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Abstract
Majorization-minimization (MM) is a standard iterative optimization 
technique which consists in minimizing a sequence of convex surrogate 
functionals. MM approaches have been particularly successful to tackle 
inverse problems and statistical machine learning problems where the 
regularization term is a sparsity-promoting concave function. However, due 
to non-convexity, the solution found by MM depends on its initialization. 
Uniform initialization is the most natural and often employed strategy as it 
boils down to penalizing all coefficients equally in the first MM iteration. 
Yet, this arbitrary choice can lead to unsatisfactory results in severely under-
determined inverse problems such as source imaging with magneto- and 
electro-encephalography (M/EEG). The framework of hierarchical Bayesian 
modeling (HBM) is an alternative approach to encode sparsity. This work 
shows that for certain hierarchical models, a simple alternating scheme to 
compute fully Bayesian maximum a posteriori (MAP) estimates leads to the 
exact same sequence of updates as a standard MM strategy (see the adaptive 
lasso). With this parallel outlined, we show how to improve upon these MM 
techniques by probing the multimodal posterior density using Markov Chain 
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Monte-Carlo (MCMC) techniques. Firstly, we show that these samples can 
provide well-informed initializations that help MM schemes to reach better 
local minima. Secondly, we demonstrate how it can reveal the different modes 
of the posterior distribution in order to explore and quantify the inherent 
uncertainty and ambiguity of such ill-posed inference procedure. In the 
context of M/EEG, each mode corresponds to a plausible configuration of 
neural sources, which is crucial for data interpretation, especially in clinical 
contexts. Results on both simulations and real datasets show how the number 
or the type of sensors affect the uncertainties on the estimates.

Keywords: majorization-minimization, hierarchical Bayesian modeling, 
sparse models, M/EEG inverse problems, uncertainty quantification,  
MCMC sampling

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last two decades, sparsity has emerged as a key concept to solve inverse problems 
such as tomographic image reconstruction, deconvolution or inpainting, but also to regularize 
high dimensional regression problems in the field of machine learning. There are mainly two 
routes to introduce sparsity in such problems.

The first route, embraced by the optimization community and frequentist statisticians, is to 
promote sparsity using convex optimization theory. This line of work has led to now mature 
theoretical guarantees (Foucart and Rauhut 2013) when using regularization functions based 
on �1-norm and other convex variants (Tibshirani 1996). In particular, it has been popular-
ized in the signal processing community under the name of compressed sensing (Candès and 
Wakin 2008) when combined with incoherent measurements.

There are however some limitations of sparsity-promoting convex penalties based on the 
�1-norm. All the features (also called regressors, atoms or sources depending on the terminol-
ogy of the community) involved in the solution form what is called the support of the solution. 
Convex penalties can fail to identify the correct support in the presence of highly noisy data, 
but also in low noise setups if the forward operator (referred to as design matrix in statistics) 
is poorly conditioned. Convex regularizations also lead to a systematic underestimation bias in 
the amplitude of the coefficients (Osher et al 2006, Chartrand 2007, Candès et al 2008, Saab 
et al 2008, Chzhen et al 2017).

To address these limitations of �1-type models, re-weighted schemes have been proposed 
(Candès et al 2008, Gasso et al 2009, Rakotomamonjy 2011, Zhang and Rao 2011, Strohmeier 
et al 2016), of which the adaptive lasso (Zou 2006) is the most commonly used in the statistics 
community: starting from the Lasso estimator, which amounts to regressing with a standard 
�1-norm as a regularizer (this estimator is sometimes referred to as basis pursuit denoising 
(BPDN) (Chen et  al 1998) in signal processing), the adaptive lasso solves a sequence of 
weighted Lasso problems, where at each iteration the weights are chosen such that the strong-
est coefficients are less and less penalized. From the optimization point of view, such an itera-
tive scheme can be derived from so-called majorization-minimization (MM) strategies (Lange 
et  al 2000, Schifano et  al 2010). The idea behind MM is to minimize the objective func-
tion by successively minimizing upper bounds that are easier to optimize. Many well-known 
optim ization approaches can be interpreted as instances of MM, e.g. simple gradient descent 

Y Bekhti et alInverse Problems 34 (2018) 085010



3

or proximal algorithms (Combettes and Pesquet 2011), expectation-maximization (EM) 
(Dempster et al 1977), and difference-of-convex (DC) programming techniques (Horst and 
Thoai 1999). More recently, re-weighted �1-norm schemes based on MM principle have been 
particularly popular to handle concave, hence non-convex regularizations such as �0.5-quasi-
norms or logarithmic functions. As such, these schemes are prone to converging to a local 
minimum determined by the initial, uniformly weighted �1-norm solution (i.e. the Lasso esti-
mator) that constitutes the first iterate.

The common way to formulate hierarchical Bayesian modeling (HBM) is to consider the 
variance parameters of Gaussian prior models as additional random variables which have to 
be estimated from the data as well. Their prior distributions are referred to as hyper-priors. 
Plausible solutions to the regression problem, that both fit data and the a priori assumption 
of sparsity, are explicitly characterized as multiple distinct modes of the posterior distribu-
tion. This characterization is the Bayesian analogue to local minima in variational regres-
sion approaches when working with non-convex functionals. To infer a point estimate of the 
parameters of interest from the a posteriori distribution different strategies exist. For instance 
variational Bayesian approaches (Jordan et al 1999, MacKay 2003, Sato et al 2004, Friston 
et al 2008, Shervashidze and Bach 2015), sparse Bayesian learning (SBL) approaches (also 
referred to as type-I or type-II maximum likelihood estimates) (Tipping 2001, Wipf and Rao 
2004, Wipf and Nagarajan 2009, Zhang and Rao 2011) and fully-Bayesian strategies (Calvetti 
et al 2009, Lucka et al 2012) are possible. In this work, we focus on the latter one for a non-
standard type of HBM examined in Lucka (2014) that combines a non-Gaussian prior with 
an �1-type energy function with a specific Gamma hyper-prior. Interestingly, for this HBM, a 
simple alternating scheme to compute full maximum a posteriori (MAP) estimates leads to 
exactly the same sequence of problems solved by MM applied to �1/2-type regularizations. 
In other words, the adaptive lasso estimator (Zou 2006) commonly used in machine learning 
is tightly related to this HBM model. With this observation made, it is natural to revisit and 
improve these MM schemes by leveraging the ability of the Bayesian framework to explore 
the modes of the posterior distribution by Markov chain Monte-Carlo (MCMC) schemes 
(Kaipio and Somersalo 2005, Robert and Casella 2005). This can not only mitigate the afore-
mentioned initialization-dependence of MM, but more importantly, it can offer insights into 
the structure and importance of potentially multiple plausible sparse solutions. Yet, the benefit 
comes at the cost of additional computational efforts.

