been drawn for a gold DR
nanoantenna consisting of a single bar-like w-particle and two
disk-shaped 2w-particles, as per figure 11(c) [126], where the
location of each 2w-particle relative to the w-particle deter-
mines the radiation phase at the second-harmonic wavelength.
When the three particles are positioned in a non-centrosym-
metric arrangement (CIII in figure 11(c)), the light emitted by
the two 2w-particles constructively interfere to generate a
linearly polarized, super-radiant dipolar SH emission. By
contrast, the centrosymmetric configuration CIV enforces
destructive interference of the light emitted by the two 2w-
particles to leave only a subradiant remnant of quadrupole
scattering at the SH wavelength.

3.5. Plasmon-enhanced nonlinear effects in nonlinear active
materials

Besides the intrinsic nonlinear response of plasmonic metals,
in many recent studies it has been explored the plasmonic
enhancement of extrinsic nonlinear response in nonlinear
optically active materials. Taking advantage of the plasmon-
mediated field confinement, the conventional nonlinear opti-
cal materials incorporated into the near-field amplification
region of plasmonic nanostructures experience significantly
enhanced nonlinear pump intensity and hence exhibit
increased nonlinear conversion efficiency in harmonics gen-
eration and multiple-wave mixing. For example, it has been
demonstrated that lithium niobate (LN) having a high intrinsic
second-order nonlinearity generates 20 times stronger SH
intensity when filled in a plasmonic nanoring resonator, as per
figure 12(a) [130], and similar conclusions hold true if instead
of the LN one uses GaAs [43, 44].

The perovskite-type material barium titanate (BaTiO;)
has a non-centrosymmetric crystalline structure and thus a
bulk second-order nonlinear response. Recent studies have
reported a 15-fold enhancement of second-harmonic generation
in a single BaTiO5 nanoparticle coupled to a metal nanoparticle
in a dimer configuration [131]. The metal nanoparticle in this
hybrid dimer acts as a nonlinear nanoantenna for the BaTiO3
nonlinear source, as illustrated in figure 12(c). In such a
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resonance at the pump wavelength (800 nm) and a high-order plasmon resonance at the second-harmonic wavelength (400 nm, left column).
This nanostructure shows dramatically improved SHG conversion efficiency as compared to that of a single dipolar antenna (DA) and
standard doubly-resonant antennas. Reprinted with permission from [124]. Copyright (2013) American Chemical Society. (d) The plasmonic
near-field coupling between a V-shaped nanostructure and a nearby nanorod rendering a complex plasmonic entity featured with multiple
plasmon resonances that can be precisely tuned to the pump and SH wavelengths. (e) Significantly enhanced SH emission from the mode-
matching nanostructure in (d) is clearly observed in the SH optical image. (f) The polar plot showing the detection polarization dependent SH
intensity exhibits a dipolar character. (d)—(f) Reprinted by permission from Springer Nature: Nature Nanotechnology [125] (2015).

configuration, the SHG enhancement is only possible at the
interface and a limited fraction of the bulk SH from the active
source radiates through the plasmon channel.

In order to fully utilize the bulk nonlinearity for maximal
nonlinear response, it has been proposed to embed BaTiO;
into a core-shell nanocavity [132]. Using this approach, a
SHG enhancement factor of 500 has been experimentally
demonstrated (see figure 12(b)). Recently, this core-shell
nanostructure configuration has also been adopted for inves-
tigating DFG at the nanoscale [133]. As depicted in
figure 12(d), such elegantly engineered composite nanos-
tructure supports plasmon resonances at pump, signal, and
idler wavelengths, providing large field enhancement across
the confined BaTiO; medium and efficient coupling of the
frequency-converted idler emission to the far-field.

Although metals possess one of the largest intrinsic third-
order susceptibilities in nature, their skin depth is generally
small and the third-order nonlinear response is hence strongly
reduced. Combining plasmonic metal nanostructures with
non-metallic nonlinear optical materials represents a new
paradigm for enhancing third-order nonlinear optical effects.
For example, by feeding a semiconductor indium tin oxide
(ITO) nanoparticle into the near-field hot spot of a gold
dipolar antenna, as depicted in figures 12(e) and (f), the
resultant hybrid dielectric-plasmonic nanostructure exhibits a
third-harmonic conversion efficiency of up to 0.0007% [134].
Further analytical results reveal that the total third-harmonic
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response originates predominantly from the active ITO
nanoparticle rather than the gold nanoparticles [135].

In recent years, we have witnessed an increasing research
interest in nonlinear optics of nanostructured high-index di-
electric materials [136—140], largely stimulated by their negli-
gible dissipative losses, large nonlinearity, and strong magnetic
multipolar resonances in the visible and near-infrared spectral
band [141]. Compared to plasmonic metal nanostructures,
resonant high-index dielectric ones can produce enhanced field
over more extended spatial regions and thus, can mediate
nonlinear optical processes in significantly larger volume. With
specific arrangement of a plasmonic element and a high-index
one in a hybrid subwavelength structure, as illustrated in
figure 13 [142], the strongly confined near-field mediated by the
plasmonic element can further excite the resonant high-index
mode, resulting in significantly improved nonlinear conversion
efficiency due to the enhanced nonlinear polarization over the
whole high-index volume. In addition to enhanced non-
linearities, high-index dielectric nanostructures with rich spectra
of Mie resonances can be conveniently manipulated for targeted
nonlinear emission characteristics, including vector optical field
generation and directional radiation [143, 144]. In order to find
out about other technological applications offered by dielectric
nanostructures in nonlinear nano-optics, interested readers can
refer to the publications [94, 141] and other related works.

Similar to the plasmon-assisted coherent frequency con-
version of active nonlinear optical materials, upconversion
nanocrystals (UCNCs) have also been hybridized with
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Figure 11. Understanding of the nonlinear signal enhancement and phase modulation mechanisms involved in doubly-resonant plasmonic
nanostructures. (a) Schematic illustration of double-resonance enhanced SH emission in an aluminum nanoantenna consisting of multiple
nanorods. Reprinted with permission from [127]. Copyright (2017) American Chemical Society. (b) Probing the SH near-field spatial profile
of a resonantly excited gold nanorod with a nearby aluminum antenna featuring a dipolar resonance at the SH wavelength. Reprinted with
permission from [128]. Copyright (2017) American Chemical Society. The aluminum nanorod oriented parallel (perpendicular) to the gold
nanorod is utilized to probe the x—(y—) component of the SH field. (c) The interplay of symmetry and phase in second-harmonic generation
from a doubly-resonant gold nanoantenna. Each nanobar (w-particle) possesses a plasmon resonance at the fundamental wavelength and each
nanodisk (2w-particle) with a resonance at the SH wavelength. The non-centrosymmetric configuration CIII exhibits the strongest SH
emission intensity (bottom). Reprinted with permission from [126]. Copyright (2016) American Chemical Society.

plasmonic metal nanostructures for enhancing upconversion
efficiency and modulating emission state. Similar to the
aforementioned mode-matching configuration for enhanced
harmonic generation in plasmonic nanostructures, simulta-
neous excitation and emission enhancement in upconversion
luminescence can be expected for the UCNCs located in the
close vicinity of a DR plasmonic nanostructure. To this end, it
has been proposed that, as illustrated in figure 14(a), the
longitudinal and transverse dipolar plasmon resonances of a
gold nanorod can be geometrically tuned to respectively
match the excitation (980 nm) and emission (540 nm) wave-
length of lanthanide-doped UCNCs for double-resonance
enhanced light upconversion [145]. Analytical results suggest
that the distance between the UCNCs and the gold nanorod is
crucially important to the upconversion efficiency, as the
upconversion emission would suffer from energy quenching
induced by non-radiative energy transfer to gold at very small
metal-emitter separations [146].
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Single gold nanorod@SiO,@CaF, : Yb3*, Er3* hybrid
core-shell-satellite nanostructures shown in figure 14(c) have
been used to demonstrate the critical importance of controlling
the distance between the plasmonic component and the UCNC
emitters in maximizing plasmon-enhanced upconversion effi-
ciency. It is found that the optimized distance is about 20 nm for
the highest upconversion of the two emission bands (~550 and
660 nm). Moreover, the two dipolar plasmon resonances of the
gold nanorod can be geometrically tuned to simultaneously
overlap with the two emission bands of the UCNCs, as per
figure 14(b), which not only significantly enhances the emission
intensity at both wavelengths, but also dramatically modifies
their emission polarization character via optical antenna effects,
as illustrated in figure 14(d). In addition, multiple lanthanides
doping in UCNCs leads to rich physics for emission manip-
ulation [147], where plasmon resonances can be used to selec-
tively accelerate particular absorption and emission bands.

