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In 1991, Baker and Harman proved, under the assumption of 
the generalized Riemann hypothesis, that

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n�x

μ(n)e(nθ)

∣∣∣∣∣∣ �ε x3/4+ε.

The purpose of this note is to deduce an analogous bound 
in the context of polynomials over a finite field using 
Weil’s Riemann Hypothesis for curves over a finite field. 
Our approach is based on the work of Hayes who studied 
exponential sums over irreducible polynomials.

© 2018 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let μ be the Möbius function and write e(θ) = e2πiθ. Baker and Harman [1] proved 
under the assumption of the generalized Riemann hypothesis that for all ε > 0,

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n�x

μ(n)e(nθ)

∣∣∣∣∣∣ �ε x
3
4+ε. (1)
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It is conjecture that (1) holds for all ε > 0 with 3
4 replaced by 1

2 . The best unconditional 
result is due to Davenport [3] who showed that for all A > 0

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n�x

μ(n)e(nθ)

∣∣∣∣∣∣ �A
x

(log x)A .

The purpose of this note is to deduce an analogue of (1) for the polynomial ring Fq[t]. 
First, let us go through some definitions required to state the result. The function field 
analogue of the real numbers is the completion of the field of fractions of Fq[t] with 
respect to the norm defined by

|f/g| =
{
qdeg f−deg g if f �= 0
0 otherwise.

This completion is naturally identified with the ring of formal Laurent series Fq((1/t)) =
{
∑

i�j xit
i : xi ∈ Fq, j ∈ Z}. The norm defined above is extended to x =

∑
i�j xit

i ∈
Fq((1/t)) by setting |x| = qj where j is the largest index with xj �= 0. The analogue of 
the unit interval is T := {

∑
i<0 xit

i : xi ∈ Fq}, and is a subring of Fq((1/t)).
Define the additive character ψ : Fq → C

× by ψ(x) = e(tr(x)/p), where tr : Fq → Fp

is the usual trace map and p is the characteristic of Fq. Define also the exponential map 
eq : Fq((1/t)) → C

× by eq(x) = ψ(x−1).
Now let μ(f) denote the Möbius function on the ring Fq[t], defined as (−1)k if f is 

the product of k distinct irreducibles and 0 otherwise and let φ(f) be the size of the 
unit group (Fq[t]/(f))×, that is |f | 

∏
ω|f (1 − 1/|ω|), where the product is over all monic 

irreducibles dividing f . All sums over polynomials are sums over monic polynomials.

Theorem 1. Suppose n � 3. Then

max
θ∈T

∣∣∣∣∣∣
∑

deg f=n

μ(f)eq(fθ)

∣∣∣∣∣∣ � 4q
3n+1

4

(
3
√

3
2

)n

.

Remark. It follows that for all ε > 0 and q large enough with respect to ε we have

max
θ∈T

∣∣∣∣∣∣
∑

deg f=n

μ(f)eq(fθ)

∣∣∣∣∣∣ � q( 3
4+ε)n.

Our proof of Theorem 1 will follow the strategy of Hayes employed in his study of the 
exponential sum

∑
deg ω=n

eq(ωθ).
ω irreducible
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Recently, Bienvenu and Lê have independently derived a similar result to Theorem 1 
in [2]. Their Theorem 9 corresponds to our Lemma 1 and their Theorem 11 closely 
resembles our Theorem 1.

2. Lemmas

Let Fq[t]× be the multiplicative monoid of monic polynomials in Fq[t]. Whilst inves-
tigating the distribution of irreducible polynomials over Fq, Hayes [4] introduced certain 
congruences classes on Fq[t]× defined as follows. Let s � 0 be an integer and g ∈ Fq[t]. 
We define an equivalence relation Rs,g on Fq[t]× by

a ≡ b mod Rs,g ⇔ g divides a− b and
∣∣∣∣ a

tdeg a
− b

tdeg b

∣∣∣∣ < 1
qs

It is easy to check that this is indeed an equivalence relation and that for all c ∈ Fq[t]×,

a ≡ b mod Rs,g ⇒ ac ≡ bc mod Rs,g

so we can define the quotient monoid Fq[t]×/Rs,g. Hayes showed that an element of Fq[t]
is invertible modulo Rs,g if and only if it is coprime to g and that the units of this quotient 
monoid form an abelian group of order qsφ(g) which we denote R∗

s,g = (Fq[t]×/Rs,g)
×. 

