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Thesis Abstract: 

 

The admission burden to paediatric wards in African hospitals is very high, and many children 

have life-threatening complications of common infectious diseases including malaria. In this 

setting the Fluid Expansion As Supportive Therapy (FEAST) trial unexpectedly showed that fluid 

resuscitation (giving a bolus of saline or albumin) to febrile children with impaired perfusion 

was harmful. This PhD used data from the FEAST trial to answer several important questions: 

1) how can children at the highest risk of mortality be identified and prioritised in these low-

income settings; 2) were there surrogate markers in bedside measures recorded over 

admission that could explain some of the detrimental impact of the bolus; and 3) did the bolus 

increase mortality risk immediately after administration or was there a different mechanism of 

action?  

 

Prognostic factors for mortality were identified in the FEAST data and a bedside risk score 

developed. The score was validated in data collected on children admitted to a rural district 

hospital in Kenya and compared to other risk scores. The heterogeneity of the effect of bolus 

over levels of different measures, including malaria parasitaemia, was explored. The 

proportion of treatment effect explained by measures recorded over time was calculated. No 

one measure was shown to be a suitable surrogate marker, but the impact of the bolus varied 

across levels of oxygen saturation, and across levels of base excess in those with malaria at 

baseline. 

  

Further insight into the mechanism by which the bolus had detrimental impact on the children 

in the FEAST trial was sought by modelling the mortality risk over time. The maximum 

mortality risk occurred in both arms within the first 2 hours but the risk in the bolus arm was 

slower to decrease, showing that children were recovering more slowly in the bolus arms 

compared to the no bolus arm. 
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1 Introduction 
 

1.1 Child mortality in hospitals in sub-Saharan Africa 
 

Child mortality in sub-Saharan Africa is high and there were an estimated 2.9 million deaths in     

under-5s in 2015. The most common, individual known causes were pneumonia (16.6%), 

preterm birth complications (12%) and intrapartum-related events (12%) with malaria (10%) 

and diarrhoea (10%) also major causes of death in children under 5 as presented in Figure 

1.1.1 taken from Liu et al [1].  

Figure 1.1.1: Causes of child deaths in different regions of the world (Web-appendix Figure 3 in 

Liu et al, Lancet 2015) with red box added to highlight sub-Saharan Africa.  

 

A proportion of these child deaths will have occurred in hospital where inpatient mortality 

rates are high (15-30%) [2-4] but the overall number of paediatric admissions either in children 

who survived or admissions that lead to death has not been estimated as data has not been 

consistently collected by health services across countries. The majority of children (90%) 

presenting to hospital in sub-Saharan Africa arrive with severe forms of common childhood 

illnesses (especially malaria, diarrhoea, pneumonia, sepsis and meningitis) [2]. Over half the 

deaths in these children occur within the first 24 hours of admission. This may be due in part 
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to a delay in getting to the hospital or slow admission care on arrival [5]. For example in 

Tanzania almost half of the children referred to hospital care take 2 days or longer to reach the 

hospital and in Guinea-Bissau 16% of acutely sick children die on the way to the hospital or 

whilst waiting at an outpatient clinic [6].  

The high rates of child mortality have been of concern for many years and in the year 2000 

specific targets for reducing child mortality were identified by a consensus of experts from the 

United Nations Secretariat, International Monetary Fund, the Organisation of Economic 

Cooperation and Development and the World Bank, and set out as part of the 10 Millennium 

Development Goals (MDG) [7, 8]. Promises were received from countries to commit to 

reducing the under-5 mortality rate by two thirds from the rates measured in 1990 by 2015. 

Unfortunately this target was not achieved globally, although 4 million fewer deaths occurred 

in children <5 years in 2015 compared to 2000. The global annual rate of reduction (ARR) 

needed to meet the MDG was 4.4% but overall it was 4% between 2000 and 2015. However, 

average ARR’s for measles, neonatal tetanus, HIV/AIDS, meningitis, malaria, diarrhoea, and 

pneumonia were all >4.4% over the same period.   

Programmes and interventions that aimed at reducing child mortality were monitored by an 

initiative called Countdown to 2015; the findings were summarised in a paper in the Lancet in 

2015 by Requejo J et al, Countdown to 2015 and beyond: fulfilling the health agenda for 

women and children [9]. Figure 1.1.2 below is taken from that paper and presents national 

coverage for a core set of 21 interventions that should be available for all. Using nationally 

representative household surveys and databases from UNICEF, Save the Children, the UN 

Population Division and other organisations, they found that key gaps in coverage exist around 

the time of birth and also with case management of childhood illnesses.  
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Figure 1.1.2: Coverage of various interventions to improve maternal, newborn and child 

health.  

 

The sustainable development goals (SDGs) were developed in 2015 to continue the efforts of 

countries to improve health (and other factors such as environmental impact) across the 

world. The child survival targets were included in SDG3: Good health and well-being, and 

stated that all countries should aim to reduce under 5 mortality rates to <25 per 1000 live 

births by 2030 [1]. Researchers monitoring interventions and child mortality (as part of an 

initiative called Countdown to 2030) suggest that for countries with very high mortality the 

focus should be on infectious causes such as pneumonia, diarrhoea and malaria. There are 

programmes that are relatively low-cost that can reduce some of these infectious causes 

including increasing immunization coverage with old and new vaccines, water and sanitation 

improvement, increase in use of insecticide treated bed nets and improved treatment of sick 

children within all levels of healthcare facilities. However, despite the introduction of the 

Haemophilus influenza type b, pneumococcal conjugate (PCV13), and rotavirus vaccines, 

mortality from pneumonia, malaria and diarrhoea remain high. For example, 25,000 children 

were estimated to have died from these diseases in Uganda alone in 2015 [1].  

Treatment of (and diagnostics for) malaria and care-seeking for pneumonia form part of the 

key interventions that are being monitored for Countdown to 2030 and healthcare systems 
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strengthening is important for these interventions. Within improvement of hospital services 

and healthcare systems, emergency treatment and triage has been highlighted as a key priority 

area [2]. Reorganisation of the emergency department to improve triage leads to better 

outcomes; for example, reorganisation of a Malawian hospital along with other interventions 

led to a reduction of 4-10% in inpatient child mortality [10].  

Despite some progress having been made in the overall treatment of critically ill children, 

mortality rates in hospital remain high and developing more effective emergency care services 

for children has been identified as crucial to making reductions [6]. Improving these 

emergency care services need not involve large interventions, instead integration with other 

hospital services, prioritising the critically ill and introducing simple emergency treatments 

have been shown to be effective [11].  

Prioritising care to the most critically ill as they arrive into emergency departments and clinics 

at hospital has been an active priority for the World Health Organisation (WHO) since 1998 

when a WHO study found numerous significant deficiencies in emergency care and triage [12]. 

A study in Kenya in 2004 also found that there was a great need to improve emergency care 

especially for children [3] and that important clinical signs were only recorded a median of 35-

76% of the time (for example respiratory rate, mental state, pallor). Thus various guidelines 

and initiatives have been published and supported in the last 20 years with the aim of 

improving triage in African hospitals. Simple emergency treatments have also been evaluated 

for their effectiveness in these settings and results have been incorporated into the guidelines 

for triage and treatment of critically ill children. 

 

1.1.1 Prioritising the critically ill  

 

Children presenting with severe illness often have multiple disorders [13], so although there 

had been disease specific programmes (for example for diarrhoea or acute respiratory 

infections) a more comprehensive approach was needed. It is hard to differentiate between 

diseases and conditions that have resulted in the child being critically ill at the point of 

admission and so vertical programmes (i.e specifically for malaria, diarrhoea, acute respiratory 

illness) needed to be harmonised. This would also enable the most life-threatening aspects of 

the illness to be tackled in sequence (i.e ABC, Airway, Breathing, Circulation). A comprehensive 

approach was started in the Integrated Management of Childhood Illnesses (IMCI) guidelines. 

The IMCI was designed to bring together the clinical management guidelines for a variety of 

diseases and ensure a combined approach, working inside and outside of hospitals and 
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including training for health care workers at all levels [14]. The guidelines give methods 

suitable for low-income countries to prevent and manage leading causes of child morbidity 

and mortality and are designed to be adapted within each country [15]. They also work under 

the assumption that extensive laboratory testing is not available. The IMCI guidelines include 

training documents, manuals, teaching materials and information to improve care in clinics or 

small hospitals and improve household management of children. However, in 2004 only one 

district hospital out of 14 surveyed in Kenya was implementing the strategies in the IMCI 

guidelines [16] and in Uganda only 28% of children fulfilling the IMCI criteria completed 

referral to a district hospital for inpatient care [17]. One of the documents to come from the 

IMCI programme which looked to harmonise programmes and guidelines in hospitals was the 

WHO Pocket Book of Hospital Care for Children — Guidelines for Management of Common 

Childhood Illnesses in Rural and District Hospitals with Limited Resources (the ‘pocketbook’) 

[18]. This resource was introduced in 2005 and is available in 20 languages and has been 

widely distributed across Africa. However, uptake has only been partial in some countries and 

has been fragmented in others [19].  The pocketbook was revised in 2013 and the new edition 

is available in three languages. The uptake of the update has not yet been evaluated.  

It is acknowledged that guidelines need to be introduced and supported via regular training, 

and as deficiencies were found in triage and emergency care in particular, a course was 

developed called Emergency Triage Assessment and Treatment (ETAT). ETAT was first 

developed in 1999 by an expert group of clinicians to help standardise emergency 

management and to link on from the methods taught in Advanced Pediatric Life Support 

(APLS) [12]. It also covered emergency treatments and focussed on the type of children that 

would be presenting to hospital in low income settings; it was developed by adapting previous 

triage guidance set up for adults and care of children in high-income settings. ETAT was 

evaluated in Brazil; trained nurses’ assessments performed well compared to the ‘gold 

standard’, which was an APLS assessment done by a paediatrician [20]. Since 1999 ETAT has 

been successfully introduced to hospitals [21], although it has been difficult for researchers to 

evaluate ETAT directly with specific outcomes as it is often implemented along with other 

interventions and general improvement in hospital systems [22]. For example, in a hospital in 

Malawi, triage categories were implemented (as in ETAT) as follows: P1 – for patients requiring 

immediate life-saving care; P2 for patients requiring urgent care (within about 20-30 minutes); 

P3 – for patients whose needs are not urgent. This helped improve patient flow and along with 

training, changes in the lay-out and design of wards, and monitoring, helped to improve triage 

overall and reduce mortality [10]. However, improved outcomes have not been universally 

reported with introduction of ETAT: for example, a new paediatric intensive care unit in 
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Rwanda struggled to implement protocols and measures shown to improve outcomes and had 

a high mortality rate of 50% [23]. 

Kenyan researchers have expanded ETAT to create ETAT+ which links to their Clinical Practice 

Guidelines and has additional information on newborn resuscitation and common causes of 

serious illness [24]. ETAT has also been adapted for South Africa and was felt to be appropriate 

for a large busy hospital in Cape Town [25]. Paediatric ETAT guidelines were updated in 2016 

by WHO to provide guidance on the most common emergency conditions in children 

presenting to hospital and included recommendations on oxygen therapy, oxygen flow rates, 

intravenous fluids, anticonvulsant medicines and diagnostic tests for children with seizures 

[26]. This update was only partial and WHO plan to address the other areas in future ETAT 

guideline updates. Paediatric emergency care training and ongoing support for health workers 

is required for improvements in acute care of critically ill children in low-income countries [27], 

and this, along with other interventions, is hopefully continuing to enable hospitals to move 

towards more consistent, good quality care in emergency rooms across the African continent.  

 

1.1.2 Simple emergency treatment 

 

The mainstay of treatment for critically ill children is antibiotics and antimalarials along with 

adjunctive supportive therapies where available in the hospitals. Antimalarials are generally 

widely available and since results of a multicountry trial (AQUAMAT) involving 5425 children 

showed that artesunate is superior to quinine for treating severe malaria in childhood [28], this 

has become standard of care.  

One of the key adjunctive supportive therapies recommended for immediate management of 

children with shock is fluid resuscitation, which consists of very rapid infusion of fluid 

intravenously (a bolus). Use of boluses was supported by expert opinion (evidence level 

2C)[29] and has been widely used in well-resourced countries (US, Europe, Australia). The aim 

of this treatment is to improve perfusion and correct shock. This therapy is also part of WHO 

Guidelines and was written in the Pocket Book of Hospital Care [18] in 2005 for children in 

severe shock (defined as cold hands and a weak and fast pulse and capillary refill time >3 

seconds): fluid resuscitation though is not recommended in children with severe malnutrition. 

The fluids that could be used for this resuscitation were available in the majority of district 

hospitals (0.9% saline for example) [3] and the rest of the equipment needed is basic (such as 

lines and burettes) although burettes were not always available in these settings. The ETAT 

training includes use of boluses for certain types of children in paediatric shock (in the most 
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severe cases) - but there was only weak evidence regarding benefits of this supportive therapy 

in resource-limited settings. Small studies had been undertaken comparing different fluids for 

fluid resuscitation located in only one hospital [30, 31], and a systematic review of the choice 

of fluids for resuscitation in children in shock showed none of the trials had mortality as an 

endpoint and they predominately included only children with malaria or dengue fever [32]; 

thus, strong evidence was needed for fluid resuscitation in African settings.  
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1.2 Introduction to datasets used in this thesis 
 

There are two datasets used in this thesis which are described in more detail below. One 

dataset is from a randomised clinical trial investigating the role of fluid resuscitation in low-

income settings. This is the Fluid Expansion as Supportive Therapy (FEAST) trial which took 

place between 2009 and 2011 [33]. The other dataset is from a cohort study including all 

admissions to a district hospital in Kilifi on the coast of Kenya from 2002 – 2012 (KEMRI Kilifi 

admissions dataset).  

 

1.2.1 Fluid Expansion As Supportive Therapy (FEAST) trial 

 

Given the lack of good evidence for bolus resuscitation described above, a trial was developed 

by collaborators from the KEMRI Wellcome Trust, Imperial College London and the Medical 

Research Council Clinical Trials Unit (MRC CTU) to investigate the effect of immediate fluid 

resuscitation on child survival and what fluid should be used in low-income settings.  

Children, aged 60 days to 12 years, with severe febrile illness (impaired consciousness 

(prostration or coma) and/or respiratory distress (increased work of breathing)) plus clinical 

evidence of impaired perfusion (one of capillary refill time (CRT)>2 seconds, lower limb 

temperature gradient, weak radial pulse volume or severe tachycardia) at 6 hospitals in Kenya, 

Tanzania and Uganda were enrolled into two strata according to systolic blood pressure. 

Stratum A included 3141 children without severe hypotension who were randomised to 

immediate bolus of 20ml/kg (subsequently increased to 40ml/kg after protocol amendment; of 

note, 40-60 mls/kg boluses are commonly used in high-income countries) of 5% albumin 

(albumin-bolus: 1050 children) or 0.9% saline (saline-bolus: 1047 children), or no-bolus 

(control, maintenance fluids 4ml/kg/hour, according to national guidelines: 1044 children). The 

protocol stipulated that the saline-bolus and albumin-bolus arms, but not the control arm, 

should receive an additional 20mls/kg bolus at one hour if impaired perfusion persisted. In all 

three arms, beyond one-hour, further 40ml/kg boluses of study fluid (saline for the control 

arm) were only prescribed if severe hypotension developed (see definition below). Stratum B 

included 29 children with FEAST entry criteria plus severe hypotension (defined as systolic 

blood pressure <50mmHg if <12m; <60mmHg if 1-5y; <70mmHg if > 5y) who were randomised 

to albumin or saline boluses 40-60mls/kg only. All trial patients received intravenous 

antibiotics if required, antimalarial drugs (for those with falciparum malaria) and IV 
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maintenance fluids (2.5-4mls/kg/hour as per national guidelines) until the child was able to 

retain oral fluids. Antipyretics, anticonvulsants and treatment for hypoglycaemia (blood sugar 

<2.5mmols/L) were administered according to nationally agreed protocols. Children with a 

haemoglobin <5g/dl were transfused with 20mls/kg of whole blood over 4 hours. 

 

1.2.1.1 Trial Sites 

 

The children were enrolled from six sites (hospitals) in three countries (Kenya, Tanzania and 

Uganda). The sites varied in size and experience with clinical research and are described below 

(number in brackets indicating the number of children enrolled in the trial).  

Kenya – Kilifi District Hospital (216) 

Kilifi Hospital is a district hospital on the Kenyan coast that is linked to the Kenya Medical 

Research Institute Wellcome Trust programme of research and has been involved in studies 

and clinical trials for over 20 years [34]. It is described in more detail in the section below 

covering the Kilifi Admissions dataset.  

Tanzania – Teule District Hospital (97) 

Teule Hospital is a district hospital in North East Tanzania where there is a high prevalence of 

malaria. The hospital is described as “a district hospital serving a rural population of 

approximately 277 000 people with a mortality in children under 5 of 165 per 1000” [35].  

Uganda – Mbale Regional Referral Hospital (1240) 

Mbale Hospital is a large regional referral hospital in Eastern Uganda. Malaria occurs 

throughout the year and is consistent with high stable transmission. The hospital has a 95 bed 

general paediatric department with 45 beds in a Pediatric Acute Care Unit. The department 

admits approximately 21000 children annually. The FEAST trial was the first major research 

project that had been undertaken in the pediatric ward of the hospital.  

Uganda – Mulago Regional Referral Hospital (750) 

This hospital is the national referral and teaching hospital of Makerere University Medical 

School, Kampala, Uganda, situated in the central region of Uganda. It receives patients from 

the capital city, Kampala, and referrals from the rest of the country. It has approximately 1500 

beds and a previous study documented a 4.2% case-fatality rate among 23,342 children with 

malaria [36]. The paediatric unit admits between 30 and 80 patients daily. Mulago hospital also 
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functions as the primary health facility for the surrounding population and serves both peri-

urban and rural populations [37]. 

Uganda – Soroti Regional Referral Hospital (633) 

A large regional referral hospital also in Eastern Uganda. This hospital has a 62 bed paediatric 

ward for which the trial was the first major research project undertaken [34].  

Uganda – St Mary’s Hospital (Lacor/Gulu) (234) 

St. Mary's Hospital in Lacor is a private, non-profit, 450-bedded hospital in Gulu District, 

Northern Uganda. The hospital has nine inpatient wards, of which one is a paediatric ward, and 

admits approximately 35,000 patients per year and serves a further 250,000 outpatients each 

year [38].  

 

A good description of two of the FEAST sites was given in Molyneux S et al’s paper on 

emergency consent procedures in the FEAST trial [34]. It compares the most research 

experienced of the sites, Kilifi district hospital, with Soroti hospital which was a new research 

site.  

Figure 1.2.1: Description of two FEAST trial sites from Molyneux S et al, PloS One 2013.  
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Training took place at all sites prior to the start of the trial including Good Clinical Practice 

(GCP) for all staff involved in the trial, as well as aspects of the ETAT training programme. A 

clear triage system was not in place at some sites and so introducing this process was also part 

of preparing the sites for taking part in the trial. The introduction of these processes was one 

possible reason for the overall mortality rate in the trial being lower than expected [21], 

highlighting the importance that improvements in basic clinical care had in the progress that 

was made towards the MDG.  

 

 

1.2.1.2 Trial Eligibility – inclusion and exclusion criteria 

 

The eligibility criteria of the FEAST trial were designed to be generalisable to acutely sick 

children presenting to hospital across Africa, and thus to cover a wide range of diagnoses. They 

were thus not specific to malaria or pneumonia or other illnesses but would identify children in 

shock for which immediate fluid resuscitation was hypothesised to be most beneficial. The 

three key elements of the eligibility criteria were for the child to have a history of fever or 

abnormal temperature, have severe illness and clinical evidence of impaired perfusion. These 

conditions were defined as follows: 

 Abnormal temperature: Pyrexia (≥37.5°C) or Hypothermia (<36°C).  

 Severe illness: one or more of impaired consciousness (prostration or coma) and 

respiratory distress 

 Impaired perfusion: one or more of the following: capillary refill time >2 seconds, 

lower limb temperature gradient, weak radial pulse volume, severe tachycardia.  

 

These eligibility criteria were informed by studies undertaken at Kilifi District Hospital, and 

were a more broad definition of shock compared with the WHO shock criteria (cold hands, 

weak and fast pulse, capillary refill time >3 seconds) which had identified very few children in 

the studies at Kilifi; also less than 3% of children in a study in Brazil met this criteria [20].  

Children were excluded if they had severe acute malnutrition, gastroenteritis, non-infectious 

causes of severe illness (such as trauma, burns or intoxication) and in situations where 
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intravascular expansion was contra-indicated or the child had already received volume 

expansion.  

If children had hypotension defined as systolic blood pressure < 50mmHg for children <12 

months, <60mmHg for children 12month to 5 years, or <70mmHg for children >5 years old in 

addition to the criteria above, then they were enrolled into a different part of the FEAST trial 

(referred to as FEAST B) and were separately randomised between the two immediate fluid 

resuscitation strategies (0.9% Saline or 5% HAS) (no maintenance fluids group). This was 

applicable to only 29/3170 children enrolled.  

The eligibility criteria were all clinical and possible to measure and record quickly and 

efficiently at the bedside, reflecting the need to randomise quickly in emergency situations and 

in settings where waiting for laboratory results is not an option. The exclusion criteria were 

designed as fluid management is not applicable for management of children with diarrhoea 

and burns, and is widely debated for children with malnutrition. 

Data was collected on standardised CRFs for all required trial information, and on trial specific 

source documentation for additional observations and clinical notes. All CRF information was 

entered into a database, as well as the bedside observations from source documentation 

made from clinical reviews at specific time points (1, 4, 8, 24 hours) up to 48 hours from 

randomisation. The primary endpoint was mortality at 48 hours after randomisation, and 

secondary endpoints were mortality at 4 weeks, neurological sequelae at 4 and 24 weeks and 

adverse events potentially related to fluid resuscitation. There were two primary comparisons 

planned: saline bolus compared to control, and albumin bolus compared to saline bolus. The 

sample size was initially calculated as 2800 assuming a risk of 15% in the control group and 

giving a power of 80% to detect a 33% reduction relative reduction in the saline bolus arm 

compared to control, and 40% reduction for the albumin bolus arm compared to saline. The 

sample size was increased to 3600 following a lower than expected mortality rate in the 

control arm but the trial was stopped early following a recommendation to the Trial Steering 

Committee by the Independent Data Monitoring Committee [39].  

 

1.2.1.3 Trial results 

  

The trial enrolled 3170 children over 2 years and found increased mortality in the immediate 

fluid resuscitation ‘bolus’ arms compared to the standard of care, with 111/1050 (10.6%) in 

the albumin-bolus arm, 110/1047 (10.5%) in the saline-bolus arm and 76/1044 (7.3%) in the 
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control groups respectively dying within 48 hours [33]. This gave a relative risk for saline-bolus 

vs control of 1.44 (95% Confidence Interval (CI) 1.09-1.90), albumin-bolus vs saline-bolus 1.01 

(95% CI 0.78-1.29) and for any bolus vs control 1.45 (95% CI 1.13 – 1.86). The increased 

mortality was also found at 28 days with 12.2%, 12.0% and 8.7% having died in the three 

groups respectively. The 48-hour mortality in FEAST B was similar in both arms but higher 

overall compared to the main trial, at 9/13 (67%) for the albumin-bolus arm and 9/16 (56%) in 

the saline-bolus arm.  

Follow up in the trial was very good with only 17/3170 (0.5%) lost to follow up by 48 hours and 

70/3170 (2.2%) by 28 days. The median age of children enrolled was 24 months (IQR 13-38) 

and the majority (52%) had more than one feature of impaired perfusion. Malaria was present 

in 57% of enrolled children, and Human Immunodeficiency Virus (HIV) present in 4% of those 

tested (106/2483). Other common diagnoses were severe anaemia (given as a diagnosis in 43% 

of children), lower respiratory tract infection (LRTI) (42%) and sepsis/septicaemia (15%). Of 

note, sepsis was not recognised as a specific entity in WHO guidelines and so may have been 

infrequently diagnosed. Also, previous studies have shown that severe LRTI according to WHO 

criteria could be metabolic acidosis due to malaria [40] and thus may be over diagnosed. 

Conversely, children enrolled in a large antimalarial trial, who were all considered to have 

malaria from a rapid diagnostic test, and were in the lowest tertile of plasma PfHRP2, were 

found to have a low probability of malaria-attributable death and thus may have been 

misclassified [41].  Pre-planned subgroup analyses according to coma status, positive or 

negative status for malaria, presence or absence of severe anaemia (haemoglobin < g/dl vs 

≥5g/dl), age, sex, base deficit (≥8 mmol/l vs. <8 mmol/l), lactate level (≥5 mmol/l vs. <5 

mmol/l), and date of randomisation (before or after the protocol amendment) all supported 

the primary endpoint results with increased mortality in the bolus arms.  

 

1.2.2 KEMRI Kilifi admissions dataset.  

 

The Kenya Medical Research Institute (KEMRI) -Wellcome Trust Kilifi data are collected from all 

routine admissions into a district hospital on the coast of Kenya. The hospital admits 4400 

paediatric patients and 3400 adult patients per year from a mainly rural population of 

approximately 240,000 [42] [43]. The data are also linked to demographic and surveillance 

information. The hospital has a 54 bed general paediatric ward and a 9 bed high dependency 

unit (referred to as the KEMRI ward). There is also a 20 cot newborn unit and occupancy for 

the units is between 150 and 200% with an average of 80-90 inpatients [44]. Research has 
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been carried out in the hospital and particularly the paediatric ward for many years and links 

into the research institute which also has a clinical trials unit.  This has shown, for example, 

that there has been a decline in malaria paediatric admissions of up to 63% over 8 years from 

1999-2007 and there have been changes in general in the disease burden of the area over the 

timespan of the dataset [45, 46].  

Clinical data were collected by research clinical officers and doctors on standardised forms 

which also served as the clinical notes [47]. Specific training was also given for the recognition 

of some clinical signs [48].  

The data from the Kilifi admissions dataset used for analyses in this thesis were collected from 

2002 to 2012.  

 

 

1.3 Aims of the thesis: 
 

The overall aim of this thesis is to use statistical methods to delineate mortality risks and 

identify ways to improve management of the acutely sick African child. This will be achieved 

through the following objectives:  

 Considering how to identify the most critically ill child and prioritise them within triage 

systems that have been introduced to hospitals across Africa. This will be done by 

identifying predictors of mortality, using multivariable Cox regression with fractional 

polynomials to build a prognostic model and create a risk score. The risk score will 

then be validated on external data and its performance compared to the performance 

of other risk scores in the literature applied to the FEAST trial data and the external 

data. 

 

 Examining if a physiological measure that explained any of the (harmful) effect of 

boluses could be identified through estimating the proportion of treatment effect 

explained. Also examining and modelling the associations between continuous 

measures and mortality, both at baseline and during admissions to find the most 

appropriate functional form to calculate the proportion of treatment effect explained 

and understand if the effect of the boluses changed depending on the level of any 

continuous measure.  
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 Deconstructing mortality risk using flexible parametric models to directly estimate the 

changing baseline hazard over time. This will help discriminate between whether 

boluses immediately increased the mortality risk compared to the no bolus arm or 

whether it took a longer time from randomisation for the hazard to return to a 

baseline rate in the intervention arms compared to the no bolus arm. 
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2 What prognostic indicators for death could be used in 

African hospitals to identify children at greatest risk?  
 

2.1 Introduction and objectives  
 

The aim of this chapter is to identify what prognostic indicators could be used in African 

hospitals to identify children at greatest risk. There are many measures of clinical severity that 

can be recorded on admission to hospital and appropriate statistical methods will be used to 

examine the effect of these measures and how to combine them into a useful clinical bedside 

score for use in African hospitals. The primary objectives are to build a prognostic model using 

data from the FEAST trial, create a useful clinical bedside score from the prognostic model and 

validate the score on external data from the Kilifi admissions dataset. Secondary objectives are 

to validate other published scores using the FEAST trial data and to consider the impact of 

clinical measures that involve tests or additional equipment that may not always be available 

in African hospitals.  