As illustrated in figures 14(e) and (f), the 808 nm excita-
tion of the tri-doping Nd3*: Yb3*: Er3* UCNCs attached to
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gold ring (blue). Reprinted with permission from [142]. Copyright
(2017) American Chemical Society.
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gold nanorods (with 808 nm longitudinal plasmon resonance)
generates a much larger upconversion intensity than that of the
980 nm excitation seen in figure 14(f), although the latter was
able to mediate an efficient Yb3* — Er3* energy transfer.
This is because the absorption rate of 808 nm photons by the
Nd?+ ions can be effectively accelerated by the longitudinal
plasmon resonance of the gold nanorod. The absorbed photons
are then non-radiatively transferred to the Yb3* ions after
undergoing a fast relaxation to an intermediate state close to the
excited state of Yb3T, leading to an enhanced sensitization
efficiency. Because the transverse localized plasmon resonance
of the gold nanorod matches the two green emission bands of
Er3t, indicating an accelerated radiative decay rate, they can
thus benefit from plasmon-induced simultaneous sensitization
and emission enhancement while the blue and red emissions of
Er3* undergo only an excitation enhancement. Such different
plasmonic modifications to the three upconversion emission
bands enable controlling their relative emission intensities and
therefore realizing tunable upconversion colors [147].

4. Nonlinear graphene plasmonics
Graphene has attracted a tremendous research interest in

science and engineering due primarily to its remarkable
physical properties and potential for future technological
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Figure 14. Plasmon-enhanced nonlinear upconversion of lanthanide-doped upconversion nanocrystals. (a) Simultaneous excitation and
emission enhancements in upconversion luminescence using a plasmonic double-resonant gold nanorod. The left column shows the
simplified energy diagram of an Er** doped UCNC. Reproduced from [145]. CC BY 4.0. (b)~(d) Plasmonic enhancement and modification
of upconversion emissions from single gold nanorod@SiO, @CaF, : Yb3*, Er3* hybrid core-shell satellite nanostructures. (b)—(d) Reprinted
by permission from Springer Nature: Light Science and Applications [146], (2017). (e), (f) Plasmon resonance dominated upconversion
processes in tri-doping Nd3* : Yb3* : Er3* UCNCs. (e), (f) [147] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim.

applications [23, 24]. Regarding its optical properties, a key
feature of graphene that makes it particularly appealing for
photonics applications is that it supports SPPs [25, 26]. This
provides an unique material platform to study these excita-
tions in truly 2D physical systems. In addition to the linear
physical properties, nonlinear optical properties of graphene
have been the topic of intense research, too. Graphene, as a
centrosymmetric material, exhibits induced second-order
nonlinearity, large third-harmonic generation, and strong
optical Kerr nonlinearity in a single atomic layer. This makes
it possible to employ graphene in active photonic devices
with advanced functionality, including optical limiters, fre-
quency converters, ultracompact modulators, and photo-
voltaic and photoresistive devices. The linear and nonlinear
optical properties of graphene as well as its applications to
active photonic devices are reviewed in this section.

4.1. Linear optical properties of graphene

The linear optical properties of graphene are described by the
linear surface conductivity, whose frequency dependence is
given by the Kubo’s formula [148]. Within the random-phase
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approximation, this formula can be expressed as the sum of
the inter-band and the intra-band contributions. The intra-
band part of the conductivity is given by

ie*kgT
wh2(w — it h

X[M"

kgT
where w is the angular frequency, (. is the chemical potential,
7 is the relaxation time, 7T is the temperature, ¢ indicates the
electron charge, kg is the Boltzmann constant, and / repre-
sents the reduced Planck’s constant. Moreover, if . > kgT,
the inter-band contribution can be approximated as

_ |
ln[zw (W — it )ﬁ]. o

2u| + (w—it™hH7%

It can be seen that the intra-band contribution to the
permittivity of graphene at THz frequencies is similar to that
of noble metals, meaning that it is described by the Drude
model. On the other hand, the inter-band part is similar to that
of semiconductors, namely it can be represented by the

Ointra(W) = —

1+ 20In(e i + 1)], (20)
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Figure 15. (a) Dispersion of the complex sheet conductance, oy(w), of graphene. (b) Real and imaginary parts of the third-order nonlinear
surface conductivity of graphene, 6. Reproduced with permission from [150].

Lorentz model. These linear properties indicate that graphene
can support plasmon resonances at THz frequencies. The
dispersion of o;(w) = Gine(W) + Oirer (w) for graphene is
presented in figure 15(a) and corresponds to e = 0.6 eV,
7= 0.25ps/2m, and T = 0.

From a computational point of view, it is of practical
interest to introduce bulk quantities equivalent to the surface
ones, as it is usually more convenient to work with bulk
quantities rather than with surface ones. Consequently, one
uses a bulk conductivity, o, = 0 /hetr, Where heg is the
effective thickness of graphene, instead of the sheet con-
ductance, o,. This approach is ambiguous to some extent
because the thickness of an atomic monolayer cannot be
properly defined, especially in an electromagnetic context.
Moreover, the optical properties of graphene can be described
in an equivalent way using the electric permittivity, €, which
is related to the optical conductivity o, via the following

equation:
) _ 60(1 ¥ )

4.2. Nonlinear optical properties of graphene

io; io,
1+ b S
Eow

e(w) = 60( (22)

eowhege

The graphene lattice belongs to the Dy, space group (see the
inset in figure 15(a)), and as such it is a centrosymmetric
material. A direct implication of this property is that quad-
ratically nonlinear interactions, such as SHG, are forbidden;
however, THG and other cubic interactions are allowed and
particularly strong in graphene [27, 28]. The quadratic optical
nonlinearity of graphene can be described using the nonlinear
optical conductivity tensor, o), which relates the electric
field, E, at the FF and the nonlinear surface current density,
j™, at the third-harmonic (TH). More specifically, assuming
that the graphene sheet is located in the (x, y) plane at z = O,
the nonlinear current density, J ol can be expressed as [28]:

I, ) =" (n, D68(2),

where r; is the position vector lying in the graphene plane.
In these conditions, the nonlinear surface current density is
given by:

(23)

JM e, ) =0DE.(, D |E,(x, 1), (24)

18

where o = x, y, z and E, is the electric field component lying
in the plane of graphene. This equation implies that the
nonlinear current density lies in the graphene plane and only
depends on the field components tangent to this plane.
Therefore, o) = o0) = 0 and o) = 0.

A formula for ¢, derived under the assumptions that
electron—phonon and electron—electron scattering processes
together with thermal effects can be neglected, has been
derived in the following form [28]:

ioo(7wpe)* [ fw )

T &2
487 (faw)* (25]:

Here, T (x) = 17G(x) — 64G(2x) + 45G (3x), with G(x) =
In ‘ L2 imb (] — 1), and ve = 3ag7/(27) & ¢/300
is the Fermi velocity, with 7y = 2.7 eV being the nearest-
neighbor coupling constant and ay = 1.42 A the separation
distance between nearest-neighbor carbon atoms in graphene.
Figure 15(b) depicts 0¥ (w), whereas the inset of the figure
shows the lowest spectral peak at A = 1.033 um.

Similarly to the linear case, one can introduce a ‘bulk’
nonlinear conductivity, a'f) = o"(f) / hegr. This nonlinear con-
ductivity is particularly useful in experimental studies of
nonlinear optical phenomena in graphene because it is related
to a physical quantity that is usually measured experimentally,
namely the effective bulk third-order nonlinear susceptibility,
x. Using the fact that in the case of harmonic fields
J(r) = —iwP"(r), where P"(r) is the nonlinear polariza-
tion, one can readily prove that

P (w) = (25)

(3)

s

X(s)_ ! 3 _ i
Pl
el €08 hesp

where (), = 3wy is the frequency at the TH, with wy being
the FF.

o o (26)

4.3. Enhanced nonlinear optical response in optical gratings
containing graphene

One approach to enhance the nonlinear optical response of
graphene is to incorporate graphene structures in optical dif-
fraction gratings that support optical modes at the frequencies
of the graphene plasmons [149]. One such approach is illu-
strated by the structure schematically presented in figure 16. It
consists of a slab waveguide that is periodically patterned and
covered by a periodic array of graphene ribbons with width
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Figure 16. Waveguide structures comprising a periodically patterned
slab waveguide with permittivities €, and ¢ < ¢, covered by air and
placed on a dielectric substrate with ./¢; = 1.46. On top of the slab
waveguide are placed graphene ribbons with width w distributed
over both regions of the slab waveguide.

w = 230 nm. The three graphene ribbons located onto the
dielectric components of the slab waveguide with permittivity
¢! and e, are called the inner and outer ribbons, respectively.
This is inspired by the structure of the unit cell shown in
figure 16. The center-to-center distance between both the
inner and outer ribbons is 3w = 0.69 ym whereas the center-
to-center distance between an inner ribbon an an adjacent
outer ribbon is 1.37 ym. Moreover, the periodically structured
waveguide consists of a slab of height, 4 = 1.5 um, placed
in-between a substrate with relative permittivity ¢, = 1.467
(index of refraction, ny, = 1.46) and the graphene ribbons.
The slab itself is periodically patterned, namely it consists of
alternating domains with permittivity ¢, =4 (n = 2) and
el =324 (' = 1.8) with a period A = 5.5 ym.