Magnetoencephalography and electroencephalography (M/EEG) are technologies that 
allow to measure the electromagnetic fields produced by active neurons in a non-invasive 
way. Localization of foci of neural activations from M/EEG recordings is a high impact prob-
lem both for cognitive neuroscience and clinical neuroscience, with applications in patholo-
gies such as epilepsy, sleep research or neurodegenerative disorders. Despite the linearity of 
the forward problem, this inverse problem is particularly challenging as the forward opera-
tor is both under-determined and strongly ill-conditioned. As such, both non-convex optim-
ization strategies with re-weighted schemes (Strohmeier et al 2016) and hierarchical Bayesian 
approaches have been proposed (Sato et al 2004, Calvetti et al 2009, Sorrentino et al 2009, 
Wipf and Nagarajan 2009, Lucka et al 2012) for M/EEG source localization. For this reason, 
it is an ideal application for our examinations.

The manuscript is organized as follows: first, we present a unified perspective on both 
routes to sparsity, i.e. re-weighted �1 MM schemes and specific HBMs. We show that a par-
ticular optimization-based inference strategy recovers the MM algorithm. We then describe a 
HBM inference strategy based upon an MCMC sampling and show on simulated and exper-
imental M/EEG datasets how these stochastic MCMC-based techniques can not only help to 
improve upon deterministic approaches, but also help to reveal multiple plausible solutions to 
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the inverse problem. This analysis leads to an uncertainty quantification (UQ) of the support 
recovery of non-convex sparse regression problems that provides very useful complementary 
information, in particular for very ill-conditioned and under-determined applications like M/
EEG source localization.

Notation. We consider here the following linear model, known in machine learning as 
multi-task regression and in signal processing as the multiple measurement vector (MMV) 
model (Cotter et al 2005):

M = GX + E, (1)

where M ∈ Rm×t . In machine learning m corresponds to the number of samples and t to the 
number of tasks, and in our application m corresponds to the number of sensors and t to the 
number of measurements over time. The matrix G ∈ Rm×q is the design matrix, a known 
instantaneous mixing matrix also referred to as the forward, gain or system matrix. It relates 
the unknown coefficients X ∈ Rq×t, which correspond to amplitudes of neural sources, to 
the measurements M. In our application q  =  dn where n is the number of source locations 
and d is the number of oriented sources per location (d  =  1 or d  =  3 corresponding to es-
timating a scalar field or a 3D vector field of sources). The matrix E models the measure-
ment noise, which is assumed to be an additive, white Gaussian noise (AWGN). This is a 
reasonable assumption after performing a proper spatial whitening of the data using an esti-
mate of the noise covariance (Engemann and Gramfort 2015). By X(i,j) we refer to the entry 
in the ith row and jth column in X, while X(i,:) ∈ Rt and X(:,j) ∈ Rq refer to the complete 
ith row and jth column, respectively. In addition, we denote by X[i], i = 1, . . . , n the d × t  
sub-matrix of X corresponding to the ith group: for d  =  1, this coincides with X(i,:), while 

for d  =  3, X[i] = [X�
((i−1)d+1,:), X�

((i−1)d+2,:), X�
((i−1)d+3,:)]

�. Note that thereby, the group 
size is dt. Negative indices are used to exclude certain entries, rows, columns or groups, i.e. 
X(:,−j) ∈ Rq×(t−1) refers to the matrix obtained by deleting the jth column of X. Furthermore, 
let Im denote the identity matrix of size m ∈ N. For any matrix A ∈ Rn×m, the Frobenius norm 

is given by ‖A‖2
F =

∑
i,j A2

(i,j).

2. Methods

We start this section by recalling how MM works when addressing variational formulations 
with concave, non-convex, regularization. It is followed by an introduction to hierarchical 
Bayesian models with Gamma hyper-priors. Then, we explain how these seemingly different 
approaches can lead to the exact same optimization algorithm. From this, we detail how dif-
ferent Bayesian inference strategies using MCMC sampling can more precisely explore the 
landscape of the posterior distribution of the HBM model, as well as provide multiple possible 
solutions to the sparse regression problem.

2.1. MM

MM strategies consist in replacing a difficult optimization problem with a series of easier ones 
that are obtained by upper bounding the objective function, often by a convex majorant. In 
the context of inverse problems or high-dimensional statistics using sparsity constraints, MM 
has been successfully applied to address non-convex regularization terms. An example is the 
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regression model with �2,p-quasi-norms regularization when 0  <  p  <  1. The desired estimate 
X̂ is defined as one of potentially multiple minimizers of

X̂ ∈ arg min
X∈Rq×t

1
2
‖M − GX‖2

F + λ

n∑
i=1

‖X[i]‖ p
F , (2)

where λ > 0 is the regularization parameter balancing the data fit and the penalty term. One 
possible MM approach to solve equation  (2) with p  =  1/2 would consist in minimizing a 
sequence of non-smooth convex surrogate functions where the non-convex regularization is 
replaced by a weighted �2,1 norm (Strohmeier et al 2016). In each iteration, the weights are 
derived from the current estimate of X.

Due to the concavity of the non-decreasing function X �→
√
‖X‖F , it is upper bounded 

by its tangent and a first order Taylor expansion at the current estimate X[i] provides an upper 
bound that can be used to construct the non-smooth convex surrogate problem. By solving this 
sequence of surrogate problems, the value of the non-convex objective function is guaranteed 
to decrease. However, due to the non-convexity, only convergence towards a local minimum 
can be guaranteed.

For the problem in equation (2) with p  =  1/2, the kth iteration of the MM scheme reads:

X̂(k) ∈ arg min
X∈Rq×t

1
2
‖M − GX‖2

F + λ
n∑

i=1

‖X[i]‖F

w(k−1)
i

, w(k−1)
i = 2

√
‖X(k−1)

[i] ‖F.

 

(3)

As each weight w(k)
i  is a non-decreasing function of ‖X(k)

[i] ‖F, sources with high amplitudes in 
one iteration will be less penalized in the next iteration. Strong sources are more and more 

promoted to explain the data M. Sources for which ‖X(k)
[i] ‖F = 0 at a certain iteration k are 

effectively pruned from the model for all following iterations. Using MM therefore leads to a 
solution that explains the data with fewer active locations i compared to a standard �2,1 norm 

regularized solution. Note that a default initialization consists in setting w(0)
i = 1,∀i ∈ [n].