 

2.2 Overview of prognostic research 
 

Prognosis in medicine is the term used when predicting the course of an illness, the outcome 

of an illness or predicting the health of individuals during a certain period of time.  

Prognostic factors are the variables or characteristics that inform the prognosis that clinicians 

make regarding their patient’s health and are also used to estimate the patient’s risk of a 

particular outcome (whether that is recovery from a disease or recurrence of the disease or 

death). But rarely is one prognostic factor used in isolation to make predictions, as given the 

many factors that impact health and disease progression, it is likely to provide an inadequate 

estimate. Thus possible prognostic factors need to be evaluated in the presence of each other 

and so studies examining prognostic factors should be of multivariable approach and design. 

Combinations of prognostic factors can then be used to estimate outcome probabilities.  

Tools to estimate outcome probabilities are commonly called prognostic models, prediction 

models, prediction rules or risk scores [49]. Although prognostic models evaluate population 

level risk (and often group patients into high or low risk strata) and predictive models estimate 
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individual risk (a given patient’s probability of the event of interest) the literature uses these 

terms interchangeably to refer to both levels of risk. In this thesis I plan to, generally, use the 

term prognostic to cover all models. The aim of a good prognostic model and score is for the 

model to rarely fail to predict an event that will occur and also rarely predict an event when it 

will not occur [50]. This will lead to clinicians feeling confident in the score, rather than feeling 

that they would be able to make the same or a better prediction using their experience or 

knowledge only, and will lead to the score being used in clinical practice. In doing this the 

model is also successfully stratifying patients into high and low risk groups to inform decisions, 

and is able to give a summary of the type of patient being admitted to that particular hospital.  

Prognostic factors or models can be used to: enable a balance of high and low risk patients 

enrolling into each arm in a clinical trial; enable economic analyses to take into account the 

risk level of patients in a study, or enable comparison of the performance of different hospitals 

to each other adjusting for their patient mix. One example of this is the Clinical Risk Index for 

Babies that was developed to compare neonatal intensive units in the UK [51]; another 

example are risk scores such as APACHE III [52] which enables calculation of expected hospital 

death rates to compare to actual death rates (the standardised mortality ratio) [53]. Predictive 

factors can also be used in sampling methods to estimate new disease within the population, 

for example HIV incidence. 

Prognostic models are also used for patient care and determining treatment levels, to help 

with triage in emergency hospital departments (for example, there are a variety of scores to 

help assess prognosis in trauma cases [54]), to help inform end-of-life decisions or clinical 

decisions and to aid communication with carers and patients about prognosis or treatment 

[55]. For example, the APACHE III score mentioned above enables calculation of the 

standardised mortality ratio to compare hospitals by stratifying patients at admission, but is 

also used within a predictive equation to provide risk estimates for mortality for individual 

patients. Another example is the quick Sequential Organ Failure Assessment (qSOFA) score in 

adults, developed from the SOFA score to identify patients with suspected infection and who 

are at risk of sepsis [56]. The qSOFA can be used for risk stratification as patients with qSOFA 

≥2 have a 3 to 14 fold higher mortality than those with <2 and is easy to calculate at the 

bedside (as it uses only hypotension (≤100mmHg), tachypnea (≥22/min) and altered 

mentation). [56] 

A good prognostic score will have a clear aim that is described in the original published work 

and whenever used subsequently in validation studies. This will enable clinicians and 
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researchers to use and validate the score in the appropriate manner taking the aims and 

objectives of developing the score into account [57].  

 

2.2.1 Prognostic models 

 

2.2.1.1 Developing the model  

 

To develop a prognostic model the most unbiased data is likely to come from a well-designed 

prospective cohort study [58], as data needs to be collected and patients need to be managed 

in way that is representative and generalizable, and for defined information on predictors and 

outcomes to be collected. Other observational studies such as case-control or cross-sectional 

studies can be used to investigate prognostic factors but they are weaker and can be more 

prone to bias than a cohort study, and retrospective cohort studies rely on previously collected 

data and so may not have measured all necessary factors or these may not have been 

recorded in the same way over time.  

A randomised controlled trial is a good alternative study design to evaluate prognostic factors 

as the patients should have had the same treatment/management experience in all aspects 

apart from the intervention treatment, whereas for cohort studies, even if they had the same 

treatment available, the management may be different across different groups. If the 

randomised intervention has been ineffective then the randomised groups can be combined; 

otherwise the randomised groups can still be combined but the effect of the intervention will 

need to be included as a separate predictor in the multivariable model and care must be taken 

to check for possible interactions between randomised treatment and prognostic factors. One 

disadvantage of using clinical trial data to develop a prognostic model is that for some trials 

the eligibility criteria to the trial may have been very strict which could reduce the 

generalisability of the model. Another disadvantage is that in a clinical trial, often the clinical 

management is also stipulated in the protocol as well as the intervention and so may be 

different to that which the patient may have received in general clinical care. Although this 

may be the same for both arms it may be different to clinical practice outside of the trial, 

which may limit generalisability.  

2.2.1.2 Building the model 
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Multivariable analysis is the preferred method to evaluate prognostic factors to adjust for 

confounding bias. Factors should not be considered in isolation, although studies are published 

that still consider single rather than multiple predictors [59]. Choosing candidate predictors 

that are clinically relevant and easily measured in the situation under question is the first step 

in building a prognostic model, and this is then followed by formally selecting the variables to 

include in the model. This can be done with stepwise selection (either forwards or backwards 

elimination) with regression models or other methods such as artificial neural networks [60, 

61] or Classification and regression tree modelling (CART) [62].  

Artificial neural networks are used rarely due to clinicians wanting and needing to understand 

the model structure to be able to make sense of the predictions [50, 63]. Further, in a 

comparison with logistic regression for a heart procedure outcome, artificial neural networks 

did not perform any better than traditional modelling techniques [64, 65]. Artificial neural 

networks also have the disadvantage of needing complete datasets to analyse, i.e they cannot 

be extended to include incomplete observations [66]. Classification and regression tree 

modelling is a technique which repeatedly considers what pairwise split in any potential 

variable best explains variation in the outcome. It aims to create meaningful prognostic 

subgroups, and has been used successfully in some applications [67, 68]. Classification trees 

have the advantage of yielding a graphical display of results which is straightforward to 

understand and apply [69], but has the disadvantage of not being able to deal with many 

(particularly continuous) prognostic factors as too many nodes of the tree and thus subsets of 

the patients could be created.  

The most commonly used method to build the model is backwards elimination with a 

regression model, either a Cox proportional hazards model for time to the outcome, or logistic 

regression with clinically relevant binary outcomes such as death, occurrence or remission of 

disease within a clinically relevant timeframe, or the presence or absence of a tumour. This 

reduces the number of candidate predictors to those that can form a model that best predicts 

the desired outcome. There are different options for the backwards elimination stepwise 

process including optimising the Akaike information criterion (AIC) [70], using p-values from 

Wald tests, or using the Bayesian information criterion (BIC) [71]. Prior to the model building, 

formal data reduction techniques can also be used to reduce the number of candidate 

variables to consider, including principal components, variable clustering, and deriving clinical 

summary indices. After the model has been built, then any selection bias that has arisen with 

weak predictors can be identified with shrinkage, or with bootstrap resampling and cross-

validation [72].  
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The main choices that researchers make in building a prognostic model are summarised in the 

decision flow diagram in Figure 2.2.1 below.  

Figure 2.2.1: Decision flow diagram for prognostic model building. 
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2.2.1.3 Validating the model  

 

Once a prognostic model has been built then it needs to be validated. This validation 

preferably should be done on other data, known as external validation, but can also be done 

on a different part of the same dataset (internal validation or cross validation). Internal 

validation is a helpful process but can be over-optimistic as the two datasets (development 

and validation) are very similar and there is no information about the performance of the 

model outside the setting where it was created. External validation quantifies the performance 

of the model on a new set of patients, enabling researchers to evaluate the accuracy and 

generalisability of the model as set out in Justice A et al [55]. The main components of 

accuracy are calibration and discrimination. Calibration is looking at the extent of bias 

(predicted vs actual mortality (or event of interest)) and discrimination is measuring the 

model’s ability to separate patients with different responses [72].  

 

The most frequently used statistic to measure calibration is the Hosmer-Lemeshow test which 

compares the observed number of events with the number of events predicted from the 

model within categories on the basis of predicted risk [73, 74]. Discrimination for binary 

outcomes (used by the majority of prognostic models) is measured with the c-statistic or the 

equivalent ‘area under the receiver operating curve (AUROC)’. The c-statistic is the proportion 

of all pairs of patients, one with the outcome and one without, where the patient with the 

outcome has the higher predicted probability of the outcome. The AUROC is the area under 

the curve produced by plotting the sensitivity against (1-specificity) when the linear predictor 

is dichotomised at many cut-offs to categorise high or low risk. The c-index as defined by 

Harrell et al [72] is also used for measuring discrimination (and is equivalent to the c-statistic 

for binary outcomes) but extends to survival models [75]. The generalisability of a model is 

looking at its reproducibility (whether the model is accurate in a similar set of patients) and 

transportability (whether the model is accurate in a different but related population (or where 

methods of data collection are different)). Internal validation methods cannot substitute for 

external validation of a model [76], and external validation of a prognostic model gives a much 

higher level of evidence and is thus a necessary step in moving from a research model to a 

useful tool for clinicians [77].  
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2.3 Prognostic factors for mortality in paediatric intensive care  

2.3.1 Literature review 

 

There were 1067 articles that were returned from a literature search of MEDLINE in February 

2012 with a search term made up of “Child” or “Infant” or “Pedatrics/Paedatrics” in MeSH 

terms, and “death” or “mortality” in MeSH terms and “prognostic” or “predictor” in all fields 

within English language journals, excluding all those related to cancer (via the search term 

“neoplasm” in all fields). The search was designed to highlight the prognostic factors for 

mortality in children especially those in intensive care or critically ill with non-cancerous 

diseases. The search brought up a variety of literature including: literature on mortality 

following organ donation, transfusion, surgery, or trauma; literature on pregnancy outcomes 

and neonates; and literature on social behaviour and economics along with other topics. From 

this wide variety of topics, journal articles were retained on prognostic factors for mortality 

where children have not had trauma, surgery, or chronic illness, on modelling prognostic 

factors for mortality and also severity of illness, and on scoring systems, predictive risk scores 

and risk stratification in paediatrics. Literature was rejected from their title or abstract for the 

reasons in Table 2.3.1.  
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Table 2.3.1: Reasons for rejection of papers that appeared in first MEDLINE search. 

Reason for rejection  Number of papers (%) 

Organ disorders/conditions 

(including heart disease, kidney and liver 

disease, renal failure, heart failure) 

167 (17%) 

Fetal, neonatal or perinatal studies 128 (13%) 

Surgery procedures 102 (10%) 

Pregnancy outcome 98 (10%) 

Transplant or transfusion medicine 92 (9%) 

Trauma or Injury 

(including burns, poisoning, blunt trauma, 

broken bones, head injuries) 

84 (8%) 

Chronic diseases and cancer/stroke 

(including HIV, epilepsy, cystic fibrosis, 

stroke, cerebral palsy, diabetes and cancer) 

56 (6%) 

High Income setting 63 (6%) 

Congenital disorders 

(spina bifada, cleft palate, congenital 

abnormalities) 

36 (4%) 

Environmental studies 38 (4%) 

Adult studies 24 (2%) 

Other types of studies 

(including animal studies, case reviews, trial 

protocols, forensics, genetics) 

60 (6%) 

Other* 61 (6%) 

* including: non-mortality outcome, biomarkers, immunisation, ocular lesions, skin disease, thymus size, diphtheria, 

mitochondrial disease, tissue infection.  

The search was then modified to include the search term ‘pediatric risk of mortality’ or ‘PRISM’ 

and ‘pediatric index of mortality’ or ‘PIM’ as these are two widely used and known paediatric 

risk scores and due to some papers on PRISM or PIM not including child mortality in their 

MeSH terms they had not come up in the previous search. This brought up an additional 249 

papers to the original search. Their titles were reviewed and all those with PIM or PRISM (or 

the full name of either score) in their titles were kept (n=30) and all others rejected. Thus 

evaluations of these risk scores were included in this second search. These two searches are 

summarised in Figure 2.3.1.  
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Figure 2.3.1: Flow diagram describing literature search 

 

There were 58 papers from the initial literature search that were kept for full review. They 

came under four main headings: paediatric risk of mortality scores and their evaluation (any 

country) (n=9); general methods (path analysis, neural networks, building prognostic scores) 

(n=12); risk factors for mortality in low-income countries especially Africa (n=21); risk factors of 

particular interest (i.e base excess, lactate) (n=5); and pneumonia, sepsis or meningococcal 

disease specific scores (n=11).  

To enable a more detailed comparison with a clinical risk score developed using the FEAST 

data, I focused on papers that described predictors of mortality (using multivariable analyses) 

for critically ill children in low-income countries. Eighty papers were not included in the 

detailed comparison and the reasons for their exclusion are detailed below (Table 2.3.2). 

However, they were thoroughly reviewed to examine the application of their methods and a 

summary of that review is presented in Section 2.3.2.  
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Table 2.3.2: Reasons for non-inclusion in detailed comparison 

Reason for non-inclusion Number of papers (%) 

Disease/Condition specific score (taking into 

account aetiology of disease/condition)  

23 (29%) 

Evaluation of pre-existing risk score  21 (26%) 

No multivariable analysis for model building 12 (15%) 

Methodology only  8 (10%) 

Non-mortality outcome  4 (5%) 

Other 12 (15%) 

Other reasons are: systematic review (1), commentary (2), risk factors not measured at baseline (3), survey (1), 

subjective risk predictions (1), full text unobtainable (2), risk factors from mother not child (1)  

 

2.3.2 Review of other literature 

 

The literature that came up in the search but which was not included in the detailed 

comparison was reviewed and the summary of the review follows the categories presented in 

Table 2.3.2.  

Disease specific score  

Papers reviewed in this category included multivariable analyses of predictors of mortality but 

were specific to the disease or condition under examination, in that they included factors that 

were only relevant to that disease/condition. Several papers covered meningococcal septic 

shock or septicaemia and there are several scores for use in this area, including the Glasgow 

Meningococcal Septicaemia Prognostic Score [78], and the score from the Barcelona 

Meningococcal Disease Surveillance Group [79]. Barquet et al created their score using data 

from Spain by using logistic regression and selecting variables that were independently 

predictive to estimate a linear predictor and then calculated integer points based on the 

coefficients from the linear predictor which were summed for the score. The integer points 

were estimated from the linear predictor by using the smallest coefficient to divide all other 

coefficients by that number and rounding to the nearest integer. Scores for primary 

myelofibrosis were developed with stepwise Cox regression models [80].  
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Evaluation of pre-existing risk scores  

The majority of the papers that were not included due to the analyses presented only 

evaluating a pre-existing risk score were examining and comparing the Pediatric Risk of 

Mortality (PRISM) scores and Pediatric Index of Mortality (PIM) scores. A summary of the 

findings from these papers is found in the overview given in Section 2.4.2. The other papers in 

this category not evaluating PRISM or PIM were examining the Acute Physiology and Chronic 

Health Evaluation (APACHE) score [81] or the Rapid Acute Physiology Score [82].  

No multivariable analysis for model building process 

The papers that came up in the literature search without multivariable analyses covered a 

range of disease areas and topics including commentaries on ethics [83] and case studies. The 

disease areas included meningitis, anaemia, hyperglycaemia, and cardiac surgery, and most 

papers considered individual predictors such as serum albumin, serum lactate, bacterial 

pathogens, or organ failure. These papers also identified possible risk factors using other 

methods such as ranking variables by their univariable area under the ROC curves or creating 

indices by counting the number of risk factors present [84]. One paper considered clinical 

factors outside of the hospital and examined the discriminative ability of nutritional and socio-

demographic factors individually for mortality in rural Bangladesh [85].  

Methodology only  

The methodology found during the literature review varied with its application. Two papers 

modelled the whole birth weight distribution of neonates especially taking into consideration 

very low birth weight infants, and extremely low birth weight infants who lie at the edge of the 

distribution [86, 87]. Firstly, the distribution of birth weight was modelled with a 2 or 4 

component normal mixture model which was chosen over other models such as the 

contaminated normal model. This was then combined with logistic regression for mortality and 

the odds of mortality at fixed values of the birth weight distribution were estimated. In a 

similar population a graphical tool was developed from a logistic regression model to help 

predict survival from four key variables available at birth [88]. The prematurity risk evaluation 

measure (PREM) was graphically presented using isosurv graphs (gestation-and-sex adjusted 

birth weight centiles plotted against gestation, with curves joining up points of equal survival 

probability, calculated by solving the logistic regression equation linking the predicted odds of 

survival to gestation (and other factors), over a series of z-score values) to predict survival on 

the basis of gestation time in days and birth weight or base deficit in the umbilical cord.  
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Confidence intervals as estimates of clinical certainty (i.e from the clinician) were compared to 

confidence intervals around estimates of survival made with risk scores, in particular the 

PRISM III score to look at difference in interpretation in one paper [89]. Methods to combine 

information from predictions from clinicians and predictions from risk scores were also 

evaluated.  

Ruttimann et al extended the PRISM score to predict daily the probability of a patient dying in 

the next 24 hours [90]. Logistic regression was used to estimate the probability of dying the 

next day, from a weighted sum of all previous PRISM scores. A stepwise process found the 

admission score and most recent score were sufficient in the model. The linear predictor found 

was then named the Dynamic Objective Risk Assessment (DORA) and time spent with this 

value above a certain point could also be evaluated to predict mortality [91].  

Most risk scores were developed for a binary outcome – most focused on mortality, predicting 

whether the patient was dead or alive at some pre-specified time point. However, it can be 

very useful to be able to predict more outcomes than two and, for example, include 

information on neurological status. Ruttimann et al [92] used stepwise polychotomous logistic 

regression analysis for three outcomes – functional, compromised or dead. The performance 

was then measured in a 3x3 classification table as there were no general measures of 

predictive performance for more than two outcomes. A lot of clinical information was used for 

the predictor including diagnostic factors from four different systems and six aetiologies, 

operative status, and the PRISM score as baseline function status. The authors felt it was 

feasible and useful to have a score for more than two outcomes.  

Multivariable logistic regression models built with stepwise procedures as above are the most 

commonly used method to develop risk scores but artificial neural networks (ANN) have been 

used to predict mortality in a neonatal intensive care unit. The advantage is they do not rely on 

pre-defined models but the disadvantage is that they are unable to work with incomplete data 

[66]. By using a single imputation of ‘normal’ (categorised as zero) in place of missing values 

for binary variables and using the mean of the distribution for missing values in continuous 

variables, the ANN method was able to classify neonates with reasonable performance. 

Although the paper describing the application of ANN methods to neonates did not mention 

interactions between predictors nor non-linearity of predictors, interactions are examined by 

ANN implicitly. But non-linearity cannot be examined using this method unless specific non-

linear terms are explicitly provided as predictors to the ANN.  

In the reviewed papers multivariable logistic regression models were rarely tested for non-

linearity and interactions in the sets of predictors chosen.  
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Non-mortality outcome  

Although the MEDLINE search terms included mortality or death, some papers examining 

other outcomes were identified. Two of these papers investigated whether the PRISM score 

could predict other outcomes: one considered nosocomial infections, where they found that 

the score on admission may be useful to identify those at increased risk of infection [93]; and 

the other examined resource utilization as an outcome [94] and found PRISM could stratify 

patients for resource usage but underestimated mortality in paediatric trauma. One paper 

considered predictors for pneumonia in inpatient and outpatient children in Brazil [95], and 

the other looked at children in cardiac arrest as inpatients in Taiwan to predict primary and 

secondary outcomes following Cardio-pulmonary Resuscitation (CPR), including survival to 

hospital discharge, return of circulation, neurological status at discharge and post discharge 

survival up to 1 year [96].  

Other 

Several articles described the use of risk scores in clinical practice. There is particular interest 

in comparing PRISM and PIM and also considering under what conditions they are best used 

[97]. For example, Garcia et al concluded that PIM2 is an easy and efficient prognostic tool for 

low-income countries [98] compared to PRISM III, as PIM2 used fewer variables, was freely 

available, and only used information at admission compared to using all collected data within a 

24 hour window. There were two meta-analyses looking at predictors of mortality, one for 

mortality in untreated HIV-infected children [99] and the other using clinical trial data 

evaluating neonatal vitamin A supplementation to reduce mortality and morbidity (which also 

reported predictors of mortality) [100]. Other papers considered risk factors that were not 

measured at admission to the hospital, such as whether the child lives in a female-headed 

household [101], or used updated measures of organ function and treatment measures once 

admitted [102].  
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2.3.3 Detailed comparison of selected papers 

 

There were 11 papers that described predictors of mortality for critically ill children in low-

income settings, with 7 based on the African subcontinent, 3 in south or central America, and 1 

in Papua New Guinea. Three of these papers were identified only through references and had 

not come up in the MEDLINE search (as outlined in section 2.3.1 above) as they did not include 

the terms ‘death’ or ‘mortality’ in their keywords or MeSH terms ([103, 104]) and one did not 

include ‘prognosis’([105]). The MeSH terms that they did include are listed in Table 2.3.3 

below. Newton et al included ‘predictive value of test’ which may link to mortality but it is not 

clear, and von Seidlein included severity of illness to reflect the mortality risk score that was 

developed.  

 Table 2.3.3: Table of MeSH terms for three papers identified through references rather than 

the search strategy.  

MeSH terms for papers identified through references 

Newton et al [104] Maitland et al [105] von Seidlein et al [103]  

Acid-Base 

Equilibrium/physiology 

Acidosis/drug therapy Africa 

Acidosis/metabolism Acidosis/etiology 

Antimalarials/administrati

on & dosage  

Adolescent Blood Transfusion/methods 

Artemisinins/administrati

on & dosage  

Child Child Child 

Child, Preschool Child, Preschool Child, Preschool 

Female Female Female 

Ghana Fluid Therapy/methods Humans 

Humans Humans Infant 

Infant Hypovolemia/complications Injections, Intravenous 

Kenya Hypovolemia/drug therapy 

Malaria, 

Falciparum/diagnosis 

Lactic Acid/blood Infant 

Malaria, Falciparum/drug 

therapy 

Linear Models Infant, Newborn 

Malaria, 

Falciparum/mortality 

Malaria, Kenya/epidemiology Malaria, 
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Falciparum/blood Falciparum/pathology 

Malaria, 

Falciparum/diagnosis 

Malaria, 

Falciparum/complications 

Male 

Malaria, 

Falciparum/mortality 

Malaria, 

Falciparum/mortality 

Prognosis 

Malaria, 

Falciparum/physiopathology 

Male 

Quinine/administration & 

dosage 

Malawi Retrospective Studies Severity of Illness Index 

Male Survival Rate Treatment Outcome 

Predictive Value of Tests      

Prognosis     

Sensitivity and Specificity     

 

 

The 11 papers fully reviewed are listed in the table below. 

Table 2.3.4: Papers selected for detailed comparison 

First Author Title 
Year 

published 
Country 

Number of 

children in 

analyses 

Allen, S J [106] 
Severe malaria in children in Papua 

New Guinea 
1996 

Papua 

New 

Guinea 

489 

Berkley, J [47] 

Prognostic indicators of early and late 

death in children admitted to a district 

hospital in Kenya: cohort study 

2003 Kenya 8091 

de Leon, A 

[107] 

Simplified PRISM III score and 

outcome in the pediatric intensive 

care unit 

2005 Mexico 170 

Evans, J [62] 

Capillary refill time as an independent 

prognostic indicator in severe and 

complicated malaria. 

2006 Ghana 2446 
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Maitland, K 

[105] 

Severe P. falciparum malaria in 

Kenyan children: evidence for 

hypovolaemia 

2003 Kenya 515 

Marsh, K [108]  
Indicators of Life-threatening Malaria 

in African Children 
1995 Kenya 1844 

Newton, CR 

[104] 

The prognostic value of measures of 

acid/base balance in pediatric 

falciparum malaria, compared with 

other clinical and laboratory 

parameters 

2005 

Malawi, 

Ghana 

and Kenya 

14605 

Planche, T 

[109] 

A prospective comparison of malaria 

with other severe diseases in African 

children: prognosis and optimization 

of management 

2003 Ghana 1492 

Roine, I [110] 

Influence of admission findings on 

death and neurological outcome from 

childhood bacterial meningitis 

2008 
South 

America 
654 

von Seidlein, L 

[103] 

Predicting the Clinical Outcome of 

Severe Falciparum Malaria in African 

Children: Findings From a Large 

Randomized Trial 

2012 
8 African 

countries 
5426 

Werneck, G 

[111] 

Prognostic factors for death from 

visceral leishmaniasis in Teresina, 

Brazil 

2003 Brazil 90 
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Each of the above studies was reviewed in close detail and described below. They cover a large 

time span – from 1995 to 2013. The majority of populations that were studied were children 

with malaria, although the paper by Berkley et al has no restriction on disease, Roine et al 

focussed on those with bacterial meningitis, and Wernack et al on leishmaniasis. One of the 

studies - von Seidlein et al - is a secondary analysis of data collected for a clinical trial (the 

AQUAMAT trial (Artesunate vs Quinine in the treatment of severe falciparum malaria in African 

Children)). The other studies are either designed to focus on prognostic factors for mortality or 

are secondary analyses of data collected for large studies (such as Evans et al and Newton et al 

where the data was collected for the Severe Malaria in African Children (SMAC) research 

network). The prognostic factors measured in each study and what factors were found to be 

associated with mortality in multivariable analyses are summarised in Table 2.3.4 at the end of 

this section.  

 

Allen SJ et al, Severe Malaria in children in Papua New Guinea, Q J MED 1996 

489 children with severe falciparum malaria admitted to Madang Hospital in Papua New 

Guinea were included in the analysis for this paper. 22% also had severe anaemia, 16% were in 

a coma and malaria was hyperendemic in the area. The study was a cohort study restricted to 

children living in the province for >12 months at entry upon admission to hospital with malaria 

(based on WHO criteria of severe and complicated malaria) and were managed according to 

national guidelines. The criteria for WHO severe and complicated malaria are split into defining 

and supporting criteria and are: defining criteria - coma, severe malarial anaemia, pulmonary 

oedema, hypoglycaemia, circulatory collapse, renal failure, spontaneous bleeding, repeated 

convulsions, acidosis, haemoglobinurea; supporting criteria - impaired consciousness, jaundice, 

prostration, hyperpyrexia, hyperparasitaemia. Severe malarial anaemia was defined as 

haemoglobin <5g/dl and parasitaemia ≥ 10000/µl, level of consciousness was defined by the 

Blantyre Coma Score (BCS), with coma defined as BCS≤2, and shock was defined as a systolic 

blood pressure < 50 mmHg with cold clammy skin. The BCS is made up of three components – 

eye movement, motor response and verbal response; each is scored from 0-2 (or 0-1 for eye 

movement) with 0 being no response, and the components are summed to give the BCS [112]. 

There was no intensive care (thus no mechanical ventilation) or increased monitoring available 

for the children included in the study (children were reviewed twice a day and as required at 

other times). 