The interaction between the graphene plasmons and a
waveguide mode was investigated using numerical simula-
tions in which the angle of incidence, 6, was varied from 0° to
20° while keeping constant the azimuthal angle, ¢ = 0°. The
fundamental wavelength values vary over the second-order
plasmon peak, namely from 6 to 9 um. The absorption map
computed using this approach is shown in figure 17(a). The
spectrum corresponding to § = 0° shows a narrow peak with
maximum of A = 0.33, due to the excitation of the TM,
waveguide mode at \™o = 8.05 ym, and two broad peaks
with maximum values of A ~ 6 X 10*3, due to the excitation
of surface plasmons. If the angle of incidence, 6, increases,
the spectral location of the to plasmons remains unchanged,
but the spectral location of the waveguide mode resonance
varies. Moreover, for 6§ > 0, the TM;, mode exists at two
wavelengths, AT™o(0) < ™o and A™;(0) > A\™o. Their
distance from the A™o peak increases as 6 increases, and of
the two branches of the TM mode the one on the left is more
efficiently excited. For § = 4.96° and # = 10.71° the mode
wavelengths, A™0(10.71°) = 7.1 um and A™0(4.96°) =
7.6um, are equal to the corresponding wavelength of the
plasmon absorption peaks of the inner and outer ribbons,
yielding absorption of A =0.331 and A = 0.238,
respectively.

Along the band corresponding to the TM, mode, defined
by the resonance wavelength of the TM, mode in the (A, 6)-
space, there is a large conversion efficiency enhancement due
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Figure 17. (a) Map of absorption spectra versus angles of incidence,
0, determined in the wavelength range of the second-order surface
plasmon of graphene ribbons. (b) The map of nonlinear radiation
spectra shows the inherited (red labels) and intrinsic, nonlinear
(green labels) modes of the slab waveguide. The left and right
branches of intrinsic modes of the same order exhibit anti-crossing
mode interaction, which leads to the formation of spectral band-gaps.
Reprinted figure with permission from [149], Copyright (2016) by
the American Physical Society.

to the excitation of this mode, as per figure 17(b). The
simultaneous excitation of graphene plasmons and waveguide
modes leads to strong THG, with intensities of Ity =
585 x 103y at Mg =237 pm and 6 = 10.71° and
Iy = 3.89 x 1074y at Ay =2.53um and 6 = 4.96°.
Overall, the largest TH intensity of Ity = 5.37 x 1072]; is
generated at Aty = 2.42 um and 6 = 9°, that is where the
inherited TM, band crosses the intrinsic TM; band. The
corresponding conversion efficiency enhancement is sig-
nificant and solely due to the excitation of the intrinsic non-
linear modes; however, it is orders of magnitude lower than in
the case of inherited effects. For example, the same intrinsic
TM; mode away from the simultaneous resonance, at
Arg = 2. 16 um and 6 = 20°, yields TH radiation of inten-
sity Iry = 7.13 x 10~°0,.

4.4. Double-resonant nonlinear graphene optical gratings

An alternative approach to enhance the nonlinear optical
response of graphene gratings is to design them in such a way
that they have plasmon resonances both at the FF and TH [150].
The geometrical structure of such a generic graphene grating is
schematically depicted in figure 18. It consists of a 1D grating
with period A = 100nm, grating vector K = 27/A,
and width of the graphene ribbons, w = 50 nm. The graphene
grating lies in the z = z, plane and is placed onto a dielectric
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Figure 18. Schematic of a generic 1D graphene optical gratings. The
grating has period A and width of the graphene ribbon, w. The
spatial distribution and linear optical properties of graphene
structures, located at z = z, are defined by the sheet conduc-
tance, gy (x, Zs).

substrate with relative permittivity, €, the relative permittivity
of the cover being ¢.. For specificity, it is assumed that the
substrate is made of glass with ¢, = 2.25, whereas the cover is
air, so that €. = 1. The linear optical properties of graphene are
determined by its surface conductivity distribution, o;(x, z),
which means that one can describe the spatial dependence of the
relative permittivity of the graphene grating by a piecewise
continuous function, €, (x, z). The incident light is TM-polar-
ized and is normally impinging onto this binary graphene
grating.

The wavelength dependence of the reflectance, R, trans-
mittance, 7, and absorption, A, of this grating, as well as the
corresponding spectrum of the TH intensity are presented in
figure 19(a). The intensity of the incoming wave was set to
Iy = 10'2 W m~2, the TH intensity being measured relative to
this reference value. The spectra depicted in figure 19(a) show
several important features. Thus, one can observe that both
the absorption and TH intensity spectra possess a series of
spectral peaks, the resonance wavelengths in both cases being
the same. The magnitude of the corresponding spectral peaks,
both in the case of absorption and TH intensity, decreases
with the wavelength. Moreover, the spectral width of the
resonances, and therefore the corresponding optical losses,
decreases as the resonance wavelength decreases too. The
origin of these spectral resonances can be traced to the
enhancement of the local optical field because both absorption
and TH intensity are directly related to the near-field at the
FF. In addition, since graphene can be viewed as an extremely
thin metallic film, one concludes that these resonances and the
corresponding near-field enhancement at the FF are due to the
excitation on the graphene ribbons of localized surface
plasmons.

The spectra depicted in figure 19(a) reveal a particularly
effective way to design efficient graphene gratings for
enhancement of the THG and other nonlinear optical pro-
cesses in such diffraction gratings. To be more specific, let us
assume that one can engineer the spectral resonances of the
grating by changing the width of the ribbons in such a way
that the resonance wavelength of the fundamental plasmon is
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Figure 19. (a) Wavelength dependence of the reflectance, R,
transmittance, 7, and absorption, A, as well as the spectrum of the
TH intensity, determine for the 1D graphene grating depicted in
figure 18. The period of the grating is A = 100 nm and the width of
the graphene ribbons, w = 50 nm. (b) Third-harmonic intensity
spectra versus the width of the graphene ribbons corresponding to
the same graphene grating. In the inset, the TH intensity versus the
width of the graphene ribbons, determined for the resonance
wavelengths of the fundamental plasmon, is shown. The dashed line
is only a guide to the eye.

equal to the wavelength of the incoming wave, whereas the
wavelength at the TH is equal to the resonance wavelengths
of one of the higher-order plasmons. This means that the
resonance wavelength of one of the higher-order plasmons
should be equal to a third of the resonance wavelength of the
fundamental plasmon mode. In these conditions, the optical
grating will be efficiently excited at the FF, which will induce
a large field enhancement at this frequency, and will radiate
efficiently at the TH because there is a plasmon resonance at
the TH wavelength, too. In other words, such an optical grating
can be viewed as a highly effective receiver at the FF and a
strong emitter (an efficient antenna) at the TH. These ideas
have recently been employed to design graphene optical grat-
ings that can be used not only to enhance the THG but also to
control the polarization state of the generated TH [151].
These theoretical arguments are validated by the results
summarized in figure 19(b), where the dispersion map of the
TH intensity of the diffraction grating is depicted, that is, the
dependence of the nonlinear spectra on w. Also presented in
the inset of this figure is the variation of the TH intensity with
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the width of the graphene ribbons, calculated at the resonance
wavelengths of the fundamental plasmon. An important
conclusion illustrated by this figure is that, as we previously
mentioned, the excitation of localized plasmons in graphene
ribbons at the FF leads to a large increase of the TH intensity
via local field enhancement. This can be clearly seen from the
location of the spectral resonance bands in figure 19(b).
However, more importantly, the plot presented in the inset of
this figure demonstrates that a further enhancement of the TH
intensity occurs when the double-resonance condition is
verified. Specifically, the curve in the inset of figure 19(b)
was determined by choosing the wavelength of the incident
wave so as to coincide with the resonance wavelength of the
fundamental plasmon (the plasmon band corresponding to
the largest enhancement of the TH) and varying the width of
the graphene ribbons. It can be seen that a maximum TH
intensity is obtained when w = 85 nm, namely exactly for the
width at which plasmon modes exist at both the FF and TH.