To exploit existing fast solvers for the �2,1 regularized problems (Ndiaye et  al 2015, 
Strohmeier et al 2016), we reformulate the weighted subproblem and apply the weights by 
scaling the matrix G with a diagonal matrix W(k) ∈ Rdn×dn given by:

W(k) = diag(w(k) ⊗ 1d), (4)

where w(k) ∈ Rn, 1d ∈ Rd  is a vector of ones and ⊗ is the Kronecker product. Defining 
G̃(k) = GW(k−1), the reformulated problem reads:

X̃(k) ∈ arg min
X∈Rq×t

1
2
‖M − G̃(k)X‖2

F + λ

n∑
i=1

‖X[i]‖F. (5)

After convergence, we reapply the scaling to X̃ to obtain X̂:

X̂(k) = W(k−1)X̃(k). (6)

The reformulation through equations (5) and (6) avoids any division by zero when X(k−1) = 0. 
The above procedure, which matches the strategy of the adaptive lasso estimator (Zou 2006), 
is expressed as pseudo-code in algorithm 1. More technical details can be found in (Strohmeier 
et al 2016, algorithm 3).

Y Bekhti et alInverse Problems 34 (2018) 085010
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Algorithm 1. �2,p MM algorithm with p  =  1/2 (Adaptive Lasso).

input : M, G,λ > 0, W(0) � 0, ε > 0, τ > 0 and K
for k  =  1 to K do

  G̃(k) = GW(k−1)

   Get X̃(k) solving equation (5) at ε-precision (e.g. by block coordinate descent).

  Update X̂(k) = W(k−1)X̃(k)

  Update W(k) = diag(w(k) ⊗ 1d) where w(k)
[i] = 2

√
‖X̂(k)

[i] ‖F, ∀i ∈ [n]

  if ‖X̂(k) − X̂(k−1)‖∞ � τ  then
      Break

return X̂(k)

2.2. HBM

In this section, we formulate the inference problem given by equation (1) and the regulariza-
tion strategy with �2,p-quasi-norms from a Bayesian perspective (Kaipio and Somersalo 2005, 
Lucka 2014): the Bayesian approach incorporates prior beliefs about the model parameters in 
terms of probability distributions. Under the AWGN assumption the likelihood of the model 
is given by:

plike(M|X) ∝ exp

(
−1

2
‖M − GX‖2

F

)
. (7)

From equation (2) we can construct the �2,p group prior as:

pprior(X) ∝ exp

(
−λ

n∑
i=1

‖X[i]‖ p
F

)
=

n∏
i=1

exp
(
−λ‖X[i]‖ p

F

)
, (8)

which leads to the following posterior probability density using Bayes rule:

ppost(X|M) ∝ exp

(
−1

2
‖M − GX‖2

F − λ

n∑
i=1

‖X[i]‖ p
F

)
. (9)

To extend equation (8) to a hierarchical prior model (MacKay 2003), we replace the scalar λ 
by a vector of hyper-parameters γ ∈ Rn

+ and for any p � 1 we write the conditional �2,p prior 
as:

pprior(X|γ) ∝ exp

(
−

n∑
i=1

(‖X[i]‖ p
F

γi
+

dt
p
log(γi)

))
, (10)

where the logarithmic term accounts for the terms of the normalization that depend on γ 
(Lucka 2014). A common choice for a hyper-prior on each γi  is given by a Gamma distribu-
tion (MacKay 2003, Kaipio and Somersalo 2005, Calvetti et al 2009, Lucka et al 2012) with 
shape and scale parameters α and β:

phyper(γ) ∝
n∏

i=1

γα−1
i exp

(
−γi

β

)
= exp

(
n∑

i=1

(
−γi

β
+ (α− 1) log(γi)

))
.

 

(11)

Y Bekhti et alInverse Problems 34 (2018) 085010
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Then, the full posterior over both X and γ becomes:

ppost(X, γ|M)

∝ exp

(
−1

2
‖M − GX‖2

F −
n∑

i=1

(‖X[i]‖ p
F

γi
+

γi

β
− (α− 1 − dt

p
) log(γi)

))
.

 (12)

The question of how to best derive parameter estimates, in particular how to treat the two dif-
ferent types of parameters X and γ, distinguishes different HBM-based inference strategies. 
Variational Bayesian approaches (MacKay 2003, Jordan et al 1999, Sato et al 2004, Friston 
et al 2008, Shervashidze and Bach 2015) and sparse Bayesian learning (Tipping 2001, Wipf 
and Rao 2004, Wipf and Nagarajan 2009, Zhang and Rao 2011) approaches rely on approxi-
mating or marginalizing the full, joint posterior distribution (12). In contrast, fully-Bayesian 
strategies (Calvetti et al 2009, Lucka et al 2012) work with it directly. The most popular one 
is the full maximum-a-posteriori ( full-MAP) estimate which is defined as

(X̂MAP, γ̂MAP) ∈ arg max
(X,γ)∈Rq×t×Rn

+

{ppost(X, γ|M)} . (13)

A common strategy to compute it is to minimize the negative log posterior − log ppost(X, γ|M) 
by alternating minimization over X and γ (known as block coordinate descent in optimization):

X(k) ∈ arg min
X∈Rq×t

{
1
2
‖M − GX‖2

F +
n∑

i=1

‖X[i]‖ p
F

γ
(k−1)
i

}
, (14)

γ
(k)
i ∈ arg min

γi∈R+




‖X(k)
[i] ‖

p
F

γi
+

γi

β
− (α− 1 − dt

p
) log(γi)


 , ∀i ∈ [n]. (15)

Other fully-Bayesian estimates are defined as integrals of functions of X and γ with respect 
to the posterior distribution, e.g. first or second moment estimates. To compute these high 
dimensional integrals efficiently, only Markov chain Monte Carlo (MCMC) methods that 
draw correlated samples from the posterior distribution can be used (Kaipio and Somersalo 
2005, Robert and Casella 2005). A commonly used MCMC scheme for HBM is given by 
blocked Gibbs sampling which alternates as:

X(k) ∼ ppost(X, γ(k−1)|M) ∝ ppost(X|M, γ(k−1)), (16)

γ(k) ∼ ppost(X(k), γ|M) ∝ ppost(γ|M, X(k)). (17)

In this study, however, we are not interested in sampling the posterior distribution to compute 
the integral-based estimators but we rather want to explore the different modes of this multi-
modal distribution, each of which corresponds to parameters that are both sparse and likely 
to explain the data.

One can notice similar structures in (14)–(17). In each step, we make use of the conditional 
structure of the posterior: for γ fixed, we have to solve one qt-dimensional �2,p optimization/
sampling problem, while for X fixed, we have to solve n 1-dimensional optimization/sampling 
problems. We will describe these two steps in more detail in the next two sections.

Y Bekhti et alInverse Problems 34 (2018) 085010
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2.3. HBM optimization

The optimization problem defined in equation (14) reduces to an �2,p-norm regularized regres-
sion problem that can be solved as described in section 2.1. To solve equation (15), we com-
pute the first order optimality condition for each i:

−
‖X(k)

[i] ‖
p
F

γ2
i

+
1
β
−

(α− 1 − dt
p )

γi
= 0. (18)

For α � dt/p + 1, the problem in equation  (15) is convex, and the positive root of equa-
tion (18) is given by:

γi = β


ν +

√√√√
ν2 +

‖X(k)
[i] ‖

p
F

β


 , ν :=

α− 1 − dt/p
2

. (19)

Note that similar rules to update the noise level were considered in the Bayesian lasso (Park 
and Casella 2008, Kyung et al 2010) and the scaled lasso (see for instance (Städler et al 2010, 
Dalalyan 2012)). A difference though is that the update we perform here is on the penalty 
term, whereas in the mentioned references, it was rather performed on the data-fitting term.

