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The cascaded or central-moment-based lattice Boltzmann method (CLBM) proposed in [Phys. Rev. E 73,
066705 (2006)] possesses very good numerical stability. However, two constraints exist in three-dimensional
(3D) CLBM simulations. First, the conventional implementation for 3D CLBM involves cumbersome operations
and requires much higher computational cost compared to the single-relaxation-time (SRT) LBM. Second, it
is a challenge to accurately incorporate a general force field into the 3D CLBM. In this paper, we present an
improved method to implement CLBM in 3D. The main strategy is to adopt a simplified central moment set
and carry out the central-moment-based collision operator based on a general multi-relaxation-time (GMRT)
framework. Next, the recently proposed consistent forcing scheme for CLBM [Fei and Luo, Phys. Rev. E 96,
053307 (2017)] is extended to incorporate a general force field into 3D CLBM. Compared with the recently
developed nonorthogonal CLBM [Rosis, Phys. Rev. E 95, 013310 (2017)], our implementation is proved to
reduce the computational cost significantly. The inconsistency of adopting the discrete equilibrium distribution
functions in the nonorthogonal CLBM is analyzed and validated. The 3D CLBM developed here in conjunction
with the consistent forcing scheme is verified through numerical simulations of several canonical force-driven
flows, highlighting very good properties in terms of accuracy, convergence, and consistency with the nonslip rule.
Finally, the techniques developed here for 3D CLBM can be applied to make the implementation and execution
of 3D MRT-LBM more efficient.
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I. INTRODUCTION

As a mesoscopic numerical method based on the kinetic
theory, the lattice Boltzmann method (LBM) has gained re-
markable success for the simulation of complex fluid flows and
beyond during the past three decades [1–15]. Different from
the conventional computational fluid dynamics (CFD) meth-
ods where the macroscopic governing equations are solved
numerically, LBM solves a discrete Boltzmann equation which
is designed to reproduce the Navier-Stokes (N-S) equations
in the macroscopic limit. In the LBM simulation, the fluid
is usually represented by populations of fictitious particles
colliding locally and streaming to adjacent nodes along the
links of a regular lattice. The scale-bridging nature of LBM
allows its natural incorporation of microscopic and/or meso-
scopic physics, while the highly efficient collision-streaming
algorithm makes it affordable computationally [10].

In the practical implementation, the simplest approach to
represent particles colliding process is to relax all the distri-
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bution functions (DFs) to their local equilibria at an identical
rate, which is known as the single-relaxation-time (SRT) model
[16]. While the SRT-LBM is successful in many fluid flows, it
may suffer numerical instability for flows with relatively low
viscosities [17,18], as well as inaccuracy in implementing the
boundary conditions [19,20]. Compared with the SRT model,
the multiple-relaxation-time (MRT) model, where the collision
step is carried out in the raw moment space, is able to enhance
the stability of LBM by carefully separating the timescales
among the kinetic modes [17,18,21]. In addition, the MRT-
LBM can also improve the numerical accuracy for nonslip
boundary conditions by adopting a so-called magic parameter
[19,20]. In 2006, a cascaded collision operator was proposed
by Geier et al. [22], where the collision step is implemented in
the central moment space. To get the higher-order postcollision
central moments, the lower-order ones are needed, which
implies, from the lowest order to the highest order, i.e., a
cascaded operation procedure. The cascaded lattice Boltzmann
method (CLBM) increases the numerical stability significantly,
which is also essentially due to the removal of the ghost
modes. Besides, relaxation in a co-moving frame of reference,
i.e., in terms of central moments, allows a natural setting to
achieve better Galilean invariance, compared with relaxation
in the frame at rest, for a specified discrete velocity set [22].
More comparisons and discussions between relaxations in
the raw moment and central moment spaces can be found in
Refs. [22–26].
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More recently, many studies have been carried out to
improve the cascaded collision model and apply the CLBM
to practical applications. In Ref. [27], Asinari argued that
CLBM essentially consists in using a generalized local equi-
librium in the frame at rest. In addition, a multiphase CLBM
has been developed to simulate multiphase flows by Lycett-
Brown and Luo [28,29]. They further extended the model
with an improved forcing scheme for large density ratio
multiphase flows at high Reynolds and Weber numbers [30].
Moreover, a thermal cascaded LBM (TCLBM) has been
proposed by the present authors to simulate low-Mach com-
pressible thermal flows [31], and several different CLBMs
have been developed later for incompressible thermal flows
[32–36]. Finally, CLBM has also been extended to simulate
shallow water equations [37], moving boundary problems
[38], as well as stationary flows with a preconditioning
method [39].

Although the CLBM possesses very good numerical sta-
bility and has achieved success for a series of complex flows,
two critical problems still exist in the three-dimensional (3D)
simulations. First, the practical implementation for 3D CLBM
in the original work [22] involves a lot of cumbersome
notations and the computational cost is much higher than the
SRT-LBM. Even if some efforts have been made [24,29,40],
it is still quite difficult to handle the expressions compared
with the SRT-LBM. For example, a naive implementation
of the most recent nonorthogonal CLBM [40] needs a CPU
time that is much larger than that by the SRT-LBM. Second,
an accurate and easy-to-implement forcing scheme is needed
to incorporate an external or internal force field into the 3D
CLBM. In 2009, Premnath et al. proposed a forcing scheme
for CLBM by method of central moments [23], which was
then extended to 3D model in Ref. [24]. In Refs. [28–30], the
SRT-style forcing scheme was used in the CLBM. Besides,
an alternative forcing scheme based on a discrete equilibrium
has been developed by De Rosis [41]. Recently, we proposed
an alternative derivation for the CLBM by introducing a shift
matrix, where the shift matrix is used to shift raw moments to be
central moments [42]. This approach puts the MRT-LBM and
CLBM into a general multi-relaxation-time (GMRT) frame-
work and clarifies the relationship between them. Based on this
GMRT framework, we proposed a consistent forcing scheme
to incorporate a general time and space-varying force field into
CLBM, where “consistent” means that the forcing scheme can
degrade into the widely used forcing scheme in MRT-LBM [43]
and SRT-LBM [44] under the corresponding conditions when
CLBM degrades into MRT-LBM and SRT-LBM, respectively.
Compared with the forcing schemes in Refs. [23,28,41], the
consistent forcing scheme has better numerical performances
in terms of accuracy, isotropy, and faithful implementation of
the nonslip boundary condition. Therefore, the present paper
aims to simplify the implementation and reduce the computa-
tional cost for 3D CLBM. In the meantime, the consistent forc-
ing scheme is extended to incorporate a general force field for
3D flows.