The paper looked at associations between different severe manifestations of malaria (for 

example the association between severe anaemia and cerebral malaria) with tabulations and 
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chi-squared tests. Predictors of death were analysed using a forward stepwise logistic 

regression model. The paper closely describes the manifestations and consequences of severe 

malaria including neurological effects and metabolic complications. Overall mortality was low 

with only 17/489 dying (3.5%; 95% Cl 1.9-5.1%). 16 died within the first 24 hours (12 in first 12 

hours, 4 in second 12 hours) and 1 at 5 days. All severe manifestations of malaria (cerebral 

malaria, acidosis, hyperlactataemia) were found in univariable analysis to be significantly 

associated with mortality apart from anaemia (it is unclear whether the univariable analyses 

are adjusted for age). Laboratory measures (apart from haemoglobin) were found to have non-

linear relationships with the odds of mortality and thus were log-transformed (using log base 

2) when included as continuous variables in modelling. High levels of lactate had the strongest 

association. The final model (with only 15 events, 2 events excluded due to missing data) 

contained lactate, bicarbonate, creatinine with odds ratios per 2-fold increase and 

haemoglobin as a linear function. Having adjusted for these variables, coma and glucose did 

not add further prognostic information and the authors indicated that acidosis was the 

strongest predictor of mortality. There was less heavy parasitaemias than observed in Kenyan 

settings (≥500,000 in 1.7% of children compared to 8.9% in Kenya) and the authors considered 

that the difference between settings could be an explanation for coma not being identified as 

a risk factor. However, low mortality rates have been shown in children in similar areas in the 

South West Pacific, where malaria is hyperendemic  [113]. Further, as only 489 children were 

included, the power to find independent associations in this study by Allen et al is low, and 

they also have a possible spurious finding within the multivariable model as higher 

haemoglobin was associated with mortality.  

Berkley J et al, Prognostic indicators of early and late death in children admitted to a district 

hospital in Kenya: cohort study, BMJ 2003 

Berkley et al considers not just predictors of inpatient mortality in children but predictors for 

immediate (<4 hours), early (4-48 hours) or late (after 48 hours) deaths in admitted children 

regardless of diagnosis. The study took place in a rural district hospital in Kilifi, Kenya and was a 

cohort study using an admissions database. They used data from 8091 children greater than 90 

days old admitted over a period of 2 years with 436 (5%) deaths to develop scores, and then 

data from 4082 children enrolled in a subsequent period for validation of the scores. Their aim 

was to develop a score to use in clinical practice, audit and research settings in sub-Saharan 

Africa. To select variables predictive for each type of death, the authors used positive and 

negative likelihood ratios (LR) as calculated in a diagnostic test study. A positive LR is defined 

as (sensitivity/(1-specificity)), a negative LR as ((1-sensitivity)/specificity). These ratios were 

then adjusted for potential confounding from other variables in an analysis following the 
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methods of Spiegelhalter and Knill Jones [114] which is based on decision support systems. 

Variables were removed that had an adjusted likelihood ratio of either ≥0.67 or ≤1.5 as these 

had the least independent predictive value. The score was then prospectively validated using 

area under receiver operating curve analyses. The univariable methods used in the paper are 

intuitive for clinicians and closely linked with sensitivity and specificity. These methods also 

have the advantage of being able to include variables in the score when their presence is 

beneficial (i.e when present they reduce the score total), but the method to adjust the 

predictors for other variables and to select variables is unusual and not as clear as other more 

frequently used methods such as regression.  

There were 60 immediate deaths, 193 early and 183 late deaths in the development dataset. 

General clinical predictors not specific for any aetiology of a particular disease were compared 

by calculating crude likelihood ratios (as described above) for each type of death. The 

predictors were length of history of illness, history of fever, history of diarrhoea, history of 

cough, history of seizures, jaundice, severe anaemia, wasting, kwashiorkor, temperature, 

raised respiratory rate, (subcostal) indrawing, deep breathing, and neurological status. The 

multivariable models that were built for each type of death were overlapping in terms of 

variables that they include but each model added or excluded a few different ones. Although 

this is of interest in comparing risk between different types of deaths, this could lead to 

confusion if the score was put into practice and it is less intuitive than one set of risk factors 

for mortality in general. A score was constructed by assigning points approximating to the 

natural logarithm of the adjusted likelihood ratio for each indicator. Validation of the scores 

created gave area under the ROC equal to 0.93 (95% CI 0.92-0.94) for immediate, 0.82 (0.80-

0.83) for early and 0.82 (0.81-0.84) for late deaths. These showed very good sensitivity and 

specificity for the scores but this might be expected as the validation data was from the same 

setting and from a period immediately after the development data.  

 

De Leon A et al, Simplified PRISM III score and outcome in the pediatric intensive care unit, 

Pediatric International 2005  

This small study enrolled 170 children with complete clinical or laboratory test data to a cohort 

within a Mexican paediatric intensive care unit. It is unclear how many were screened but not 

enrolled and the age range of the children was from 1 month to 16 years which is very wide 

encompassing infants in post-natal period through to early adulthood. The Pediatric Risk of 

Mortality (PRISM) score was calculated at the time of admission and within the first 8 hours. 

Multivariable logistic regression analysis was carried out using the backwards elimination 
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procedure by considering the 17 variables that contribute to the PRISM score as independent 

variables. The major admitting diagnoses were in the postoperative period from major surgery, 

septic shock and severe head trauma. There were 42 (25%) deaths but it is not clear in what 

time period they occurred and there are conflicting statements on length of hospital stay for 

those enrolled. There were also not enough deaths to reliably assess 17 covariates in a model. 

Only 4 of the 17 measured variables were found to be independently significant and they were 

abnormal pupillary reflexes, acidosis, blood urea nitrate (BUN) and white blood cell count. The 

number of children in the categories for acidosis or abnormal pupillary reflexes was not 

presented and the confidence interval for abnormal pupillary reflexes was very wide (OR 9.9 

(95% CI 3.5-28.4). This may be due to the small sample size and the number of variables 

considered in the model (n=17) but the authors still felt that the PRISM score in their setting 

could be reduced to just 4 measures. The authors did not present a model using the PRISM 

score on their data and instead they considered the specificity and sensitivity of certain cut-

offs of the PRISM score. A cut-off of 13 was found to have the best sensitivity (0.71) and 

specificity (0.64) - this is only just showing fair discriminatory performance and may not be 

high enough to be considered clinically useful, which could also be due to the small sample 

size.  

 

Evans J et al, Capillary refill time as an independent prognostic indicator in severe and 

complicated malaria. Journal of Pediatrics 2006 

This was a prospective study that enrolled 2466 children with severe and complicated malaria 

(defined as being positive for malaria parasitaemia and with haemoglobin <5g/dl, or lactate 

>5mmol/L or BCS<3) admitted to a tertiary referral hospital in Ghana as part of a study looking 

at genetic factors influencing malaria. Logistic regression was used to build multivariable 

models using stepwise process (it is not clear whether this was forwards or backwards 

elimination) with a cut-off of p=0.2. Classification and regression tree (CART) modelling was 

independently used to identify the most prognostic factors for subgroups. Then the sensitivity 

and specificity of the independent prognostic factors the model identified, alone and in 

combination, were calculated from the same data. There were 172 (7%) deaths but it is 

unclear as to whether these were inpatient deaths only. The multivariable analysis identified 

coma, prolonged capillary refill time (CRT) (>2s), respiratory distress and acidosis to be 

independently associated with mortality and the decision tree used all these variables apart 

from acidosis. Using all four signs they were able to predict 90.7% of the deaths in the cohort 

(82.5% without using acidosis) and prolonged capillary refill time had the highest specificity 
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but low sensitivity. The authors concluded that prolonged CRT may be an indicator of a distinct 

malaria complication and discussed whether it reflected the presence of hypovolemia and 

suggested that it should be added to criteria defining severe and complicated malaria. The 

cohort of children was pre-selected to already have coma, severe anaemia or 

hyperlactataemia and so it is only in addition to these risk factors that prolonged CRT can be 

included. Also, the decision tree was only evaluated on the data used to create the model.  

 

Maitland K et al, Severe P. falciparum malaria in Kenyan children: evidence for 

hypovolaemia, QJM 2003  

This is a retrospective review of the admission records of children with malaria admitted to a 

paediatric high-dependency unit of a hospital in Kilifi, Kenya. This is the same hospital that 

Berkley et al used for their analyses and is a subset of those patients. The analysis included 515 

children with malaria (slide positive test, and at least one of the following: coma or prostration 

(reported as a single entity as cerebral malaria ie either prostration or BCS ≤2), seizures, 

respiratory distress, circulatory collapse, anaemia, or jaundice). The overall mortality rate was 

12.8% (66/515). Laboratory variables were categorised from clinical factors defined by 

Paedatric Advanced Life Support (PALS) guidelines. Logistic regression was used for both 

univariable and multivariable models. In addition to the models, a clinical index for shock was 

derived from guidelines and other information and was evaluated using the ROC curve. The 

score created gave each of the following one point each (apart from hypotension (systolic 

blood pressure <80 mmHg for children ≥1 year and systolic blood pressure <70 mmHg for 

children <1 year) for which two points was given): hypoxia (<90%), tachypnoea, delayed or 

prolonged capillary refilling time ≥3 seconds), hypothermia (<36), acidosis (and/or deep 

breathing), elevated creatinine or dehydration. The selection process for the multivariable 

model is not outlined in the paper but the variables found to be significantly associated with a 

fatal outcome in the model were oxygen saturation <90%, deep breathing, raised creatinine 

(>80 μmol/l) and hypoglycaemia (<2.5 mmol/l). There was some overlap between the 

multivariable model and the shock score, and the mortality rate increased as the shock score 

increased. However, the shock score focused on hypotension (present in 66/507 (13%) 

children, with 26% mortality) which was not found to be a risk factor after adjusting for other 

factors in the multivariable analysis. Also, all the variables included in the model were 

dichotomised at clinically appropriate cut-points and none were assessed continuously. Thus, 

information or associations could have been lost in the process. The score was also 

dichotomised at less than vs greater than or equal to 2 to assess sensitivity and specificity. The 
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study focused on assessing the impact of volume resuscitation on outcomes as the authors felt 

that they had evidence that hypovolaemia is likely to be a major factor in the aetiology of 

acidosis. This meant they did not extend the multivariable model or clinical shock score any 

further.  

 

Marsh K et al, Indicators of Life-threatening Malaria in African Children, NEJM 1995 

1866 children whose primary diagnosis was malaria (defined as peripheral parasitaemia and no 

other detectable clause for clinical presentation) were enrolled into a study based at Kilifi 

district hospital, Kenya. The enrolled children had a median age of 26 months. 86/1866 

children died, but deaths during the admission process (n=18) and deaths not from malaria 

(n=4) were excluded from all analyses giving an overall case fatality rate of 3.5% (64/1844). 

The children were assessed using the WHO criteria for severe malaria (see definition above in 

the detailed review of Allen et al, QJ Med 1996), but replacing pulmonary oedema with a 

definition of respiratory distress and severe respiratory distress. The authors used reasonable 

clinical cut-offs for categorising variables but did not evaluate them continuously, and used 

backwards stepwise logistic regression starting with all variables that had p<0.1 in univariable 

analyses to find a ‘minimal-effects’ model. The variables entered into the multivariable-model 

building process were coma, anaemia, respiratory distress, convulsions, impaired 

consciousness (defined as a depressed level of consciousness but can localise a painful 

stimulus), jaundice, hyperpyrexia, hyperparasitaemia and prostration. Major predictors were 

found to be impaired consciousness, jaundice and respiratory distress and hypoglycaemia 

(though the model was built on a reduced number of observations (n=673) for this last 

variable). They compared these predictors and any combination of them to the WHO criteria, 

and a prognostic index created from the four major risk factors found in their model 

performed better, as the index predicted 92% of observed deaths compared to 80% of 

observed deaths predicted by the WHO criteria. The paper reported other analyses including 

looking at, in turn, malaria with impaired consciousness, malaria with anaemia, and malaria 

with respiratory distress but these were all very descriptive with no regression models built.  

Newton C et al, The Prognostic Value of Measures of Acid/Base Balance in Pediatric 

Falciparum Malaria, Compared with Other Clinical and Laboratory Parameters, CID 2005  

This study enrolled 14,605 children at 3 sites across Africa (Kilifi in Kenya, Blantyre in Malawi, 

Kumasi in Ghana) through the Severe Malaria in African Children network over a period of 2 

years. The sites each contributed around 5000 children and some differences in severity of 

disease and mortality were found between sites. The study used the point at which sensitivity 
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and specificity curves crossed to find optimal cut-offs for lactate and base excess and to 

examine the association between these variables and mortality. A multivariable logistic 

regression model was built for each site, first focussing on clinical and demographic variables 

initially and then adding affordable laboratory parameters on 10,559 children with complete 

information. Base excess and lactate were added at the end to assess their value in addition to 

variables already in the model. Model selection was based on the all-possible subsets 

regression procedure to maximise the adjusted-R2. This is where all possible models with one, 

two, three or more predictors (given the set of candidate predictors) are fitted and the best 

fitting model according to the adjusted-R2 is chosen. The variables that remained in the final 

model were weight-for-age score (whether WHO or CDC standards used to calculate this are 

not reported), deep breathing, BCS ≤2, unable to sit, hypoglycaemia, lactate and base excess 

(within sites other variables were included: vomiting in Blantyre, irregular breathing and 

seizures in Kumasi, and irregular breathing, seizures and indrawing in Kilifi but addition to 

model did not increase c-index by >0.01). The authors concluded that base excess and lactate 

did not appreciably add to the predictive ability of a model based on clinical features and a 

blood glucose test, but with the caveat that there were some issues with the base excess 

samples not being tested immediately and becoming alkalotic (due to evaporation of CO2). This 

is a well-powered study even though they built separate models for each site, as each model 

included between 60 to 183 deaths. However, the c-index is not very sensitive to additions of 

new variables and so is not the best method to compare predictive ability between models.  

Planche T et al, A prospective comparison of malaria with other severe diseases in African 

children: prognosis and optimization of management, CID 2003  

Planche et al evaluated prognostic factors in severely ill children admitted to a teaching 

hospital in Ghana (this is the same hospital as Evans J et al used for their study) comparing 

factors found in those with and those without severe malaria. They enrolled 1654 children into 

the cohort study and a total of 1492 children had evaluable outcomes. The authors used 

logistic regression and area under the ROC (AUROC) as summary measure of the predictive 

value of each variable individually. The multivariable model was built using a forward selection 

procedure using the AUROC by adding variables to the logistic model when there was >5% 

increase to the AUROC based on the linear predictor. Separate models were built for malaria 

positive and malaria negative children. Overall case-fatality rate was 8.5% (127/1492) with 6% 

malaria vs 11.3% without malaria (diagnoses included meningitis, pneumonia and sickle cell 

disease). In those with malaria the predictive variables were low BCS, hyperlactatemia, and 

low Body Mass Index (BMI); in those without malaria it was low BCS, hyperlactatemia, 

respiratory distress, and low haematocrit (severe anaemia). The malaria model had an overall 
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AUROC of 0.84 which would be expected as it is calculated on the data the model was built 

with. The model had BCS and BMI fitted as linear and lactate as a dichotomous variable with 

the cut-off of ≥5 or <5 based on the clinical definition of hyperlactatemia. In the non-malaria 

model haematocrit was fitted as a linear function. The authors discussed their models and felt 

that respiratory distress may have identified those most at risk in the non-malaria group, as 

children with pneumonia were included in this group. This paper contrasted with others as it 

concluded that only two predictive factors were needed for those with severe malaria 

(hyperlactatemia and coma) whereas other studies often found that respiratory distress was 

also very predictive of mortality in children with malaria. But they had another result that was 

not explained further, namely higher BMI was independently associated with increased 

mortality which may be confounded by a different clinical sign. Overall, however, this was a 

well powered study that carefully examined risk factors in both malaria and non-malaria 

children.  

Roine I et al, Influence of Admission Findings on Death and Neurological Outcome from 

Childhood Bacterial Meningitis, CID 2008  

This was a retrospective review of 654 children with bacterial meningitis presenting to hospital 

across South America, with a case fatality rate of 13% (86/654). The study investigated overall 

mortality as well as other outcomes, defined as mortality or severe neurological sequelae, and 

mortality or any neurological sequelae, and was focusing on simple criteria which would be 

easy to ascertain in low-income countries. The authors did not report what percentage of 

children admitted to the hospitals had bacterial meningitis and all had CSF measured, which is 

often rare in low-income settings. They used a multivariable logistic regression and built a 

model for mortality keeping independent variables where p≤0.05 but with a reduced number 

of observations (n=332), as only complete case analyses were used and some variables had 

missing data. The method for building the model was not clear and it may be that they 

included all variables and reported only those for which p≤0.05. The model found that 

conscious level, capillary refill time >3s or a CSF protein concentration >250 g/dL increased the 

risk of death independently of each other. Conscious level was the variable with prognostic 

importance for all three outcomes and it was not the aetiology of the disease that was most 

predictive.  

von Seidlein L et al, Predicting the Clinical Outcome of Severe Falciparum Malaria in African 

Children: Findings from a Large Randomised Trial, CID 2012 

This study analysed data from a randomised controlled trial comparing artesunate with 

quinine for the treatment of severe falciparum malaria (AQUAMAT) in 9 African countries (The 
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Gambia, Mozambique, Nigeria, Rwanda, Kenya, Democratic Republic of the Congo (DRC), 

Tanzania, Ghana and Uganda). They recruited 5426 children in the trial with the final model 

fitted on 4089 children (402 (10%) deaths). It is unclear exactly why it is such a reduced 

number although part of the missing data stems from continuous variables measured using an 

i-STAT cartridge, as witnessed in the FEAST trial. The authors evaluated 20 different predictors 

with multivariable logistic regression (keeping those variables with p<0.01 when all variables 

were included in the model), adjusted for randomisation arm and stratified by site, and also 

considered fractional polynomials for continuous variables (glucose, log parasitaemia, and 

respiratory rate). ROC curves were used to evaluate the predictive ability of the final model 

within the same dataset. They concluded that the predictors that remain in the model (and are 

thus independently associated with increased risk of death) were acidosis defined with base 

excess, coma and/or convulsions (cerebral manifestations of malaria), an elevated Blood Urea 

Nitrogen (BUN) or signs of chronic illness on admission (any one of the following: 

lymphadenopathy, malnutrition, candidiasis, severe visible wasting and desquamation). At 

clinically defined cut-offs each predictor individually had high specificity but lower sensitivity 

(from 28-76%). The authors also created a score where the presence of each of the following 

variables contributed one point each to the score: base excess <-8mmol/L, BUN≥20mg/dL, 

combined coma score<3, chronic illness and convulsions. The score was not validated within 

this study, and the rationale behind allocating one point per variable to create the score was 

not clear.  

Werneck G et al, Prognostic factors for death from visceral leishmaniasis in Teresina, Brazil, 

Infection 2003  

This was a very small case control study set in a hospital in Brazil in patients with confirmed 

visceral leishmaniasis. Cases were those that died during treatment (n=12) and controls were a 

random sample of those alive (n=78). The authors used logistic regression in univariable 

analyses to identify important factors (although it is unclear what significance level was used 

to define importance), and then went on to use backwards elimination to select variables for 

the multivariable model with a cut-off of p<0.1 which may not be appropriate given the 

number of events included. They then built a prognostic score by dividing the regression 

coefficients by the lowest one and rounded to the nearest integer. The predictive performance 

of the model was then evaluated using AUROC curves but on the same data that the model 

was developed with. The multivariable analysis identified four variables independently 

predicting death: diarrhoea, jaundice, fever and haematocrit<20%. The odds ratios calculated 

by the multivariable model had very low precision (and very wide confidence intervals) due to 

the very small number of cases in each group and in general the very low power of this study 
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indicated that the findings may be due to chance. The prognostic score described in the results 

assigned 1 for each variable, giving a score from 0 – 4 as coefficients are all between 2.06-2.76. 

The authors acknowledged the very limited statistical power of their study but felt it may be 

useful to generate suggestions for interventions. There has been no validation of the score in 

data other than that it was generated with.  

  

Table 2.3.5 below summarises which prognostic factors were measured within each study and 

also which were found to be significantly associated with mortality in multivariable analyses. 

The most common factor that was found to provide independent information, after 

adjustment for other factors, was conscious level, with those in a coma at highest risk of 

mortality and this held for the majority of studies that included it in models (7/10 studies). In 

the Maitland et al QJM 2003 paper impaired consciousness or cerebral malaria was defined as 

either prostration or Blantyre Coma Scale ≤2, which was present in 78% of the study 

population with overall mortality 12% which may give an explanation as to why coma was not 

identified by the study as an independent risk factor [115]. Other factors prognostic for 

mortality that were found frequently (in 3 or 4 studies) are raised temperature, raised 

respiratory rate or respiratory distress, jaundice, low haemoglobin, and deep breathing. 

Factors that were not measured in many studies (3 or less), but when measured were often 

found to have a strong association with mortality in multivariable analyses, were raised 

creatinine, prolonged capillary refill time and low weight-for-age z-score. As expected in these 

settings, most of the prognostic factors were measured clinically at the bedside with few 

laboratory values reported or included in models.  
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Table 2.3.5: Prognostic factors measured in each study included in the detailed comparison 

A shaded box is a risk factor evaluated in analyses, x is a variable found to be independently predictive of mortality in multivariable models. 

 

Independently 

predictive in 

any papers? 

(excluding 

FEAST).  Allen 

Berkley J 

de Leon Evans  Maitland   Marsh  Newton Planche  Roine von Seidlein Werneck FEAST 

Immediate 

deaths 

Early 

deaths 

Late 

deaths 

Age  0/9                             

Base Excess  2/5           x           x     

Bicarbonate 1/2 x                           

Blood pressure 0/6                             

Bulging 

Fontenelle or 

stiff neck                

BMI 1/1                   xa          

Capillary Refill 

time 2/3           x         x       

Conscious level 7/10   x x x   x   x x x x x     

Convulsions 2/5                     x x     

Creatinine 2/2 x           x               

CSF 1/2                     x       
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Independently 

predictive in 

any papers?*  Allen  

Berkley 

(immediate) 

deaths 

Berkley 

(early 

deaths) 

Berkley 

(late 

deaths) de Leon Evans  Maitland   Marsh  Newton  Planche Roine,  von Seidlein Werneck FEAST 

Decreased skin 

turgor  0/1                             

Deep 

breathing 3/4   x         x   x           

Ethnicity 0/1                             

Gender 0/8                             

Glucose 2/9             x x             

Haemoglobin 3/10 x  x               xb      x   

Heart rate  0/7                             

Height  0/1                             

History of 

cough  0/2                             

History of 

diarrhoea 1/2                         x   

                

history of 

seizures 0/2                             

HIV positive 0/0               

Indrawing 1/2   x x                       

Jaundice  3/4   x x         x         x   
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Independently 

predictive in 

any papers?*  Allen  

Berkley 

(immediate) 

deaths 

Berkley 

(early 

deaths) 

Berkley 

(late 

deaths) de Leon Evans  Maitland   Marsh  Newton  Planche Roine,  von Seidlein Werneck FEAST 

Kwashiorkor 1/1     x x                     

Lactate 2/4 x                 x         

Liver size >2cm 

below costal 

margin 0/1                             

Malaria 

parasitaemia 0/6                             

MUAC 0/0               

Other lab 

values 2/5         

x 

(pH, 

Blood 

Urea, 

WBC)             

x (Blood 

Urea) 

    

Oxygen 

saturation  1/1             X               

Residence 0/1                             

Respiratory 3/7           x   x   xb          

Severe pallor  0/0                             

Sunken eyes 0/1                             

Temperature 2/9   x   x                 x   



60 
 

Independently 

predictive in 

any papers?*  Allen  

Berkley 

(immediate) 

deaths 

Berkley 

(early 

deaths) 

Berkley 

(late 

deaths) de Leon Evans  Maitland   Marsh  Newton  Planche Roine,  von Seidlein Werneck FEAST 

Temperature 

gradient 

                

Unequal pupils 1/1         x                   

Vomiting 0/1                             

Wasting 1/2     x x                     

Weight  2/3             x (for age) 
 

x (for age)           
a The authors indicate this finding to a lesser extent than the other risk factors in their model. 
b This was for malaria slide negative children only. 
* excluding FEAST  
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2.4 Reviewing risk scores found in literature using the FEAST clinical 

trial data 
 

2.4.1 Available variables 

 

There were 48 clinical variables collected on children admitted to hospitals in the FEAST trial, 

recorded at randomisation (focusing on triage measures such as blood pressure, heart rate, 

axillary temperature, conscious level) or shortly after the administration of randomised 

treatment started (with focus on clinical history and full clinical examination). The children 

were critically ill and thus informed assent was used alongside informed consent enabling 

randomisation and treatment initiation to happen very quickly after admission. The clinical 

variables were well-completed and on average only had <2% missing data apart from height, 

head circumference and mid upper arm circumference (MUAC) which had 9%, 8% and 7% 

missing data respectively. Some clinical variables were also available from different time points 

after randomisation.  

There were 22 laboratory variables collected on the children which varied by site and by 

availability of results from a handheld blood analyser (i-STAT, made by Abbott laboratories). 

The laboratory information comes from three sources: bedside tests (oxygen saturation, 

malaria rapid diagnostic test, haemoglobin from Haemocue test, glucose and lactate (from 

handheld machines)); blood tests (white blood cell count, platelets, blood culture, malaria 

slide); and i-STAT tests (sodium, potassium, base excess, pH, BUN and others). The i-STAT 

devices were used at admission and 24 hours but some sites found them difficult to use 

routinely throughout the trial and so there is 33-43% missing data at baseline and 70-79% 

missing data at 24 hours for these test results. Malaria slides were well completed (1% 

missing) but white blood cell counts and platelets were done on very few children (73% 

missing data). Blood culture was available in 1085/3170 (34%) children.  

Some clinical signs can be subjective and studies have shown inter-observer variation in 

measurement of various signs in children on admission to hospital [48, 116]. This would be 

expected to cause dilution bias of any effect, but would be something seen in practice anyway. 

Thus if there is variation in measurement between observers then the results of analyses 

should be even more applicable to clinical situations.  

 



62 
 

2.4.2 Validating appropriate models already developed 

 

The performance of models designed to predict mortality in paediatric intensive care units 

(PICUs) (PRISM and PIM) was first assessed on the control arm data from FEAST (n=1044). 

Models from the 11 papers fully reviewed were then assessed along with the PRISM and PIM 

scores as they were well known scores and had been validated in a variety of settings.  

 

2.4.2.1 PRISM and PIM scores overview 

 

The PRISM (Pediatric Risk of Mortality) score was developed by Pollack et al in 1988 from the 

Physiologic Stability Index (PSI) to assess the severity of illness in children in PICUs in the USA 

[117]. It simplified the PSI by reducing the number of variables to be measured from 34 to 14 

and restricting the many ranges that were present in the PSI. They used a development 

dataset of 1415 children with 116 deaths (8%), and validation dataset of 1227 children and 105 

deaths (9%). The authors simplified the PSI by first removing all variables in the PSI that were 

not associated with mortality by a chi-squared test (P>0.25), and then all the factors that were 

present in <1% of the population, which is appropriate when the development dataset is large; 

however, there is a risk that information on variables that occur rarely, but could be very 

predictive, is lost. They performed stepwise logistic regression (not reporting whether they 

used backwards elimination or forward selection), keeping factors with p≤0.3 and then pooled 

pre-assigned ranges (from PSI) with adjacent ranges if in logistic regression models the 

coefficients for adjacent ranges were not different from each other (p>0.15). This helped to 

reduce the number of individual categories of variables included in the model.  

As well as internal validation where the score was validated on data from separate ICUs within 

the same database, the score has been externally validated in various situations and in other 

countries to varying degrees of success. PRISM over-estimated the severity of illness in 

children in Sheffield Hospital, UK [118], and it did not discriminate mortality well in a PICU in 

South Africa, indicating the score may not be population independent [119], but was found to 

be valid in The Netherlands [120] and France [121].  

The researchers behind the PRISM score then looked to re-evaluate the score in the light of 

developments in interventions and monitoring in PICUs over 1988-1995, and in 1996 they 

published the PRISM-III score [122]. The score was split into PRISM-III-12 using only 

measurements from the first 12 hours, and PRISM-III-24 where measurements in the first 24 
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hours are used. They then refined this further to create PRISM-III-APS (Acute Physiology Score) 

which was felt to be more sensitive to change in physiological variables [123]. PRISM-III has 

been validated in various settings. In Italy it was found to under-estimate mortality and so had 

unsatisfactory calibration [124] and over-predicted death in Australia and New Zealand [125], 

but it performed well in The Netherlands [97], Hong Kong [126] and India [127]. PRISM-III-APS 

has not been externally validated or discussed as widely in the literature (from a citation 

search carried out in February 2018).  