If we furthermore choose α = dt/p + 1, then ν = 0 and most terms disappear; equa-
tions (14) and (15) hence read:

X(k) = arg min
X∈Rq×t

{
1
2
‖M − GX‖2

F +

n∑
i=1

‖X[i]‖ p
F

γ
(k−1)
i

}
, (20)

γ
(k)
i =

√
β
√
‖X(k)

[i] ‖
p
F , ∀i = 1, . . . , n, (21)

which can be combined to the fixed point iteration:

X(k) = arg min
X∈Rq×t




1
2
‖M − GX‖2

F +
2√
β

n∑
i=1

‖X[i]‖ p
F

2
√

‖X(k−1)
[i] ‖ p

F


 . (22)

If we compare equations  (22) with (3) we see that we re-derived the MM algorithm for 
p  =  1 as an alternating optimization scheme to compute the full-MAP estimate for a spe-
cific HBM, namely using a conditional �2,1 group prior and a Gamma hyper-prior with 

α = dt + 1 and β = 4/λ2. Using w(0)
i := 1 in the MM scheme corresponds to starting with 

γ
(0)
i := 1/λ =

√
β/2. From previous work (Strohmeier et al 2016) we know that due to the 

non-convexity, a good initialization of the weights w(0)
i  in the MM algorithm is crucial for its 

performance, but aside from uniform initialization, only heuristic initialization strategies were 
used, e.g. using the same re-weighting as in the sLORETA method (Pascual-Marqui 2002). 
In this work, we leverage the re-interpretation of the MM algorithm through the HBM frame-
work to obtain multiple initializations in a systematic fashion, namely as samples drawn from 
the full posterior. This way, we can not only reach better local minima but more importantly, 
we can identify and characterize multiple possible sparse solutions. Such plausible solutions 
to the sparse regression problem in equation (1) are the modes of the posterior distribution 
(12) with different relative probability masses.
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2.4. HBM sampling

As outlined in equations (16) and (17) in section 2.2, we sample the full posterior ppost(X, γ|M) 
by blocked Gibbs sampling, i.e. we alternate between sampling the conditional distributions 
ppost(X|M, γ(k−1)) and ppost(γ|M, X(k)). The conditional ppost(X|M, γ(k−1)) is a high dimen-
sional distribution composed of a Gaussian likelihood and an �2,p prior, where our main inter-
est here is p  =  1. It was demonstrated in Lucka (2012) that single component Gibbs sampling 
(SC Gibbs) is an efficient MCMC technique to sample such distributions. For the specific �2,p 
priors used here, slice sampling can be used to perform the sub-steps in SC Gibbs sampling, 
namely the sampling of the one-dimensional single-component conditional densities. The 
resulting slice-within-Gibbs sampler was examined in Lucka (2016). For completeness, the 
details of the implementation are given in appendix A.

The conditional ppost(γ|M, X(k)) factorizes over groups i:

ppost(γi|M, X(k)) ∝ exp


−

‖X(k)
[i] ‖

p
F

γi
− γi

β
+ (α− 1 − dt/p) log(γi)


 . (23)

For the case of α = dt/p + 1, which is our main interest due to its connection to MM revealed 
in the previous section, equation (23) reduces to:

ppost(γi|M, X(k)) ∝ exp


−

‖X(k)
[i] ‖

p
F

γi


 exp

(
−γi

β

)
, (24)

which can be sampled with a simple accept-reject algorithm as described in appendix B. The 
complete procedure is described in algorithm 2. Therein, K0 refers to the burn-in size, i.e. 
the initial samples that are discarded, K to the sample size of the blocked Gibbs sampler. We 
denote KSC and KSS the sample sizes of the SC Gibbs and the slice sampler that carry out the 
sampling in the sub-steps.

Algorithm 2. Block Gibbs Sampling scheme.

input : M, G, X(−K0), γ(−K0), K0, K, KGibbs, KSC, KSS, α, β
for k  =  −K0  +  1 to K do

      Set X(k) = X(k−1).
      for kSC = 1 to KSC do
        Draw a random permutation P of {1, . . . , n}
        for l ∈ P do

          Sample X(k)
(i,j) ∼ ppost(X(i,j)|X

(k−1)
−(i,j) , M, γ(k)), ∀(i, j) ∈ [l] - via KSS

           steps of Slice Sampling algorithm 4.

     Sample γ(k)
i ∼ ppost(γi|M, X(k)), ∀i = 1, . . . , n via Accept-Reject

     Algorithm 5.

return {X(k), γ(k)}K
k=1

2.5. Combining sampling and optimization

Finding the correct support in a sparse under-determined regression problem like (1) is inher-
ently of combinatorial complexity. In the two approaches we examined, this is reflected in 
the non-convexity of the objective function (2) and the multi-modality of the joint posterior 
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distribution (12), respectively. Here, we want to investigate whether the link between MM and 
the HBM framework can be used to quantify the ambiguity and uncertainty posed by sparse 
support identification. Traditional uncertainty quantification (UQ) measures such as covari-
ance estimates of X or γ may fail to do so as they cannot capture the multi-modality of the 
posterior distribution in a satisfactory way. In addition, no sample X(k) is exactly sparse: as the 

posterior distribution is a continuous density function, the event {X(k)
[i] = 0} has zero probabil-

ity. This means that the whole support of X(k) is active with probability 1. Even a thresholded 

average of the support of X(k) will only reveal the average probability of a location being part 
of the support. In our application to M/EEG source analysis, an arguably more interesting sta-
tistical output is the set sources forming the network of brain areas active in a given data set. 
This question needs a more profound spatial analysis of the structure of the most prominent 
modes of the posterior, and is left open by the above mentioned measures. Here, we propose to 
tackle it in a different way: algorithm 3 describes a combination of first sampling the posterior 
and then using each sample to initialize MM to optimize the posterior distribution. This yields 
a chain of different posterior modes {X̂(k)}K

k=1, i.e. approximate solutions to equation (1) that 
fulfill our a priori knowledge of a sparse support. If we assume that the division of Rq×t into 
attractors of the MM algorithm roughly overlaps with the division of Rq×t into modes of the 
marginalized posterior over X within the HBM framework, the relative frequency with which 
these modes occur in {X̂(k)}K

k=1 corresponds to their relative posterior mass. While a math-
ematically more profound and detailed analysis of this heuristic is left for future work, we will 
illustrate in the following numerical examples how this mode analysis can be used to reveal 
and quantify some of the ambiguity of sparse under-determined regression problems.