The rest of this paper is organized as follows. Section II
presents the improved implementation and the consistent
forcing scheme for 3D CLBM. Numerical verifications are
carried out in Sec. III. Finally, concluding remarks are given
in Sec. IV.

II. IMPROVED 3D CLBM WITH CONSISTENT
FORCING SCHEME

The improved implementation is based on the GMRT
framework and adopts a new central moment set. First, the
GMRT framework with the consistent forcing scheme is
introduced briefly. Then, the choices of the central moment
set, central moment equilibria, and forcing terms in the central
moment space are given in detail.

A. GMRT framework

In the present work, we focus on the standard D3Q27
discrete velocity model (DVM). However, it should be noted
that the procedures shown in this work are not limited to the
specified DVM and can be extended to other DVMs readily.
For example, a D3Q19 CLBM can be directly extracted from
the D3Q27 CLBM (see in the Appendix A). The lattice speed
c = �x/�t = 1 and the lattice sound speed cs = 1/

√
3 are

adopted, in which �x and �t are the lattice spacing and time
step. The discrete velocities ei = [|eix〉,|eiy〉,|eiz〉] are defined
as

|eix〉 = [0,1,−1,0,0,0,0,1,−1,1,−1,1,−1,1,

−1,0,0,0,0,1,−1,1,−1,1,−1,1,−1]�,

|eiy〉 = [0,0,0,1,−1,0,0,1,1,−1,−1,0,0,0,0,1,

−1,1,−1,1,1,−1,−1,1,1,−1,−1]�,

|eiz〉 = [0,0,0,0,0,1,−1,0,0,0,0,1,1,−1,−1,1,1,

−1,−1,1,1,1,1,−1,−1,−1,−1]�, (1)

where i = 0,1, . . . ,26, |·〉 denotes a 27-dimensional column
vector, and the superscript � denotes the transposition.

We first define the raw and central moments of the discrete
distribution functions (DFs) fi ,

kmnp = 〈
fi

∣∣em
ixe

n
iye

p

iz

〉
,

k̃mnp = 〈fi |(eix − ux)m(eiy − uy)n(eiy − uz)
p〉, (2)

where m, n, and p are integers and ux , uy , and uz are velocity
components in the x, y, and z directions, respectively. The
equilibrium values k

eq
mnp and k̃

eq
mnp are defined analogously

by replacing fi with the discrete equilibrium distribution
functions (EDFs) f

eq
i . To construct the central-moment-based

collision operator, a raw moment set |Ti〉 and the corresponding
central moment set |T̃i〉 are needed,

|Ti〉 = [T0,T1, . . . ,T26]�, |T̃i〉 = [T̃0,T̃1, . . . ,T̃26]�, (3)

where the elements in |Ti〉 and |T̃i〉 are combinations of kmnp

and k̃mnp in the ascending order of (m + n + p), respectively.
According to Eq. (2), the transformation from the discrete DFs
to their raw moments can be performed through a transforma-
tion matrix M, and the shift from the raw moments to central
moments can be performed through a shift matrix N,

|T̃i〉 = N|Ti〉 = NM|fi〉. (4)

The explicit expressions for M and N depend on the raw
moment set and the corresponding central moment set, which
will be discussed in the next subsection.

In the implementation of CLBM, the collision step is firstly
executed in the central moment space. To be consistent with
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the central-moment-based collision operator, an external or
internal force field F = [Fx,Fy,Fz] should be added by means
of central moments [23]. By using a transformation method
to incorporate forcing terms with a second-order trapezoidal
scheme, the explicit form of collision step finally reads as
follows [42]:

|T̃ ∗
i 〉 = (I − S)|T̃i〉 + S

∣∣T̃ eq
i

〉 + (I − S/2)|Ci〉
= (I − S)NM|fi〉 + SNM

∣∣f eq
i

〉 + (I − S/2)NM|Ri〉,
(5)

where I is a unit matrix, S is the relaxation matrix, and Ci

and Ri are forcing terms in central moment space and discrete
velocity space, respectively. Due to the definitions of the
transformation and shift matrices, both of them are invertible
(explicit expressions for M−1 and N−1 can be easily obtained
by software like MATLAB). The postcollision discrete DFs
can be reconstructed by

|f ∗
i 〉 = M−1|T ∗

i 〉, |T ∗
i 〉 = N−1|T̃ ∗

i 〉. (6)

In the streaming step, the postcollision discrete DFs in space
x stream to their neighbors (x + ei�t) along the characteristic
lines as usual [10,42],

fi(x + ei�t,t + �t) = f ∗
i (x,t). (7)

Then the fluid density ρ and velocity u = [ux,uy,uz] are
updated by

ρ =
∑

i

fi, ρu =
∑

i

fiei + �tF/2. (8)

From the above, it can be shown that when the shift matrix
N is a unit matrix the CLBM degrades into an MRT-LBM on
the specified raw moment set |Ti〉, and when all the relaxation
parameters in the matrix S are equal to one another the
CLBM degrades into an SRT-LBM. Thus we proclaim the
above framework as a GMRT framework [42]. It can be also
shown that the corresponding forcing scheme (given in the
next subsection) can degrade into the MRT version and SRT
version of the widely used forcing scheme by Guo et al. [44]
under the corresponding conditions. Thus it is named as a
consistent scheme [42].