The Paediatric Index of Mortality (PIM) score was first developed in Australia and published in 

1996 as a response to PRISM which the authors felt was very complicated to calculate (with 14 

variables to measure) with the further disadvantage that it uses the worst value for each 

variable over the first 24 hours so can only be applied retrospectively [128]. The PIM score is 

calculated using baseline values and was developed using standard methods very similar to 

those of PRISM, excluding those variables not associated with death in a univariable analysis 

and then performing backwards stepwise regression. The PIM score was internally validated in 

data from Australia where it was developed and also from a UK PICU, and in general felt that it 

was most useful in identifying groups of patients rather than making decisions about the 

management of an individual patient. It has also been validated and compared to PRISM in 

other settings [97, 126, 129, 130]. The authors revised PIM in 2002 to create PIM2 which 

replaced the factor ‘specific diagnosis’ with two factors - ‘high-risk diagnosis’ and ‘low-risk 

diagnosis’; and recovery from surgery and bypass were separated in the new score [131]. The 

authors of PIM2 also internally validated their score on a wider range of PICUs.  

All these scores focus on predicting mortality for the PICU and estimating Standardised 

Mortality Ratios and so aim to adjust for case-mix when comparing units rather than being 

used to inform individual patient’s management [132].  
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2.4.2.2 PRISM score applied to FEAST data 

 

The PRISM score was the first score published following the PSI and has been subsequently 

modified since to give the PRISM III score which is the most up to date version of the 

score[117, 122]. The authors of the PRISM and PRISM III scores did not include the coefficients 

for the scores in their publications, but the PRISM score since its original publication has had 

its coefficients made publicly available in a separate publication and so its performance can be 

fully assessed in the FEAST data [133]. The value allocated to each variable in the PRISM score 

is outlined in Figure 2.4.1 below and was published along with the regression coefficients in a 

paper evaluating the score.  
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Figure 2.4.1: PRISM score calculation taken from Balakrishnan et al, Arch Dis Child 1992 [133] 

 

 

Not all variables were available in the FEAST dataset (as outlined in Table 2.4.1 below), and 

there were differing amounts of missing data in variables that were recorded, and so two 

versions of this score were assessed; one including potassium, glucose and bicarbonate which 

were only available for two thirds of the cohort, and the other without these variables.  
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Table 2.4.1: The availability of variables used to calculate PRISM in the FEAST control arm data. 

Number of variables 8 5 

Number of control group children 

with all variables recorded (of 

total 1044) 612 1015 

Variables:     

Systolic blood pressure x x 

Diastolic blood pressure   

Heart rate x x 

Respiratory rate x x 

Arterial Oxygen Tension   

Arterial Carbon Dioxide Tension   

Glasgow coma score x x 

Pupillary reactions x x 

Prothrombin time   

Total bilirubin   

Potassium x  

Calcium   

Glucose x  

Bicarbonate  x  

 

The PRISM score is calculated using all available information for the above variables in the first 

24 hours and taking the value that gives the highest score in that time period (although pre-

terminal measurements should not be used). To calculate the score in FEAST data all values 

taken within 1 hour prior to death were excluded and any children that died within one hour 

of admission were excluded. The variables that were measured more than once in the initial 24 

hour period were systolic blood pressure, heart rate, respiratory rate, consciousness (mapped 

to the Glasgow coma score) and pupillary reactions, and the worst of the values that was not 

pre-terminal was used. The PRISM authors do not give details about when the children in their 

study died and whether any died within 24 hours of admission to the PICUs in the study. This 

suggests that they were able to use complete data for the first 24 hours on all patients and 

assess mortality after this point though it is not clear from the published work. The PRISM 

score in the FEAST data was calculated for mortality after 1 hour from admission up to 48 

hours to enable AUROC curves to be estimated and these are presented in Figure 2.4.2. The 
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curves gave AUROC estimates as 0.73 (0.63-0.82) for the score with 8 variables and 0.71 (0.64-

0.78) for the curve with 5 variables.  

Figure 2.4.2: AUROC plots for mortality risk estimated using PRISM score and box plots 

comparing the distribution of PRISM score in survivors compared to fatal cases.  

a) AUROC analysis for PRISM score with 8/14 

variables  

 

b) AUROC analysis for PRISM score with 5/14 

variables 

  
 

 
 

 

 

  

Balakrishnan et al published the original equation to use the PRISM score to calculate the 

probability of death for each patient. The equation with the regression coefficients is as 

follows: 

ℎݐܽ݁݀	݂݋	ݕݐ݈ܾܾ݅݅ܽ݋ݎܲ =
exp(ݎ)

1 + exp	(ݎ)
 

where ݎ = ܯܵܫܴܲݔ0.207 − −(ݏℎݐ݊݋݉	݊݅)	݁݃ܽ	ݔ0.005 ݏݑݐܽݐݏ	݁ݒ݅ݐܽݎ݁݌݋	ݔ	0.433 − 4.782 

(As none of the children in our cohort were post-operative the variable operative status is set 

to 0). 

This equation was used to calculate the number of predicted deaths by each quintile of risk 

(based on observed PRISM scores in FEAST) by summing the probabilities over the 
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observations in that quintile. This was then compared with observed deaths. Table 2.4.2 below 

presents this information for the PRISM score calculated with 8 variables (thus including 

glucose, potassium and bicarbonate).  

Table 2.4.2: Observed and expected deaths in the control arm FEAST data by quintiles of 

mortality risk estimated with PRISM 

Quintiles N Probability Observed Deaths 
Predicted Deaths Scaled Predicted 

Deaths* 

First 121 0.004-0.021 1 2 1 

Second 123 0.021-0.031 4 3 2 

Third 123 0.032-0.059 2 6 3 

Fourth 120 0.06-0.117 9 10 5 

Fifth 125 0.117-0.758 12 30 17 

Total 612 0.004-0.758 28 51 28 

*normalised to total observed deaths.  

The PRISM score predicted 51 deaths within those children where information was available to 

calculate the score, based on 8 of the 14 variables; for comparison, the predicted deaths have 

been scaled in the table to match the total of 28 observed deaths. The Hosmer-Lemeshow 

goodness of fit test for calibration gives p=0.07 indicating that it is not particularly well 

calibrated for the FEAST dataset.  

As the score was calculated both with 8 variables on a small proportion of the dataset and 5 

variables on a much larger proportion of the dataset, the quintiles of risk have also been 

calculated for the score calculated with only 5 variables. The Hosmer-Lemeshow goodness of 

fit test gives a p-value=0.41 for the bedside score showing better calibration of the score 

compared to when 8 variables of the score were used. The total number of deaths predicted 

by the score with 5 variables was 49 which was scaled to the 51 deaths observed in these 1015 

children in Table 2.4.3. 
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Table 2.4.3: Observed and expected deaths by quintiles of mortality risk estimated with the 

PRISM score calculated using 5 bedside measures.  

Quintiles N Probability Observed Deaths 
Predicted Deaths Scaled Predicted 

Deaths* 

First 203 0.004-0.018 2 2 2 

Second 193 0.018-0.022 3 4 4 

Third 213 0.022-0.043 8 5 5 

Fourth 200 0.043-0.067 16 13 14 

Fifth 206 0.068-0.576 22 25 26 

Total 1015 0.004-0.576 51 49 51 

*normalised to total observed deaths. 

Table 2.4.3 shows that with 5 variables the PRISM score is reasonable at predicting an 

appropriate number of deaths per mortality risk quintile and is an improvement compared to 

using the score with 8 variables. This may be due to the limited number of children that the 8 

variable score could be evaluated on, and that 2 of the 3 additional measurements used in this 

score come from the i-STAT cartridge where there is more potential variability in their 

ascertainment.  

  

2.4.2.3 PRISM III score applied to FEAST data 

 

The PRISM-III score is based on the PRISM score above and is calculated in a similar way, 

though  there are some differences in the variables included [122]. The score uses 17 variables 

(10/14 from PRISM (variables excluded are diastolic blood pressure, calcium, bicarbonate, 

bilirubin) and the following variables added: temperature, creatinine, platelets, white blood 

cells, urea, acidosis, and pH) with scores assigned to severe high or low values, with the cut-

offs defined by clinical judgement and where there were two or more categories these were 

combined if the regression coefficients of the categories were within the standard errors 

(Figure 2.4.3). The ranges for systolic blood pressure, heart rate, urea, prothrombin time, 

creatinine were also age dependent. It similarly uses the most severe of the measures 

recorded in the first 24 hours or prior to death if within 24 hours. As above, all values taken 

within 1 hour prior to death will not be used for calculating the score and children that died 

within 1 hour of admission are excluded. 
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Figure 2.4.3: PRISM III-24 scoring sourced from Tan et al , Ann Acad Med Singapore 1998 [134].  

 

(NB: Neonate= <1 months; infant=≥1 month – 12months; child ≥12 months – 144 months; adolescent > 144months) 

In the FEAST data there were 12/17 variables available for 224/1044 (20%) of the control arm 

data, 10/17 variables available for 623/1044 (60%), and 5/17 variables for 1015/1044 (98%). 

This is due to some variables involving haematology (such as platelets and white blood cells) 

that had limited availability, and others using information from the i-STAT cartridge which was 

also not recorded for every child. If all variables in the score were available then the range of 

the score is from 0 to 74. Within the FEAST data the possible range for the PRISM III score 

created from 12 variables was 0 to 56, from 10 variables it was 0 to 47, and 0 to 30 for the 

score created with 5 variables. The actual ranges seen in the FEAST control arm data were 0 to 
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19 for the score with 12 or 10 variables and 0 to 15 where only 5 variables were used. But not 

all values within this range were found in the control arm data. By not using the full score we 

may have a situation where there may be significant loss of sensitivity as a predictor of 

mortality [135], and also that the remaining variables may have the wrong weighting or values 

assigned to them within the score. The variables available at each level are summarised in 

Table 2.4.4 below.  

Table 2.4.4: Variables used to calculate PRISM III that are available in the FEAST control arm 

data.  

Number of variables recorded 12 10 5 

Number of control group children 

with all variables recorded of total 

N=1044  224 620 1015 

Variables:       

Systolic blood pressure X x x 

Temperature X x x 

Mental Status X x x 

Heart rate X x x 

Pupillary Reflexes x x x 

Acidosis or total CO2 x x   

pH x x   

PCO2 x x   

Total CO2    

Arterial PaO2    

Glucose x x   

Potassium x x   

Creatinine    

Urea    

White blood cells x     

Prothrombin time     

Platelets  x     

 

The fit of the score can be assessed initially by estimating the ROC curve and AUROC using 

non-parametric methods on data from the control arm of the FEAST trial only. These give 

AUROC of 0.65 (0.59-0.72) for the score with 12 variables, 0.66 (0.55-0.77) for the score with 
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10 variables and 0.66 (0.59-0.74) for those score with 5 variables. These were calculated on 

data from within the first 24 hours of admission but excluding measurements that were 

recorded within 1 hour of death.  

 

 

Figure 2.4.4: AUROC plots for mortality risk estimated using PRISM III score at baseline.  

a) PRISM III score with 12/17 at baseline  

(N=224).  

 
Range from 0-19, not all values taken.  

b) PRISM III score with 10/17 variables at baseline 

(N=620) 

 
Range from 0-19, not all values taken. 

c) PRISM III score with 5/17 variables at baseline 

(n=1015) 

 
Range from 0-15, not all values taken. 

 

 

In similar settings to the FEAST trial, bedside observation measurements may not be as actively 

recorded as they were during the trial so a score using ‘from admission only’ information was 

calculated and included children that died in the first hour (14 children in the control arm).  

This gives values of the AUROC curve of 0.65 (0.43-0.86) for twelve variables, 0.71 (0.61-0.81) 

for ten variables and 0.66 (0.59-0.72) for five variables. These values are very similar to those 

that are estimated including observations up to 24 hours.  
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In considering whether to exclude deaths within the first hour from the dataset, the papers 

that implemented PRISM or PRISMIII in low-income settings were reviewed but none gave 

details regarding using scores from pre-terminal children on admission.  

Thus, in comparison with the PRISM score which gave AUROC values of 0.73 (0.64-0.82) and 

0.71 (0.64-0.78), the PRISM-III score with or without updated observations within the first 24 

hours appears inferior.  

 

2.4.2.4 PIM II score applied to FEAST data 

 

The Paediatric Index of Mortality II is presented in Figure 2.4.5 [131]. The authors used a 

logistic regression model to build the model and 13% of children included in the model were 

<1 month of age on admission.  

Figure 2.4.5: PIMII scoring chart taken from Slater A et al, Int Crit Care Med 2003[131].  

 

 

Probability	of	Death	 = 	
݁(୔୍୑ଶ)	

1 + ݁(୔୍୑ଶ)		 
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Many of the variables in the PIM II risk score are not applicable to the sub-Saharan African 

setting and so were not able to be used when applying the risk score to the control arm of the 

FEAST data. Variables from Figure 2.4.5 and their availability are as follows: (1) Blood pressure 

information was available on 1034/1044 (99%) children and the value was set at 120 as 

recommended for those that had missing values; (2) The only variable regarding eye pupils in 

the FEAST dataset was a binary variable recording whether they were equal or unequal (and a 

very small proportion were unequal 12/3153 (0.4%)) and as it is not known whether the equal 

pupils were ‘>3mm and both fixed’ the value for the second variable is fixed at 0 = “other or 

unknown”; (3) oxygen was not recorded in a way that can be included in the score and so this 

value is set to 0; (4) base excess was available in the FEAST data for 676/1044 (65%) and the 

missing values were set to 0 as recommended above for main analysis. However, 0 is not the 

centre of the base excess distribution, meaning that this assumes these children were 

abnormal. Therefore these missing values were also set to the median value of -8 (estimated 

from the distribution at baseline in the control arm of FEAST) in a second analysis. The PIM 

validation dataset, had a base excess distribution of mean -5.4mmol/l (sd 9.2) and mean             

-1.6mmol/l (sd 5.2) for those that died and lived respectively, compared with mean                     

-13.2mmol/l (sd 8.9) and mean -8.1mmol/l (sd 6.6) for died and lived respectively in the FEAST 

data. No mechanical ventilation was available in FEAST settings and it was very unlikely there 

were any elective admissions to the paediatric wards or that the admission was for recovery 

from surgery or a procedure, or that they were admitted following a cardiac bypass, so 

variables (5) to (8) were set to 0. The diagnoses for parts 9 and 10 of the score are very region 

specific and none were recorded in the FEAST dataset apart from HIV results. So the low risk 

diagnosis is always set to zero and the high risk diagnosis is 1 if HIV positive or 0 otherwise.  

Thus the PIMII score used in the FEAST data reads as follows:

 

The PIM2 score calculated on the control arm data and rounded to the nearest 1 decimal place 

between 0 and 4.9 gave a AUROC value of 0.60 (0.52-0.67) which is presented in Figure 2.4.6. 
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Figure 2.4.6: AUROC plot estimating mortality risk using the PIMII score.  

 

 

The probability of mortality can be calculated using the PIM2 score and the equation as above. 

Slater et al in the PIM II paper split the data into 10 groups based on centiles of mortality risk, 

and a similar table for the FEAST control arm data is presented below. The actual number of 

predicted deaths was calculated by summing the probabilities over the observations within 

each centile. In total, this led to 31 deaths predicted by the PIMII score. But to enable better 

comparison with the observed deaths, the total was normalised to 76 deaths to give relative 

predicted deaths per group, as presented in Table 2.4.5. The Hosmer-Lemeshow goodness of 

fit test with 10 groups gave p=0.02 showing that the score does not calibrate well to the FEAST 

data.  
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Table 2.4.5: Observed and expected deaths by centiles of mortality risk estimated with PIM II 

Centile N 

Probability from 

PIMII 

Observed 

Deaths 

Predicted 

Deaths  

Relative Predicted 

Deaths*  

First 93 0.008 - 0.01 8 1 2 

Second 105 0.01 - 0.011 8 1 2 

Third 113 0.011 - 0.012 4 1 2 

Fourth 102 0.012 - 0.014 5 1 2 

Fifth 109 0.014 - 0.017 8 2 5 

Sixth 104 0.017 - 0.022 3 2 5 

Seventh 103 0.022 - 0.027 1 3 7 

Eighth 105 0.027 - 0.039 7 3 7 

Ninth 105 0.039 - 0.064 13 5 12 

Tenth 105 0.065 - 0.494 19 13 32 

Total  1044 0.008 - 0.494 76 31 76 

*normalised to total observed deaths. 

When the base excess values were set to -8, the AUROC for the PIMII score was 0.68 (0.61-

0.74), showing a better discriminatory ability.  

Large groups were then created to give wider probability bands; keeping the unknown base 

excess values set to -8, the following estimates were observed using the PIM II score (Table 

2.4.6). The Hosmer-Lemeshow test gave p=0.48 indicating that calibration improved when the 

value used in place of missing base excess was -8 instead of zero for 5 groups.  

Table 2.4.6: Observed and expected deaths by quintiles of mortality risk estimated with PIM II 

Quintile N Probability  Observed Deaths 

Predicted 

Deaths 

Relative 

Predicted 

Deaths*  

First 205 0.008 -0.018 4 3 6 

Second 209 0.019 -0.023 12 4 8 

Third 205 0.024 -0.027 10 5 10 

Fourth 214 0.028 -0.039 18 7 14 

Fifth 211 0.040 -0.494 32 19 38 

Total  1044 0.005-0.285 76 37 76 

*normalised to total observed deaths. 
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The two tables above describing the calibration of the PIM II score showed that it was better at 

assigning low probabilities to children who survived when the missing values of base excess 

were set to -8 instead of zero. Both tables, though, had lower groups with very similar 

numbers of observed deaths, despite the increasing observed probability of dying, and then a 

jump to high numbers in the higher groups (i.e groups 8 and 9 in Table 2.4.5 or group 4 in 

Table 2.4.6).  

 

2.4.2.5 Summary for PRISM, PRISM III, and PIM II  

 

The PRISM score had a somewhat better ability to predict FEAST mortality with both the full 

data and reduced dataset compared to the PRISM III score. One factor that may explain this is 

that the PRISM score takes into account low and high heart rate and in the FEAST data 

increased mortality risk is present for those with bradycardia and tachycardia. PRISM III only 

gives a score for those with very high heart rates thus not reflecting the increased risk of those 

with bradycardia in the FEAST dataset. There are also other variables that PRISM III did not use 

from the original PRISM score that are available in the FEAST dataset (respiratory rate, glucose 

and bicarbonate) which may have enabled PRISM III to perform better in this population had 

they been included. Both PRISM and PRISM III may have performed better had more of their 

variables been recorded and hence included in the analyses.  

PRISM discriminated most well when 8/14 variables were used but was better at predicting the 

appropriate number of deaths with 5/14 variables. The PRISM III score discriminated best with 

10/17 variables giving an AUROC of 0.69 with the score calculated on both more or less 

variables giving lower AUROC values.  

The PIMII score’s poor calibration and low discriminatory ability may be due to the limited 

number of variables available in the FEAST dataset for the score. This meant that values of 0 

were used for many factors, as recommended, and so it was assumed the child did not satisfy 

that criteria (i.e low risk diagnoses, pupil reactions, mechanical ventilation) or their value was 

in the normal clinical range of the distribution of continuous variable (i.e PaO2), as the authors 

had centred the continuous variables in the model. This was the case for 6 of the measures 

that make up the score and so these measures were the same value for all children thus 

affecting the score’s ability to discriminate between survivors and those who died. The 

calibration and discriminatory ability of PIMII improved in the FEAST population when a value 

from the centre of the distribution of base excess in that population was used. This shows 
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there is some impact of centring variables in the model around the values in the development 

or validation dataset for PIMII and demonstrates one aspect of the difference between the 

populations.  

There has not been much discussion of calculating the PRISM or PIM scores with missing 

values in the evaluations of these scores that were found during the literature review. Even in 

countries such as Senegal, the full PRISM score was evaluated on children presenting to a 

paediatric intensive care unit [136]. In Mexico the study authors simply did a complete-case 

analysis and excluded those who did not complete all the clinical or laboratory variables [107]. 

The PIM scores gives guidance for some of the variables when they are unknown, but the 

PRISM and PRISM-III scores do not. For evaluating the PRISM and PRISM-III scores in FEAST, 

only children with complete data have been used but others in the dataset may only have one 

or two measurements missing and it is a disadvantage that there is no mechanism of including 

them in the score without imputing data.  

The use of the most severe of the measures recorded in the first 24 hours in the PRISM and 

PRISM-III scores has been noted as a disadvantage of the score by the PIM authors as it can 

only be applied retrospectively after the first 24 hours in practice [132]. But the application of 

these scores to the FEAST setting also raises the difficulty that the most severe of several 

measurements has more variability than a single measurement being an extreme, and some of 

the variables in the score are from laboratory tests or the i-STAT tests which may be more 

prone to error.  

 

2.4.2.6 Berkley et al’s score applied to FEAST data 

 

Berkley et al in their paper published in the BMJ in 2003 devised and validated a prognostic 

score for children admitted to hospital in Kenya [47]. The study has been described in detail in 

the literature review above (Section 2.3.3).  

The deaths were split into immediate, early and late where immediate was within 4 hours of 

admission, early deaths were deaths from 4 to 48 hours from admission and late deaths were 

ones that took place >48 hours after admission but still whilst in hospital. Models were built to 

predict each type of death separately. Table 2.4.7 below summarises the points given to each 

indictor for immediate, early and late deaths.  
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Table 2.4.7: Berkley's scores for immediate, early and late deaths summarised 

  Immediate Early Late 

Indicator Present Absent Present Absent Present Absent 

Severe anaemia  

(haemoglobin <5g/dl) 1 0 - - - - 

Jaundice 1 0 1 0 - - 

Indrawing 1 -1 1 0 - - 

Deep breathing 1 0 - - - - 

Prostrated with seizures 1 0 2 0 -1 0 

Prostrated without seizures 3 0 2 0 - - 

Impaired consciousness with 

seizures 2 0 2 0 1 0 

Impaired consciousness without 

seizures 3 0 3 0 1 0 

Axillary temperature <36°C 1 0 - - 1 0 

Axillary temperature >39°C -1 0 - - -1 0 

Wasting - - 1 0 1 0 

Kwashiorkor - - 1 0 1 0 

History of condition > 7 days - - - - 1 0 

Constant 2 0 2 

Maximum possible 10 7 6 

Minimum possible 0 0 0 

 

The table above shows that some indicators are common across all scores but others, such as 

severe anaemia and jaundice, only appear in the score for immediate deaths. Wasting and 

kwashiorkor are only important in the early and late death scores, and history greater than 7 

days is only present in the late death score. Also, the table indicates that different numbers of 

points are given to the presence or absence of the same indicators within the different scores. 

For example, a score of -1 is given for a very high temperature indicating that a child is at lower 

risk of immediate and late mortality compared to those with a normal temperature, probably 

due to those with fever being treated effectively for malaria, however a score of 1 is given for 

hypothermia. There is variation between scores where points awarded to the presence or 

absence of an indicator are different (thus, being prostrated with seizures is an apparent risk 

factor for immediate and early deaths but then has a protective effect for those that have 

survived for 48 hours, presumably reflecting the fact that these patients have mostly already 

died in the intermediate/early periods and those prostrated with seizures who survive to the 
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late period are intrinsically a less sick group). It may be argued that although it was useful to 

have these different definitions of death to separate risk of immediate, early and late deaths, it 

is difficult to make sense of the different scores associated with the same factor clinically. 

Information on the number of patients that died with each score was also presented in the 

paper and is replicated below in Table 2.4.8. 

Table 2.4.8: Distribution of prognostic scores and outcome in the validation dataset of 

4802 children admitted to hospital in Kenya, as presented in Berkley et al. 

Score 

Immediate Early Late 

Number 

admitted 

Number 

(%) died 

Number 

admitted 

Number (%) 

died 

Number 

admitted 

Number 

(%) died 

0 698 0 2779 11 (0.4) 15 0 

1 2196 1 (0.1) 1101 16 (1.5) 1081 2 (0.2) 

2 657 1 (0.2) 668 23 (3.4) 2310 18 (0.8) 

3 612 5 (0.8) 183 23 (13) 869 26 (3.0) 

4 217 4 (1.8) 55 10 (18) 347 38 (11) 

5 72 3 (4.2) 15 5 (33) 170 22 (13) 

6 34 3 (8.8) 1 0 10 2 (20) 

7 31 4 (13) 0 0 0 0 

8 12 3 (25) — — — — 

9 2 1 (50) — — — — 

10 1 1 (100) — — — — 

 

These scores were used by the authors to calculate the AUROC in a validation dataset created 

from a subsequent time period of the hospital admissions data (n=4802, 222 (4%) deaths) 

giving an AUROC of 0.93 (95% CI 0.92-0.94) for immediate, 0.82 (95% CI 0.80-0.83) for early, 

and 0.82 (95% CI 0.81-0.84) for late deaths.  

I assessed the performance of these scores using the children enrolled into the control arm of 

the FEAST clinical trial (n=1044). The values of wasting and kwashiorkor were set to 0 as 

children with these conditions were excluded from the trial. History of >7 days for the child’s 

condition was not explicitly recorded but there is information on whether the child had a 

history of fever >14 days and so this has been used in place of this variable. Some children 
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have missing information on the indicators in the score, in particular haemoglobin measures at 

baseline, and so they are presented in Table 2.4.9 below under ‘missing score’.  

Table 2.4.9: Validating Berkley’s scores using information from the control arm of FEAST 

  Immediate Early  Late  

Score  Number Deaths Number Deaths Number  Deaths 

0 0 0 28  0 (0%) 21 0 (0%) 

1 5 0 (0%) 196 4 (2%) 253 4 (2%) 

2 23 0 (0%) 273 1 (0.3%) 626 8 (1%) 

3 66 0 (0%) 310 21 (7%) 111 2 (2%) 

4 139 0 (0%) 208 13 (6%) 8 1 (11%) 

5 227 4 (2%) 20 4 (20%) - - 

6 130 2 (2%) - - - - 

7 118 5 (4%) - - - - 

8 154 9 (6%) - - - - 

9 127 8 (6%) - - - - 

10 18 2 (11%) - - - - 

missing score 37 3 (8%) 9 0 (0%) 10 0 (0%) 

Total  1044 33 (3%)  1044 43 (4%) 1044 15 (1%) 

 

The tables above show that according to the scores the FEAST trial population control group 

was in general more critically ill than the validation population in Berkley et al (admissions to a 

general paediatric ward at a district hospital in Kenya between June 2000 and July 2001) as 

they had generally higher scores. For the immediate deaths in the FEAST control arm, the 

median score was 6 whereas it was 2 in Berkley’s validation dataset. The median score was 3 

for early deaths, compared to 0 in Berkley’s validation dataset, but then they were similar for 

the late deaths (median score 2 for both). There was a greater difference between the 

datasets in the distribution of scores for the late deaths, as Berkley’s had 0-6 whereas FEAST 

had 0-4, with a higher proportion of zeros. The difference in the distributions may have been 

due to not having the full ‘history’ variable available in FEAST and using a proxy for this, and 

the similarity in median score for late deaths may be due to the fact that the deaths are 

conditional on surviving to 48 hours and so any difference between the FEAST trial population 

and the population in the paper is minimised as all have had 48 hours’ worth of treatment. 

Non-parametric analyses of the area under the ROC curve using the children in the control arm 

of FEAST is presented below for each of the scores, and give AUROC of 0.75 (95% CI 0.68-0.83) 
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for immediate deaths, 0.70 (95% CI 0.63-0.77) for early deaths and 0.55 (95% CI 0.40-0.69) for 

late deaths. The Hosmer-Lemeshow goodness of fit test for comparing observed and predicted 

mortality in groups defined by each score value (1 to 10 for immediate deaths, 0 to 5 for early, 

0 to 4 for late) showed good calibration for immediate (p=0.64) and late deaths (p=0.35) but 

poor calibration for early deaths (p=0.02). 

Figure 2.4.7: AUROC analyses for Berkley’s mortality risk score evaluated on the FEAST data.  

a) AUROC analysis for immediate deaths.  

 
NB: Score values are from 1-10. 