5. Numerical methods for modeling nonlinear optical
processes in plasmonic nanostructures

In the last decade, the bottom-up design of new optical
nanostructures and the modeling of photonic nanodevices
have been greatly accelerated by the availability of user-
friendly, computationally powerful software tools. Thus, high
fabrication costs of complex optical metamaterials make it
imperative to have access to computational tools based on
efficient numerical algorithms, which can greatly accelerate
the device design process and reduce the design-fabrication-
testing cycle. High-performance computing tools that are
beginning to be used in nanophotonics are able to model a
distributed multifunctional device ‘continuum’ in which the
light is generated, processed, and collected in the same phy-
sical space. This device complexity implies that present and
future computational algorithms for nonlinear plasmonics
must fully integrate the description in the time and frequency
domains of classical and quantum physical phenomena that
take place over multiple spatial and temporal scales.

5.1. Time-domain methods and hydrodynamic model

Local-response approximation models, such as the Drude and
Lorentz models, are commonly used to numerically model
plasmonic nanostructures. However, these models do not
consider the nonlinear and nonlocal optical characteristics of
such nanostructures. At present, nanoscale fabrication tech-
niques for plasmonic nanodevices are becoming increasingly
more performant, which allows for investigating new phe-
nomena occurring in unexplored physical regimes. When an
optical field strongly couples to a plasmonic nanostructure, it
interacts with free electrons in the system resulting in intrinsic
nonlinear optical response, including higher-harmonic gen-
eration, sum- and DFG, and Kerr effects. Owing to the lim-
itations of local-response models, physical models that
incorporate both nonlinear and nonlocal effects are of part-
icular importance.

The motion of free electrons in the conduction band can
be described by the Boltzmann equation (BE) [152]:
K 1 1
LELD | NE® - Vs ke

F 0
+ Y e ko=sekn + L
VA ot

2
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where f is a probability density function defined in the
(r, k)-phase space, E(k) is the energy of the electron with
wave vector K, and the wave-particle duality is used, i.e.

or 10(w) 1

o _ 10w _1g p. 28
o T ok g N EW (284)
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The functions S and 9f/0t|.on in (27), are the source and
collision terms, respectively.

When electrons are coupled to electromagnetic fields, the
force F can be written as

F=—gE+v xB), (29)

where E and H are the electric and magnetic fields, respec-
tively, and v is the electron velocity.

Finding numerical solution to the BE is difficult and
computationally expensive. Thus, in turn one solves its
momentum balance equations. To this end, one defines the
charge, current density, and kinetic energy density, respec-
tively, as:

n(e. ) = = f kD), (30a)
Q k
I, = LS v, k, 0, (30b)
Q k
W, 1) = éZE(k)f(r, k, 1). (30¢)
k

The above equations can be written as a generalized source
form,

no(r, 1) = %2 SO (X p. 1), 31)
P

where ¢ can be 1, —gv, etc.

Using the Galerkin scheme, we can multiply (27) by ¢
and then integrate it over Kk, to finally get:

1 o 1 .
ngs(p)at + Q;mp)v Vif

+ LS emF Y= L smsa. p. o)
Q P Q P

T é; 6@ Lo (32)

If we define
Fy= é; SOV, (33a)
(33b)

G, =F- LS 607,
Q B
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Figure 20. Comparisons of numerical simulations and experiments
for different arrays of gold nanoparticles. The different columns
show shape of nanoparticles, the polarization of the incident light,
the linear transmission (solid) and reflection (dashed) spectra,
theoretical second-harmonic spectra (amplified 13 orders of
magnitude), the relative strengths obtained by the theory, and the
corresponding experiments (inside brackets). For all the structures,
the polarization of the generated second-harmonic waves is along the
y direction. The illuminating fundamental-frequency wave has a
wavelength around 1500 nm and amplitude of 2 x 10" Vm™".

(a) The C-shaped particle with the lattice constants of

a, = 567.5 nm and a, = 590 nm. (b) The T-shaped particle with
the lattice constants of a, = 295 nm and a, = 465 nm. Reprinted
figure with permission from [153], Copyright (2009) by the
American Physical Society.
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equation (32) can be rewritten as a series of balance
equations:

Ony(r, t
%:—V~F¢+G¢—R@+S¢.

(34
If one chooses ¢ = 1, the zeroth-order balance equation
reads:
on

— =V (),

o (35)

where the generalized source term S, is assumed to be zero.
In particular, the above is the current-continuity equation.
Moreover, for ¢ = —gv, the first-order (momentum) balance
equation reads:

A _ —2(=9)
ot *

where J, = —gnv is the polarization current, 7,, is the
relaxation time, and

1
_Jn’

Tm

VWt -L(nF) - (36)
m

m

1
W= (Em*vv)n (37)
is the kinetic energy density. In equation (36), the relaxation
time approximation is used for the collision term [152]. This
equation can be simplified by using the current-continuity
equation (35), the result being the hydrodynamic equation:
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The nonlinear and nonlocal response of the conduction-
band electrons in metallic structures can be modeled by self-
consistently solving the hydrodynamic equation (38), current-
continuity equation (35), and the Maxwell equations:

OH

o’
V xH= Jn + foa—E,
ot
where €, and pi are the vacuum permittivity and permeability,
respectively.

The second-harmonic polarization sources in isotropic
and centrosymmetric metallic materials are classified into
bulk and surface terms [70, 74, 75] (see also section 2.2). For
wt,, > 1, the hydrodynamic model gives the following for-
mulae for the bulk parameters:

+ v, Vv, (38)

~L@®E+vxB) - L
m

m

V xE=—p, (39a)

(39b)
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where X(bl) is the linear bulk permittivity of the metal, n is the
equilibrium electron density, and w,, is the plasma frequency
of free electrons. Moreover, in the same limit wr,, > 1, the
following formulae for the components of the nonlinear sur-
face susceptibility can be derived from the hydrodynamic
model:

(41a)

2

1
Xolll = 5 (415)

0
Furthermore, the contribution of the term X-(f)LHH is negligible.

In a recent study [153], the second-harmonic response
from metallic nanoparticles with different shapes has been
analyzed perturbatively by solving the Maxwell-hydro-
dynamic model with the finite-difference time-domain
(FDTD) method. The predictions of the theoretical model
qualitatively agreed with experimental measurements.
Figure 20 shows the SH signal strength emitted from
C-shaped and T-shaped patrticles. The polarization state of the
far-field SH signal is always y-polarized. Thus, a universal
selection rule exists, i.e. mirror symmetry of the metallic
particles in one direction completely forbids a polarization
component of second-harmonic generation in that direction.
Also, the presence of structural plasmonic resonances can also
greatly enhance the SHG from metallic particles.

Plasmonic resonances of different order make different
contributions to the SHG. Using the perturbative solution, it
was found that the free-electron polarization P has the non-
linear sources (including the Coulomb term also referred to as
quadrupole-like term), proportional to E(V - P), the magnetic
Lorentz force contribution, P x B, the convective terms
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Figure 21. Second-harmonic field patterns generated by the different nonlinear sources for the gold wire. The total scattered second-harmonic
power Qgyy is shown for a pump peak intensity of 15 mW cm™2. The field patterns were calculated by considering only the second-harmonic
source term of interest and turning off all others. Reprinted figure with permission from [154], Copyright (2012) by the American Physical

Society.

(P - V)P and (V - P)P, the linear nonlocal pressure term
described by V(V - P), and the nonlinear pressure term
(V-P)V(V - P) [154].

Using this formalism, SHG from a gold wire of diameter
d = 100 nm with the pump wavelength A = 1064 nm was
modeled, the contributions from different nonlinear source
terms being presented in figure 21. Each term defines a
nonlinear scattering channel that could be amplified or sup-
pressed by the other terms via interference effects. Conse-
quently, it is not trivial to determine the contribution of an
individual term to the generated field, which, in general, will
depend on the particular geometrical configuration and other
parameter choices. Additionally, in both [153, 154], it was
assumed that the fundamental fields are not affected by the
generated harmonic, which is called the undepleted pump
approximation.

The Maxwell-hydrodynamic model was rigorously solved
by various numerical methods, such as FDTD method
[155, 156], finite-element time-domain method [157], and dis-
continuous Galerkin time-domain (DGTD) method [158]. The
Maxwell equations or wave equation is coupled to the hydro-
dynamic model to produce a self-consistent solution going
beyond the undepleted pump approximation. Thus, a time-split
semi-implicit FDTD method to model SHG in metallic meta-
materials has been developed [155]. Then, the finite-element
time-domain method [157], has been used to investigate the
nonlinear scattering spectra from an infinitely long gold cylinder
of 100nm radius. The power dependence of the nonlinear
harmonic generation follows the well-defined powers of the
pump, quadratic and cubic for SHG and THG, respectively, as

expected for nonlinear optical interactions (see figure 22). In
particular, it has been found that the straightforward perturbative
hydrodynamic description (e.g. relying on phenomenological
second-order nonlinear polarization) is inconsistent with the
self-consistent Maxwell-hydrodynamic model.