B. Central moment set, equilibria, and forcing terms

In this subsection, we first discuss the central moment
set, which is an important step to construct the CLBM. As
discussed in Refs. [24,29], the conserved moments (k̃000, k̃100,
k̃010, k̃001) should be considered to represent the mass and mo-
mentum conservations, the second-order moments are chosen
such that it allows correct representation of the momentum
flux in the hydrodynamic equations, while the rest moments
can be chosen order by order under a moments-independence
constraint for a specified DVM. Premnath et al. adopted an
orthogonal central moment set [24],

|T̃i〉 = [k̃000,k̃100,k̃010,k̃001,k̃110,k̃101,k̃011,k̃200 − k̃020,

(k̃200 + k̃020 + k̃002) − 3k̃002,(k̃200 + k̃020 + k̃002)

− 2k̃000,3(k̃120 + k̃102) − 4k̃100,3(k̃210 + k̃012)

− 4k̃010,3(k̃201 + k̃021) − 4k̃001,k̃120 − k̃102,k̃210

− k̃012,k̃201 − k̃021,k̃111,3(k̃220 + k̃202 + k̃022)

− 4(k̃200 + k̃020 + k̃002) + 4k̃000,3(k̃220 + k̃202 − 2k̃022)

− 2(2k̃200 − k̃020 − k̃002),3(k̃220 − k̃202) − 2(k̃020

− k̃002),3k̃211 − 2k̃011,3k̃121 − 2k̃101,3k̃112

− 2k̃110,9k̃122 − 6(k̃120 + k̃102)

+ 4k̃100,9k̃212 − 6(k̃210 + k̃012) + 4k̃010,9k̃221 − 6(k̃201

+ k̃021) + 4k̃001,27k̃222 − 18(k̃220 + k̃202 + k̃022)

+ 12(k̃200 + k̃020 + k̃002) − 8k̃000]�. (9)

According to the binomial theorem, a central moment can be
expressed by raw moments from the lowest order to the same
order [23,28], and thus the shift matrix N is a lower triangular
matrix. As seen in Eq. (9), many combined terms are included
in the orthogonal central moment set, which results in very
tedious expressions in N. In contrast, a nonorthogonal central
moment set has been obtained in Ref. [40],

|T̃i〉 = [k̃000,k̃100,k̃010,k̃001,k̃110,k̃101,k̃011,k̃200

− k̃020,k̃200 − k̃002,k̃200 + k̃020 + k̃002,k̃120

+ k̃102,k̃210 + k̃012,k̃201 + k̃021,k̃120 − k̃102,k̃210

− k̃012,k̃201 − k̃021,k̃111,k̃220 + k̃202 + k̃022,

k̃220 + k̃202 − k̃022,k̃220 − k̃202,k̃211,k̃121,

k̃112,k̃122,k̃212,k̃221,k̃222]�. (10)

Compared with Eq. (9), the expressions in Eq. (10) is simplified
to some extent, but some combined terms still exist and the
corresponding N is still tedious. In the present paper, we adopt
the following central moment set,

|T̃i〉 = [k̃000,k̃100,k̃010,k̃001,k̃110,k̃101,k̃011,k̃200,

k̃020,k̃002,k̃120,k̃102,k̃210,k̃201,k̃012,k̃021,k̃111,k̃220,k̃202,

k̃022,k̃211,k̃121,k̃112,k̃122,k̃212,k̃221,k̃222]�, (11)

where the combined terms are completely eliminated. Corre-
spondingly, the raw moment set is

|Ti〉 = [k000,k100,k010,k001,k110,k101,k011,k200,k020,k002,k120,

k102,k210,k201,k012,k021,k111,k220,k202,k022,k211,k121,

k112,k122,k212,k221,k222]. (12)

As a result, the corresponding N is much simplified (see
Appendix B). However, it should be noted that the normal
stress differences (k200 − k020 and k200 − k002) and the trace
of the pressure tensor k200 + k020 + k002 should be considered
separately in CLBM [29], as do the corresponding central
moments k̃200 − k̃020, k̃200 − k̃002, and k̃200 + k̃020 + k̃002. To
handle this problem, the widely used diagonal relaxation
matrix can be modified slightly to be a block-diagonal matrix
(similar method has been previously used for 2D CLBM
[27,32,33]),

S = diag

⎧⎨
⎩s0,s1,s1,s1,sν,sν,sν,

⎡
⎣s+,s−,s−

s−,s+,s−
s−,s−,s+

⎤
⎦,s3,s3,s3,

s3,s3,s3,s3b,s4,s4,s4,s4b,s4b,s4b,s5,s5,s5,s6

⎫⎬
⎭, (13)
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with s+ = (s2b + 2s2)/3 and s− = (s2b − s2)/3. The kinematic and bulk viscosities are related to the relax-
ation parameters by ν = (1/s2 − 0.5)c2

s �t and ξ = 2/3(1/s2b − 0.5)c2
s �t , respectively. Thus the transformation

matrix M can be written explicitly according to Eqs. (4) and (12),

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The shift matrix N can be obtained analogously according to
the definition in Eq. (4). Taking the fifth row of N, N4, as
an example, the central moment T̃4 can be expressed by raw
moments from the lowest order to the same order,

T̃4 = 〈fi |(eix − ux)(eiy − uy)〉
= uxuyT0 − uyT1 − uxT2 + T4. (15)

Thus N4 is written as

N4 = [uxuy,−uy,−ux,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. (16)

The interested readers are kindly directed to the Supplemental
Material [45] for the explicit expressions of M, N, M−1, and
N−1.