Given a character (group homomorphism) χ : R∗
s,g → C we can lift this to a character 

of Fq[t]× by setting χ(f) = 0 if f is not invertible modulo Rs,g. Associated to each such 
character is the L-function L(u, χ) defined for u ∈ C with |u| < 1/q by

L(u, χ) =
∑

f∈Fq[t]×
χ(f)udeg f =

∏
ω

(1 − χ(ω)udeg ω)−1

where the product is over all monic irreducibles. When χ is a non-trivial character it can 
be shown that L(u, χ) is a polynomial which factorises as

L(u, χ) =
d(χ)∏
i=1

(1 − αi(χ)u)

for some d(χ) � s + deg g − 1 and each αi(χ) satisfies |αi(χ)| = 1 or √q. This follows 
from Weil’s Riemann Hypothesis and appears to have been first proved by Rhin in [7].

When χ = χ0 is the trivial character we have

L(u, χ0) =
∑

f∈Fq[t]×
(f,g)=1

udeg f =
∑

f∈Fq[t]×
udeg f

∏
ω|g

(1 − udeg ω) = 1
1 − qu

∏
ω|g

(1 − udeg ω).
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Lemma 1. Let χ be a character modulo R∗
s,g and deg g � n/2. Then

∣∣∣∣∣∣
∑

deg f=n

μ(f)χ(f)

∣∣∣∣∣∣ �
{(

n+s+deg g−2
s+deg g−2

)
qn/2 if χ �= χ0(

n+r−1
r−1

)
(q + 1) if χ = χ0

where r is the number of distinct irreducible divisors of g.

Remark. The bound χ0 is smaller than the one for χ �= χ0 when n � 3 because deg g is 
an upper bound for r and for n � 3

(q + 1)
(
n + deg g − 1

n

)
�

(
n + deg g − 2

n

)
qn/2.

Proof. Suppose first that χ �= χ0. Then

∑
f

χ(f)μ(f)udeg f = L(u, χ)−1 =
d(χ)∏
i=1

(1 − αi(χ)u)−1

=
∑
n�0

⎛
⎜⎜⎝ ∑

r1+···rd(χ)=n
0�ri�n

d(χ)∏
i=1

αi(χ)ri

⎞
⎟⎟⎠un.

Comparing coefficients and using the triangle inequality we get

∣∣∣∣∣∣
∑

deg f=n

χ(f)μ(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

r1+···+rd(χ)=n
0�ri�n

d(χ)∏
i=1

αi(χ)ri

∣∣∣∣∣∣∣∣
�

(
n + d(χ) − 1
d(χ) − 1

)
qn/2

�
(
n + s + deg g − 2
s + deg g − 2

)
qn/2.

When χ = χ0 is the principal character

L(u, χ0)−1 = (1 − qu)
∏
ω|g

(1 + udeg ω + u2 deg ω + · · · ).

If we write ω1, ω2, . . . , ωr for the distinct irreducible divisors of g then we get, by equating 
coefficients again,

∣∣∣∣∣∣
∑

deg f=n

χ0(f)μ(f)

∣∣∣∣∣∣ �
∑

ai∈Z�0∑
a deg ω =n

1 + q
∑

ai∈Z�0∑
a deg ω =n−1

1

1�i�r i i 1�i�r i i
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� (q + 1)
∑

bi∈Z�0∑
1�i�r bi=n

1

= (q + 1)
(
n + r − 1
r − 1

)
. �

Lemma 2. For each θ ∈ T there exist unique coprime polynomials a, g ∈ Fq[t] with g
monic and deg a < deg g � n/2 such that

∣∣∣∣θ − a

g

∣∣∣∣ < 1
q

n
2 +deg g

.

Proof. See Lemma 3 from [6]. �
Lemma 3. Let θ ∈ T and let a, g be the unique polynomials defined as in Lemma 2 with 
respect to θ and n. Set s = n − [n2 ] − deg g. For any f1, f2 ∈ Fq[t]× of degree n such that 
f1 ≡ f2 mod Rs,g we have

eq(f1θ) = eq(f2θ).

Proof. See Lemma 5.2 from [5]. �
Lemma 4. Suppose g ∈ Fq[t] is square-free. Then

∑
d|g

1
qdeg d

�
(
1 + log(deg g)

log q

)
e.

Proof. Order the monic irreducibles ω1, ω2, . . . , ωr dividing g and the monic irreducibles 
P1, . . . in Fq[t] in order of degree (and those of the same degree arbitrarily). Let π(k)
be the number of monic irreducibles of degree k and define N by 

∑
deg P�N−1 degP <

deg g �
∑

deg P�N degP . Then g has at most 
∑

1�k�N π(N) irreducible factors. There-
fore, since degPi � degωi, we have

∑
d|g

1
qdeg d

=
∏
ω|g

(
1 + 1

qdeg ω

)
�

∏
deg P�N

(
1 + 1

qdeg P

)
=

∏
1�k�N

(
1 + 1

qk

)π(k)

.

Using π(k) � qk

k this is bounded by

∏
1�k�N

(
1 + 1

qk

) qk

k

�
∏

1�k�N

e
1
k � e1+log N = Ne.