The DGTD method has been employed to simulate a
complex V-groove nanostructure, in particular to engineer
a double-resonant scenario at the fundamental and the
second-harmonic wavelengths. The two main resonances
occur when exciting the structure with light polarized along
the long axis of the groove. The first resonance w; is located
at 512 nm while the second one is found at half the wave-
length, i.e. at 256 nm (marked with w,). This double-resonant
scenario leads to an enhanced SHG signal that is slightly
blue-shifted with respect to w,, to 253 nm (marked with 2w,
wy in figure 23). In addition, it has been observed an addi-
tional SHG resonance at 223 nm, which is related to the
resonance with light polarized along the short axis of the
groove. This demonstrates that the SHG process is sensitive
to all (linear) resonances and not only to those that occur for a
specific excitation.

The selection rules of SHG from periodic metallic
metamaterials have been recently investigated numerically by
using an explicit FDTD method [156]. For a unit cell with
N-fold rotational symmetry, the polarization selection rule for
SHG is —v + p + p = nN, where n is an arbitrary integer,
v is the spin angular momentum of the transmitted second-
harmonic wave, and p and p are the spin angular momenta of
fundamental incident waves. The parameters v, u, and p are
either 1 or —1. If the unit cell has three-fold rotational

23
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Figure 22. (a) Simulation layout of nonlinear optical generation from
a gold cylinder illuminated by a short pulse. (b), (c) Integrated flux
for (b) SHG and (c¢) THG normalized to the maximum incident
fundamental flux Fj (corresponding to the peak intensity ;') as a
function of the fundamental light intensity. Reprinted with
permission from [157]. Copyright (2015) American Chemical
Society.

symmetry, namely N = 3, only the combinations v = 1,
u=—-1,p=—-lorv=—1, p=1, p=1 are allowed. It
means that the metamaterial could convert left-circularly
polarized fundamental waves to right-circularly polarized
second-harmonic waves, and vice-versa. If N = 1, both
v=—-1, u=—-1, p=—1 and v=1, p=1, p=lare
allowed. It means that the amplitude of the right-circularly
polarized component is comparable to that of the left-circu-
larly polarized component at the second-harmonic frequency.
For N > 3, no combination of v, u, p is allowed and thus the
SHG is forbidden. Figure 24 shows the corresponding results
for the triangle, L-shaped, and disk-shaped metamaterials.

Advances in nanofabrication techniques have made it
possible to achieve ultrasmall nanoparticles and separation
distance between two metallic elements of only a fraction of a
nanometer. At such distances, nonlocal, electron spill-out and
quantum tunneling effects become non-negligible. To con-
sider these effects, the classical hydrodynamic equation
should be modified using the Thomas—Fermi hydrodynamic
equation [159] or the quantum hydrodynamic equation
[160-162]. The quantum hydrodynamic equation can be
written as:

My v+~ 4 gy xB)
ot Tin m*
1 0G[n]
- —V . 42
m* én “42)

The energy functional G[n] in this equation contains the sum
of the interacting (Thomas—Fermi and Weizsédcker) kinetic
energy and the exchange-correlation potential energy of the
electrons.
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Figure 23. (a) Linear scattering, (b) absorption, and (c) nonlinear
scattering cross-sections from a metal V-groove system for
p-polarized light that is incident perpendicular to the long axis.
Every curve represents a single computation. In parts a and b, the
envelope (black solid line) reproduces exactly the well-known linear
cross sections in absorption and scattering. (c) The SHG scattering
cross-sections corresponding to the linear spectra displayed in panels
(a) and (b). The SHG spectra exhibit a high degree of similarity to
the corresponding linear spectra. The insets depict the corresponding
near-field distribution for the prominent resonances. The individual
resonances are numbered from longer to shorter wavelengths. The
dashed lines in the linear scattering and absorption spectra are
obtained for p-polarized light incident perpendicular to the short axis
of the nanoparticle. Reprinted with permission from [158]. Copy-
right (2016) American Chemical Society.

Different from the classical hydrodynamic model that
employs hard-wall boundary conditions, in the quantum
mechanical case the electrons are allowed to spill off the
metal surface. For classical hydrodynamic model, the equili-
brium (initial) electron density is uniform in space, i.e.
no(r) = ng. In the quantum hydrodynamic model, on the
other hand, n(r) is the quantum-mechanical electron density
of the system under consideration, obtained, for example,
from a full ground-state Kohn—Sham density functional the-
ory calculation.

Second harmonic generation in metallic Archimedean
nanospirals has been numerically investigated [159], reveal-
ing the interplay between nonlocal and geometric effects. The
quantum pressure term in the nonlinear hydrodynamic model
is responsible for the emergence of fractional nonlinear
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Figure 24. Calculated second harmonic spectra for triangle array
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components of the transmitted second harmonic waves. ‘Ext’ means
the incident fundamental excitation. [156] Reproduced courtesy of
The Electromagnetics Academy.

harmonics leading to the generation of broadband coherent
white-light. For large cylinders of 200 nm diameters (blue
solid and dashed lines in figure 25(c)), the nonlinear scatter-
ing intensity (with the linear scattering field subtracted)
clearly shows the signature of generation of higher-harmonics
up to the 3rd order, although no significant impact of the
nonlocality is observed. The effect of nonlocality, however, is
much more pronounced in the case of the spiral nanostructure
(red lines in figure 25(c)). First, the generation of fractional
harmonics, due to the quantum pressure term, is evident. A
pronounced and remarkable difference between local and
nonlocal scenarios manifests itself in the broadband super-
continuum generation. It can be traced to the collective
electron-electron interactions, which gives rise to distinct
fractional harmonics.

Recently, hydrodynamic equations governing the col-
lective motion of massless fermions in graphene have been
derived [163—-165]. However, numerical solution of the quasi-
relativistic hydrodynamic equations for analyzing the non-
linear optical response of graphene has not been explored yet.

5.2. Frequency-domain methods

The classical hydrodynamic model only requires the relaxa-
tion time and electron density as physical parameters but only
captures linear and nonlinear dynamics of electrons corresp-
onding to intraband transitions. Thus, to capture the electro-
magnetic response due to interband transition processes, one
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Figure 25. Nonlinear response of Archimedean nanospiral.

(a) Electric near-field maps around the metallic nanospiral with

s = 70 nm and w = 12 nm and the nanorod with d = 100 nm.

(b) Extinction cross-section spectra of the nanospiral normalized to
its geometrical area modeled with linear frequency-domain numer-
ical simulations. The insets show the electric field enhancement
maps for the first two nanospiral resonances with respect to the norm
of the electric field of the incident wave. The white arrows show the
direction of the local electric field. (c) Nonlinear scattering spectra of
the nanospirals and nanorods of different parameters for an
excitation pulse with 20 fs: solid and dashed lines correspond to the
hydrodynamic model with and without the quantum pressure term,
respectively. Reproduced from [159]. CC BY 4.0.

can employ frequency-dependent surface and bulk suscept-
ibilities obtained from experiments and model the nonlinear
processes by using frequency-domain methods. In this
approach, one first solves for the electric fields at the pump
frequencies w; and w, using the linear bulk susceptibilities.
Then, one calculates the surface and bulk nonlinear polar-
ization sources by using the nonlinear surface and bulk sus-
ceptibilities. Finally, employing the nonlinear polarizations as
the excitation sources, one can compute the sum-frequency or
difference-frequency fields using the linear bulk suscept-
ibilities at the frequencies of w; + w, or |w; — wsl,
respectively.

5.2.1. Boundary element method. We now introduce the
boundary element method for modeling SHG from metallic
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nanostructures. The boundary element method can model
efficiently the second-harmonic generation from arbitrarily
shaped plasmonic structures since it only requires surface
discretization. In addition, experimentally measured optical
constants can be readily incorporated in the calculations.

Second-harmonic process can be described by the
following two coupled linear wave equations:

iw

2
, , w , ,

VZEW + k@2EW = - ——P{) — — I, (43)

€oC €nC

2RO 2RO 2 Lo
V2E® + f@2E® = ——Pxis (44)
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where J mnp is a pump source current producing the incident

field at the fundamental frequency. The nonlinear polariza-
tions P{) = ox2: EYE@* and P = ¢x2: E¥EW
are the nonlinear source terms for the fundamental and
second-harmonic fields, respectively. Here, XSJ) and Xii) are
the surface second-order nonlinear susceptibility tensors
related to the down-conversion and up-conversion processes,
respectively, E“) and EV are the fundamental and second-
harmonic electric fields, respectively, whereas k) and k®?
are the corresponding wave numbers. In order to fully
describe both the cross-coupling between the fundamental
and second-harmonic fields and the pump depletion effect,
equations (43) and (44) are solved self-consistently using a
first-principle boundary element method with the initial
condition P{) = 0.