 

b) AUROC analysis for early deaths.  

 
NB: Score values are from 0-5 

c) AUROC analysis for late deaths.  

 
NB: Score values are from 0-4 

 

 

 

The validation of the scores shows that the immediate death score still performed reasonably 

well in the population recruited to the FEAST trial, but that the early and late death scores did 

not transfer across to this population, with the late death score no better than chance in 

predicting mortality, and the early score had poor calibration.  
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2.4.2.7 Von Seidlein’s (AQUAMAT) score applied to FEAST data 

 

Von Seidlein et al examined prognostic factors in a cohort of 5426 children enrolled into an 

anti-malarial trial in 9 African countries [103]. From multivariable analyses including 21 

variables they found 5 independently significant variables and used these to create a score. 

The presence of each variable scored 1 point and their score went from 0 to 5. The variables 

were base excess <-8mmol/L, Blood Urea Nitrate (BUN) ≥20mg/dl, a combined coma score <3, 

chronic disease and convulsions. The mortality rate for each value of the score in their cohort 

is presented in Figure 2.4.8 below.  

Figure 2.4.8: Table taken from von Seidlein et al describing mortality by level of their score.  

 

The chronic diseases that were included in the score were as lymphadenopathy, malnutrition, 

candidiasis, severe visible wasting and desquamation combined as an indicator. Most of these 

chronic diseases were not recorded in the FEAST data and if a child had visible severe wasting 

or malnutrition they were excluded from the trial. There were some children with a mid-upper 

arm circumference of <11.5 cm which is a definition of malnutrition and so that has been used 

in place of the chronic disease variable. Convulsions was defined as a history of convulsions of 

30 minutes or longer or ≥2 convulsions in previous 24 hours reported by the caregiver. 

Information on base excess and blood urea nitrogen is taken from the i-STAT cartridge and so 

is only available on approximately 66% of the children in the FEAST dataset.  
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Table 2.4.10: Validating the AQUAMAT score using information from the control arm of FEAST.  

Score Survived Died (%) Total  

0 253 3 (1%) 256 

1 209  8 (4%) 217 

2 119 12 (9%) 131 

3 32 5 (13%) 37 

4 5 2 (29%) 7 

Total 618 30 (5%) 648 

 

The information in the table above indicates that the mortality in each score follows the 

mortality that von Seidlein et al found in the AQUAMAT trial cohort. There were no children 

with all 5 risk factors to give a score of 5 in our cohort and there was only <0.1% in the 

AQUAMAT cohort, so given the reduced numbers in FEAST it might be expected not to find any 

children fitting that criteria in our data. Also there was a lower mortality in the group that had 

information available to calculate the score (5%) compared to the mortality in the AQUAMAT 

cohort (10%) and also compared to the mortality in the control arm of FEAST estimated from 

complete data (7%). The mortality for those that had missing information was 46/396 (12%).  

Non-parametric analyses of the AUROC curve using the children in the control arm of FEAST is 

presented below giving a value of 0.74 (0.65-0.83). The Hosmer-Lemeshow goodness of fit test 

for comparing observed and predicted mortality in groups defined by each score value (0 to 4) 

showed good calibration for the score (p=0.84). 

Figure 2.4.9: AUROC analyses for the AQUAMAT risk score evaluated on the FEAST data. 
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The children enrolled into the AQUAMAT trial all had malaria and so the score was also 

evaluated on the 360 children in the FEAST control arm data that had all the information 

needed for the score and had malaria at admission. The AUROC was 0.80 (0.68-0.93) which is 

an improvement but is calculated on small numbers. 

  

2.4.2.8 Summary of Berkley and AQUAMAT scores 

 

Both the AQUAMAT and Berkley’s scores were developed in similar settings to the FEAST trial 

although Berkley’s score was calculated on children coming into the general admissions wards 

and the AQUAMAT score was developed on children with malaria as part of a clinical trial. 

Berkley’s score has been included in a review of clinical prediction rules in practice [77] and 

was allocated a level of evidence which indicated a narrow validation of the prediction rule but 

that further validation was needed in varied settings. The levels of evidence have been defined 

by the Evidence Based Medicine Working Group and described under a set of articles 

published in JAMA called ‘User’s Guide to the Medical Literature’ [137]). One validation study 

of Berkley’s scores in febrile children presenting to hospital in Uganda was found from a 

citation search (in November 2017) [138]. The authors combined Berkley’s three scores into 

one (including jaundice, subcostal indrawing, prostration with/without seizures, altered 

consciousness with/without seizures and wasting) and found good discrimination and 

calibration with an AUROC of 0.90 (0.88-0.91) and Hosmer-Lemeshow p-value of 0.22. There is 

no further work validating the AQUAMAT score in other settings as yet. 

 

2.4.3 Overall summary of published scores validated in FEAST control arm data 

 

The summary table below presents each score, the AUROC calculated on FEAST control arm 

data and which variables were used to create the score. The table shows that there were 

several scores that had fair discriminatory ability with the FEAST control arm data. PRISM with 

8 variables had an AUROC of 0.73, Berkley’s score for immediate deaths had an AUROC of 0.74 

and the AQUAMAT score of 0.74. Impaired consciousness is a very strong predictor of 

mortality and appears in all three scores. Signs of acidosis appear in Berkley’s and the 

AQUAMAT scores as: deep breathing; low base excess; and seizures/convulsions. PRISM uses 

more laboratory values and was developed in high-income settings whereas the AQUAMAT 

and Berkley’s scores were developed in very similar resource-limited settings to the FEAST 
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trial. PIM II and Berkley’s score for early or late deaths do not discriminate well in the data. 

PIM II uses several variables that were not available in the FEAST dataset and so the score was 

just reduced to base excess and systolic blood pressure which may explain its poor 

performance. The kwashiorkor and wasting variables in Berkley’s late death score are not 

available in FEAST as this was an exclusion criteria and the length of the illness prior to 

admission was also not recorded, which may affect the performance of this score. Also, the 

late deaths used in developing the score were inpatient deaths and could be a longer time 

after admission compared to the FEAST data, where follow up for deaths was censored at 28 

days and included deaths outside of the hospital.  
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Table 2.4.11: Summary table of performance of all scores assessed with the FEAST control arm 

data. 

Score  Restrictions Variables included AUROC (95% CI) 

PRISM - 8/14 

variables 

Uses all information from first 

24 hours- excluding 

measurements taken within one 

hour of death, (glucose, 

potassium and bicarbonate only 

at baseline). Only ranges for 

infant and child were applicable 

to FEAST data.  

bicarbonate, glucose, 

heart rate, mental status, 

potassium, pupillary 

reactions, respiratory 

rate, SBP.  0.73 (0.64-0.82) 

PRISM - 5/14 

variables 

Uses all information from first 

24 hours- excluding 

measurements taken within one 

hour of death. Only ranges for 

infant and child were applicable 

to FEAST data.  

heart rate, mental status, 

pupillary reactions, 

respiratory rate, SBP.  0.71 (0.64-0.78) 

PRISM III - 

12/17 

variables 

Uses information from first 24 

hours - excluding 

measurements taken within one 

hour of death.  

axillary temperature, 

acidosis, glucose, heart 

rate, mental status, pco2, 

pH, platelets, potassium, 

pupillary reflexes, SBP, 

white blood cells  0.65 (0.59-0.72) 

PRISM III - 

10/17 

variables 

Uses information from first 24 

hours - excluding 

measurements taken within one 

hour of death.  

 

axillary temperature, 

acidosis, glucose, heart 

rate, mental status, pco2, 

pH, potassium, pupillary 

reflexes, SBP 0.65 (0.46-0.84) 

PRISM III - 

5/17 variables 

Uses information from first 24 

hours - excluding 

measurements taken within one 

hour of death.  

axillary temperature, 

heart rate, mental status, 

pupillary reflexes, SBP 0.66 (0.59-0.74) 

PRISM III - Only using baseline information, axillary temperature, 0.66 (0.59-0.72) 



88 
 

Score  Restrictions Variables included AUROC (95% CI) 

baseline only 

(5 variables) 

and including measurements on 

pre-terminal children (death 

within 2 hours of admission)  

heart rate, mental status, 

pupillary reflexes, SBP 

PIM II  

Only using baseline information, 

and including measurements on 

pre-terminal children (death 

within 2 hours of admission)  base excess, SBP 0.60 (0.52-0.67) 

Berkley - 

immediate 

deaths 

All baseline information 

included - only for deaths <4 

hours from admission  

axillary temperature, 

deep breathing, impaired 

consciousness with or 

without seizures, 

indrawing, jaundice, 

prostrate with or without 

seizures, severe anaemia 0.74 (0.67-0.81) 

Berkley - early 

deaths 

All baseline information 

included - only for deaths 4-48 

hours after admission  

impaired consciousness 

with or without seizures, 

indrawing, jaundice, 

kwashiorkor, prostrate 

with or without seizures, 

wasting 0.49 (0.62-0.77) 

Berkley - late 

deaths 

All baseline information 

included - only for deaths >48 

hours from admission  

axillary temperature, 

history of illness, 

impaired consciousness 

with or without seizures, 

kwashiorkor, prostrated 

with seizures, wasting 0.51 (0.39-0.65) 

 

 

AQUAMAT  

Children with severe wasting or 

malnutrition were excluded 

from trial but MUAC <11.5cm 

was used in place of chronic 

disease variable. Base excess 

and BUN only measured on 60% 

of children.  

 

 

base excess, BUN, chronic 

disease, combined coma 

score, convulsions,  

 

 

0.74 (0.65-0.83) 
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2.5 Building a clinical prognostic model  
 

2.5.1 Methods 

 

An approach outlined in Royston et al’s paper on Prognostic research [139] was followed to 

develop a clinical prognostic model for children admitted to an intensive care ward in a low 

income setting. They outline six areas in which key decisions are made during a prognostic 

model building process and these areas have decisions as outlined in the diagram in section 

1.1 above. The six key areas are:  

- Selecting clinically relevant candidate predictors  

- Evaluating the quality of the data and the amount of missing data 

- Data handling decisions 

- The strategy used to select important variables in the final model  

- Modelling continuous variables 

- Selecting measures of model performance 

The methods for each area are outlined in the sections below.  

 

2.5.1.1 Selecting clinically relevant candidate predictors  

 

The first decision is to select clinically relevant candidate predictors to be considered for 

inclusion into the model.  

The maximum number of coefficients for a prognostic model with which it is advised to start 

the model building process is approximately m/10, where m is the number of events in the 

sample on which the model is initially fitted (i.e the training sample) [72, 140]. This gives the 

maximum number of candidate variables that can be considered. Using less than this 

maximum number will help ensure that there is (at least theoretically) an event for every way 

of combining the variables in the model selection process. This issue is also explored in Peduzzi 

et al [141] as an ‘events per variable’ ratio and they find using simulation studies that 10 

events per variable is the suitable boundary to avoid problems with the modelling process.  

Predictors already found in the literature are very suitable as candidate predictors, as well as 

variables that are reliably measured and variables for which there is a reasonable number of 
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observations falling in each category of the variable. If candidate predictors are not reliably 

measured they may have large amounts of measurement error which would dilute their 

prognostic information [139]. Harrell et al [72] indicate that multiple comparison problems can 

occur if many univariable models are fitted using the outcome, and so recommends not using 

the outcome in any decision making regarding candidate predictors.  

Candidate predictors can also be identified by thinking about elements of a good model - 

generalisability, transportability and practical usefulness [142], and focusing on what settings 

the model will be useful in and what variables are able to be measured there. 

 

2.5.1.2 Evaluating the quality of data and making decisions about missing data 

 

For many clinical bedside variables there is approximately 1% of missing data. This is a little 

higher in some variables that measure growth such as height/length (9%), MUAC (6%) and 

head circumference (7%), but importantly in these variables it is also higher in those that died 

(for example 164/315 (52%) in height, 126/315 (40%) in MUAC and 132/315 (42%) for head 

circumference). Thus, many events may be excluded from models if simple univariable and 

multivariable analysis was done. As part of a sensitivity analysis, univariable models for all the 

potential risk factors will be fitted and these will have greater numbers of observations 

compared to the multivariable models where some children will have been excluded due to 

missing data in other variables. If the missingness is non-ignorable then the estimates from 

multivariable models will be biased and, due to the fewer observations in all variables, the 

variance is increased [72]. If missing is at random the variance will increase due to fewer 

observations, but the methods of including observations can ensure that bias does not occur 

by using variables that predict the missingness. These assumptions are tested by considering if 

missingness can be explained by other variables in the database (missing at random) or if it 

cannot be explained (missing not at random or non-ignorable missingness).  

One way to include observations with missing data is through multiple imputation. This 

method can be used for all of the clinical bedside variables as well as laboratory values which 

have a greater percentage of missing data (from 3% to 45%). The multiple imputation model 

will take into account the planned analyses and include the outcome variable (mortality by 48 

hours) as binary, and as the analysis model will be Cox regression then time from 

randomisation to censoring or death will also be included (this can be included as log(time) to 

avoid influence of high values, but as the censoring for the analysis is 48 hours then time will 
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not be transformed). Multiple imputation has been found to be a robust way to include more 

observations in models but is reliant on the appropriate model being used for imputation and 

the correct assumptions about the data being made.  

 

2.5.1.3 Data handling decisions 

 

The way that the variables are used or handled in the model also needs to be considered. 

Variables that are continuous should not be dichotomised or categorised in the model building 

process [139] as otherwise key predictive information may be lost. Fractional polynomials 

(implemented in Stata through the mfp command) are a way to find the appropriate function, 

as simply fitting a linear function for continuous variables makes strong assumptions that may 

not hold. The selection level (or significance level) for choosing a non-linear function over a 

linear function (and choosing between fractional polynomial models of different degrees) is 

usually set at an alpha of 0.05 in models compared through the mfp command. Categories that 

are already present for variables may need to be reduced or merged to make them more 

generalisable or to ensure a reasonable number of events within each category.  

 

2.5.1.4 Selecting the important variables in the final model – which strategy?  

 

Once the number of candidate predictors has been determined then the strategy for 

identifying which of them are important is chosen. The model that would avoid over-fitting 

and selection bias is the full model with all the predictors included. This, though, is usually 

impractical, because many covariates will not have important effects and their inclusion will 

increase variability in other effect estimators and so a more parsimonious model is desired 

[139]. The backwards elimination approach is preferable to forward selection and uses a 

selected significance level or information criterion (AIC, BIC) to include or exclude predictors 

having started with the full model [143]. The selected significance level was 0.05 in the 

following analyses in the FEAST data as there was a desire to select as few variables as possible 

for simplicity. Other options were 0.1 or 0.157 which for a single predictor equates to the 

Akaike Information Criterion. The larger the significance level for the backwards elimination 

process the greater the chance of unimportant variables being included, but this may ensure 

that all confounding biases that may be present (even if not significant at the threshold 

chosen) are appropriately adjusted for. The exit significance level can be chosen in line with 
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the aims of the study, with low values of the significance level (i.e 0.01) useful for identifying 

only strongly predictive variables, and high values, for example 0.20, for selecting confounders 

in an epidemiological study [142]. 

Using a selection process based on significance level is known to produce selection bias and 

optimism, but where there are selected predictors with very small p-values (i.e <0.001) then 

they are much less prone to these issues. Weak predictors with p-values near the significance 

level (of 0.05) are more affected. Bootstrap resampling can help identify which are strong and 

weak predictors amongst the variables included in the model by looking at the number of 

times the variable is included in the model out of all the replications [144].  

I concluded that the model for these analyses should be built with backwards elimination with 

a significance level of 0.05 as I wanted a small number of important predictors for individual 

level prognosis. The dataset is also large enough to identify important predictors at this level, 

whereas in smaller datasets a larger significance level may be needed to ensure all important 

predictors are included in the model [145].  

 

2.5.1.5 Assessing a model’s performance  

 

The performance of a model can be assessed both internally (on the same data) or externally 

on different data. Two key aspects of this are calibration and discrimination. The Hosmer-

Lemeshow test compares the observed number of events with that predicted from the model 

within categories on the basis of predicted risk and so is used to assess calibration [73]. But 

this test can be oversensitive in very large samples (and thus produces significant p-values 

regardless of calibration) and has limited power to detect poor calibration [59]. As observed 

and predicted probabilities should be very close for the data on which the model was built, it is 

most often used for external validation of the model. A calibration plot should also be 

presented comparing these probabilities to assess performance. It plots the observed 

proportions of events against predicted probabilities for groups based on risk. The predicted 

probabilities for calibration come from fitting a logistic regression model with the score as the 

explanatory variable and calculating the probability of death directly using the linear predictor 

from the model. The area under the receiver operating curve (AUROC) (or equivalent c-

statistic) is used to examine discrimination and plots sensitivity against 1-specificity. In general, 

if the AUROC is equal to 0.9 or more this is considered excellent discriminatory power, 0.8 – 
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0.89 is considered good and 0.70-0.79 is considered fair [146], and potentially if the 

discriminatory power is 0.75 or more it would be considered clinically useful [126].  

 

2.5.1.6 Moving from a prognostic regression model to a bedside score  

 

Prognostic regression model coefficients are often published and used to validate the scores 

on other datasets. To use the coefficients in everyday clinical practice, computers or online 

calculators are needed so that information can be inputted, the linear predictor calculated for 

that specific information and the probability of an event then estimated. For example, the 

Framingham study risk functions have been used for predicting cardiovascular disease events 

by different time points (2 years, 10 years, 30 years) for many years and have been turned into 

an interactive calculator (www.framinghamheartstudy.org) [147]. Risk calculators have also 

been developed in other areas such as the Antiretroviral Therapy Cohort Collaboration (ART-

CC) calculator that estimates progression rates to AIDS or death after starting Highly Active 

Antiretroviral Therapy (HAART) (www.art-cohort-collaboration.org) [148].  

Thus, there are two stages to building a score, the first is to develop the most appropriate 

prognostic model and the second is to use that to inform a score. The methods to turn a linear 

predictor into a score have not been widely discussed but each reviewed paper from the 

literature search was examined to identify the method used.  

The majority of the papers built a multivariable logistic regression model. Two used backwards 

elimination, two used forward selection, five did not specify how the model was developed 

(although one was indicated to be stepwise), one used positive and negative likelihood ratios 

and one used improvement in the C-statistic. Any integerised scores, if applicable, were then 

developed in a variety of ways including: CART modelling; assigning points that were 

approximately equivalent to log of the adjusted likelihood ratio; dividing all regression 

coefficients by the lowest one and rounding to the nearest integer; and considering the 

sensitivity and specificity of the presence or absence of the independent predictors (when all 

were binary).  

I decided that to reduce the loss of information that will happen when moving from a linear 

predictor to an integer bedside score, dividing each coefficient by the lowest coefficient within 

the linear predictor and rounding to the nearest integer would be most appropriate. This 

method has been used to develop a bedside score for meningococcal disease [79]. Categories 

were created for continuous variables based on the previously modelled fractional polynomial 
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functions to enable the bedside score to be practical and for integers to be linked with clinical 

measurements.  

 

2.5.1.7 Assessing value of additional predictors 

 

In comparing different models for discriminative ability, the c-index may not be the most 

useful tool, because the rank method by which the c-index is calculated does not differentiate 

the distance between prediction and outcome in the pairs it is evaluating [72]. A recently 

developed method is reclassification based on stratification of individuals into clinical 

categories on the basis of risk [149]. The new variables are then assessed on their ability to 

more accurately reclassify individuals into higher or lower risk strata (which are pre-defined). 

The statistics that are used for this new method are the net reclassification improvement (NRI) 

statistic, the integrated discrimination improvement (IDI) and discrimination slope (also known 

as Yates’ slope). The NRI is the net increase minus decrease in risk categories out of the 

number of patients with the outcome (cases), minus the net increase minus decrease out of 

the number of patients without the outcome (controls). This value is then compared against 

the null hypothesis of no change (0%) to give a p-value [149]. The discrimination slope is 

defined as the difference between mean predicted probabilities of the outcome for those with 

the outcome and the mean for those without the outcome, and the IDI is an alternative 

method to the NRI and is calculated as the difference in discrimination slopes between models 

[73]. As with the NRI an asymptotic test has been calculated for the null hypothesis of the 

IDI=0 to give a p-value [149]. These measures (NRI, IDI) have been shown to be useful to better 

compare the addition of new variable(s) or biomarker(s) to existing models.  

The disadvantages of the NRI and IDI is that they are less easily interpretable in disease areas 

where there are not useful clinical categories of risk that can be pre-specified (especially for 

the NRI) [149] and the NRI and IDI do not use information regarding the underlying probability 

of the event [150]. The IDI does not, though, require predefined risk thresholds as described in 

Moons K et al, Heart 2012 [76] “The IDI is looking at the estimated improvement in the 

average sensitivity of the basic model with addition of the new predictor minus the estimated 

decrease in the mean specificity, summarised over all possible risk thresholds.” 

Candidate predictors not consistently available across low-income settings could add value to 

the prognostic model when they are able to be measured and so models were built including 

these variables to examine their prognostic influence over and above the easily measured 
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bedside clinical variables already available. The NRI measure and IDI were calculated using 

logistic regression to see if the new model was better able to classify children into the 

appropriate risk strata.  
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2.5.2 Results 

 

2.5.2.1 Selecting appropriate candidate predictors 

 

Following Harrell’s guidance the FEAST dataset has a total of 315 deaths within 48 hours (297 

deaths in A and 18 in B), or 363 in total within 28 days (345 deaths in A and 18 in B) so a 

reasonable number of variables to include in the model would be 25-30 variables. 

There are 48 clinical variables available in the FEAST dataset (clinical variables are defined as 

not relying on the result of a test and being measured quickly at the bedside). If a variable is 

highly correlated to another variable or is not informative about the clinical state on admission 

(such as height) then it can be removed from further consideration. It is also important to 

consider the availability of the variable in the validation dataset and in these settings in 

general. A list of all 48 clinical variables is presented in Table 2.5.1, with discussions regarding 

variables that needed further consideration presented beneath the table.  
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Table 2.5.1: Description of candidate predictors for the regression model.  

Variable 
Candidate 

for model 

Reason if not using 

Age (months) X  

Axillary Temperature  X  

Blantyre Coma Scale 
 

See reason below 

Bulging fontenelle 
 

See reason below 

Capillary refill time X  

Capillary refill time >2s  
 

Dichotomised from continuous variable 

Cold hands and/or feet 
 

See reason below 

Conscious level X  

Cough X  

Crackles X  

Decreased skin turgor X  

Deep breathing X  

Diarrhoea  
 

See reason below 

Difficulty in breathing  X  

Epilepsy 

 

Potentially applicable to very few children and can 

be a subjective diagnosis. 

Ethnicity 
 

Too study specific and many categories 

Fits greater than 30 minutes in 

this illness 
X 

 

Fits in this illness X  

Fitting currently 
 

See reason below 

Fitting/convulsions at admission X  

Haemoglobinurea 

 

Not a widely known clinical measure and very rare 

at some sites.  

Head circumference 
 

Not informative regarding clinical state 

Heart rate X  

Height  
 

Not informative regarding clinical state 

History of fever  X  

History of fever of more than 14 

days   

Highly correlated with history of fever 

Indrawing X  

Jaundice 

  
X 

 

Liver size >2cm below costal 

margin 
X 
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Variable 
Candidate 

for model 

Reason if not using 

MUAC X  

Neck stiffness 
 

See reason below.  

Neck stiffness or bulging 

fontenelle (sign of meningitis) 
X 

 

Pupil symmetry 

 

12/3153 had this clinical feature so may not be 

informative and not available in validation dataset. 

Received a blood transfusion in 

this illness  

Describing prior treatment rather than clinical 

state.  

Respiratory distress X  

Respiratory rate X  

Severe pallor X  

Severe tachycardia 
 

Dichotomised from heart rate 

Sex X  

Site 
 

Study specific 

Sunken eyes X  

Systolic blood pressure 

 

To be evaluated following model building as not 

available in validation dataset.  

Temperature gradient X  

Vomiting X  

Was child able to sit unsupported 

before current illness  

Age – dependent variable  

Was child able to walk before 

current illness  

Age – dependent variable  

Weak pulse  X  

Weight X  

 

Blantyre Coma Score (BCS) or Conscious level 

Conscious level was measured in triage before randomisation in FEAST and was one of three 

options: alert, prostrate (inability to sit unsupported or to breastfeed if <9 months) or coma 

(inability to localise a painful stimulus). Blantyre Coma Score was assessed potentially up to an 

hour after randomisation but it may be a more comparable score to other sites/settings. This 

was investigated using the reviewed papers and scores. This is summarised in Table 2.5.2 

below.  
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Table 2.5.2: Definitions of impaired consciousness in reviewed papers.  

First Author Prostration: Coma: 

Maitland K 

(FEAST) [33]  

Inability to sit unsupported or to breastfeed 

if <9 months 

Inability to localise a painful 

stimulus.  

Evans J [62] age dependent inability of the child to 

suck, sit, stand or walk 
BCS≤2 

Planche T 

[109] 

BCS≤4 
BCS≤2 

Allen SJ [106]  BCS≤2 

Berkley J [47] Inability to sit unassisted (>1 year); inability 

to drink or breast feed (<1 year). 

(Impaired consciousness) 

Inability to localise a painful 

stimulus (>8 months); 

non­directed eye 

movements (<8 months). 

Marsh K [108] Patient is not in a coma but cannot sit  Patient is unable to localise a 

painful stimulus (>8 months) 

or no motor response after 

painful stimuli (<8 months) 

Roine I [110] Glasgow Coma Score in four levels (≤6, 7-9, 10-12, 13-15); 3 is deep coma 

and 15 is alert and awake.  

Newton C 

[104] 

Inability to sit  BCS≤2 (although not defined 

precisely as use all of BCS 

scale).  

Von Seidlein 

[103] 

defined as the inability to sit unsupported 

(for children over 6 months of age) or the 

inability to drink or breast-feed in younger 

children.  

BCS≤2 for children <2 years 

and GCS≤9 for older children 

Pollack M 

[117] 
Glasgow Coma Score <8 (stupor or coma).  
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From the summary table above it seems that prostration and coma are very similarly defined 

in studies and that the admission definition could be used as a more practical assessment than 

calculating the Blantyre coma score. Kilifi admissions has BCS recorded and also a text field 

called conscious level which has ‘unconscious, normal, prostrate, lethargic and agitated’ for 

99.93% in dataset (26 records have other text recorded). There is also a yes/no field for 

‘prostrate or unconscious’. There is a WHO definition for lethargic but it is not as serious as 

prostration, and conscious level and prostration can be very subjective [48]. When BCS and the 

admission definition of conscious level used in FEAST were compared using the FEAST data, the 

BCS indicated more children with coma and more classified as alert with fewer in the 

prostration category. For example, prostration according to the admission assessment was 

found in 61% and alert in 24%, whereas using BCS this was 38% for prostration and 41% alert. 

Coma was 15% in admission definition compared to 21% with BCS. Taking all these factors into 

consideration, I decided to use the admission definition of consciousness in FEAST in the model 

building process as it was recorded immediately on admission (whereas BCS was assessed after 

randomisation and potentially after the beginning of treatment). In the validation dataset, BCS 

was recoded as in the table above to reflect alert, prostrate and coma, as the Kilifi assessments 

(BCS and text field) were made at the same time, and the text field includes categories not 

used in the FEAST admission definition,  

Bulging fontenelle or neck stiffness or both 

As bulging fontenelle is applicable only to children ≤18 months then it would be useful to 

combine this with neck stiffness as they are describing a similar feature of meningitis. After 

discussions with a senior clinician it was felt they could be combined to be one variable.  

‘Cold hands or feet’ or temperature gradient  

Positive temperature gradient was defined by a notable temperature change from cold 

(dorsum of foot) to warm (knee) when running the back of the hand from the toe to the knee. 

The Kilifi admissions dataset does not have ‘cold hands or feet’ so I decided to use 

temperature gradient in preference to ‘cold hands or feet’.  
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Diarrhoea 

Diarrhoea was found in one other study to be a prognostic factor in mortality in children with 

leishmaniasis, but children with more than 3 watery stools in last 24 hours were excluded from 

FEAST, so I decided that it was not appropriate to use in building a model (and only 0.5% 

children in FEAST had diarrhoea).  