Algorithm 3. Combination of Gibbs sampler and MM algorithm.

input : M, G, λ, X(−K0), γ(−K0), K0, K, KSC, KSS, KMM, ε > 0, τ > 0
Use algorithm 2 with input

(M, G, X(−K0), γ(−K0), K0, K, KSC, KSS, α = dt + 1, β = 4/λ2) to obtain

  MCMC chain {X(k), γ(k)}K
k=1.

for k  =  1 to K do

   Set w(0)
i = λγ

(k)
i , ∀i = 1, . . . , n and run algorithm 1 with input

    (M, G,λ, W(0)
i , ε, τ , KMM) to obtain X̂(k).

return {X̂(k), X(k), γ(k)}K
k=1

3. Results

We now examine the benefits of our re-interpretation of the MM algorithm described in sec-
tion 2.1 as a specific way to compute a full-MAP estimate for a specific HBM as described in 
sections 2.2 and 2.3. We first illustrate basic properties of the methods in a one dimensional toy 
problem before we examine a simulated MEG dataset and two experimental M/EEG datasets.

3.1. One dimensional illustrations

We start with a toy problem where m  =  10, q  =  20, d  =  t  =  1 and the true unknown X is all 
zero except for X5 = X15 = 1.
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Example 1. First, G is a random matrix constructed in the following way: its rows are 
drawn from a Gaussian distribution with zero mean and a block-diagonal covariance matrix 
C = blkdiag (C1, C2), where (C1)i,j = 0.5|i−j|, (C2)i,j = 0.95|i−j|, i, j = 1, . . . , 10. Then, each 
column is normalized to have unit �2 norm. Figure 1 illustrates the set-up. Notice that due to 
the asymmetry in the design, the correct recovery of the source at location 15 is more diffi-
cult due to the stronger correlation between columns 11-20 of G. We generate M by adding 
AWGN scaled by 20%‖M‖∞ to GX. We first run the MM algorithm 1 using a uniform initiali-

zation, i.e. w(0)
i = 1,∀i = 1 ∈ [n], with λ = 0.2λmax where λmax = max1�i�n ‖(G�M)[i]‖2

F 
is the smallest regularization value for which no source is found as active using an �2,1 regu-
larization (Ndiaye et al 2015, Strohmeier et al 2016). It recovers an X supported at locations 
5 and 11, i.e. it is not able to locate the second source correctly. Then, we run algorithm 3 
with K = K0 = 10 000, KSC = KSS = 10 and the same settings for the MM algorithm as be-
fore to obtain chains of posterior samples {X(k)}K

k=1, and the corresponding posterior modes 
{X̂(k)}K

k=1. We clustered the modes based on their spatial support which reveals that a total of 
16 different modes were found. Figure 2 depicts the spatial support of the modes listed based 
on the relative frequency with which they were found. It reveals that, indeed, there is a larger 
uncertainty in the location of the second source (at true location 15) and that in this scenario, 
the support of the mode which is found most often coincides with that of the true solution. To 
check that the MCMC sampler described in algorithm 2 is not simply stuck in this mode for 
a long time, we compute how many steps (with respect to index k) it takes on average before 
solutions {X̂(k)}K

k=1 change. The result is 1.63 steps, which means that the sampler switches 
between modes very frequently and should be able to explore the posterior sufficiently well. 
In traditional UQ, the covariance matrix of the posterior samples {X(k)}K

k=1 would be used 
to characterize uncertainty and correlation between activity at different locations. Here, we 
want to compare it to a matrix whose (i, j)th entry shows the relative frequency with which 
two locations i and j are simultaneously active in the support of the modes {X̂(k)}K

k=1. Such a 
matrix is another way to visualize the information given by figure 2. Figure 3 shows that the 
covariance matrix reveals very little information about the true, sparse source locations and 
the larger ambiguity about the source at location 15 induced by the asymmetric design of G.

Example 2. While the posterior mode whose support coincided with that of the true solu-
tion was also found with the highest relative frequency, it is not clear whether this frequency 
is a reliable indication of the mode’s true relative posterior mass. In general, this question is 
difficult to examine for high dimensional problems. Nonetheless, we constructed a second ex-

Figure 1. Setup for the first one dimensional illustration. (a) Random Gaussian design 
covariance matrix C; (b) design matrix G; (c) GTG.
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ample to at least show that the frequencies are consistent: we now draw the rows of a 10 × 10 
matrix G̃ from a Gaussian distribution with zero mean and the covariance matrix C2 as for the 
previous example. Then, we set G = [G̃, G̃], i.e. the first and last 10 columns of G are exactly 
the same. This means that the regression problem (1) and the posterior distribution are invari-
ant with respect to switching the first and last 10 entries. Every mode has a corresponding 
copy ‘on the other side’, which should be found with the same relative frequency. All other 
settings are the same as in the previous example, except that we choose λ = 0.5λmax larger 
than before to boost modes which are only supported at a single location. Figure 4 reveals that, 
indeed, all modes found are supported only at a single location and are found with a similar 
frequency as their corresponding copy. The average number of steps for the sampler to switch 
between different modes is now 1.40 steps which is, again, very low. In addition, even the av-
erage number of steps it needs to switch between modes supported in locations 1–10 to modes 
supported in 11–20 is only 2.34 steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

55.66%

19.75%

*10.34%

3.93%

3.21%

2.09%

1.55%

1.02%

0.88%

0.68%

0.48%

0.25%

0.11%

0.02%

0.02%

0.01%

Figure 2. Each row of the matrix indicates the spatial support of a mode found by 
algorithm 3 in example 1 (the true locations are 5 and 15). The rows are ordered by the 
relative frequency (in %), by which they are found. The row marked by * corresponds 
to the mode found by MM with uniform initialization.

1 3 5 7 9 11 13 15 17 19

1

3

5

7

9

11

13

15

17

19
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

1 3 5 7 9 11 13 15 17 19

1

3

5

7

9

11

13

15

17

19

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

1

3

5

7

9

11

13

15

17

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b c

Figure 3. Comparison between (a) posterior sample covariance matrix; (b) 
corresponding correlation matrix; (c) a matrix which shows the frequency with with 
locations i and j are simultaneously found active in the X̂(k) in its (i, j)th entry.
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3.2. Simulated MEG data

We generated a realistic simulation based on a free-orientation (d  =  3) source model with 
n  =  7498 cortical locations and m  =  306 MEG sensors. Two of these locations were selected 
to be active, one in each hemisphere. One of the sources had a deep ventral location in the 
inferior occipital gyrus (figure 5(c)), and the second one had a more superficial location in the 
motor cortex (figure 5(a)). Their corresponding waveforms are shown in figure 5(b). When 
passed to the solvers, they are cropped between 40 to 180 ms to keep only the two peaks. This 
leads to t  =  43 time samples.