To implement the collision step in Eq. (5), the equi-
libria and forcing terms in central moment space, |T̃ eq

i 〉
and |Ci〉, should be specified. In Refs. [40,41], the dis-
crete EDFs [16], f eq

D,i = ωiρ[1 + (ei · u)/c2
s + (ei · u)2/2c4

s −
u2/2c2

s ], are adopted. However, we argue three points against
this choice: (1) it results in a lot of velocity terms in |T̃ eq

i 〉 and
|Ci〉, which is inconsistent with the physics of central moments;
(2) it destroys the Galilean invariance for the off-diagonal
elements of the third-order raw moments which are preserved
naturally in the original CLBM by Geier et al. [22]; and (3) it
leads to more computational cost for the calculation of |T̃ eq

i 〉
and |Ci〉 compared with adopting the continuous equilibrium

DF. In this work, |T̃ eq
i 〉 are set equal to the continuous central

moments of the continuous Maxwell-Boltzmann distribution
[22,23,27–29,42]. Specifically, each element in |T̃ eq

i 〉 is given
as

keq
mnp = 〈

f
eq
i

∣∣(eix − ux)m(eiy − uy)n(eiy − uz)
p
〉

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f M (ξx − ux)m(ξy − uy)n

× (ξz − uz)
pdξxdξydξz, (17)

where f M is the continuous Maxwell-Boltzmann distribution
in the continuous velocity space ξ = [ξx,ξy,ξz],

f M (ρ,u,ξ ) = ρ

2πc2
s

exp

[
− (ξ − u)2

2c2
s

]
. (18)

Substituting Eqs. (17) and (18) into the definition in Eq. (11).
We can obtain∣∣T̃ eq

i

〉 = [
ρ,0,0,0,0,0,0,ρc2

s ,ρc2
s ,ρc2

s ,0,0,0,0,0,0,0,ρc4
s ,

ρc4
s ,ρc4

s ,0,0,0,0,0,0,ρc6
s

]�
. (19)

The corresponding discrete EDF is in fact a generalized local
equilibrium [23,27,31]. In addition, when the viscosity is quite
small, i.e., ν ∼ O(10−7), the higher-than-third-order central
moment equilibria can be modified according to the factorized
method [24,46]. Inspired by the approximation proposed by
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He et al. [47], the forcing effect in the Boltzmann equation can
be given as

RM ≈ −F
ρ

· ∇ξ f
M = (ξ − u) · F

ρc2
s

f M. (20)

Analogously, the forcing terms |Ci〉 are set equal to the
continuous central moments of RM [42], i.e.,

|Ci〉 = [
0,Fx,Fy,Fz,0,0,0,0,0,0,Fxc

2
s ,Fxc

2
s ,Fyc

2
s ,Fzc

2
s ,

Fyc
2
s ,Fzc

2
s ,0,0,0,0,0,0,0,Fxc

4
s ,Fyc

4
s ,Fzc

4
s ,0

]�
. (21)

Remarkably, the expressions for |T̃ eq
i 〉 and |Ci〉 are explicitly

given in Eqs. (19) and (21), and thus the corresponding matrix
manipulation is not needed in Eq. (5).

We now summarize the computational algorithm of the
above proposed implementation and forcing scheme in 3D
CLBM:

Step 1. Compute central moments |T̃i〉 using the definition
in Eq. (2). It should be noted that this method is quite basic
and can be optimized by separating the transformation and shift
substeps according to Eq. (4).

Step 2. Perform the collision step in Eq. (5).
Step 3. Reconstruct the postcollision raw moments accord-

ing to |T ∗
i 〉=N−1|T̃ ∗

i 〉, and reconstruct the postcollision DFs
according to |f ∗

i 〉 = M−1|T ∗
i 〉.

Step 4. Perform the streaming step and update the hydro-
dynamic variables according to Eqs. (7) and (8). Advance the
time step and return to Step 1.

It is known that the most computationally demanding part
in 3D CLBM is the reconstruction step of the postcollision
DFs [22,29,40]. In the present work, the computational cost
can be reduced significantly due to the facts that: first, the
reconstruction step is divided into two substeps; second, the
simplified central moment set is used such that the elements in
M−1 and N−1 are much simplified (see Appendix B).

In addition, the present method can also be used to simplify
the 3D MRT-LBM. For example, it can be found that the
nonorthogonal transformation matrix M in Eq. (14) and its
inverse matrix M−1 have 343 and 216 nonzero elements,
respectively. In the orthogonal raw moment set by Premnath
et al. [24], which has been used to construct the D3Q27
MRT-LBM in Ref. [48], both the M and M−1 have 416 nonzero
elements. Therefore, compared with the D3Q27 MRT-LBM in
Ref. [48], an MRT-LBM based on the present raw moment set
can simplify the implementation and reduce the computational
cost. As shown in Appendix C, the simulation results for 3D
Lid-driven cavity flow by the nonorthogonal MRT-LBM are in
good agreement with the benchmark solutions by Ku et al. [49],
which implies that the nonorthogonal MRT-LBM can retain the
numerical accuracy when simplifying the implementation.

III. NUMERICAL SIMULATIONS

In this section, several benchmark problems are conducted
to verify the proposed 3D CLBM. In the simulation, the
relaxation rates for the conserved central moments, s0 and s1

are set to 1.0. Unless otherwise specified, the tunable relaxation
parameters for high-order central moments are also set to 1.0.
The standard half-way bounce-back boundary scheme is used
for wall boundaries.

FIG. 1. Comparison of the velocity profiles for the decay of a
shear wave at t∗ = 2.0 simulated by different methods.