The computational domain used for solving for the
electromagnetic fields at the FF and SH is divided into
the exterior background region and the interior of the metal, the
two regions being separated by the interface, S. The object is
illuminated by an incoming plane wave. By employing Love’s
equivalence principle, the corresponding currents lying on the
outer side of the interface, S, generate the scattered field in
the exterior region and no field inside the metallic object.
Moreover, the equivalent currents on the inner side of S
generate the total field inside the metallic object and no field in
the exterior region. This is expressed mathematically by the
following two equations:

reWEwm}

iv G, r') - JV"dr'
ré Vi 0 b ks ¢4

The discontinuities of the electromagnetic fields at the
interface are produced by the surface current sources, J g”) and
Mg’), at the boundary,

{

where n is the outer normal vector of the surface. The
equivalent currents satisfy:

{J,f") +J0 =130,

n x (E — E) = M,

v v 4 (47)
n x (H” — HY) = JY,

M + M = M. @9

The boundaries of the nanostructures are discretized using
triangular meshes and the equivalent surface currents are
expanded using Rao—Wilton—Glisson basis functions [166]. In
the next step, a matrix system is constructed by exploiting the
Galerkin testing procedure [167]. Then, a modified Poggio—
Miller—-Chang—Harrington-Wu-Tsai (PMCHWT) formulation
[167] is used to ensure accurate solutions even upon resonant

conditions. The PMCHWT matrix equation can be expressed as:
CxW) =y, (49)

with the impedance matrix,
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where £ = ivu, G, k)" is the principal value part of the
K operator defined as K¢ = -V x G, and n,=

JHp/ €, with £ = e, i. Moreover, the vectors of unknowns,
()

x'”, and the excitation field, y*, are:
J© n x My
X0 — 1}4((5: NI o< 3 (50)
i Jg’)
M MY,

— [V x GY(r, v’y - MY (r")dr’, (45)
According to the nonlinear boundary conditions for the
reV, H () — i f GV (r, 1) - MY () dr’ fields [69], the following relations hold:
r¢ Vv, 0 s
_ (W) x H(w,inc) _ (w)
+ [V x GV, ) - JP)dr, b lwplS’ | 51)
(46) M{” = —n x E@no) 4 —n VP,
where G (r, r') = (I + k®~2VV)[exp(ik'R) /47R] is the .
dyadic Green’s function at the frequency v (v = w, @ = 2w J BQ) = —iQ’P(S‘,‘),
represent the frequencies of the fundamental field and second- 1 (52)
: : - M{» = —n x VP
harmonic, respectively) and R = |r — r’|. Moreover, { = e, i 0 o SIS,
denotes the exterior and interior regions of the object, w ) w w
respectively, J¢) and M{” are the equivalent electric and where Pg” = —n x n x P’ and Pg’ = n - Py’ are the

magnetic currents, respectively, lying onto the outer (¢ = ¢)
and inner (f = i) sides of the boundary of the object.
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tangential and normal components of the nonlinear polariza-
tion density with 2§’ = ¢x?: EQE“* and 2{"=



J. Opt. 20 (2018) 083001

Topical Review

cox'?: E¥E@. Here, ¢ is the permittivity in the selvedge
region [69].

Equation (49) can be used to determine both the
fundamental and second-harmonic fields by setting v = w,
Q, respectively. As indicated in (51), the source terms at the
fundamental frequency include the incident excitation wave
and the nonlinear polarization source back-coupled from the
second-harmonic (down conversion process). The second-
order susceptibility mediates this interaction and acts as a
coupling coefficient.

The interaction between the fundamental and second-
harmonic fields is determined by solving iteratively the
equations for the fundamental and second-harmonic fields,
with the updated source terms computed in the previous
iteration. In the numerical implementation of this procedure,
one initially calculates the equivalent fundamental electric
and magnetic currents induced by the incident excitation
wave by setting the nonlinear polarization to Pg“) =0.In
order to compute the initial value of the second-harmonic
nonlinear polarization, one needs to evaluate the field at the
fundamental frequency on the inner side of the surface, S. It is
given by the equivalent surface currents via the following
equations:

EX |- = -1 x M,
ESly = % - I

(53a)
(53b)

Using this computed field at the fundamental frequency,
the initial value of the nonlinear polarization at the second-
harmonic is first calculated, so that subsequently the initial
value of the second-harmonic field can be solved. After these
initial values are calculated, one can iteratively solve for the
field unknowns at the fundamental and second-harmonic
frequencies until the iterative procedure converges asympto-
tically to the self-consistent solution.

A frequency-domain boundary element formulation for
computing surface second-harmonic generation from nano-
particles of practically arbitrary shape and material properties
has recently been developed [168, 169]. By using this
method, it has been shown that the particle geometry in
conjunction with the polarization of the incident field play a
central rdle in determining the characteristics of SHG from
arrays of metallic nanoparticles, as per figure 26. Thus, for
sample L, the x-polarized input field is nonresonant and the
hot spots are weak, hence generating a weak SH signal. For
sample 7}, the y-polarized fundamental field is nonresonant
and thus the allowed yyy-interaction is weak. Moreover, for
sample T,., input y-polarized fields are near-resonant. The
y-polarized hot spot is highly asymmetric in the y-direction,
which leads to a strong signal produced by the yyy-interaction
configuration. Consequently, the yyy-configuration SHG
signal from sample T is twice as large as that from sample
L. Both the symmetry properties of the structure with respect
to the polarization of the incident field and the existence of
resonances determine the amplitude of the second-harmonic
signal radiated into the far-field region.
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Figure 26. x- and y-polarization components of the near fields at the
second-harmonic wavelength calculated at a plane 15 nm after the
gold nanoparticles. The shown quantity corresponds to the real part
of the field at a moment when the real part of the strongest spot is
maximum. Sample L (top row), sample 7}, (middle row), and sample
T, (bottom row) for x-polarized, y-polarized, and x + y polarized
input beam at the fundamental wavelength, respectively. The
numbers in the right upper corners show the maximum field
amplitudes normalized to that for the yyy component of L. The input
polarizations are indicated above the figures and the calculated SHG
components are shown in the left upper corners. The labels in the
right bottom corner show the tensor components that contribute to
each panel. The near fields related to allowed tensor components are
framed with thick blue, red, and green lines. Reprinted with
permission from [169]. Copyright (2015) American Chemical
Society.

The boundary element method has been extended to
incorporate both local-surface and nonlocal-bulk sources
[170]. Using this formalism, it has been demonstrated that the
contribution of the nonlocal-bulk sources can be described
using equivalent surface electric and magnetic currents.
A similar method based on periodic Green functions has
been used to study SHG from periodic metallic nanostructures
[171]. Using the boundary element method, it has been shown
that SHG in a heptamer plasmonic system can be increased
when the structure possesses Fano resonances [172]. Thus,
the geometry of the system of nanoparticles is engineered to
simultaneously possess a Fano resonance at the fundamental
frequency, leading to a strong localization of the fundamental
field nearby the system, and a higher-order scattering peak at
the second-harmonic frequency. Figure 27 depicts the second
harmonic near-field intensity when the fundamental wave-
length is A = 800 nm and A = 950 nm. A dramatic enhance-
ment of the near-field at the second harmonic frequency in the
Fano-resonant system can be clearly observed: in this
resonant condition, the near-field intensity is about 25 times
larger (A =400 nm, figure 27(a)) than in the off-Fano-
resonant case, namely at A = 475 nm; figure 27(b).

A self-consistent boundary element method that goes
beyond the undepleted pump approximation has been
introduced in a recent study [173]. Using this method, a
plasmonic particle-in-cavity nanoantenna was designed to
achieve strongly enhanced and directionally tunable second-
harmonic radiation [174]. The efficiency of the particle-in-
cavity nanoantenna has been compared to that of other
designs reported in literature [172, 175], as shown in
figure 28.
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Figure 27. Near-field distribution of the second harmonic intensity
close to an ideal silver heptamer plotted on a logarithmic scale with
SHG at (a) A = 400 nm (corresponding to the fundamental at

A = 800 nm) and (b) 475 nm (corresponding to the fundamental at
A = 900 nm), the angular intensity emission plots for the two
corresponding cases of (c) SHG at A = 400 nm and (d) SHG at

A = 475 nm. Note that in panel (d), the intensity has been scaled by
a factor of 3 showing the much stronger SHG in the far-field for the
Fano-resonant case. Reprinted with permission from [172]. Copy-
right (2013) American Chemical Society.