First, we re-visit the question whether we are able to find better source estimates using 
MCMC-derived initializations than with the uniformly initialized MM algorithm 1, also in 
this high-dimensional example. For this, we first run the MM algorithm 1 using a uniform 

initialization, i.e. w(0)
i = 1,∀i = 1 ∈ [n], with λ = 0.05λmax. Then, we run algorithm 3 with 

K0  =  300, K  =  900, KSC = KSS = 1 and the same settings for the MM algorithm as before to 
obtain a chain of MM-optimized solutions {X̂(k)}K

k=1. Figure 6(c) shows the histogram of the 
objective function values reached by these solutions (computed with equation (5)). The verti-
cal black bar shows the value of the objective function of the uniformly initialized MM solver 
and we can see that some initializations indeed lead to source estimates with a lower objective 
value. Figures 6(a) and (b) show the locations of the estimated sources resulting from uniform 
and best MCMC-based initialization. For the artificial source in figure 6(a), both results find 
the exact location, so they are superposed. For the deeper source in figure 6(b), neither result 
finds the exact position, but the MCMC-based initialization is closer. This means that the 
result did not only improve from an optimization point of view, but also judged by the quality 
criteria of the given application.

Now, we examine how the posterior modes found by algorithm 3 react to changes in the 
measurement design. To do so, we switch from using all 306 MEG sensors to using only 204 
gradiometers or each other gradiometer (102 sensors). By reducing the number of sensors we 
increase the under-determinedness of the problem, and the intuition is that it should lead to 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

33.27%

30.02%

16.66%

16.18%

1.83%

1.75%

0.11%

0.09%

0.07%

0.02%

Figure 4. Each row of the matrix indicates the spatial support of a mode found by 
algorithm 3 in example 2 (the true locations are 5 and 15). The rows are ordered by the 
relative frequency (in %), by which they are found and colored in such a way that it is 
easy to identify modes which are similar when locations 1–10 and 11–20 are switched.

Y Bekhti et alInverse Problems 34 (2018) 085010



14

more variability among the plausible sparse solutions. The graphical analysis, which is more 
involved for this high-dimensional scenario, is presented and described in figures 7 and 8. A 
first observation is that the superficial source in the premotor cortex was correctly identified 
as part of the support of every local minima when using the full 306 MEG sensors. It was 
however sometimes mis-localized when reducing the number of sensors (figure 7). A second 
observation is that the spatial spread of these miss-localizations is smaller for this superficial 
source than it is for the deep source. This deep source in the ventral cortex is more difficult 
to find even with all sensors. Indeed, none of the 100 best initialization perfectly localized 
the deep simulated source. In general, we can clearly see how the ambiguity increases when 
decreasing the number of sensors, and how the distribution of source networks gets more 
fuzzy. However, our analysis also provides useful local measures of these phenomena.

3.3. Experimental MEG data

We now repeat our analysis with two experimental open datasets. The first one is a record-
ing of auditory evoked fields (MNE sample dataset (Gramfort et al 2013)). The second one 
contains visual evoked fields (visual condition of MNE sample dataset) for which source 

Figure 5. Simulated MEG dataset. (a) and (c) show superficial and deep source (hidden 
in the medial view) locations, respectively. (b) gives their corresponding waveforms 
color-coded by location.

Figure 6. Location of simulated and estimated sources using the uniformly initialized 
MM solver (denoted as ‘MM’) and best MCMC-based initialization in terms of objective 
function value. Left: estimation of the artificial source on the left hemisphere. Middle: 
estimation of the deep source on the right hemisphere. Right: histogram of the objective 
function value for 900 MCMC initializations (algorithm 3). The uniform initialization 
used for the MM (black vertical line) is not very bad, meaning that the basic MM is 
able to recover a good source estimates for some configurations. See figure 9 for a case 
where the basic MM fails.
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localization is a more difficult task due to the proximity between neural sources. The true 
nature of the underlying source network is also less clear for this second dataset.

Figure 9 shows the equivalent to figure 6 for both datasets. Again, we see that lower objec-
tive function value can be obtained using MCMC-based initializations. The auditory sample 
dataset is commonly assumed to be generated by two bilateral focal sources around the audi-
tory cortices in the superior temporal gyrus of the temporal lobe. Due to the superficial nature 
of these sources and their large distance, estimation of their position is regarded as a relatively 
simple task. Indeed, the histogram shows that using MCMC-based initializations does not 
help a lot to reduce the objective function compared to a uniformly initialized MM solution. 
However, in the case of the visual dataset, where several closed-by sources are active, the dif-
ference is quite drastic. The majority of the MCMC-based initializations lead to lower values 
of the objective function. Looking at the source distribution plots on the brain for both data-
sets, one can also observe more complex source configurations for the visual data.

Next, we repeat the graphical source network analysis from figure  7 for the two data-
sets. Figure  10 shows the results for the auditory dataset and three sensor configurations: 
all 364 EEG  +  MEG sensors, all 306 MEG sensors or each other sensor resulting in 182 
EEG  +  MEG sensors. One can see how adding EEG to MEG sensors reduces the ambiguity 
of the regression problem. The plots show less but more prominent modes, i.e. the posterior 
mass is concentrated on fewer stable source configurations. We also see that the locations 

Figure 7. Source network analysis for simulated data: for a clearer presentation, 
the chain {X̂(k)}900

k=1 of modes was thinned to the 100 ones with the lowest objective 
function (equation (2)). The first row of sub-figures displays the support of these best 
modes in the following way: each position in the circle represents a source location that 
was part of the support of at least one mode for one sensor configuration. The black 
bar attached to each position corresponds to the relative frequency with which this 
source location appeared as part of the support. Two positions are connected by a line 
if they were simultaneously part of the support and the color of this line corresponds 
to the relative frequency with which this happened. Note that the background of the 
circle is white, but it is densely covered by purple lines indicating rare connections. The 
positions are placed left or right, depending on which hemisphere they belong to. For 
symmetry, for each active source location, its counterpart on the other hemisphere was 
included in the graphic as well. In addition, the positions are grouped and colored based 
on a parcellation of the brain into anatomical regions (taken from an atlas). The second 
row of sub figures shows these regions in the brain and the simulated sources.
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of the most prominent modes shift. This is consistent with results of other studies on EEG-
MEG combination (Molins et al 2008, Lucka 2014, Aydin et al 2014) as EEG is sensitive to 
some sources that MEG is almost blind to, e.g. sources with a strong radial component. If we 
subsample the EEG  +  MEG sensors by only using every other location, the ambiguity and 
spatial spread of the recovered support increases. One can see that there is more activity in 
the dark green label, which corresponds to a brain area commonly not associated with audi-
tory responses. The connections between source locations show that none of the modes found 
really stands out, i.e. is found much more often compared to the others. Most of the connec-
tions do not occur more than 200 times within the 900 samples, so they are part of the purple 
background of low frequency connections in the plots.