A. The decay of a shear wave

First, the decay of a shear wave on a moving frame is
considered. The initial conditions of the flow are given as

ρ(0) = 1.0, u = [A sin(2π/L),B,0], (22)

where A represents the initial amplitude of the shear wave,
B is the reference velocity component, and L is the height
of the computational domain. Periodic boundary conditions
are used along the x, y, and z axes, and the analytical velocity
field is ux = A sin[φ(y − Bt)] exp(−φ2νt), where φ = 2π/L.
For the simulations, the amplitude is set to be A = 0.01, the
computational domain is covered by 5 × 101 × 5 nodes.

First, we want to compare the central moment equilibria
by Eq. (19) and by f

eq
D,i , which are denoted by CLBMC

and CLBMD, respectively. The SRT-LBM based on f
eq
D,i is

also used for comparison. The profiles for the dimensionless
velocity u∗ = u/A by different methods at the time t∗ =
φ2νt = 2.0 and Mach number Ma = B/c2

s = 0.3 are shown
in Fig. 1. It is found that the simulation result by CLBMC is
in good agreement with the analytical solution, while there
are visible differences between the numerical solutions by the
other two methods and the analytical solution.

Then viscosity of the simulated fluid is obtained by measur-
ing the time decay of the shear wave. The simulated viscosities
at different Ma are compared in Fig. 2, while the original
imposed viscosity is ν = 0.05. As is shown, the simulated
viscosity by CLBMC is independent of the reference velocity
(or Ma) and always agrees well with the imposed value. For
the other two methods, the simulated viscosities decrease with
the increase of the reference velocity. For example, the relative
errors at Ma = 0.3 are 0.08%, 8.92%, and 8.91% for CLBMC,
CLBMD, and SRT-LBM, respectively.

The above results confirm our argument in Sec. II B that
using the discrete EDFs in CLBM as in Ref. [40] destroys the
Galilean invariance (GI). It should be noted that there are two
aspects to the issue of GI, one of which is related to the choice
of the collision model and the other pertains to the choice of the
discrete velocity model. For the standard lattice, the CLBMC

only preserves the GI naturally for the off-diagonal elements
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FIG. 2. Comparison of the simulated viscosities for the decay of
a shear wave with Ma by different methods.

of the third-order raw moments. To restore the complete GI,
additional correction terms [50] or more symmetrical lattice
[51] are needed.

We now verify the computational efficiency of the present
improved CLBM. We consider the same problem under differ-
ent mesh sizes, i.e., 5 × 101 × 5, 5 × 201 × 5, and 5 × 401 × 5,
and measure the CPU time required for 10 000 iterations by
SRT-LBM, the present CLBM and the previous CLBM in
Ref. [40]. For each case, the CPU time is the average value
after removing the minimum and maximum in nine runs. The
code is developed based on C++ and runs on a laptop with
Intel (R) Core (TM) i7-6500U CPU @ 2.5 GHz and RAM
8.00 GB. The implementation is basic for all the three models,
without resorting to any optimization strategies, such as the
preconditioning method [39] and the LAPACK library [40]. To
be more specific, we use the program structure provided in the
Appendix A in Ref. [6]. The collision step and streaming step
are not combined into one loop, and different models are cho-
sen by switching the collision subroutine in the main function.
As shown in Table I, the CPU time for the present 3D CLBM is
around 2.15 times of the one by SRT-LBM. Compared with the
method in Ref. [40], where the computational cost overhead
ratio is about 7.0, the present implementation shows significant
reduction in the computational cost.

B. Steady Poiseuille flow

The second problem considered is a steady Poiseuille flow
driven by a constant body force F = [Fx,0,0]. Thus the flow
direction is along the positive direction of the x axial. The

TABLE I. Comparison of the CPU time (s) required by SRT-LBM
(tS), the present CLBM (tC), and the referenced CLBM (tR) in
Ref. [40] for different mesh sizes.

Mesh tS tC tR

5 × 101 × 5 26.042 56.028 182.164
5 × 201 × 5 51.728 111.838 361.184
5 × 401 × 5 101.179 217.027 710.2165

FIG. 3. Comparison between the numerical velocity profiles
(symbols) and analytical solutions (solid lines) at Re = [10,20,30,40]
for the steady Poiseuille flow.

analytical solution is ua = [ux,0,0], where ux(z) = u0(1 −
z2/L2) and L is the half-height of the channel. The peak
velocity is u0 = FxL

2/2ν, by which the Reynolds number is
defined as Re = 2u0L/ν. Due to the simple flow configuration,
only five nodes are used to cover the length and width, and
periodic boundary conditions are used in these two directions.

First, we choose the kinematic viscosity ν = 0.1, and 20
nodes are employed to cover the channel height (2L = 20�x).
The velocity profiles at a series of Reynolds numbers, Re =
[10,20,30,40], are plotted in Fig. 3. It can be seen in Fig. 3
that the simulation results are in very good agreement with the
analytical solutions. As analyzed in previous studies [19,43],
when the relaxation rate for the energy flux is set to be s3 =
(16 − 8s2)/(8 − s2), no numerical slip occurs in the steady
Poiseuille flow for the MRT-LBM. It is shown recently in
Ref. [42] that among the existing forcing schemes in two-
dimensional (2D) CLBM, only the consistent forcing scheme
[42] preserves the above mentioned nonslip rule. We would
like to stress that the consistent forcing scheme also has better
performances in terms of accuracy and isotropy compared with
the forcing scheme in Refs. [23,28,41]. For more information
about the related analysis and discussion, interested readers
are kindly directed to Ref. [42]. For the forcing scheme in 3D
CLBM, we only consider the scheme proposed by Premnath
et al. [24]. In their method, the orthogonal central moment
set in Eq. (9) is adopted. In addition, their implementation
is cumbersome [41] and is not based on the GMRT in this
paper. Nevertheless, the principle of their forcing scheme is that
only the first-order nonzero elements in |Ci〉 are perserved (see
Eq. (26) in Ref. [24]). Using the present nonorthogonal central
moment set, Eq. (21) should be correspondingly modified as

|Ci〉 = [0,Fx,Fy,Fz,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0]�. (23)