In the same context, a theoretical study of the
characteristics of the nonlinear spin-orbital angular momen-
tum coupling induced by SHG in plasmonic (gold) and
dielectric (silicon) clusters of nanoparticles made of centro-
symmetric materials has been reported [176]. In particular, a
general angular momentum conservation law has been
formulated for the nonlinear spin-orbital angular momentum
interaction, which includes the quasi-angular-momentum of
chiral structures with different-order rotational symmetry. The
conservation law can be expressed as j ., = s(/ + o) + gN,
where o and [/ are the spin and orbital angular momentum
numbers of the incident optical beam, respectively, s denotes
the order of the generated harmonic, that is s = 1 for linear
processes, s = 2 for SHG, etc, N is the quasi-angular-
momentum number characterizing the nanostructure with
N-fold rotational symmetry, g = 0, 1, £2, +3, ... is an
arbitrary integer, and j,,, is the total angular momentum
number of the scattered field.

The second-harmonic conversion efficiencies corresp-
onding to plasmonic and dielectric chiral clusters illuminated
by left- and right-circularly polarized Laguerre-Gaussian
(LG) beams with orbital angular momentum number [ = 4
were calculated and compared. It should be noted that the
conversion efficiency of the plasmonic and dielectric chiral
clusters was normalized to the cross-sectional area of the
plasmonic and dielectric nanospheres, respectively. This
normalization ensures a per-particle quantification of the
nonlinear conversion efficiency. The power of the incident
LG optical beam for the dielectric and plasmonic nanos-
tructures was chosen to be same, P;,, =2 W. As can be
seen in figure 29, the dielectric chiral cluster made of
(high-refractive index) silicon nanospheres supports both
electric and magnetic Mie resonances, which leads to similar
conversion efficiency when compared to that of the plasmonic
chiral cluster. Considering that due to significantly lower
optical losses in dielectrics, the silicon cluster can sustain a
much larger optical power, the dielectric nanostructures can
provide orders of magnitude larger second-harmonic conver-
sion efficiency, as compared to their plasmonic counterparts.
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Figure 28. Second-harmonic intensities (a) and conversion efficien-
cies (b) of the asymmetric particle-in-cavity nanoantenna (PIC-NA),
heptamer, and double resonant antenna (DRA), all with the same
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area of a structure. Reprinted figure with permission from [174],
Copyright (2016) by the American Physical Society.
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Figure 29. Second-harmonic conversion efficiencies of chiral
nanostructure consisting of 10 identical nanospheres arranged in an
Archimedes-like spiral configuration, illuminated by left-circularly
polarized (o = 1) and right-circularly polarized (¢ = —1) LG beams
with the orbital angular momentum number of / = 4. (a) Plasmonic
(gold) chiral cluster. (b) Dielectric (silicon) chiral cluster. Reprinted
figure with permission from [176], Copyright (2017) by the
American Physical Society.

It is also worth noting that, using the volume integral
equation, it has numerically been studied the SHG from
dipole gold nanoantennas by analyzing the different con-
tributions of bulk and surface nonlinear terms [71]. In a
different study [177], the relative contribution to the SHG in
dielectric (silicon) and plasmonic (gold) of bulk and surface
nonlinear effects has been compared, the main conclusion of
this work being that in the case of plasmonic structures the
optical power generated by nonlinear interactions at the
surface surpasses by orders of magnitude that due to bulk
effects, whereas in dielectric structures, in certain circum-
stances, these two contributions can become comparable.

5.2.2. Finite element method. The finite element method is
another powerful tool for analyzing the optical response of
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plasmonic structures, especially when the bulk effects cannot be
neglected. In particular, it has been used to investigate the SHG
of 150 nm spherical gold nanoparticles [91]. Thus, it has been
demonstrated that the interference effects between dipolar and
octupolar plasmon modes can be used as a fingerprint to identify
the local surface and nonlocal bulk contributions to the SHG. In a
different study, it has been reported that experimentally measured
SHG from gold nanoparticles with size of up to 100 nm is in
excellent agreement with predictions of finite element method
simulations involving the normal surface term only in the
nonlinear polarization source [178] The second-harmonic emitted
by multiresonant plasmonic nanoantennas has also been analyzed
[179] using simulations performed using a perturbative approach
based on the undepleted-pump approximation, that is, assuming
that the SHG field does not back-couple to the excitation field,
and considering only the dominant contribution due to the free-
electron currents normal to the surface of the metal.

Figure 30(a) shows a confocal map of the SHG from the
nanostructure array. The plasmonic structure was excited with
100 fs pulses centered at 1560 nm and the nonlinear signal
was measured only within a narrow spectral window located
at 780 nm. A high emission occurs when the length of the
V-shaped structure possesses optical resonances lying close to
the wavelength of the excitation pulses. This is valid both in
the case of isolated V-shaped particles (SEM image presented
in figure 30(b)) and for coupled structures (right and left
panels of figure 30(a), respectively). However, when the
second-harmonic intensity collected from the coupled struc-
tures is compared to the one from the isolated V-shaped
particles, a pronounced intensity modulation induced by the
presence of the rod in the array of coupled antennas can be
observed. A peak intensity for SHG, which is more than twice
as large as the value obtained from a single resonant V-shaped
antenna, is achieved for rods whose resonance wavelength
matches the SH wavelength. The 2D SHG map computed
numerically is presented in figure 30(c), and shows very good
qualitative agreement with the corresponding map obteined
experimentally and presented in figure 30(a). A full polariza-
tion investigation of the SHG was performed on the DR
structure, and is illustrated in the angular plot depicted in
figure 30(d). As expected from the SHG selection rules under
strongly focused beam operation, the emission characteristics
are those of an electric dipole. Further analysis of the
spectrum in figure 30(e) reveals that the intensity of THG in
these nonlinear plasmonic devices, which in nanostructured
systems is often by far the dominant nonlinear optical
interaction, is comparable to that of SHG.

528 Mode matching schemes. The mode-matching
method is a commonly used technique for the analysis of
the electromagnetic properties of optical systems, especially
for structures consisting of two or more piecewise optically
homogeneous and separated regions. It is based on expanding
the fields in a certain basis function and matching them at the
boundaries between different regions. Among the most
representative of the mode-matching methods, we mention
here the rigorous coupled-wave analysis, scattering matrix
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Figure 30. Confocal maps and characterization of SHG from the
tunable antenna array. (a) Left: SHG map collected from the array of
multiresonant plasmonic nanoantennas. The double-headed red
arrow indicates the impinging light polarization. Right: SHG
collected from isolated (no coupled rod) V-shaped structures with
arm length varying from 140 to 240 nm (top to bottom) in 20 nm
steps after excitation with the same polarization as in the left panel.
(b) SEM image of the isolated V-shaped structures. (c) Left: map of
the simulated SHG from the same array. Right: map of the simulated
SHG from the array of isolated V-shapes presented in (b). (d)
Experimental polar plot (mirrored top-down) for the SHG collected
from the resonant nanostructure (see white arrow in (a) and (c)). The
double-headed red arrow indicates the impinging light polarization.
(e) Plot of emission lines of the doubly-resonant nanoantenna in the
visible-near infrared wavelength region, featuring a broad two-
photon photoluminescence band between the SHG and THG peaks.
Spectral analysis reveals that while the THG is centered around
519 nm, the SHG is emitted around 776 nm. Inset: overlap between
the SHG peak (dark blue line) and the excitation laser band (red
line). The theoretical SHG band obtained by self-convoluting the
laser spectrum is also sketched (light blue line). Horizontal scales are
expressed in hertz and the experimental and theoretical SHG peaks
(FWHM =7.8 THz and 10.3 THz, respectively) are plotted on a
frequency scale that is double the scale of the laser peak (FWHM
~10.5 THz). In all measurements the excitation power is set to

50 W, which is low enough to exclude any photodamage.
Reprinted by permission from Springer Nature: Nature Nanotech-
nology [179], (2015).

method, plane-wave expansion method, and 7T-matrix method.
Requiring relatively modest computer resources, these
numerical methods are particularly useful in characterizing
the linear and nonlinear optical response of periodic,
multilayered, and multi-component structures. However,
mode-matching methods are not particularly well suited for
describing metallic scatterers with complex geometries
because a very large number of modes are required in the
field expansion in order to accurately describe plasmonic
phenomena.

In the first step of the numerical implementation of such a
method, one solves the fundamental field. To this end, the
incident and the scattered electromagnetic fields are expanded
in Fourier series using a properly chosen basis of functions,
the choice being usually guided by the symmetry of the
problem. Then, the boundary conditions (see equations (47),
(51), and (52)) at the surface of the scatterers are used to
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construct a system of linear equations whose solution
provides the Fourier coefficients of the series expansion of
the scattered field. Once these coefficients are computed, by
solving the corresponding system of linear equations, the
electromagnetic field can be found at any point in space.

The second step consists in the calculation of the
electromagnetic field at the second harmonic under the
nondepleted pump approximation. One first determines
the source of the field at the second harmonic, namely, the
nonlinear polarization (surface and bulk polarizations)
induced by the field at the fundamental frequency. Then,
following similar procedures used in solving the field at the
fundamental frequency, the field at the second harmonic can
be readily obtained.