Figure 11 shows the same results for the more complex visual dataset. Compared to the 
auditory dataset, we see that even with all sensors, the ambiguity of the regression problem 
seems to be a lot higher compared to the auditory dataset: we see that the posterior mass is 
distributed among many more source configurations. For the other two sensor configurations, 
we see similar effects as in the auditory data set. Nevertheless, it can be noticed that the large 
majority of identified sources with all MCMC initializations are on the right hemisphere. 
This is consistent with the known functional organization of the visual cortex. Indeed, in this 

all 306 MEG 204 gradiometers 102 gradiometers

1e-1

5e-2

1e-4

Figure 8. The support of {X̂(k)}900
k=1 was extracted to build an uncertainty map by 

smoothing. The relative frequencies with which each source location was part of the 
support was computed and plotted on the brain surface together with the two simulated 
sources (green dots). Each column corresponds to the results for each of the three sensor 
setups examined. Less the number of sensors and/or more the source is deep, more 
uncertainty in the brain map. Note that the deep source is not in the support of the 
{X̂(k)}900

k=1, it seems to be recovered only due to smoothing.
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Figure 9. Histogram of the objective function value of {X̂(k)}900
k=1 for auditory and 

visual datasets (306 MEG sensors). The histogram for visual dataset shows more 
MCMC initializations that outperform the uniform one in the MM solution. Under each 
histogram, these source configurations are shown on the left and right hemisphere.

Figure 10. Source network analysis for auditory data. The figures are constructed in 
the same way as described in figure 7 except that all 900 mode samples are displayed.
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experimental condition the subject was presented with checker board flashes on the left visual 
hemifield which is known to primarily project onto the right hemisphere of the cortex.

4. Discussion

Scientific literatures relying either on frequentist or on Bayesian statistical inference often 
coexist in many fields ranging from machine learning, inverse problems, signal processing 
to computational biology. In this work, we started from an under-determined, ill-conditioned 
MMV/multi-task regression problem and examined two seemingly unrelated approaches—
MM as an optimization technique for tackling non-convex optimization problems arising in 
frequentist regression, and HBM as a Bayesian prior modeling framework. We showed that 
one obtains the same algorithms, and therefore the same solutions, when considering some 
specific choices of models, parameters and inference strategies. In particular the parallel was 
established between the �2,1/2-norm regularized regression by MM and the full-MAP estima-
tion for �2,1 hierarchical priors with specific Gamma hyper-priors. We further showed that this 
conceptual parallel can be exploited to improve the MM solution by providing well-informed 
algorithmic initializations.

For this, we first constructed a multi-layered Gibbs sampler for the joint posterior density 
of our HBM. Each sample is then used to initialize the MM step done with a state-of-the-art 
convex solver using block coordinate descent techniques and acceleration strategies based on 
active sets. The sampler used has also an efficient sub-sampler for �2,1 priors at its core. Despite 
the multi-modality of the posterior, the MCMC scheme is able to jump rapidly between the 
different attractors of the MM scheme. Indeed, using each sample as an initialization to the 
MM computation, one ends up in many different local minima/modes of the posterior (see 
figures 9 and 11). Therefore, this procedure allows us to reveal and explore different plausible 
source configurations in more details.

Based on this observation, we showcased how one can use the chain of local minima found 
by MCMC-initialized MM to analyze the variability of the different sparse solutions and 
how this yields different information compared to traditional and generic Bayesian uncer-
tainty quantification techniques that use for example covariance estimates or credible sets 

Figure 11. Source network analysis for visual data. The figures are constructed in the 
same way as described in figure 7 except that all 900 mode samples are displayed.

Y Bekhti et alInverse Problems 34 (2018) 085010



19

derived from posterior samples (Szabó et al 2015). It is also different from methods developed 
specifically for parametric M/EEG source localization based on dipole fitting (Fuchs et al 
2004, Darvas et al 2005). These latter approaches cannot easily be transferred to sparse, non-
parametric approaches. On the other hand, our approach can easily be extended to include 
space-time-frequency structured sparsity constraints that can model more sophisticated source 
configurations than examined here (Castao-Candamil et al 2015). Using our developed tech-
niques on simulations and actual data, one could observe that uncertainty in M/EEG is loca-
tion specific and also source configuration specific. This is of course well-known by experts in 
this field, but here we provide a computational approach to visualize it and quantify it. This is 
an important incentive to develop such automated, data-dependent methods to quantify uncer-
tainties in the context of M/EEG source imaging. In more conventional imaging methods such 
as computer tomography (CT) or magnetic resonance imaging (MRI), the signal originates 
from weak tissue interaction with strong external fields and the forward operator G depends 
almost exclusively on the physical properties of the scanner. In this situation, uncertainty is 
usually distributed in a smooth, well-known way over the image domain. Artifacts as well as 
real anatomical features are also easy to distinguish for a trained radiologist. The situation for 
M/EEG is very different. The weak signals originate from endogenous activity, and they are 
very dependent on dataset specific factors such as source orientation, location and attenuation 
which all depend on the geometry of the head of the analyzed subject. That is also why the 
forward matrix G needs to be constructed for each individual patient, after fixing the electrical 
properties of the head issues, which if wrong, increases the uncertainties.

When considering real data, the source to recover is often poorly understood, especially 
when it comes to pathological brain activity such as ictal or inter-ictal epileptic activity. In 
such a situation, providing a single source configuration as a result, together with an ad-hoc 
uncertainty quantification based on previous studies or acquired expertise, might not be an 
optimal use of the M/EEG data. Instead, providing multiple hypotheses together, along with a 
quantification of their uncertainty, can be more useful. Indeed for applications such as pre-sur-
gical epilepsy diagnosis, where M/EEG recordings are one of several diagnostic modalities, 
each candidate source configuration can provide some evidence for or against a diagnostic 
hypothesis that could lead to a surgery decision. We therefore believe that future extensions 
of this work towards a consistent framework for interpreting and quantifying the multitude 
of potential results of sparse M/EEG source reconstruction approaches can have a significant 
impact on clinical settings.
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Appendix A. Slice-within-Gibbs sampler for parameter update

Within the algorithm 2, to update a group X[l], we need to sample from the all the one-dimen-
sional, SC densities

ppost(X(i,j)|X
(k−1)
−(i,j) , M, γ(k)), (i, j) ∈ [l], (A.1)

where X−(i,j) refers all the coefficient of the matrix X except the term (i, j).
To implement this efficiently, we can precompute several terms and make use of the spe-

cific spatio-temporal group structure of the posterior. We first derive the part of the likelihood 
(7) that depends on a given index pair (i, j) ∈ [l]:

1
2
‖M − GX‖2

F =

t∑
j′

1
2
‖M(:,j′) − GX(:,j′)‖2

2
j
∝ (A.2)