Here we choose two cases with ν = 0.1, and measure the global
relative errors at different s3. The global relative error is defined
as

E2 =
√∑

(u − ua)2/
∑

u2
a, (24)
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FIG. 4. Comparison of global relative errors by the present CLBM
coupled with the forcing terms in Eqs. (21) and (23), and the MRT-
LBM [21,52] as a function of s3 in steady Poiseuille flow at s2 = 5/4.
When the nonslip rule s3 = (16 − 8s2)/(8 − s2) is satisfied, global
relative errors by the present CLBM coupled the forcing scheme in
Eq. (21) and the MRT-LBM approach almost zero.

where the summation operator is over all grid nodes. The
D3Q19 MRT-LBM proposed in [21] coupled with the corre-
sponding forcing scheme [52] is also adopted for comparison.
It should be noted that the relaxation rate s3 corresponds to
the relaxation rate for the energy flux (qa and ma , a = x,y,z)
in Ref. [21]. As shown in Fig. 4 when s3 reaches the target
value, E2 by the present CLBM coupled the forcing scheme in
Eq. (21) reduces significantly to a very small value, which
is consistent with the result by the referenced MRT-LBM
and confirms the consistent nonslip boundary condition in the
present 3D CLBM. When the present CLBM is coupled with
the forcing terms in Eq. (23) (actually the forcing scheme in
Ref. [24]), the nonslip rule is not preserved. In the following
simulations, the forcing terms in Eq. (21) are adopted.

We now proceed to test the validity of the modification
method in Eq. (13) to separately relax the normal stress
differences and trace of the pressure tensor. As shown in Fig. 5,
we choose ν = 0.1 coupled with the nonslip rule and measure
E2 at different ξ . The variation trends by the present CLBM
and the referenced MRT-LBM are basically the same. Thus the
validity of the modification method in Eq. (13) is confirmed.

C. Steady flow through a square duct

We now consider the developed flow through a square
duct by a driving force F = [Fx,0,0], where the flow field is
variable in both y and z directions. The flow has an analytical
solution [53],

ux(y,z) = 16a2Fx

ρνπ3

n=∞∑
n=1,3,5,...

(−1)(n−1)/2

×
[

1 − cosh(nπz/2a)

cosh(nπ/2)

]
cos(nπy/2a)

n3
, (25)

3ξ/2

FIG. 5. Global relative error E2 changes with the bulk viscosity ξ

in the present CLBM and the reference MRT-LBM in steady Poiseuille
flow at ν = 0.1.

where a is the duct half-width and −a � y,z � a. In
the simulation, we set Fx = 2 × 10−4, ν = 0.2, and
a = 16�x. The half-way bounce-back boundary condition
is used at the walls, and thus the grid lines are located
at y = [−15.5�x, . . . ,−0.5�x,0.5�x, . . . ,15.5�x] and
z = [−15.5�x, . . . ,−0.5�x,0.5�x, . . . ,15.5�x]. Only five
nodes are used to cover the x direction, along which the
periodic boundary condition is adopted. The surface contour
of the computed velocity field is shown in Fig. 6. It is seen
that the present CLBM can reproduce the velocity distribution
for steady flow through the square duct, and the simulation
result is in qualitative agreement with the analytical solution.

To be quantitative, the simulation results for the velocity
profiles at z = [0.5�x,7.5�x,12.5�x] are compared with the
analytical solutions in Fig. 7. It can be seen that the numerical
results are in good agreement with the analytical solutions at
different locations. In Sec. III B, we have found that the present
CLBM holds the consistent nonslip boundary condition with
the MRT-LBM. It should be noted that the derivation of
the nonslip rule s3 = (16 − 8s2)/(8 − s2) is based on the
approximation that the velocity field varies in only one
coordinate direction [43]. For the steady flow through a square
duct, the velocity field varies in both y and z directions, thus the

FIG. 6. Simulation result for the velocity distribution of steady
flow through a square duct. The simulation parameters are Fx = 2 ×
10−4, ν = 0.2, and a = 16�x.
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Δ

Δ

Δ

FIG. 7. Velocity profiles for steady flow through a square duct at
z = [0.5�x,7.5�x,12.5�x] (lines represent analytical solutions and
symbols represent simulation results).

accurate nonslip condition may be not achieved. To verify our
argument, we define the local relative error over the z cross
section,

E(z) =
√∑

y

[unx(y,z) − uax(y,z)]2/
∑

y

uax(y,z)2, (26)

where uax and unx denote the analytical and numerical
velocities, respectively. Here we measure the change of E(z)
with s3 at z = [0.5�x,7.5�x,12.5�x]. As shown in Fig. 8,
when s3 reaches the target value 1.33077, E(z) reduces to the
smallest value for z = 0.5�x and z = 7.5�x. However, the
minimum point has a slight deviation from the target value
for the case z = 12.5�x. The reason for the deviation is that
the z = 12.5�x cross section is near to the wall boundary,
where the flow contains 2D feature and the unidirectional
approximation is destroyed. Although our argument is
presented for the present CLBM, it should also apply to the

Δ
Δ
Δ

FIG. 8. Local relative error E(z) for steady flow through a square
duct changes with s3 at z = [0.5�x,7.5�x,12.5�x] (the kinematic
viscosity is set to be ν = 0.2).

(a)

(b)

FIG. 9. Numerical results (symbols) and analytical solutions
(solid lines) of the Taylor-Green vortex flow at Re = 50 and T ∗ =
[1.0,2.0,4.0]: (a) horizontal velocity profile in the x = L/2 cross
section and (b) vertical velocity profile in the y = L/2 cross section.