Difficulty breathing or respiratory distress or deep breathing or indrawing 

Respiratory distress yes/no was recorded at triage before treatment but difficulty breathing, 

deep breathing and indrawing were recorded up to one hour afterwards. Indrawing was found 

to be a significant predictor of mortality in Berkley’s paper and deep breathing was found to be 

a significant predictor in Roine’s paper. I therefore felt that both should be kept for the model. 

Difficulty breathing was not closely correlated with either respiratory distress or indrawing, but 

had a slightly larger correlation with respiratory distress. Thus all variables were included as 

candidates in the model.  

Fitting currently, fits at admission, or fits in this illness.  

In FEAST, fits at admission records whether the child was fitting when they were screened and 

being randomised. Fitting currently was evaluated when a full clinical examination was carried 

out and so for baseline purposes fits at admission would be a better variable to consider. They 

were the same for 3078/3146 (98%) observations.  

If fits at admission is considered to describe the current situation at baseline, then fits in this 

illness could be considered to describe the history. 738/2680 (27%) had fits in their illness but 

did not have fits at admission so this does not correlate closely, and so both fits in this illness 

and fits at admission were included as candidate predictors.  

Respiratory rate or respiratory distress  

As a continuous variable, respiratory rate has more information than respiratory distress and 

the WHO definition of ‘fast breathing’ can be calculated from respiratory rate. But ‘respiratory 

distress’ was defined simply in FEAST as ‘increased work of breathing’ so may not be 

measuring the same thing. Evans et al found respiratory distress defined as “irregular or deep, 

acidotic breathing” to be a significant predictor of mortality. Planche et al also found it 

significant in malaria slide-negative children using the definition of “presence of any of the 

following conditions: alar flaring, chest recession (intercostal or subcostal), the use of the 

accessory muscles, or abnormally deep breathing.” I therefore included both as candidates 

taking into account the fact that respiratory distress is a very practical simple bedside variable. 
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Weak pulse (radial) volume 

This was a dichotomised variable in the FEAST dataset. Although related to heart rate it 

appeared to be measuring something different as the distribution of heart rate split by weak 

pulse yes/no was very similar. Kilifi admissions dataset had three options for pulse volume – 

normal, bounding or weak, so bounding and normal categories together were joined for use in 

the validation dataset.  

Weight or weight-for-age 

As there was a wide range of ages included in the study, then weight-for-age may be a more 

meaningful parameter than weight as it gives an indication of possible malnutrition or wasting. 

Z score charts are available in some hospitals so in theory weight-for-age could be estimated at 

the bedside though it may be very approximate (and not always easily available) and would 

take time to calculate. Weight-for-height is also a good indicator of wasting or malnutrition but 

Mogeni et al [151] found that it is not necessary to measure both weight for height and MUAC. 

Thus weight was kept in the model as more intuitive and easy to measure than weight-for-age 

and MUAC was used as a measure of those with malnutrition/wasting in the model.  

All candidate predictors were evaluated in models estimating just their association with 

mortality adjusted for fluid arm (using the full trial data) and the results are presented in the 

table below. Candidate predictors were not discarded if they did not have an association with 

mortality at this stage [142]. The continuous variables were modelled with fractional 

polynomials – if only a linear effect is shown below, then there was no evidence (at p=0.05 

level) for non-linear effects.  
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Table 2.5.3: Univariable analyses in Cox Regression models of all candidate predictors.  

 

 

Mortality  

Hazard Ratio 

(HR) (95% CI)  

p-value 

for HR 

Age (months)a:  

√(age/100)  

(age/100)²   

  

1.15 (1.03-1.27) 

1.52 (0.99-2.33) 

0.01 

0.02 

Axillary Temperature 

(°C) 

 

  0.66 (0.61-0.71) <0.001 

Capillary refill time 

(seconds) 

 

  1.91 (1.71-2.14) <0.001 

Conscious level  Alert 23/742 (3%)     

                         Prostrate 166/1949 (9%) 2.77 (1.79-4.29) <0.001 

                               Coma 126/476 (26%) 9.47 (6.07-14.78) <0.001 

Cough                     No 87/891 (10%)     

                          Yes 227/2274 (10%) 1.03 (0.80-1.32) 0.82 

Crackles                 

 

No 

Yes 

195/2463 (8%) 

116/699 (17%) 

  

2.18 (1.73-2.74) 

  

<0.001 

Decreased skin turgor  

 

No 

Yes 

266/2972 (9%) 

46/192 (24%) 

  

2.91 (2.12-3.98) 

  

<0.001 

Deep breathing  

 

No  

Yes 

47/1122 (4%) 

265/2041 (13%) 

  

3.23 (2.37-4.41) 

  

<0.001 

Difficulty in breathing  

 

No 

Yes 

54/857 (6%) 

260/2308 (11%) 

  

1.84 (1.38-2.47) 

  

<0.001 

Fits >30mins in this 

illness  

 

No  

Yes 269/2903 (9%) 

41/246 (17%) 

  

1.83 (1.32-2.54) 

  

<0.001 

Fits in this illness  

 

No  

Yes 

175/1973 (9%) 

137/1187 (12%) 

  

1.29 (1.03-1.62) 

  

0.03 

Fitting/convulsions at 

admission  

No  

Yes 

257/2689 (10%) 

56/463 (12%) 1.27 (0.95-1.69) 

  

0.11 
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Mortality  

Hazard Ratio 

(HR) (95% CI)  

p-value 

for HR 

Heart rateb:  

(heartrate/100)² 

(heartrate/100)²xln(heartrate/100)   

  

0.07 (0.04-0.11) 

12.39 (6.67-

23.02) 

<0.001 

<0.001 

History of fever  

 

No 

Yes 

2/16 (13%) 

313/3152 (10%) 

  

0.80 (0.20-3.23) 

  

0.76 

Indrawing  

 

No 

Yes 

71/1014 (7%) 

241/2150 (11%) 

  

1.65 (1.26-2.15) 

  

<0.001 

Jaundice   

 

No 

Yes 

172/2149 (8%) 

142/1014 (14%) 

  

1.82 (1.46-2.27) 

  

<0.001 

Liver size >2cm below 

costal margin                                                                             

No 

Yes 

150/1886 (7%) 

162/1124 (14%) 

  

2.02 (1.62-2.53) 

  

<0.001 

MUAC (cm)    0.86 (0.78-0.94) 0.001 

Neck stiffness or 

bulging fontenelle                               

No 

Yes 

297/3083 (9%) 

14/80 (18%) 

  

1.86 (1.09-3.18) 

  

0.02 

Respiratory distress  

 

No 

Yes 

25/547 (5%) 

289/2610 (11%) 

  

2.53 (1.68-3.80) 

  

<0.001 

Respiratory ratec:  

ln(resprate/100) 

(ln(resprate/100))²   

  

4.38 (1.91-10.07) 

2.55 (1.59-4.09) 

0.001 

<0.001 

Severe pallor  

 

None 

Eyes or 

tongue 

All 

91/1550 (6%) 

61/501 (12%) 

 

161/1109 (15%) 

  

2.12 (1.54-2.94) 

2.62 (2.03-3.39) 

  

<0.001 

<0.001 

Sex  

 

Male 

Female 

167/1705 (10%) 

148/1465 (10%)  

  

1.03 (0.83-1.29)  

  

0.79 

Sunken eyes  

 

No 

Yes 

292/3067 (10%) 

19/96 (20%) 

  

2.11 (1.33-3.36) 

  

0.002 

Temperature Gradient  

 

No  

Yes 

72/1287 (6%) 

243/1883 (13%) 

  

2.41 (1.85-3.13) 

  

<0.001 
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Mortality  

Hazard Ratio 

(HR) (95% CI)  

p-value 

for HR 

Vomiting  

 

No  

Yes 

131/1536 (9%) 

183/1628 (11%) 

  

1.34 (1.07-1.68) 

  

0.01 

Weak pulse   

 

No 

Yes 

154/2490 (6%) 

161/680 (24%) 

  

4.29 (3.44-5.36) 

  

<0.001 

Weight (kg)d:  

weight/10 

 1/(weight/10)   

  

2.17 (1.30-3.61 

1.47 (0.91-2.39) 

0.002 

0.003 
a This gives a L-shaped overall function with a small decline to 30 months and then a steady increase.   
b This gives an u-shaped overall function with a clear long decline from 50 – 150 beats per min and then an increase 

from 150 bpm.   

c This gives an u-shaped overall function with a very steep decline from 20-60 breaths per min, then a gradual but 

clear increase after this point.  
d This gives an u-shaped overall function with a steep decline from 2-11 kg and then a gradual increase from this 

point.  

 

Candidate predictors were also examined to check for any interactions with the treatment 

arms. The variables presented below had a p-value<0.1, following a likelihood ratio test to 

examine interactions between the fluid allocation and exposure variable. The HR per fluid arm 

category was presented to examine the evidence for an interaction further.  
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Table 2.5.4: Univariable analyses of potential interactions between candidate predictors and 

randomisation arm.  

  HR (95% CI) p-value for HR 

p-value for 

interaction  

Respiratory distress  

yes vs no     0.07  

- Albumin 1.68 (0.94-2.98) 0.08   

- Saline 5.33 (2.18-13.07) <0.001   

- Control  2.13 (0.98-4.63) 0.06   

Deep breathing  

yes vs no      0.02 

- Albumin 1.99 (1.28-3.09) 0.002   

- Saline 5.19 (2.86-9.43) <0.001   

- Control  4.07 (2.09-7.92) <0.001   

Bulging fontenelle or stiff neck  

yes vs no      0.03 

- Albumin 0.35 (0.05-2.52) 0.3   

- Saline 2.76 (1.34-5.65) 0.006   

- Control  2.81 (1.13-6.96) 0.03   

 

The hazard ratios show that having respiratory distress or deep breathing still increases the 

hazard for mortality but sometimes more for one particular arm than the other arms. Bulging 

fontenelle or stiff neck appears protective for those in the albumin arm but there was a wide 

confidence interval and a small number of children in this group with events – mortality for 

those with bulging fontenelle or a stiff neck was 1/24 (4%) for albumin, 8/29 (28%) for saline 

and 5/27 (16%) in the control group. Mortality for those without bulging fontenelle or a stiff 

neck was very similar to the overall mortality distribution. The interactions were all ≥0.02 and 

the majority of effect estimates were in the same direction and so I decided to use an overall 

estimate for candidate predictors in the models.  
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2.5.2.2 Data handling decisions  

 

Bulging fontenelle has been combined with stiff neck as they represented a similar 

physiological sign and bulging fontenelle was age-dependent so had a lot of missing data; 

combining it with stiff neck gave a new variable with missingness at <1%.  

Severe pallor was reduced from four categories to three categories by combining palmar with 

tongue or conjunctiva to give a middle category for ‘some pallor’ which compares with 

categories ‘none’ or ‘all’. This was to make this variable more similar to the validation dataset 

which does not specify where the pallor is.  

Correlations between continuous candidate predictors were also examined in a matrix plot 

(Figure 2.5.1). This identified 4 outliers in temperature, MUAC and respiratory rate when 

plotted with age and weight. These were truncated at the maximum of the distribution for the 

six month interval around their age. The matrix plot was then redrawn and showed that, as 

expected, weight, age and MUAC were highly correlated (with spearman correlations of 0.89 

for age and weight, 0.50 for MUAC and age, and 0.67 for MUAC and weight), and heart rate 

had weak correlation with respiratory rate (0.42) and temperature (0.41). 

The distributions of the continuous variables were also examined and summarised. The table 

shows that the distributions were approximately normal with no strong skewedness or 

kurtosis. 

Table 2.5.5: Distributions of continuous candidate predictors.  

Variable Mean SD Min Max Skewedness kurtosis missing (%) 

Axillary Temperature (°C) 38.07 1.27 30.2 41.8 -0.52 3.50 <1% 

Respiratory rate (breaths 

per min) 

57.73 15.23 10 140 0.36 3.70 <1% 

Age (months) 29.86 23.77 2 144 1.77 6.81 0% 

Weight (kg) 11.16 4.01 2.9 34 1.53 7.05 <1% 

MUAC (cm) 14.74 1.60 9 26 0.34 4.77 6% 

Heart rate (beats per min) 166.03 26.15 37 254 -0.93 5.31 <1% 

 

Due to the amount of missing data, and that missing data occurring disproportionately in those 

that died, MUAC was not included in the initial model building process (MUAC was missing in 

126/315 (40%) children who died before 48 hours).  
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Figure 2.5.1: Matrix plot of continuous candidate predictors.  

 

 

Fractional polynomials were used to model the association between continuous variables and 

mortality in both univariable and multivariable models. Consideration of the strong correlation 

between weight, age and MUAC was taken into account when evaluating these variables in the 

model. Although useful to examine the functions that were selected in univariable models for 

continuous variables, the most appropriate function is best found as part of the model building 

process in the full multivariable model because this fully adjusts for confounding.  

 

2.5.2.3 Selecting a final regression model  

 

All the candidate variables were included in a multivariable Cox regression model with the 

outcome of death by 48 hours. Time was measured in hours and observations were censored 

at time of death, time of absconding or 48 hours from randomisation, whichever was the 

earliest. There were 16 children who were censored alive before 48 hours (0.5%) and 315 

deaths before 48 hours in the FEAST trial dataset. MUAC was also initially included in the 

model but as this reduced the number of events for the model (from 315 events to 189) 

disproportionately to the amount of missing data in that variable (6% missing overall), I 
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decided that it would be better explored with multiple imputation after the main clinical 

model has been developed and it was therefore not included in complete case analyses for a 

clinical model.  

The backwards elimination process started with the 25 clinical variables described above, and 

3056 observations with observed values for all of them (96% of total observations) of which 

there were 296 deaths (10%)). Missingness was spread across the candidate predictors but 

was never more than 17 observations within one variable (<1%). The model was always 

adjusted for randomisation arm ie this variable was not made available for selection (although 

remained statistically significant). The Royston and Altman model-selection algorithm was 

used which increases the power to detect non-linear relationships [152]. For a given degree d 

of fractional polynomial (FP), all FPd models are fitted by maximum likelihood and the power 

vector maximising the likelihood is selected as the best-fitting (for the discrete powers 

considered). The steps in the algorithm are: Firstly, FP2 functions are evaluated to find the best 

function as described above, then the best FP2 function in the model is tested against the best 

FP1 function (found using the process described above) at an appropriate significance level 

called alpha (0.05 is used here). If it is significant then the best FP2 function is kept, if not then 

the best FP1 function is tested against a straight line (or linear relationship) at the alpha 

significance level. If this is significant then the straight line is tested against omitting the 

variable from the model at the model selection significance level. If this is significant then the 

function is a straight line, otherwise the variable is dropped.  

The variables that were found to be independently associated with mortality in the first model, 

with the model and alpha significance level both set at 0.05, were temperature, weight, heart 

rate, capillary refill time, weak pulse, conscious level, respiratory distress, deep breathing, 

crackles and severe pallor. Age was not kept in the final model, but as it was an a-priori 

confounder a model was re-fitted where age (in months) was kept in the model and not 

included in the selection process. This gave coefficients that suggested opposite effects of 

weight and age, probably as they are so highly correlated. Thus, although age and weight were 

key variables, their co-linearity gave contradictory model results, suggesting over-fitting when 

both were included, indicating that only one should be retained. The relationship between age 

in months and weight was examined further by fitting univariable models to find the best 

fitting fractional polynomial model without adjustment for other variables. These were found 

to be linear functions with increasing weight or age associated with lower mortality.  

The residuals of models with just age and weight, and then each one with all candidate 

predictors included, were examined. Weight was strongly associated with mortality at the low 
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end of the distribution (babies and toddlers) but other predictors were stronger when weight 

was above approximately 10kg and this association remained in the models with all candidate 

predictors (except age). The fractional polynomial chosen was an FP1 function of 1/(weight)2.  

Weight-for-age was also considered as a solution to the difficulties of age and weight being 

highly correlated. The weight-for-age z-score can be estimated at the bedside by examining 

charts which are available in most hospitals as it is a key measurement of malnutrition. It was 

calculated for the dataset using the WHO Child Growth Standards 2006 (and 2007 extension 

for 5-19 year olds) [153, 154]. But when weight-for-age was evaluated in models including the 

candidate predictors it was not retained during the stepwise process and did not have a strong 

independent association with mortality once adjusted for other factors. Thus, as weight had a 

stronger association with mortality, especially for those with weight<10kg, the FP1 function for 

weight was kept in the model and age was not kept.  

In models with the other candidate predictors, adjusted for randomisation, heart rate had an 

association with mortality as an FP2 function (quadratic plus quadratic multiplied by the log 

function) as shown in Figure 2.5.2. This function may have been influenced by outliers, which 

can have large impact on the fractional polynomial function chosen in the model. Thus the 

influence of values in the 1st and 99th percentile of heart rate, as well as weight, axillary 

temperature, and respiratory rate were closely examined through histograms and by plotting 

the data and the fit of the model. Truncation is one method to reduce influence of outliers 

whilst retaining the observations in the model and can be used to reduce their impact and for 

heart rate especially it was important to consider this. Thus the model was also fit with heart 

rate truncated at the 1-99th percentiles of the distribution and restricting the highest FP power 

to 2. The values <76 (to the minimum of 46) were changed to 76 and values >216 (up to the 

maximum of 254) were changed to 216 (n=61 changed altogether). This gave a linear function 

for heart rate. It is important to note that values above the 99th or below the 1st percentile are 

possible in this population (as bradycardia is defined as <80 beats per minute, and severe 

tachycardia for the youngest age group (<12 months) is >180 beats per minute) and so care 

needs to be taken when truncating setting such values to missing. Piecewise linear functions 

were also considered for heart rate and weight in the models to help with simplifying the 

functions for ease of use in hospitals and to be intuitive for clinicians to understand what the 

fractional polynomial effects mean.  

Taking all these factors together, I decided not to truncate heart rate and so it was retained in 

the model as a FP2 function of (heart rate/100) 2 + (heart rate/100)2 log(heart rate/100) as 

including the information from the extreme values was important in this population, despite 
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the fact these values may be exerting undue influence. Weight was retained as described 

above and axillary temperature and capillary refill time were modelled as linear functions (as 

chosen by the FP model selection procedure). These functions were plotted against the data 

points and are presented in Figure 2.5.2.  

Figure 2.5.2: Fitted fractional polynomial functions for weight and heart rate plotted against 

the data points.  

 

The elimination process is outlined in Table 2.5.6, indicating which variables were entered into 

the model for selection and which remained and, for the continuous variables, which function 

was most appropriate.  
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Table 2.5.6: Backwards elimination stepwise process using fractional polynomials for 

continuous functions.  

Variable  Status Powers Transformation  

Axillary temperature in  1   

Respiratory rate out     

Gender out     

Age (months) out     

Weight (kg) in  -2 1/(weight/10)2 

Heart rate in  2 2 

 (heart rate/100)2+ 

(heart rate/100)2log(heart rate/100) 

Capillary refill time (s) in  1   

Temperature gradient  out     

Weak pulse in  1   

Conscious level in  1   

Respiratory distress in  1   

Cough out     

History of fever out     

Vomiting out     

Jaundice out     

Fits out     

Fits for longer than 30 minutes out     

Fits at admission Out     

Indrawing Out     

Deep Breathing in  1   

Crackles in  1   

Liver size >2cm below costal 

margin Out     

Skin turgor Out     

Bulging fontenelle or stiff neck Out     

Severe pallor  in  1   

Note: none of the variables were truncated.  
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The model that was selected from the candidate predictors using 3096 complete cases for all 

variables was refitted to the complete case data with just the selected variables, and is 

presented in Table 2.5.7 below with the hazard ratio, coefficient and 95% confidence interval 

for the coefficient. The model had 3121 observations (98% of total sample size) and 306 

deaths.  

Table 2.5.7: Final clinical model coefficients for linear predictor.  

Variable 

Hazard 

Ratio* Coefficient* 

95% 

Confidence 

Interval for 

coefficient 

Wald 

test  

p-value  

Axillary temperature  

(per 1°C increase) 0.85 -0.16 (-0.25, -0.07) <0.001 

1/(weight/10)² 1.129 0.18 (0.07, 0.28) 0.001 

(Heart rate/100)² 0.25 -1.39 (-1.97, -0.81) <0.001 

(Heart rate/100)²ln(heart rate/100) 3.64 1.29 (0.69, 1.90) <0.001 

Capillary refill time (s) 1.22 0.20 (0.07, 0.34) 0.004 

Weak pulse 1.93 0.66 (0.41, 0.92) <0.001 

Conscious level  2.23 0.80 (0.59, 1.01) <0.001 

Respiratory distress 1.81 0.59 (0.12, 1.06) 0.013 

Deep breathing 1.49 0.40 (0.04,0.76) 0.029 

Crackles 1.87 0.63 (0.38, 0.87) <0.001 

Severe pallor 1.62 0.48 (0.20, 0.76) 0.001 

* Adjusted for fluid arm and all other variables in the model.  

The linear predictor was calculated for each child and used to investigate the discriminatory 

ability of the model. It was rounded to the nearest 0.1 (to enable the AUROC to be calculated 

more easily) and non-parametric AUROC was calculated and plotted in Figure 2.5.3. The 

AUROC was 0.81 (0.79-0.84).  

The observed mortality risk was also examined by splitting the data into quartiles of this linear 

predictor. Figure 2.5.3 shows that the group with the highest predicted risk has a much higher 

cumulative probability of death (26% at 48 hours) compared to the other groups and thus has 

been separated out reasonably well. The medium-high risk quartile has a cumulative 

probability of death at 48 hours of 9% and is also separated out from the lowest risk (1% at 48 

hours) and medium-low risk groups (3% at 48 hours).  
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Figure 2.5.3: a) Area under ROC curve plot and b) cumulative probability of death estimated 

from the linear predictor. 

a)  

 
 

b) 

 
 

 

2.5.2.4 Sensitivity analyses around final clinical regression model  

 

As there was a very small percentage of missing data in the clinical model (49/3170 (2%), 9 

deaths), multiple imputation with chained equations was used to impute data and ensure that 

the coefficient estimates did not differ widely when compared to the complete case analysis. 

Categorical ordered variables were imputed with ordered logistic regression (there were no 

categorical unordered variables), binary variables with logistic regression, skewed variables or 

those transformed for the analysis model were imputed in their transformations with 

predictive mean matching drawing from the nearest 10 neighbours, and other continuous 

variables were imputed with linear regression [155]. Cox Regression was used to recreate the 

final model adjusting the coefficients and standard errors by Rubin’s rules [156]. The 

coefficients and 95% confidence intervals differed by less than 0.01 for their values in the 

model confirming the validity of the complete case analysis.  

 Other sensitivity analyses included examining the impact of censoring on the model building 

process as I used survival data and Cox regression models in comparison to logistic regression 

models which are commonly found in prognostic model building. The multivariable logistic 

regression model found using backwards elimination with a selection level of 0.05 included all 

of the same variables as the Cox regression model apart from weight. But when this was added 

back into the final model as 1/(weight)², the Wald test p-value was 0.014. The selection of the 

same variables was as expected given the very small amount of censoring in this dataset.  
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The survival analysis examined mortality over 2 days (from randomisation to 48 hours) and 

was measured in hours, as death by 48 hours was the endpoint of the trial. Not all datasets 

may have such accurate data and so logistic regression with the outcome of mortality within 2 

calendar days of admission was examined to make the outcome more comparable with other 

datasets. For the FEAST data this made little difference to the coefficients and only added 11 

deaths to the 315 that had already occurred by 48 hours.  

It is also of interest to understand the predictive ability of the overall model in different sites 

across the trial. The AUROC for the linear predictor is presented per site in Table 2.5.8 below. 

There was, as expected, some variability in the AUROC estimate between 0.77 and 0.90 but 

these were not correlated with higher mortality rate or size of site.  

Table 2.5.8: Area under ROC curve values for different trial sites estimated from the linear 

predictor.  

Site Mortality 

AUROC for 

linear predictor 

Kilifi 21/215 (10%) 0.81 (0.71-0.91) 

Mulago 60/732 (8%) 0.78 (0.72-0.84) 

Soroti 58/623 (9%) 0.77 (0.70-0.84) 

Lacor 37/230 (16%) 0.90 (0.84-0.96) 

Mbale 111/1226 (9%) 0.84 (0.81-0.88) 

Teule 19/95 (20%) 0.83 (0.74-0.91) 

 

2.5.2.5 Moving from a regression model to a bedside score  

 

To move from a prognostic model to a clinical score I used the method of dividing the 

coefficients in the linear predictor by the lowest coefficient and so each coefficient needed to 

link to a subset of children in the dataset. This was straightforward for categorised variables 

but the continuous variables needed to be categorised.  

Piecewise linear functions were fitted for weight and heart rate and the profile log likelihood 

was maximised to find the two knots for heart rate and one knot for weight. The log likelihood 

was maximised at heart rate of 105 and 220 beats per minute and a weight of 10kg.  

As bradycardia is defined as <80 beats per minute this cut-off was used to create one category 

for heart rate, the next was a category from 80 up to the knot of 105 beats per minute, a 
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category for normal heart rate and then a category for very high heart rate as identified above. 

So heart rate categories were <80, 80-105, >105 - <220, ≥220 beats per minute. See graph in 

Figure 2.5.4 below.  

Figure 2.5.4: Linear predictors from different functions for heart rate 
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As the knot for weight as a linear piecewise function was at 10kg then the base category was 

created to include all children with a weight >10kg. It was felt there would be too many 

categories if all integers under 10kg were considered separately and so 2kg increments were 

examined. The numbers in each 2kg category become very few when weight ≤6kg (n=153) and 

so this was created as one category. Then the other categories were 6.1 – 8kg and 8.1 – 10kg. 

See graph in Figure 2.5.5 below.  

Figure 2.5.5: Linear predictors from different functions for weight 
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The variable axillary temperature was modelled as linear and so known clinical cut-offs were 

considered when categorising this variable for a bedside score. Hypothermia is usually defined 

as a temperature <36.0°C and this was used for the first category, and then an increase by one 

degree to 37.0 for the second category. When more categories were created beyond this cut-

off in one degree groups the Wald test p-values were >0.1 and the coefficients would be too 

small when points are allocated for the score, and so one category for all those >37.0°C was 

created (Figure 2.5.6). 

The variable capillary refill time was also modelled as linear. The lowest group was 1 second 

which forms the baseline, and then 2 seconds and 3 seconds were considered as separate 

categories, and then as there were very small numbers at 4 and 5 seconds these were 

combined together to give the categories 1 second , 2 seconds, 3 seconds, 4 or more seconds 

(Figure 2.5.6).  

 

Figure 2.5.6: Linear predictor functions for axillary temperature and capillary refill time  

Axillary temperature 

 

Capillary refill time 
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Table 2.5.9: Clinical bedside score 

Variable  
Coefficient/0.179 

Score given if 

present 

Maximum possible 

score 

Weight ≤6.0kg  2.53 3 

3 Weight 6.1-8kg 1.66 2 

Weight 8.1-10kg 1 1 

Axillary temperature 36.1-37.0 2.68 3 
4 

Axillary temperature ≤36.0  4.32 4 

Heart rate <80 7.54 8 

8 Heart rate ≥80- <105bpm 4.13 4 

Heart rate ≥220 bpm  6.76 7 

Capillary refill time 2s  2.56  3 

4 Capillary refill time 3s 3.13 3 

Capillary refill time 4 or more seconds 3.96 4 

Conscious level – prostrate 4.41 4 
9 

Conscious level – coma 8.8 9 

Deep breathing 2.26 2 2 

Respiratory distress 3.17 3 3 

Severe pallor 2.46 2 2 

Crackles/lung crepitations 3.37 3 3 

Weak pulse 3.74 4 4 

Total   42 

 

The integer score was then evaluated on the FEAST data to examine its discriminative ability 

and values of the score ranged from 3 to 39. It gave an overall AUROC of 0.81 (95% CI 0.78-

0.83) as seen in Figure 2.5.7. This shows that there was very little information lost when the 

integer score is used rather than the linear predictor.  
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Figure 2.5.7: a) Area under ROC curve plot for clinical bedside score and b) cumulative 

probability of death over time from randomisation. 

a) 

 
 

b) 
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Table 2.5.10: The FEAST PET score 

 *Coefficient from linear predictor of multivariable cox regression model on complete cases adjusted for 

randomisation arm which was not included in the score. 