The multiple-scattering matrix method has been recently
employed to rigorously describe the SHG from a set of
cylinders with arbitrary electric permittivity, which are made
of centrosymmetric (metal or dielectric) materials [180].
Regarding the optical properties of such structures, figure 31
shows that, depending on the frequency of the excitation
wave, a chain of optically coupled plasmonic cylinders
supports either modes that only propagate at the FF (panels A
and B) or modes that propagate at both the fundamental
frequency and second harmonic (panels C and D). Impor-
tantly, the latter type of plasmonic modes can find important
applications to subwavelength active nanodevices for gen-
eration and transport of optical power at subwavelength scale.
Another notable effect illustrated in panel A is the formation
at the end of the chain of plasmonic cylinders of an optical
beam with width of about \/3, a so-called optical nanojet.
This phenomenon can be employed to achieve subwavelength
light focusing or optical nanoprobes. It has also been
demonstrated that the surface second-harmonic generation
can lead to the formation of nonlinear plasmonic whispering-
gallery modes in microcavities made of metallic nanowires
[181]. An unusual feature of these modes is that they possess
fractional azimuthal modal numbers.

The multiple-scattering matrix method has also been
employed to model SHG from 3D structures consisting of
arbitrary distributions of metallic spheres made of centrosym-
metric materials [182]. In particular, the interaction between
circularly polarized LG optical beams and clusters of metallic
nanoparticles has been investigated [183], the results being
summarized in figure 32. Thus, it can be seen in this figure
that the Stokes parameters S; and S, for the fields at the
fundamental frequency and second harmonic have a sym-
metric spatial profile at the frequency of the resonant
collective mode, which is one of the typical characteristics
of the spin-orbit interaction of light. Moreover, the S5 Stokes
parameter characterizes the local density of the spin angular
momentum. Therefore, the spin-dependent characteristics of
the interaction of light with the cluster of spheres can be
captured by the spatial distribution of the S3 parameter. In
particular, this is one of the signatures of the spin-Hall effect
of light. Indeed, the spatial splitting of spin states for both the
fundamental and second-harmonic fields has been observed
for this type of clusters. The calculations show that the spin-
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Figure 31. The top two panels show the spectra of the scattering
cross section corresponding to a chain of N = 12 metallic cylinders.
The radius is R = 100 nm, the angle of incidence is 0°, and the
separation distance is d = 20 nm. The spatial profile of the
amplitude of the electric field, calculated at A = 313 nm (A and B)
and A = 229 nm (C and D), is presented in the bottom panels. The
panels A and C correspond to the fundamental, whereas the panels B
and D correspond to the second harmonic. Reprinted figure with
permission from [180], Copyright (2010) by the American Physical
Society.

orbit interaction can also cause the giant spin-Hall effect for
the second-harmonic field.

Recently, a highly effective rigorous coupled-wave
analysis for efficient and accurate description of both linear
and nonlinear optical phenomena in nanostructured 2D
materials embedded in nanopatterned photonic structures
containing regular 3D optical materials, such as diffraction
gratings and periodic metasurfaces, has been developed [149].
As discussed previously, graphene is a lossy conductor at
THz and optical frequencies and therefore supports surface
waves called plasmons. Examples of such plasmon modes of
graphene disks are presented in figures 33(a)-(c). More
specifically, in these figures, the dominant field component
|E,| of the linear electric field corresponding to the first three
plasmon modes is depicted. These field profiles exhibit
distinct mode shapes with one, three, and five maxima, which
demonstrates that they represent the first three localized
plasmon modes of graphene disks. Strongly enhanced and
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Figure 32. The calculated spatial distributions of the Stokes
parameters Sy, S», and S3 in the observation plane under the
excitation of right-circularly polarized electromagnetic radiation on
the sphere cluster with 9 Ag spheres for ring configuration at the
collective resonant frequency hw = 4.38 eV. (a)—(c) Correspond to
the fundamental frequency and (d)—(f) to the second harmonic. The
mode field radius of the incident beam is 1.5 a and the numerical
aperture (NA) of the Gaussian beam is taken as NA = 0.98. The
corresponding scattering cross sections (Cy) of polarized waves for
the sphere cluster are shown at the top of the figure. (I) the
fundamental field; (II) the second-harmonic. The point P marks the
collective resonant peak of the sphere cluster. Reprinted figure with
permission from [183], Copyright (2013) by the American Physical
Society.

highly confined optical field resulting from the excitation of
such localized plasmon modes gives rise to enhanced THG.
This fact is supported by the field profiles plotted in
figures 33(d)—(f), where the dominant electric field comp-
onent at the third-harmonic, |E,|, is presented.

6. Conclusions and future perspectives

In this review, we have discussed previous and present
research in nonlinear plasmonics in 3D (metallic) and 2D
(graphene) nanostructures, a field that is now growing rapidly
due to increasing interest in many exciting optical phenomena
and a multitude of important emerging applications in surface
science, active photonic nanodevices, nonlinear integrated pho-
tonics, and bio-medicine. In particular, we discussed the main
theoretical tools, experimental techniques, and computational
methods that are used in modern nonlinear plasmonics to study in
an integrated manner nonlinear optical properties of metallic and
graphene based nanostructures. The focus of this work is on
nonlinear optical processes at the subwavelength scale and thus it
goes significantly beyond the scope of traditional nonlinear optics
in bulky nonlinear optical structures, in which case phase-
matching considerations play a central rdle. By contrast, in this
new paradigm of nonlinear optics, the enhancement of the
interacting optical near-fields and the strength of the overlap
between optical modes with size comparable to or smaller than
the optical wavelength are the defining factors that determine the
efficiency of nonlinear optical interactions.

The material presented in this review article is roughly
equally divided among a background section covering the basic
theoretical tools and concepts commonly used in nonlinear
plasmonics, an experimental section that presents the latest
developments in several key areas of nonlinear plasmonics,
including nonlinear SPPs at metal surfaces, plasmon-enhanced
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Figure 33. Dominant electric field component |E,| at the fundamental
field (top panels) and third harmonic (bottom panels) at the surface
of a graphene disk for the resonance wavelengths, from left to right,
Arr = 11.09, 5.081, and 3.925 pm. The number of harmonics used
in the simulations was N = 40 at the fundamental field and N = 30
at the third harmonic. Reprinted figure with permission from [149],
Copyright (2016) by the American Physical Society.

nonlinear response of individual metallic nanostructures and
arrays, phase-controlled nonlinear optics in plasmonic meta-
surfaces, mode-matching enhanced harmonics generation in
plasmonic nanoantennas, and plasmon-enhanced nonlinear
effects in nonlinear active materials, and a chapter in which we
introduce the main time- and frequency-domain numerical
methods used to model nonlinear optical properties of plas-
monic systems and illustrate how they can be used to investigate
computationally specific nonlinear plasmonic nanostructures
and active plasmonic devices. Gathering in this way in the same
place the main tools employed in nonlinear plasmonics research,
namely theoretical modeling, experimental techniques, and
computer simulations, makes it easy for the interested reader to
form an informed opinion and readily gain valuable information
about this dynamic field of science.

Nonlinear plasmonics is still a maturing field of research,
so that its potential, both at a fundamental science level as
well as for technological applications, is yet to be fully ful-
filled. Therefore, at this point, it might be relevant to speculate
briefly about future directions of research in nonlinear plas-
monics. Thus, present and future technologies will allow one to
fabricate metallic and graphene nanostructures with size sig-
nificantly smaller than the optical wavelength and experimental
techniques will make it feasible to individually probe the
optical response of these plasmonic structures. As a result of
these developments, nonlinear plasmonics will open up excit-
ing new avenues to unique applications, such us sub-
wavelength optical sources, ultra-small and highly efficient
sensors, and optical imaging at deep subwavelength scale.
Moreover, as the size of the building blocks of complex
plasmonic systems that can be fabricated with available tech-
nologies decreases, quantum effects begin to play an increas-
ingly important r6le in defining the physical properties of such
plasmonic systems. Specifically, due to quantum coherence
effects, the interaction between plasmonic structures in the
quantum regime is strongly dependent on the frequency,
optical power, and structural configuration of plasmonic
quantum systems, which makes these physical systems to be
highly nonlinear. An immediate consequence of this fact is that
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quantum plasmonic systems possess remarkably large optical
nonlinearity. Finally, it is expected that future numerical
methods for nonlinear plasmonics will be increasingly more
effective and versatile by incorporating not only the classical
electromagnetic response described by optical constants such
as linear and nonlinear optical susceptibilities but also by being
able to describe in a unified manner the dynamics of the optical
field coupled with the classical or quantum dynamics of the
plasma carriers. All these mean that exciting new physics
pertaining to nonlinear plasmonic phenomena are yet to be
discovered, but of course, the most exciting developments will
be those that we presently do not anticipate.
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