MRT-LBM in general. As analyzed by Luo et al. [54] based
on the 2D Lid-driven cavity flow simulation, the nonslip
condition cannot be accurately satisfied for the complex flows,
but usually a very good approximation can be obtained when
using the nonslip rule s3 = (16 − 8s2)/(8 − s2).

D. Taylor-Green vortex flow

As a final example, we want to test the present CLBM with
the consistent forcing scheme for an unsteady flow where the
force field depends on both time and space. The considered
problem is the Taylor-Green vortex flow [55], which has an
analytical solution

ux = −u0 cos(k1x) sin(k2y) exp
[−ν

(
k2

1 + k2
2

)
t
]
,

uy = u0
k1

k2
sin(k1x) cos(k2y) exp

[−ν
(
k2

1 + k2
2

)
t
]
. (27)

where u0 is the amplitude of the imposed velocity field and k1

and k2 denote the wave numbers along the x and y directions.
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Δ

FIG. 10. Global relative error E2 as a function of the grid spacing
for the Taylor-Green vortex flow at Re = 50 and T ∗ = 4.0. Symbols
represent the measured global relative errors, and the fit slope of the
results is 2.0345.

The body force is given by

Fx = −(
ρk1u

2
0/2

)
sin(2k1x) exp

[−2ν
(
k2

1 + k2
2

)
t
]
,

Fy = −(
ρk2

1u
2
0/2k2

)
sin(2k2y) exp

[−2ν
(
k2

1 + k2
2

)
t
]
. (28)

In the simulation, the computational domain is defined in 0 �
x,y � 2π , and covered by L × L grid points, while only five
nodes are adopted along the z direction. Thus the wave numbers
are k1 = k2 = 2π/L. To eliminate the compressibility effect,
u0 is set to be 0.005.

First, we choose L = 32�x and ν = 0.0032, and the corre-
sponding Reynolds number Re = u0L/ν = 50. The numerical
results of the horizontal velocity profile in the x = L/2 cross
section and the vertical velocity profile in the y = L/2 cross
section are plotted in Fig. 9, from which it can be seen
that the numerical results are in good agreement with the
analytical solutions at different nondimensional time, T ∗ =
ν(k2

1 + k2
2)t/ ln 2. Then simulations characterized by a series

of grid resolutions are carried out, L/�x = [16,32,64,128],
while the kinematic viscosity is obtained through ν = u0L/Re.
The log-log plot of the global relative error E2 at T ∗ = 4.0 as
a function of the grid spacing is presented in Fig. 10, and the
fit slope of the numerical results is 2.0345. This demonstrates
that the present CLBM with the consistent forcing scheme has
second-order accuracy in space.

IV. CONCLUSIONS

In this work, we present an efficient 3D CLBM formulation
with a consistent forcing scheme for a general force field. In the
method, the most computationally demanding reconstruction
step in 3D CLBM is divided into two substeps based on
the GMRT framework. A very simple central moment set
is adopted to construct the cascaded operator such that the
tedious combined terms in the shift matrix N are completely
eliminated. To match the separate relaxations for certain
second-order moments, the previously used diagonal relax-
ation matrix is modified to be a block-diagonal matrix.

Our proposed method is very efficient and easy to im-
plement. Through the simulation of the decay of a shear
wave, it is confirmed the present method can significantly
reduce the computational cost compared with the recently
proposed nonorthogonal CLBM [40]. The inconsistency of
adopting the discrete EDF in the nonorthogonal CLBM [40]
is revealed and discussed. Then the consistent forcing scheme
[42] is verified by simulating several benchmark force-driven
flows, highlighting very good properties of the developed
methodology in terms of accuracy, convergence, and faithful
implementation of the nonslip boundary condition.

The 3D CLBM developed is quite intelligible and general.
Although the D3Q27 lattice is adopted for the derivation,
the corresponding implementation in other lattices can be
readily obtained. The new method puts the 3D MRT-LBM and
CLBM into a unified general framework. Thus the developed
methodology is not only applicable to CLBM but also can be
adopted to simplify the 3D MRT-LBM, as demonstrated in
Appendix C.
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APPENDIX A: D3Q19 CLBM

For the D3Q19 lattice, the discrete velocities ei =
[|eix〉,|eiy〉,|eiz〉] (i = 0,1, . . . ,18) are defined as

|eix〉 = [0,1,−1,0,0,0,0,1,−1,1,−1,1,−1,1,−1,0,0,0,0]�,∣∣eiy

〉 = [0,0,0,1,−1,0,0,1,1,−1,−1,0,0,0,0,1,−1,1,−1]�, (A1)

|eiz〉 = [0,0,0,0,0,1,−1,0,0,0,0,1,1,−1,−1,1,1,−1,−1]�.

The central moment set can be extracted from Eq. (11)

|T̃i〉 = [k̃000,k̃100,k̃010,k̃001,k̃110,k̃101,k̃011,k̃200,k̃020,k̃002,k̃120,k̃102,k̃210,k̃201,k̃012,k̃021,k̃220,k̃202,k̃022]�. (A2)

The block-diagonal matrix is given by

S = diag

⎧⎨
⎩s0,s1,s1,s1,sν,sν,sν,

[
s+,s−,s−
s−,s+,s−
s−,s−,s+

]
,s3,s3,s3,s3,s3,s3,s4,s4,s4

⎫⎬
⎭. (A3)
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The transformation matrix M can be written explicitly according to Eqs. (4) and (A2),

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

Thus the equilibria and forcing terms in the central moment space can be given as∣∣T̃ eq
i

〉 = [
ρ,0,0,0,0,0,0,ρc2

s ,ρc2
s ,ρc2

s ,0,0,0,0,0,0,ρc4
s ,ρc4

s ,ρc4
s

]�
(A5)

and

|Ci〉 = [
0,Fx,Fy,Fz,0,0,0,0,0,0,Fxc

2
s ,Fxc

2
s ,Fyc

2
s ,Fzc

2
s ,Fyc

2
s ,Fzc

2
s ,0,0,0

]�
. (A6)

The explicit expressions of M, N, M−1, and N−1 for the D3Q19 CLBM are also provided in the Supplemental Material [45].