 

The FEAST PET score was then internally validated on the control arm data giving an AUROC of 

0.83 (95% CI 0.77-0.87) (Figure 2.5.8).  

Factor  Coefficient (95% CI) 

from multivariable 

model* 

p-value from 

multivariable 

model 

Score 

value 

given if 

present 

Maximum 

possible 

value for 

PET score 

Axillary temperature: ≤37°C 0.63 (0.38-0.87) <0.001 1 1 

Heart rate: <80bpm (bradycardia) 1.34 (0.92-1.77) <0.001 2 

2  ≥80- <105bpm 0.70 (0.11-1.30) 0.02 1 

 ≥220 bpm (severe tachycardia) 1.34 (0.92-1.77) <0.001 2 

Capillary refill time: 2 or more seconds  0.53 (0.21-0.85) 0.001 1 1 

Conscious level:  prostrate 0.68 (0.23-1.13) 0.003 1 
2 

                coma 1.53 (1.06-2.00) <0.001 2 

Respiratory distress 0.55 (0.07-1.02) 0.02 1 1 

Lung crepitations 0.60 (0.36-0.85) <0.001 1 1 

Severe pallor 0.49 (0.22-0.76) <0.001 1 1 

Weak pulse 0.73 (0.48-0.97) <0.001 1 1 

Weight: <6kg 

 6-8kg 

0.41 (-0.05-0.88) 

0.21 (-0.03-0.45) 

0.08 

0.09 
- - 

Deep breathing 0.42 (0.06-0.77) 0.02 - - 

Total    10 
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Figure 2.5.8: Area under ROC curve plot for FEAST PET score on FEAST control arm data. 

 

 

2.5.3  Evaluating the addition of other candidate predictors – a ‘clinical plus’ score 

 

As the score does not have as high as might be expected AUROC in the development dataset it 

was felt that other variables could be considered as candidate predictors and they might 

improve the model. These other variables were also measured, with the result being available 

‘at the bedside’ rather than having to be sent to a local laboratory, but may have had larger 

amounts of missing data compared to those used in the clinical score meaning a complete case 

analysis was potentially biased.  

Multiple imputation was therefore used to evaluate these variables in the model. The 

candidate variables included those measured using the i-STAT machine: sodium (mmol/L), 

potassium (mmol/L), chloride (mmol/L), pH, BUN (mg/dL), base excess (mmol/L), PCO2 (mmHg) 

and TCO2 (mmol/L). It also included variables not measured using the i-STAT machine: 

haemoglobin (g/dL), malaria test result (positive or negative), oxygen saturation (%), mid-

upper arm circumference (MUAC) (cm), systolic blood pressure (mmHg), blood sugar (glucose) 

(mmol/l), lactate (mmol/L), and HIV result (positive or negative). 

Multiple imputation with the clinical variables and the additional laboratory variables 

described above was carried out to create 25 datasets.  Heart rate was imputed as an FP2 

function as this was the function that was found in complete case analyses with very few 

missing values. Weight was also used in the imputation model as an FP1 function from 

complete case analyses, and other variables were included as in the sensitivity analyses in 
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section 2.5.2.4. There was more missing data in general in the laboratory variables with 

greater proportions of missing data for those that died compared to those that lived in some 

variables (MUAC, sbp, and oxygen saturation). Thus choosing appropriate functions from 

complete case analyses would be more prone to bias for these variables and so in the 

imputation models all the continuous laboratory and additional variables were not 

transformed and were imputed using predictive mean matching (PMM). As PMM was used, 

fractional polynomials were restricted to FP1 functions in the multivariable fractional 

polynomial model building process, as methods to adapt the mfp command in imputed data to 

higher FP powers have not been developed yet. Imputed and observed values were compared 

visually to check ranges. 

As the AUROC measure is not as useful to compare models directly, the Net Reclassification 

Index (NRI) was used to evaluate the additional variables in the model. Logistic regression was 

used to calculate the NRI in each dataset and 4 risk categories were created with arbitrary cut-

offs at 5%, 10%, and 15% for 48 hour mortality. The range and mean of the NRI across the 25 

imputed datasets was used to assess whether the additional laboratory variables could be 

usefully added to the clinical bedside variables already included in the FEAST PET score.  The 

range of calculated NRI measures across multiple imputations was presented, because 

methods to formally combine estimates of NRI and IDI in multiply-imputed data have not yet 

been described in the literature. Backwards elimination (with an exit threshold mean p=0.05 

calculated from all imputed datasets), including all laboratory markers, was then used to 

identify those with the largest NRIs (Table 2.5.11). 
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Table 2.5.11: Net Reclassification Index ranges across 25 imputed datasets for candidate 

laboratory markers when added individually and in combination to the clinical model. 

Univariable analyses (added 

individually to clinical model)    

  NRI range 

Two-sided  

p-value range  Mean p-value 

Lactate 20.4-23.1% <0.001 <0.001 

TCO2 (mmol/L) 18.2-23.0% <0.001 <0.001 

pH 13.8-19.7% <0.001 <0.001 

BUN 9.9-16.4% <0.001 <0.001 

Base excess 18.3-23.4% <0.001 <0.001 

Potassium 6.3-11.8% <0.001-0.03 0.003 

HIV positive 2.4-6.0% 0.004-0.2 0.03 

Glucose 2.8-5.3% 0.015-0.2 0.08 

Oxygen Saturation  1.1-5.3% 0.001-0.4 0.08 

Malaria positive**  2.3-5.4% 0.02-0.3 0.1 

Systolic Blood Pressure 2.0-3.4% 0.02-0.2 0.1 

Haemoglobin  1.1-3.3% 0.04-0.6 0.2 

Chloride  1.2-7.6% 0.002-0.6 0.2 

PCO2 -0.9-4% 0.01-1.0 0.3 

Sodium -1.1-2.3% 0.07-1.0 0.6 

Factors identified through 

backwards elimination process, 

included multivariably*.    

Lactate 10.6-16.7% <0.001 <0.001 

BUN 3.1-8.2% <0.001-0.11 0.02 

pH 2.9-9.0% <0.001-0.22 0.03 

    

Combined effect of Lactate, 

BUN and pH 24.6-28.9% <0.001 <0.001 

* NRI’s calculated from one multivariable model considering each factor separately, and then adding all three  

together to the clinical model to estimate the NRI’s for a combined effect.  

** As defined in the FEAST Statistical Analysis Plan 

Using backwards elimination including clinical factors and all laboratory markers, lactate, BUN 

and pH added independent information to the FEAST PET score, as shown in Table 2.5.11 
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above. These variables were then categorised using appropriate clinical cut-offs and added to 

the clinical score. This extended the range to 0-14 and created the FEAST Paediatric Emergency 

Triage and Laboratory score (FEAST PETaL) (Table 2.5.12). 

Table 2.5.12: FEAST Paediatric Emergency Triage (PET) score and the FEAST Paediatric 

Emergency Triage and Laboratory (PETaL) score. 

Factor  Coefficient (95% 

CI) from 

multivariable 

model* 

Score 

value 

given if 

present 

Maximum 

possible 

value for PET 

score 

Maximum 

possible 

value for 

PETaL score  

Axillary temperature: ≤37°C 0.63 (0.38-0.87) 1 1 1 

Heart rate: <80bpm (bradycardia) 1.34 (0.92-1.77) 2 

2 

2 

 ≥80- <105bpm 0.70 (0.11-1.30) 1 

 ≥220 bpm (severe tachycardia) 1.34 (0.92-1.77) 2 

Capillary refill time: 2 or more seconds  0.53 (0.21-0.85) 1 1 1 

Conscious level:  prostrate 0.68 (0.23-1.13) 1 
2 

2 

  coma 1.53 (1.06-2.00) 2 

Respiratory distress 0.55 (0.07-1.02) 1 1 1 

Lung crepitations 0.60 (0.36-0.85) 1 1 1 

Severe pallor 0.49 (0.22-0.76) 1 1 1 

Weak pulse 0.73 (0.48-0.97) 1 1 1 

Weight: <6kg 

 6-8kg 

0.41 (-0.05-0.88) 

0.21 (-0.03-0.45) 
- - 

 

Deep breathing 0.42 (0.06-0.77) - -  

Total   10  

Additional laboratory values to be added if 

measured  

 
  

 

Lactate >5mmol/l 1.12 (0.79-1.46) 2  2 

pH<7.2  0.97 (0.69-1.25) 1  1 

BUN > 20 mg/dl 0.58 (0.26-0.90) 1  1 

Total (laboratory score)    14 

*Coefficient from linear predictor of multivariable cox regression model on complete cases. First section 

includes clinical factors only. Second section (laboratory values) adjusted for all clinical factors. 

Multivariable model also adjusted for randomisation arm which was not included in the score. 
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 Rubin’s rules were used to combine AUROCs from the multiply imputed datasets to validate 

the PETaL score in the FEAST control arm data [145] and gave 0.86 (95% CI 0.82-0.90).  

 

2.5.4 Conclusions  

 

An AUROC value of 0.81 indicates that the clinical bedside score has good discriminatory ability 

but this could be expected for the data that the score was developed from. As the model 

should be optimistic for the data that it was built with, the AUROC value might even have been 

expected to be higher. There was not a large loss of information when moving from using the 

linear predictor to using an integer score for particular categories, nor when reduced further to 

create the FEAST PET score, as the AUROC values were very similar. This suggests 

intergerisation and category reduction is not the cause of the slightly poorer than expected 

performance.  

The discriminative ability of the clinical bedside score varied a little by site involved in the trial, 

with the AUROC ranging from 0.77 (Soroti, Uganda) to 0.90 (Lacor, Uganda). However, the 

variation was not obviously related to size of the site nor mortality rate and so no clear pattern 

emerged from this comparison. There could be variability in the underlying causes that 

brought children to hospital when comparing sites; for example, in Uganda there is a much 

higher incidence of haemoglobinurea (dark or red coloured urine) which may impact mortality 

in Soroti and Mbale but not at other sites and was thus not included in the model because it 

was less relevant elsewhere. However, these two sites have different values of AUROC 

themselves. Other underlying diseases may have more impact on the discriminative ability of 

the score and were simply not predicted well by the clinical observations. 

Nevertheless, the model covers a variety of presentation syndromes and takes into account 

neurological disorders on admission with the inclusion of conscious level, respiratory 

presentation with the inclusion of deep breathing, crackles and respiratory distress, and severe 

shock or acidosis on admission with the inclusion of weak pulse, capillary refill time, and 

severe pallor[157]. This is reassuring as children included in the trial had a variety of diagnoses 

and the model would be expected to reflect this situation.  

The FEAST PET score improves on the clinical bedside score by reducing the maximum of the 

score to 10, reducing each score value to either 1 or 2 and reducing the number of factors that 

need to be measured. This should make it more appealing and thus more useful to clinical staff 

working in triage but also for staff working in research if it is used for stratification or as part of 
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entry criteria for a trial or research study. It retained a good discriminatory ability when 

validated on the control arm data with an AUROC value of 0.83, similar to that of the clinical 

bedside score.  

The three laboratory measures (lactate, BUN, and pH) that were added to the PET score based 

on their NRI gave a slightly higher AUROC of 0.86 in the derivation dataset but this was not 

significantly different from the PET score, thus showing that clinical models could be sufficient 

for a good score. It also highlights that improving prediction does not always improve ability to 

discriminate children at high and low risk.  

 

2.6 Validating the scores in the Kilifi dataset  
 

The Kilifi admissions dataset was identified as an appropriate validation dataset for the 

prognostic model and score as the hospital was a trial site (with any children enrolled in the 

trial excluded from the validation dataset) and admits children in shock with diagnoses that 

were seen in the trial (along with others with different diagnoses and not in shock). The 

admissions dataset was split into two datasets for validation, general admissions and the 

KEMRI ward. The FEAST trial actually took place in the KEMRI ward which is a high dependency 

paediatric unit and so admissions to this unit were used as an initial validation dataset. The full 

admissions dataset includes other more general admissions and was restricted to the time 

span March 2011 - December 2012 (selected to be after the trial took place to avoid overlap) 

to provide a second validation dataset. Table 2.6.1 below compares admission characteristics 

between the three datasets.  
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Table 2.6.1: Admission characteristics for children in the different datasets.  

 

FEAST 

(2009-2011) 

KEMRI 

(2002-2012) 

Kilifi admissions 

(2011-2012) 

Variable (in bold if included in 

clinical model)    

Number with score  3121 5791 4976 

Age (months) - median (IQR) 24 (13-38) 28 (12-55) 24 (10-53) 

Gender (Female, %) 1443 (46%) 2609 (45%) 2097 (42%) 

Weight (kg) - median (IQR) 10 (9-13) 10 (7-14) 10 (7-14) 

Conscious level     - prostrate 1918 (61%) 1379 (24%) 1012 (20%) 

                                 - coma 463 (15%) 1780 (31%) 192 (4%) 

Temperature (°C) - median (IQR) 38.2 (37.3-39) 37.6 (36.8-38.6) 37.6 (36.8-38.5) 

History of fever (%) 3106 (99%) 4422 (76%) 3492 (70%) 

Heart rate (beats per min) –  

median (IQR) 169 (153-183) 149 (127-169) 144 (124-163) 

Weak pulse (%) 660 (21%) 739 (13%) 91 (2%) 

Capillary refill time (s) –  

median (IQR) 2 (1-3) 2 (1-2) 1 (1-2) 

Temperature gradient (%) 1847 (59%) 1278 (22%) 238 (5%) 

Respiratory rate (breaths per min) - 

median (IQR) 58 (48-67) 41 (32-55) 38 (32-50) 

Respiratory distress (%) 2582 (83%) 2013 (35%) 1355 (27%) 

Deep breathing (%) 2019 (65%) 1663 (29%) 358 (7%) 

Indrawing (%) 2127 (68%) 1490 (26%) 1174 (24%) 

Crackles (%) 692 (22%) 785 (14%) 624 (13%) 

Cough (%) 2253 (72%) 2134 (37%) 2050 (41%) 

Severe pallor (%) 1586 (51%) 2343 (40%) 1282 (26%) 

Convulsions (%) 452 (15%) 2398 (41%) 1003 (20%) 

Decreased skin turgor (%) 187 (6%) 700 (12%) 323 (7%) 

Vomiting (%) 1601 (51%) 1901 (33%) 1530 (31%) 

Bold = variables in prognostic model 
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The children in the KEMRI high dependency unit (HDU) ward were a similar weight, age, and 

gender as those in the FEAST trial. There were more children in the KEMRI ward data in a coma 

but fewer were prostrate, more had convulsions (as coma and complex convulsions were 

admission criteria for HDU admission) but fewer had severe pallor, crackles, respiratory 

distress or deep breathing. The Kilifi general paediatric admission data show that these 

children were not as critically ill, as their median temperature was lower, their heart rate was 

lower, and there were low numbers of children in a coma or prostrate on admission.  

 

2.6.1 Preparing the Kilifi dataset and assumptions made  

 

To avoid overlap between the children enrolled into the FEAST trial from the Kilifi site used in 

the developmental data set (N=215) and the children admitted to the KEMRI ward and 

recorded in the Kilifi admissions dataset, these have been identified via their hospital number 

and removed from the validation dataset.  

To enable calculation of the score on the data from Kilifi, some assumptions needed to be 

made regarding variables and the way they had been recorded. Conscious level was recorded 

both as one of five levels (unconscious, prostrate, lethargic, agitated and normal) as well as 

being recorded using the BCS. The BCS was used for validation as the categories lethargic and 

agitated were not easy to fit into FEAST definitions. As shown previously in Table 2.5.2, a 

BCS≤2 was used as a definition of coma and BCS≤4 was used as a definition of prostrate based 

on the literature [108].  

Time of death was rarely recorded in the Kilifi dataset although the date of death and date of 

admission were well recorded. Death within 48 hours was defined as within two calendar days 

from admission to the hospital which is likely to slightly over-estimate the number of deaths 

within the hour defined time frame. Children that absconded before this time were considered 

alive in these analyses. For validation of Berkley’s score, immediate deaths were defined as 

those that occurred on the same day as admission to hospital. Berkley’s early death score was 

calculated on mortality by 2 calendar days but not the same day as admission. Late death was 

defined as strictly greater than 2 days after admission. Immediate deaths were not included in 

the early death analysis, immediate and early deaths were not included in the late death 

analysis as in the original publication [47]. 

For the validation dataset of just the KEMRI ward, the date of admission to the hospital was 

used as the baseline, as treatment will have started at that point prior to admission to the 
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KEMRI ward. Of those admitted to the ward, 72% were admitted on the same day as they were 

admitted to hospital, 14% were admitted on the next day and the median time from admission 

to hospital to the KEMRI ward if not the same day was 2 days (IQR 1-5 days). The dataset 

included all those admitted to the KEMRI ward from 1st Jan 2002 – 31st Dec 2012 not enrolled 

in the FEAST trial.  

In the validation of the score on the wider admissions dataset, data from those that were 

admitted to the KEMRI was included (1019/4976 (20%)). This validation dataset used data 

from 1st March 2011 to 31st December 2012 as this was the most recent data and thus the 

most complete, and excludes the period when the FEAST trial was enrolling. Respiratory 

distress was not recorded in the admissions dataset and so ‘difficulty breathing’ was used in its 

place which is synonymous to respiratory distress.  

 

2.6.2 Results of validation of clinical score  

2.6.2.1 Validation on KEMRI ward dataset  

 

The clinical bedside score used on the KEMRI ward validation dataset gave an AUROC of 0.71 

(95% CI 0.69-0.74) assessed on 5791 children admitted to the KEMRI ward with 543 deaths 

(9%). This was presented in Figure 2.6.1 below.  

Figure 2.6.1: AUROC and calibration plot for the external validation of the clinical score in the 

KEMRI ward.  

 

 

The discriminatory ability of the score was only fair, with AUROC of 0.71. The Hosmer-

Lemeshow test was also carried out on a logistic regression model with the same variables as 

the Cox regression model; with p=0.49 it showed reasonable calibration of the model in the 
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KEMRI ward data. The calibration plot shows good calibration up to a score value of 

approximately 20 but for scores >20 the data was very sparse and observed probabilities per 

unit score value varied between 0 and 100%, with wide 95% confidence intervals due to the 

small numbers in each category (in the plot all scores above 32 (in red) have less than 10 

patients). The score was divided into 5 equally spaced categories (0-5, 6-10, 11-15, 16-20, 21+) 

to consider the calibration further and address the issue of small numbers within each 

category. This categorisation gave better calibration as presented in the figure below. As the 

KEMRI ward dataset covers a long period of time, to make this more comparable to the other 

datasets, the AUROC was also calculated just for patients admitted from the 1st March 2011 

onwards and showed a slightly better discriminatory ability at 0.77 (95% CI 0.73-0.82) (from 

1019 patients) compared to those admitted prior to this date with an AUROC of 0.70 (95% CI 

0.68-0.73) (from 4772 patients).  

Figure 2.6.2: Calibration plot using five categories of the clinical score in the KEMRI ward.  
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2.6.2.2 Validation on Kilifi admissions dataset (2011-2012) 

 

The clinical bedside score was also validated on the admissions dataset between March 2011 

and December 2012. This gave an AUROC of 0.87 (95% CI 0.83-0.90) assessed on 4976 children 

with 108 (2%) deaths (Figure 2.6.3 below). The Hosmer-Lemeshow test for goodness-of-fit 

gave p=0.19 showing that the calibration was reasonable but there was a similar pattern in the 

calibration plot compared to the KEMRI ward data where the proportion of deaths at high 

scores varied considerably, predominantly due to low numbers.  

Figure 2.6.3: AUROC and calibration plot for the external validation of the clinical score in the 

Kilifi admissions dataset.  

 

The AUROC plot showed that very low values of the score discriminated survivors well with 

very low death risk. For example, for scores between 0 and 6 the maximum observed mortality 

was 0.9%. High scores above 30 were also discriminatory for those at high risk though there 

were less than 16 children with these scores.  
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2.6.2.3 Validation of the FEAST PET score  

 

The FEAST PET score was also validated on the Kilifi data and gave very similar discrimination 

to the full clinical score, with an AUROC of 0.77 (95% CI 0.72-0.82) and Hosmer-Lemeshow p-

value of p=0.30 indicating a good fit in the KEMRI ward (admitted from 2011-2012) (1,053 

children, 98 (9%) deaths) and an AUROC of 0.86 (95%CI 0.82-0.89) with Hosmer-Lemeshow p-

value of p=0.51 for the general admissions dataset (5,098 children, 117 (2%) deaths) (Figure 

2.6.4). The calibration plots also show good calibration apart from when the proportion of 

deaths at high scores (≥7) varies (Figure 2.6.5), as there were low numbers of children in these 

categories. The numbers included in this analysis are slightly higher than that for the clinical 

score as there were fewer variables in the score and those with missing weight or deep 

breathing could thus be included.  

Figure 2.6.4: Receiver operating characteristic curves for the FEAST PET score in A) the Kilifi 

KEMRI ward and B) the Kilifi general admissions dataset. 
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Figure 2.6.5: Calibration plots for the FEAST PET score in A) the Kilifi KEMRI ward and B) the 

Kilifi general admissions dataset 

A) 

 
 

Score 0 1 2 3 4 5 6 7 8 9 10 

Deaths 
0/59 

(0%) 

2/168 

(1.2%) 

12/224 

(5.4%) 

13/250 

(5.2%) 

27/191 

(14.1%) 

17/92 

(18.5%) 

14/44 

(31.8%) 

6/16 

(37.5%) 

5/8 

(62.5%) 

1/2 

(50%) 

1/1 

(100%) 

B) 

 

 
 

Score 0 1 2 3 4 5 6 7 8 9 10 

Deaths
1/706 

(0.1%) 

3/1486 

(0.2%) 

16/1332 

(1.2%) 

19/911 

(3.1%) 

28/423 

(6.6%) 

19/156 

(12.2%)

16/53 

(30.2%)

6/17 

(35.3%)

7/10 

(70%)

1/2 

(50%)

1/1 

(100%)

 

The FEAST PETaL score could not be validated on the Kilifi admissions data as the laboratory 

measures included in that score (lactate, BUN, and pH) were not recorded in the validation 

datasets. 
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2.6.3 Validation of other scores in the Kilifi datasets  

 

The performance of the FEAST PET score for mortality by 48 hours was compared to other 

scores identified through the literature search (Figure 2.6.6) by testing the AUROC of each 

score in each validation dataset directly against the AUROC scores for FEAST PET for equality 

(Table 2.6.2). In the FEAST dataset there was no evidence of a difference between the AUROC 

for the FEAST PET score versus the AQUAMAT score overall (p=0.19) and in children with 

malaria only (p=0.65); however, the FEAST PET score was significantly better than PRISM III 

(p=0.02), and Berkley’s scores for immediate (p=0.002) and early death (p=0.04). In the Kilifi 

validation datasets (KEMRI/general) there was no evidence of a difference between the 

AUROC for the FEAST PET score versus Berkley’s scores for immediate (p=0.34/0.82) and early 

(p=0.63/0.47) death, and the FEAST PET score was significantly better than PRISM III 

(p=0.003/<0.001) and the AQUMAT scores (p<0.001/<0.001).  

Figure 2.6.6: Discriminatory ability of different scores when applied to FEAST and Kilifi 

admissions datasets. 
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Table 2.6.2: Discriminatory ability of different scores when applied to data from FEAST and Kilifi. 

  FEAST (data from the control arm only) 

(n=1044) 

Kilifi KEMRI Ward 

(n=1058) 

Kilifi General admissions 

(n=5107) 

Score Variables included Number 

with score 

(% died)  

AUROC  

(95% CI) 

Hosmer-

Lemeshow  

test 

Number 

with score 

(% died)  

AUROC  

(95% CI)  

Hosmer-

Lemeshow  

test 

Number 

with score 

(% died)  

AUROC 

(95% CI)  

Hosmer-

Lemeshow  

test 

FEAST PET score Axillary temperature, heart rate, 

capillary refill time, conscious level, 

deep breathing, respiratory distress,  

lung crepitations, weak pulse 

1024 (7%) 0.82  

(0.77-0.87) 

p=0.56 1053 (9%) 0.77  

(0.72-0.82) 

p=0.30 5098 (2%) 0.86  

(0.82-0.89) 

P=0.50 

PRISMa Heart rate, respiratory rate, conscious 

level, systolic blood pressure, 

potassium, glucose, pupillary reflexes, 

bicarbonate 

620 (6%) 0.74  

(0.65-0.83) 

p=0.07 1054 (9%) 0.74  

(0.69-0.79) 

p=0.001 5095 (2%) 0.82  

(0.78-0.87) 

P=0.001 

PRISM III b 

  

Heart rate, temperature, conscious 

level, systolic blood pressure, glucose, 

potassium, PCO2, pH, acidosis, 

pupillary reflexes 

627 (6%) 0.71 

(0.61-0.81) 

p=0.26 1056 (9%) 0.69  

(0.64-0.74) 

p=0.10 5099 (2%) 0.77  

(0.73-0.82) 

P=0.01 

AQUAMAT score c 

(overall) 

Conscious level, chronic disease, 

convulsions, blood urea nitrogen 

(BUN), and base excess (BE).   

648 (5%) 0.74  

(0.65-0.83) 

p=0.84 1011 (9%) 0.62  

(0.56-0.68) 

p=0.79 4964 (2%) 0.73  

(0.68-0.78) 

P=0.04 
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  FEAST (data from the control arm only) 

(n=1044) 

Kilifi KEMRI Ward 

(n=1058) 

Kilifi General admissions 

(n=5107) 

Score Variables included Number 

with score 

(% died)  

AUROC  

(95% CI) 

Hosmer-

Lemeshow  

test 

Score Variables 

included 

Number 

with score 

(% died)  

AUROC  

(95% CI) 

Hosmer-

Lemeshow  

test 

Score 

AQUAMAT score c 

(malaria positive 

only) 

 

Conscious level, chronic disease, 

convulsions, blood urea nitrogen 

(BUN), and base excess (BE).   

360 (3%) 0.80  

(0.68-0.93) 

p=0.65 355 (6%) 0.54  

(0.42-0.66) 

p=0.83 781 (3%) 0.60  

(0.49-0.72) 

p=0.41 

Berkley Immediate 

death scorec  

Anaemia, Jaundice, Indrawing, deep 

breathing, conscious level, 

convulsions/seizures, temperature 

1007 (3%) 0.75  

(0.68-0.83) 

p=0.64 680 (4%) 0.79  

(0.71-0.87) 

p=0.47 3504 (1%) 0.89  

(0.84-0.94) 

p=0.15 

Berkley Early death 

score 

Jaundice, indrawing, conscious level, 

convulsions/seizures, wasting, 

kwashiorkor 

1003 (4%) 0.70  

(0.63-0.77) 

p=0.02 1016 (9%) 0.69  

(0.63-0.76) 

p=0.76 5071 (2%) 0.84  

(0.78-0.89) 

p=0.08 

Berkley Late death 

score 

History > 7 days, conscious level, 

convulsions/seizures, temperature, 

wasting, kwashiorkor.  

959 (1%) 0.55  

(0.40-0.69) 

p=0.35 664 (10%) 0.66  

(0.60-0.73) 

p=0.34 3472 (2%) 0.72  

(0.66-0.77) 

p=0.08 

a Variables in the score but not measured: diastolic blood pressure, arterial oxygen tension, arterial carbon dioxide tension, pupillary reactions, prothrombin time: partial thromboplastin time ratio, total bilirubin, calcium. 