Now we bound N in terms of deg g as follows
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deg g >
∑

deg P�N−1
deg p =

∑
1�k�N−1

π(k)k �
∑

k|N−1

π(k)k = qN−1

by the prime number theorem in Fq[t]. This gives N � 1 + log(deg g)
log q which completes the 

proof of the Lemma. �
3. Proof of Theorem 1

Let θ ∈ T and choose g and s as in Lemma 3. We start by giving an explicit description 
of a set a representatives for the equivalence relation Rs,g. It is not hard to show that

Ss,g = {t[n2 ]gb1 + b2 | deg b1 = s, b1 monic, deg b2 < deg g}

is such a set. Furthermore,

S∗
s,g = {t[n2 ]gb1 + b2 | deg b1 = s, b1 monic, deg b2 < deg g, (b2, g) = 1}

defines a set of reduced representatives modulo Rs,g. See [5] Lemma 7.1 for details.
Then by Lemma 3 and the orthogonality of characters modulo R∗

s,g we can write

∑
deg f=n

μ(f)eq(fθ)

=
∑

b∈Ss,g

∑
deg f=n

f≡b mod Rs,g

μ(f)eq(fθ)

=
∑
d|g

∑
b∈Ss,g

(g,b)=d

eq(bθ)
∑

deg f=n
f≡b mod Rs,g

μ(f)

=
∑
d|g

∑
b∈Ss,g/d

(g/d,b)=1

eq(bdθ)
∑

deg f=n−deg d
f≡b mod Rs,g/d

μ(fd)

=
∑
d|g

∑
b∈S∗

s,g/d

eq(bdθ)
∑

deg f=n−deg d

1
qsφ(g/d)

∑
χ mod R∗

s,g/d

χ(b)χ(f)μ(fd).

Notice that μ(fd) = μ(f)μ(d)χd(f) where χd(f) is the trivial character modulo R∗
s,d. 

We can therefore rewrite the above as

=
∑
d|g

μ(d)
qsφ(g/d)

∑
χ mod R∗

s,g/d

⎛
⎝ ∑

b∈S∗
s,g/d

eq(bdθ)χ(b)

⎞
⎠

⎛
⎝ ∑

deg f=n−deg d

μ(f)χχd(f)

⎞
⎠ .

Now χ is a character modulo R∗
s,g/d and χd is a character modulo R∗

s,d. Therefore, 
χχd is a character modulo R∗

s,g, and so using the triangle inequality and Lemma 1 we 
can bound this in absolute value by
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qn/2
∑
d|g

g square-free

1
qs+deg d/2φ(g/d)

(
n− deg d + s + deg g − 2

s + deg g − 2

)

×
∑

χ mod R∗
s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣ .

We bound the Gauss sum over χ mod R∗
s,g/d in the standard way using the Cauchy–

Schwarz inequality and Parseval’s identity as follows

∑
χ mod R∗

s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣

�

⎛
⎜⎝ ∑

χ mod R∗
s,g/d

1
∑

χ mod R∗
s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

=

⎛
⎝qsφ(g/d)

∑
b1,b2∈Ss,g/d

eq(d(b1 − b2)θ)
∑

χ mod R∗
s,g

χ(b1)χ(b2)

⎞
⎠

1/2

=

⎛
⎝(qsφ(g/d))2

∑
b1=b2∈S∗

s,g/d

eq((b1 − b2)θ)

⎞
⎠

1/2

= (qsφ(g/d))3/2.

Recall that s + deg g = n − [n2 ] � n/2 so that

(
n− deg d + s + deg g − 2

s + deg g − 2

)
�

(
2n− [n2 ] − 2
n− [n2 ] − 2

)
.

We can bound this binomial coefficient using the fact that for all positive integers k,

√
2πkk+ 1

2 e−k+ 1
12k+1 < k! <

√
2πkk+ 1

2 e−k+ 1
12k .

This precise form of Stirling’s formula is due to Robbins [8]. It follows that if k = [n2 ]
then

(
2n− [n2 ] − 2
n− [n2 ] − 2

)
<

(
3k
k

)
<

1√
2π

e
1

36k− 1
12k+1− 1

24k+1
(3k)3k+ 1

2

kk+ 1
2 (2k)2k+ 1

2
<

1√
4πk/3

(
3
√

3
2

)2k
.

Putting it all together with φ(g/d) � qdeg g−deg d and Lemma 4 we get
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∣∣∣∣∣∣
∑

deg f=n

μ(f)eq(fθ)

∣∣∣∣∣∣ � qn/2
1√

2π(n− 1)/3

(
3
√

3
2

)n ∑
d|g

(qsφ(g/d))1/2

qdeg d/2

� qn−
1
2 [n2 ] (1 + log n

log q )e√
2π(n− 1)/3

(
3
√

3
2

)n

and Theorem 1 easily follows after a short numerical calculation.
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