APPENDIX B: SIMPLIFIED RECONSTRUCT STEP

Intuitively, dividing the projection processes into two substeps in Eq. (6) may require more computational cost compared with
the one step method. Actually, the computational cost is much reduced. Taking the D2Q9 CLBM as an example, it can be seen
that the corresponding M−1 and N−1 have 39 and 40 nonzero elements, respectively. The elements in both M−1 and N−1 are very
simple (see the Appendix in Ref. [42]). However, if the two substeps are combined into one step, then the reconstruction matrix
K = M−1N−1 is fully filled, and most of the elements are complex. Using the software MATLAB, it can be written row by row,

K0 = [
u2

xu
2
y − u2

x − u2
y + 1,2

(
uxu

2
y − ux

)
,2

(
u2

xuy − uy

)
,
(
u2

x + u2
y

)/
2 − 1,

(
u2

y − u2
x

)/
2,4uxuy,2uy,2ux,1

]
,

K1 = [( − u2
xu

2
y − u2

xuy + u2
x + ux

)/
2, − uxu

2
y − uxuy + ux + 1/2, − u2

xuy − u2
x

/
2,

− (
u2

x + u2
y + uy − 1

)/
4,

(
u2

x − u2
y − uy + 1

)/
4, − ux − 2uxuy, − uy − 1/2, − ux, − 1/2

]
, . . . ,

K8 = [(
u2

xu
2
y + u2

xuy − uxu
2
y − uxuy

)/
4,

(
uxuy + uxu

2
y

)/
2 − (

uy + u2
y

)/
4,

(
u2

xuy − uxuy

)/
2

− (
ux − u2

x

)/
4,

(
u2

x − ux + u2
y + uy

)/
8,

( − u2
x + ux + u2

y + uy

)/
8,(ux − uy

)/
2 + uxuy

− 1/4,uy/2 + 1/4,ux/2 − 1/4,1/4
]
. (B1)

It can be seen that the reconstruction step using the above K is cumbersome. For the 3D models, this effect is much amplified.
As a result, the one-step method has higher computational cost than the two-step method.

Second, the simplified central moment set is used such that the filled numbers in M−1 are reduced and the elements in N−1

are much simplified. According to the relation between the raw moments and central moments, it is known that the shift matrix
N is a lower triangular matrix. Due to the symmetry, the matrix N−1 is quite similar to N, and the only difference is that signs
for all the odd order velocity terms are opposite in the two matrices (see in the Supplemental Material [45]). For the three central
moment sets in Eqs. (9)–(11), the first seven elements are the same. Therefore, the first seven rows in the corresponding shift
matrices are the same and can be written as a 7 × 27 matrix,

N0−6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−uz 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uxuy −uy −ux 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uxuz −uz 0 −ux 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uyuz 0 −uz −uy 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B2)
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From the eighth row, the difference appears. In the central moment sets in Eqs. (9) and (10), the eighth element is k̃200 − k̃020,
and the eighth row of N is written as

N7 = [
u2

x − u2
y,−2ux,2uy,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

]
. (B3)

Differently, the eighth element in the present |T̃i〉 is k̃200, and the eighth row of N is written as

N7 = [
u2

x,−2ux,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
]
. (B4)

It is seen that the formulation in Eq. (B4) is simpler than that in Eq. (B3). Obviously, this simplifying effect is more evident in
the higher rows of N. Therefore, compared with the two central moment sets in Eqs. (9) and (10), the present central moment set
corresponds to a much simplified shift matrix.

APPENDIX C: NONORTHOGONAL MRT-LBM
FOR 3D LID-DRIVEN CAVITY FLOW

In the D3Q27 nonorthogonal MRT-LBM, the raw mo-
ment equilibria are obtained by |T eq

i 〉 = M|f eq
D,i〉. Although

the force field is not considered in this case, the forc-
ing terms in raw moment space can be directly ob-
tained by |Geq

i 〉 = M|RG,i〉, where RG,i = ωi[(ei − u)/c2
s +

(ei · u)ei/c
4
s ]F refer to the forcing scheme by Guo et al.

[44]. Analogously, a D3Q19 nonorthogonal MRT-LBM
can be constructed using the transformation matrix M in
Eq. (A4).

We now use the D3Q27 nonorthogonal MRT-LBM to
simulate the 3D Lid-driven cavity. The flow is confined in
a cubic box L × L × L and driven by a top lid at y = L

with constant velocity U = 0.1. The Reynolds number Re =
UL/ν = 400 is considered in the simulation, and the length
of the cubic box is set to be L = 64�x. From Fig. 11,
it can be seen that a pair of vortices are located near the
bottom of the x = 0.5L plane, which is consistent with
the results reported in Ref. [49]. In addition, the veloc-
ity profiles by the nonorthogonal MRT-LBM are compared
with the benchmark solutions [49] in Fig. 12. It can be
seen the present simulation results are in good agreement

FIG. 11. The flow direction vector at Re = 400 in the x = 0.5L

plane.

with the benchmark solutions. Furthermore, it is found that
the nonorthogonal MRT-LBM requires approximately 25%
less computational time than the orthogonal MRT model in
Ref. [48].

(a)

(b)

FIG. 12. The nonorthogonal MRT-LBM simulations (solid lines)
and benchmark solutions [49] (symbols) of the 3D Lid-driven cavity
flow at Re = 400: (a) horizontal velocity profiles in the vertical
centerline and (b) vertical velocity profile in the horizontal centerline.
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