1
2
‖M(:,j) − GX(:,j)‖2

2 =
1
2
‖M(:,j) −

(
G(:,−i)X(−i,j) + G(:,i)X(i,j)

)
‖2

2 (A.3)

i∝ 1
2
‖G(:,i)‖2

2 X2
(i,j) + GT

(:,i)

(
M(:,j) − G(:,−i)X(−i,j)

)
X(i,j) (A.4)

=
1
2
‖G(:,i)‖2

2 X2
(i,j) +

((
GTM

)
(i,j) −

(
G(:,i)

TG
)

X(:,j) − ‖G(:,i)‖2
2

)
X(i,j) (A.5)

:= az2 + bz, with z := X(i,j), a :=
1
2
‖G(:,i)‖2

2, (A.6)

b :=
(
GTM

)
(i,j) −

(
G(:,i)

TG
)

X(:,j) − ‖G(:,i)‖2
2. (A.7)

Note that ‖G(:,i)‖2
2 and 

(
GTM

)
 can be precomputed. The challenging part in the computation 

of b is to compute 
(
G(:,i)

TG
)
, as one typically does not want to pre-compute the q × q matrix 

GTG and hold it in memory. However, to update all the td components of the lth group (e.g. in 

the visual evoked fields example, t  =  211, d  =  3) one only needs the d × q matrix 
(
G(:,[l])

TG
)
. 

Thus, we compute 
(
G(:,[l])

TG
)
 at the start of updating group X[l] and hold it memory through-

out the bloc update. Besides this, the most costly operation to compute b is a dot product of 
vectors of size q. Next, we derive the part of the prior (10) that depends on X(i,j), (i, j) ∈ [l]:

n∑
l=1

(‖X[l]‖ p
F

γl
+

dt
p
log(γl)

)
X(i,j),(i,j)∈[l]

∝ γ−1
l ‖X[l]‖ p

F = γ−1
l


 ∑

(i′,j′)∈[l]

X2
(i′,j′)




p/2

= γ−1
l


X2

(i,j) +
∑

(i′ ,j′)∈[l]
(i′ ,j′) �=(i,j)

X2
(i′,j′)




p/2

=: c
(
z2 + d

) p/2
,

 

(A.8)

with c and d defined and computed in an obvious way. Taken together, to update X(i,j), we have 
to sample from the one-dimensional density:

p(z) ∝ exp
(
−az2 − bz

)
exp

(
−c

(
z2 + d

) p/2
)
=: p1(z) p2(z). (A.9)
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We take advantage of the fact that (A.9) factorizes in a Gaussian likelihood part p1(z) and a 
symmetric, log-concave prior part p2(z), and use a generalized form of slice sampling (Neal 
2003, Robert and Casella 2005) as described in more detail in Lucka (2016) and summarized 
in algorithm 4. Determining Sy

2 in our case is trivial:

p2(z) � y ⇔ c
(
z2 + d

) p/2
� − log(y) ⇔ |x| �

((
− log(y)

c

)2/p

− d

)1/2

. (A.10)

Then, we use a slightly modified, more robust, version of the fast table-based algorithm 
described in Chopin (2011) to sample from the truncated Gaussian distribution p1(z)1Sy

2
(z). 

As initialization for z, we always chose the current value of X(i,j).

Algorithm 4. Slice Sampling.

input : p(z) ∝ p1(z) p2(z), z, K(SS)

for k  =  1 to KSS do
   Draw y uniform from [0, p2(z)] (vertical move).

  Determine Sy
2 := {z | p2(z) � y}

  Draw z from p1(z)1Sy
2
(z) (weighted horizontal move).

return z as a sample of p(z)

Appendix B. Accept-reject sampler for hyperparameter update

The conditional density (24) is of the type

p(x) ∝ exp
(
−c

x

)
exp

(
− x
β

)
, c,β � 0. (B.1)

Note that the first factor is monotonically increasing with limit 0 for x ↘ 0 and limit 1 for 
x → ∞ while the second factor is proportional to a simple exponential distribution (see 
figure  B1). We can therefore easily construct a dominating density g(x) � p(x) to carry 
out accept-reject sampling (Robert and Casella (2005), section 2.3.2) to generate a sample 
z ∼ p: we generate y ∼ g, u ∼ U[0,1] and accept z  =  y if u � p(y)/g(y) and repeat otherwise. 
Choosing g(x) = exp (−x/β) would yield a valid sampling density but this choice becomes 
inefficient with increasing c. Therefore, we split the sampling density into two parts:

g(x) =

{
p̂ if x < x̃

exp
(
− x

β

)
otherwise

, (B.2)

where p̂ = maxx p(x) is the maximal probability attained at x̂ = arg maxx p(x) =
√
βc and 

x̃ = βc/x̂ + x̂ is the solution to exp (−x/β) = p̂ (see figure B1). Sampling from (B.2) is then 
straight-forward using v, w ∼ U[0,1]: if one computes

Gx�x̃ =

∫ ∞

x̃
g(x) dx = β exp(−x̃/β), Gx<x̃ =

∫ x̃

0
g(x) dx = p̂x̃, (B.3)

then v < Gx�x̃/(Gx�x̃ + Gx<x̃) determines that we are in the tail, x > x̃ , where we can use 
a simple inverse cumulative distribution method to draw a proposal from g(x) using w. If v 
determines that we are in x � x̃ , then x = wx̃ is the proposal. For numerical precision, we 
only compute logarithms of probabilities and use that for a  >  0, b� 0:

log (a + b) = log a + log (1 + exp (b − a)) . (B.4)

Y Bekhti et alInverse Problems 34 (2018) 085010



22

The whole sampling scheme is shown in algorithm 5. We found the scheme to be efficient 
enough for all of our computations, i.e. the chosen g(x) is close enough to p(x) to result in an 
accepted sample after a few trails. If this would become a problem, it would be easy to adap-
tively improve the dominating density.

Algorithm 5. Accept-Reject Algorithm for Hyperparameter Update.

input : c � 0,β > 0
Set x̂ =

√
βc.

Set log p̂ = −c/x̂ − x̂/β.
Set x̃ = βc/x̂ + x̂.
Set logGx�x̃ = log β − x̃/β .
Set logGx<x̃ = log p̂ + log x̃.
Set logGtot = logGx�x̃ + log (1 + exp (Gx<x̃ − Gx�x̃)).
while true do
   Draw u, v, w uniform from (0, 1).
   if log v + logGtot < logGx�x̃ then
      Set W = logw − x̃/β.
      Propose x = −βW :
      if β log(u) < c/W  then
       return x (acceptance)
   else
      Propose x = wx̃:
      if log u + log p̂ < −c/x − x/β then
       return x (acceptance)

Figure B1. Sketch of the quantities used in the accept-reject sampling algorithm 5.
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