Underlined variables were available in the FEAST dataset but not in the Kilifi datasets. For consistency with other scores all deaths were included in analyses.   
b Variables in the score but not measured: pupillary reflexes, pH, total CO2, PCO2, arterial PaO3, creatinine, urea, white blood cells, prothrombin time, and platelets. Underlined variables were available in the FEAST dataset but 

not in the Kilifi datasets. For consistency with other scores all deaths were included in analyses.   
c Underlined variables were available in the FEAST dataset but not in the Kilifi datasets.  



138 
 

 

2.6.4 Conclusions  

 

The clinical bedside score only showed fair discriminatory performance in the KEMRI ward 

dataset which was seen to be the most similar setting to the FEAST trial with an AUROC of 

0.71. When this was explored further by calendar time then the score performed better on 

data collected in more recent years (2011 onwards (AUROC 0.77)) which is a more comparable 

time period to the general Kilifi admissions data set. This suggests that the score may be 

clinically useful but it is still only fair performance for a risk score. Overall, the calibration was 

good for low values of the score but was variable for high scores, and was better when the 

clinical bedside score was grouped into categories.  

The clinical bedside score did show good discriminatory performance in the general admissions 

dataset for 2011 and 2012, with an AUROC of 0.87. This validation dataset had a much lower 

48h mortality of 2% compared to 9% in the KEMRI ward and 10% in the FEAST dataset, and 

children in this validation dataset were more heterogeneous than those admitted to the 

KEMRI ward.  

Reducing the clinical bedside score to the FEAST PET score with 8 variables with a maximum 

score of 10 gave a more practical triage score and the discriminatory performance was very 

similar. The FEAST PET score gave an AUROC of 0.86 in the general admissions dataset and 

0.77 in the KEMRI ward dataset from 2011 onwards. This was also shown to be similar to or 

better than the other risk scores validated in the FEAST and Kilifi datasets. 

 

2.7 Discussion 
 

This analysis of the FEAST trial data and the Kilifi admissions data has identified the prognostic 

indicators that identify children at greatest risk of mortality on arrival to African hospitals, and 

has enabled me to develop and externally validate a bedside clinical risk score. In addition, I 

have validated published risk scores that had been developed in a variety of settings, both in 

the FEAST data and the Kilifi datasets, and evaluated if other measures that are not so easily 

recorded at the bedside or need special equipment can be usefully added to a clinical score.  

The analysis identified axillary temperature, conscious level, capillary refill time, lung crackles, 

deep breathing, respiratory distress, pallor, heart rate, weak pulse, and weight as prognostic 
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indicators that best identified children at greatest risk of mortality by 48 hours. Different levels 

of these clinical signs were then weighted to give a score that could be calculated by a clinician 

at the bedside. The score was externally validated and gave good discriminative ability in the 

Kilifi admissions dataset (0.87) and fair discriminative ability in the KEMRI ward data (0.77) 

using data from the same time period. A disadvantage of this score was that it had a scale of 0-

42, and so this was reduced to 0-10 and named the FEAST PET score. The PET score kept 8/10 

of the original clinical bedside score variables and dropped weight and deep breathing as they 

added the least predictive ability to the model. The FEAST PET score showed good 

discriminatory ability in the Kilifi admissions dataset (AUROC 0.86) and the KEMRI ward data 

using data from the same period (0.77). Oxygen saturation has been found a predictor of 

mortality in other studies [158, 159], but it was not a significant predictor in multivariable 

models in our dataset. The limited predictive ability of hypoxaemia was found despite the 

significance of lung crepitations in the PET score, which supports WHO recommendations of 

the value of this sign to reinforce diagnosis of pneumonia in children with severe breathing 

difficulties. Although crepitations could be considered a subjective sign, a sensitivity analysis 

showed it was important to include in the PET score, as excluding it worsened the 

discriminatory ability of the score (AUROC without crepitations 0.80 (0.75-0.86); p=0.04 in the 

control arm data). 

The advantages of the FEAST PET score are that it is straightforward to use, built on a large 

amount of good quality data, and externally validated on a suitable dataset. The clinical signs 

identified are commonly known, easily and quickly measured at admission, and are prognostic 

of mortality by one clear time point (48 hours). This satisfies Moons et al’s [160] comment that 

“the application of prognostic models requires unambiguous definitions of predictors and 

outcomes, and reproducible measures using methods in clinical practice.” The score is also not 

specific to defined disease aetiologies and includes large subgroups of children with sepsis and 

severe malaria, which is advantageous in these settings as it is often difficult to diagnose the 

underlying condition on admission. The data for the bedside score came from a clinical trial, 

which is a good study design for building prognostic models, and the trial was set up both 

within hospitals experienced with research and hospitals that had not conducted clinic trials 

before. Therefore, although generalisability of prognostic models built within clinical trial data 

can be limited, the pragmatic nature of the FEAST trial gives reassurance that the settings of 

the trial were not far from standard hospital care. The number of events in the dataset was the 

appropriate amount for the number of candidate predictors considered in the model building 

process, and the decisions made in the process followed published recommendations [139].  
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The FEAST PETaL score had a slightly increased AUROC in the control arm of the FEAST data 

with an AUROC of 0.86 (95% CI 0.82-0.90) although not significantly different from that of the 

PET score; it was not able to be validated in the Kilifi datasets. This shows that in settings 

where lactate, BUN and pH are recorded, that it would be useful to include them but that the 

FEAST PET score is sufficient for good discrimination where these tests are not possible.  

Previously published scores, such as Berkley et al’s [47] and the AQUAMAT score [103] that are 

built from data in similar settings to the FEAST trial, have not been widely externally validated 

and have disadvantages that may have led to them not being implemented in clinical practice. 

Berkley et al’s score evaluated prognostic variables for death at three different time points 

(immediate (<4 hours after admission), early (4-48 hours after admission), and late (>48 hours 

after admission)) and created three scores. Clinical signs could be positive in one score and 

negative in another score which could be confusing and only the immediate score showed fair 

discriminative ability and calibration in the FEAST data (AUROC 0.74), and better discriminatory 

ability in the Kilifi datasets (0.79 in KEMRI ward (2011 onwards), 0.89 in general admissions). 

Although this score has a published validation on a different dataset to the development 

dataset, the two datasets were from the same hospital. Berkley et al’s immediate, early and 

late scores were also combined into one score (using jaundice, subcostal indrawing, 

prostration with/without seizures, altered consciousness with/without seizures and wasting) 

for validation in children with fever presenting to a hospital in Uganda [138]. It showed good 

discrimination in children with malaria (AUROC 0.92) and with a non-malaria febrile illness 

(AUROC 0.86). Wasting and kwashiorkor were included in Berkley et al’s scores but the NRI 

calculated on the multiple imputed data did not show MUAC to be a variable that improved 

discriminative ability of the score. This could be as there were not many children with MUAC 

<11.5cm included in the dataset as malnutrition was an exclusion criteria for the trial.  

The AQUAMAT score was developed only in children with malaria, and uses information from 

i-STAT cartridge tests that are not commonly available outside of clinical trials in low-income 

settings. The score performed well in the FEAST control arm data malaria subgroup but poorly 

in the Kilifi datasets, possibly because the two measures from the i-STAT cartridge were not 

routinely available.  The score also included a measure of chronic disease which was not clearly 

defined and would be decided by the clinician, and each measure within the score was given 

the same weight; for example, being in a coma was given the same weight as having 

convulsions. Conscious level was found to be a prognostic factor in all the validated risk scores 

(Berkley et al, AQUAMAT, PRISM and PRISM III) and most scores gave more weight to being 

prostrate or in a coma compared to other risk factors. 
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The FEAST PET score developed through these analyses has only a fair discriminatory power in 

the KEMRI ward validation dataset which was from the most similar setting to the FEAST trial. 

This may limit its uptake and use in clinical practice, as clinicians need to feel that a score is 

able to identify children at high risk alongside (or be an improvement on) their own ability to 

make the appropriate diagnosis. However, it is important to note that some of the children in 

the KEMRI Ward had already spent time on the general wards before deteriorating, therefore 

admission criteria may not be as helpful in identifying those at high risk within this group. The 

FEAST PET score included crackles which is often considered to have inter-observer variability, 

but hypoxia, which is a more reproducible sign of poor lung function was not found to be 

important to include.  The FEAST PET score included clinical signs that cover different 

presentation syndromes and reflected well the population of children presenting to hospital in 

these settings. But the diverse nature of presentations could be a reason why the score was 

not able to perform better, as there were too many critical clinical signs (i.e several within each 

presentation) instead of a few key signs for one type of presentation that would be applicable 

to more children. This shows that it may be difficult to create a very good discriminatory score 

using bedside clinical measures in this population, with diverse presentations and a variety of 

underlying conditions. Despite this the FEAST PET score does discriminate well in the general 

admissions dataset, suggesting this would be the appropriate setting to explore implementing 

it in clinical practice. Improved triage has been shown to reduce mortality rates in these 

settings [10] and the FEAST PET score could help the introduction, or an improvement, of 

triage systems, encourage better examination of clinical signs by staff, and ensure consistent 

comparisons between patients by clinical staff compared to clinical opinion. This could 

facilitate the rapid prioritisation of care for, or closer monitoring of, the sickest children and 

thus improve outcomes.  
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3 Exploring mechanisms of action from bolus administration in 

the FEAST trial 
 

3.1 Aims and Objectives  

 
There has been much discussion following the FEAST trial results of mechanisms by which the 

bolus intervention was potentially doing harm to the children in the trial. One way to examine 

this is by considering if there was a physiological measure that explained any of the (harmful) 

effect of the bolus. Some of the potential physiological measures have been examined in 

Chapter 2 in order to build a prognostic model for mortality. Those analyses were restricted to 

clinical features at baseline in order to be generalisable to paediatric triage in emergency 

rooms and for cross-site severity comparisons in sub-Saharan Africa. They led to a prognostic 

score, the FEAST PET score, and an extended score which included laboratory parameters 

(FEAST PETAL score) [161]. In addition to the baseline assessments, FEAST children were 

systematically assessed (largely clinical assessments) at regular time intervals after 

randomisation, and so their relationship with mortality and the effect of the bolus can be 

examined over time. Furthermore, other bedside measures, expanding on those in Chapter 2, 

can be considered using the whole trial dataset to explore if there were any physiological 

measures that explained all or part of the bolus effect.   

In this chapter physiological measures over time will be considered as potential surrogate 

outcomes or endpoints and, by analysing them in this way, more information may be found on 

how the bolus intervention influenced the primary outcome. Also, as exploratory analyses, the 

associations between the continuous measures and mortality, both at baseline and during 

admission, can be examined and modelled using the most appropriate functional form. Once 

the appropriate functional form has been identified, tests for heterogeneity of the effect of 

boluses across the values of the continuous measures can also be carried out. As above, my 

previous work has modelled a selection of these continuous measures, and other studies have 

examined some of these measures with cut-offs or binary categories, as described in Chapter 

2, but this work will be able to use the true values of the measure, rather than reducing them 

to categories [162].  

Surrogate outcomes are usually considered for trials of a long duration (over many years) or 

rare clinical outcomes [163], whereas the primary outcome of FEAST was mortality at 48 

hours, with an overall mortality of 9.5%. The size of this trial was large (3170 children) and this 

sample size was driven by the binary endpoint and the expected modest relative difference 
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between the arms of 33% (as reported in the protocol). Nevertheless, if there was a 

continuous physiological measure that could be used as a surrogate endpoint then smaller 

future trials, especially in populations with much lower predicted mortality, which have been 

proposed but not yet designed, could nevertheless be adequately powered to detect a 

difference in such a surrogate endpoint. These studies could then be used to prioritise other 

interventions to take forward into larger trials in these populations. 
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3.2 Statistical Background  
 

All the physiological measures that are associated with the true endpoint and are affected by 

the intervention, and are available post-baseline, can be considered as possible ‘surrogates’ i.e 

intermediate indicators in a disease progression process. Prentice et al define a surrogate 

variable to be one that captures the whole relationship between the treatment and the true 

endpoint, so that the test of null hypothesis of no treatment difference in the surrogate 

endpoint is also a valid test of the corresponding null hypothesis based on the true endpoint 

[163].  

Prentice et al capture the notion of a potential surrogate response variable S(t) for the 

outcome H (a time-to-failure endpoint) being able to capture the dependence of H on 

treatment ܴ as follows: 

{ܴ,(ݐ)ܵ;ݐ}ுߣ = ;ݐ}ுߣ  (1)                                                                     {(ݐ)ܵ

where ߣு  is the outcome failure hazard.  

For a binary outcome (H), where S is the surrogate and binary treatment is R, this is [164]: 

P(H=1|S, R)=P(H=1|S)                                                                          (2) 

There is strong evidence against this criterion holding when a model for H adjusting for S still 

has a significant treatment effect, and also when there is an interaction between S and R [164].  

Freedman et al acknowledge that the phrase “data were consistent with equation 2” i.e there 

was no interaction and that there was no evidence of a treatment effect after adjustment for 

the surrogate marker, is a weak statement for surrogacy. They also note that there would not 

be high precision in the validation of a surrogate where the unadjusted treatment effect is 2 

standard errors or less away from the null. A more useful approach of estimating the 

proportion of the treatment effect explained (PTE) by the surrogate was proposed. The 

approach compares the estimate of treatment effect in an unadjusted model to the estimate 

of treatment effect in a model adjusted for the putative surrogate [164]. 

PTE (%) = [1 – (coefficient of adjusted estimate)/(coefficient of unadjusted estimate)]x100            

(3) 

This estimate of PTE is extended to survival analysis by Lin et al [165]. There are two models 

where R is a binary indicator for intervention vs control and S(t) is the time varying potential 

surrogate covariate measured at time t.  
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(ܴ|ݐ)ଵߣ = (ݐ)ଵ଴ߣ exp(ܴߚ) 

 
(4) 

(ܵ,ܴ|ݐ)ଶߣ = 	 ଴ܴߛ]	exp(ݐ)ଶ଴ߣ +  [(ݐ)ଵܵߛ

 
 (5) 

where ߣଵ଴(ݐ) and ߣଶ଴(ݐ) are unspecified baseline hazard functions and ߚ,  ଵareߛ ଴ andߛ

unknown regression coefficients, where ߚ = net log hazard ratio for treatment effect, ߛ଴	= log 

hazard ratio for treatment effect adjusted for ܵ(ݐ), and ߛଵ= log hazard ratio for the effect of 

 :Then the PTE can be described as .(ݐ)ܵ

ଵ̂݌ = 1 − ఊෝబ
ఉ෡

                            (6) 

or  

ଶ̂݌																													 = 1−
1− exp(ߛො଴)
1− exp൫ߚመ൯

 
 (7) 

 

These are the two conventional estimates of the PTE used in the statistical literature with the 

second (̂݌ଶ) being a direct measure of the relative difference in risk reduction between 

unadjusted and adjusted analyses [166] as (1− exp൫ߚመ൯) = estimated net relative reduction in 

risk for intervention vs control, and (1− exp(ߛො଴))	= estimated adjusted relative reduction in 

risk for intervention vs control.    

For a measure to be considered a suitable surrogate marker then I would expect to see a high 

PTE, with a perfect surrogate giving a PTE of 100%. A restriction of the PTE is that, following on 

from Freedman’s definition, it is not a meaningful statistic when there is an interaction 

between R and S.  

Also, the definition of PTE from Lin et al requires two models to hold true simultaneously, one 

giving the unadjusted estimate and one giving the adjusted estimate (equations (4) and (5)) 

[165]. This has been criticised in the literature as only one model can be the true model to 

describe the data, and this also presents statistical difficulties when calculating appropriate 

confidence intervals. It has also been criticised for not being a true proportion as the estimate 

can be outside of the range of [0,1] and for the authors not providing a cut-off value for a 

definition of an valid surrogate marker [167].  

An additional caveat is also that PTE cannot, in general, have a causal interpretation. Although 

the association between the intervention and the true outcome, and the association between 

the intervention and the biomarker, do have a causal interpretation in clinical trials because of 

the randomisation, the association between the biomarker, and the outcome is not protected 
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by randomisation. For the PTE to have a causal interpretation it is necessary that there are no 

confounders between the biomarker and the outcome that are unaccounted for in equations 

(4) and (5). Even if all biomarker-outcome confounders were measured, the adjustment for 

these confounders may not be straightforward unless one can assume that the confounders 

are not affected by the intervention.  

Various alternative ways to calculate the PTE and also alternative statistics describing the 

effectiveness of a surrogate marker have been proposed over the last 20 years. The key 

alternatives to the Lin et al PTE are summarised in Table 3.2.1 below.
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Table 3.2.1: Summary of key papers proposing statistical methods to calculate how much of a treatment effect is explained by a surrogate marker.  

Authors  Year  Journal 

Number of 

citations*  

Abbreviated 

name  Brief Description  Advantages Disadvantages  

Lin DY,  

Fleming TR and 

DeGruttola V 

[165] 

1997 Statistics in 

Medicine 

218 PTE (LFD 

method) 

Based on proportional reduction in 

regression coefficient for treatment 

indicator due to inclusion of surrogate 

marker. Equations (4) and (5).  

Described in Cox model, well 

known and intuitive.   

Not a true proportion, 

and estimate and CI 

can fall outside range 

of [0,1]. Assumes two 

models hold true.  

Cowles, MK 

[168] 

2002 Statistics in 

Medicine  

14  Based on a Bayesian approach with a 

Markov chain Monte Carlo based method 

for estimating the Bayesian posterior 

distribution of PTE conditioning on the 

truth of a single model. 

Uses only one model.  Not well known, and 

Bayesian methods not 

as widely understood 

by clinicians. 

Wang Y and 

Taylor JMG 

[169] 

2002 Biometrics 39 PE It is a quantity that looks to capture what 

the effect of the treatment would be if the 

values of the surrogate marker in the 

treatment group were distributed as those 

in the control group [170]. 

 

There are fewer assumptions 

about the data which allows 

greater flexibility in modelling.  

Estimate and CI can fall 

outside range of [0,1].  
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Authors  Year  Journal 

Number of 

citations*  

Abbreviated 

name  Brief Description  Advantages Disadvantages  

Chen C, Wang H 

and Snapinn SM 

[166] 

2003 Statistics in 

Medicine  

22 PTE (Chen 

method) 

Based on well-known definition of 

proportion of treatment effect explained, 

but uses one model to estimate both 

unadjusted and adjusted coefficients of 

treatment effect. 

Very intuitive and uses Lin 

definition of PTE, easy to 

understand and to calculate 

confidence intervals.  

Estimate and CI can 

fall outside range of 

[0,1].  

Qu Y and Case 

M [171] 

2007 Biometrics  14 PIG Generalisation of path analysis to 

generalised linear models or time to event 

analyses using three hierarchical 

regression models. 

Always bounded by [0,1]. Can be seen as 

combining individual 

level effects with trial-

level effects [172]. 

Huang J and 

Huang B [173] 

2010 Statistics in 

Biopharmaceu

tical Research  

4  Based on a counterfactuals approach.   Interpretation of measure can 

be illustrated with Ordinal 

Dominance curves. 

Logistic or probit 

models only.  

Kobayashi F and 

Kuroki M [167]  

2014 Statistics in 

Medicine  

2 PCS Based on the same principles as Wang and 

Taylor's PE measure and looks to 

decompose the treatment effect into 

parts captured and not-captured by the 

proposed measure.  

Considers impact of 

dependence between 

treatment and surrogate 

outcome, has suitable cut-offs 

from inflection points. 

Not well known, uses 

Half-range mode 

method with 

bootstrap for Cis.   

*Web of Science (June 2017)
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The method I have decided to use is that of Chen et al as it is the most straightforward and 

intuitive method with a measure well-recognised by clinicians [166]. It also overcomes one of 

the arguments against the Lin et al PTE measure, as Chen et al approximate the unadjusted 

and adjusted estimate of effect from one model. The method uses the model that includes the 

surrogate marker of interest and recovers the unadjusted estimate using the covariance matrix 

of the coefficients of the model. The unadjusted estimate and adjusted estimate are then 

combined in the same way as Lin et al’s definition above to give PTE (equations (6) and (7)).  

Chen et al start with the assumption that equation (5) is the true model and that the 

asymptomatic distribution of (ߛො଴	,ߛොଵ) is that of a bivariate normal vector with a covariance 

matrix estimated to be  

෠ܸ൫ߛො଴	,ߛොଵ൯ = ቆ
ො଴ଶߪ ොଵߪො଴ߪො଴ଵߩ

ොଵߪො଴ߪො଴ଵߩ ොଵଶߪ
ቇ     (8) 

Motivated by linear models they then rewrite equation (5) as    

,ܴ|ݐ)ߣ ܵ) = ଴ܴߛ]	exp(ݐ)ଵ଴ߣ + ଵܴߛܿ − ଵܴߛܿ +   (9)                                    	[(ݐ)ଵܵߛ

which can also be written as 

,ܴ|ݐ)ߣ ܵ) = ଴ߛ)]	exp(ݐ)ଵ଴ߣ + ܴ(ଵߛܿ + (ݐ)ܵ)ଵߛ	 − ܴܿ)]    (10) 

where ܿ is a parameter for estimating the unadjusted treatment effect though  ߛ଴ +  ଵ. Theߛܿ

authors then estimate ܿ through information separation between ܴ and ܵ(ݐ) − ܴܿ by forcing 

	ො଴ߛ)ݒ݋ܿ + ,	ොଵߛܿ (	ොଵߛ = 0. Thus ܿ	is estimated to be  

                                 ܿ̂ = ො଴ଵߩ− ො଴ߪ ⁄ොଵߪ       (11) 

Then as ߛො଴	 +  are assumed to be uncorrelated, the information in ܴ with respect to	ොଵߛ  and	ොଵߛܿ

clinical outcomes would be largely separated from that in ܵ(ݐ) − ܴܿ which leads to the overall 

treatment effect before covariate adjustment being largely retained in ߛො଴	 +  .	ොଵߛܿ

This leads to the following estimates of PTE: 

ଵ̂݌ = 1 −
ො଴ߛ

ො଴ߛ + ොଵߛ̂ܿ
    (12) 

And  

ଶ̂݌ = 1−
1− exp	(ߛො଴)

1− exp	(ߛො଴ +  ොଵ) (13)ߛ̂ܿ
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The confidence intervals for this measure can then be calculated using the Monte Carlo 

bootstrapping technique using a large number of independent samples from the exact 

(asymptotically normal) joint distribution of (ߛො଴,   .(ොଵߛ

This method of calculating the PTE can be used to estimate the PTE by the time-updated 

absolute values adjusted for the baseline value or by the change from baseline also adjusted 

for the baseline value (when ݐ଴ = 0).  

These two models are:  

(ܷ,ܴ|ݐ)ଵߣ = 	 ଴ܴߛ]	exp(ݐ)ଵ଴ߣ + ൯(଴ݐ)൫ܷ݂ߚ +  (14)    [((ݐ)ܷ)݃ߤ

(ܷ,ܴ|ݐ)ଶߣ = 	 ଵܴߛ]	exp(ݐ)ଶ଴ߣ + ((଴ݐ)ܷ)ℎ∗ߚ + (ݐ)ܷ)݇ߠ −  (15)   [((଴ݐ)ܷ

 

where ߣଵ଴(ݐ) and ߣଶ଴(ݐ) are unspecified baseline hazard functions, ߛ଴ , ଵߛ ,ߚ,  are ߠ and ∗ߚ,ߤ

unknown regression coefficients, ݂( ),݃( ),ℎ( ),	and ݇( )	are fractional polynomial (fp) 

functions, ܴ is a binary indicator of intervention vs control, and ܷ(ݐ) is the time varying 

covariate measured at time ݐ. Where all the fp functions are linear then the two models are 

equivalent and ߚ = ∗ߚ − ߠ and ߠ =  The first model (14) is then simpler in demonstrating .ߤ

the impact of the baseline measure as it does not need to be calculated from two separate 

coefficients. But if the fp functions are not linear then the two models may not be equivalent, 

the relationship between the coefficients as above may not hold and one model 

representation may have a better fit than the other. This may then affect the PTE estimate, as 

if one model has a better fit then it may be more accurately estimating the proportion of the 

effect explained by the surrogate marker. 

A paper by Li, Qu and Kulkarni compared using the change or actual value of a biomarker in 

calculating Proportion of Information Gain (PIG) as a measure of PTE [174]. They compared 

three models of which two were not adjusted for the baseline value: Model A – just the time-

updated value, B – just the change from baseline and C – the change from baseline with 

adjustment for the baseline value. They concluded that C was the most appropriate model but 

also that using the time-updated value and adjusting for the baseline was as valid due to the 

equivalence shown above when the same function is used in each model. 
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3.3 Methods  
 

3.3.1 Data  

 

Respiratory rate, heart rate, systolic blood pressure, oxygen saturation, glucose and 

temperature were recorded at baseline, 1 hour, 4 hours, 8 hours, 24 hours and 48 hours. 

Haemoglobin (Hemocue, Angleholm) and lactate (Lactate Pro® (Arkray KDK, Kyoto, Japan) 

were measured by hand-held analysers at baseline, 8 hours and 24 hours. BUN, base excess, 

PH, sodium, chloride and potassium were measured with a handheld blood analyzer and 

cartridge (i-STAT, Abbott Laboratories) at baseline and 24 hours. As only 30% of children have 

i-STAT measures at both time points and most deaths occurred before 24 hours I decided to 

only use baseline values for the i-STAT measures in analyses in this chapter. The clinical 

measures and when they were measured are described in the table below. 

Table 3.3.1: Clinical measures and assessment time points included in models.  

Clinical measure Baseline 1 hour  4 hours 8 hours 24 hours 48 hours 

Respiratory rate X X X X X X 

Heart rate X X X X X X 

Oxygen saturation  X X X X X X 

Systolic blood pressure 

(SBP) 

X X X X X X 

Glucose X X X X X X 

Temperature X X X X X X 

Haemoglobin X   X X  

Lactate X   X X  

BUN* X      

Base excess* X      

Sodium* X      

PH* X      

Chloride* X      

Potassium* X      

* Denotes measure from i-STAT cartridge 

  



152 
 

All measures were truncated at the 1st and 99th percentile to ensure that outliers did not have 

undue influence on the selection of an appropriate fractional polynomial. 

There was a small amount of missing data at time points after baseline and the most 

straightforward way to maximise the available information was to carry forward values to the 

next time point whilst the child remained alive, thus imputing missing values after baseline 

with a single ‘hard’ imputation. The number of values for each measure that were carried 

forward was very low (Table 3.3.2).  

Table 3.3.2: Number of observations carried forward in time-updated analyses.  

Measure Number carried forward (% of all values) 

Respiratory rate 116/15071 (0.8%) 

Temperature 86/15076 (0.6%) 

Oxygen saturation 133/14925 (0.9%) 

Heart rate 83/15084 (0.6%) 

SBP 146/14999 (1.0%) 

Glucose  270/14460 (1.8%) 

Haemoglobin* 208/8765 (2.4%) 

Lactate* 180/8614 (2.1%) 

*There were fewer time points in these measures.  

 

3.3.2 Statistical modelling  

 

I estimated the effect of continuous baseline measures as well as continuous time-updated 

values adjusted for baseline measures on mortality through 48 hours. Cox proportional 

hazards regression was used to estimate hazard ratios for mortality up to 48 hours, with 

fractional polynomials for continuous measures where it was found to be appropriate. In 

Chapter 2 fractional polynomials were used to model continuous measures that had complete 

data (respiratory rate, heart rate, temperature, age and weight) as part of a prognostic model. 

But other baseline continuous measures were not modelled with fractional polynomials in that 

chapter, either as they had a higher percentage of missing data (oxygen saturation (4% 

missing), SBP (2% missing)) or were not as easily measured at baseline (haemoglobin (3% 

missing), lactate (5% missing) and glucose (6% missing)). They were instead analysed to see by 

how much they improved the clinical prognostic score using the Net Reclassification Index. In 

this chapter, using data from all arms, baseline analyses were performed using complete cases, 
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and time-updated analyses were performed on baseline complete cases data with missing 

post-baseline data whilst a child was alive imputed with the closest prior observed value (Table 

3.3.2). A sensitivity analysis used multiple imputation to explore the impact of missing baseline 

measures on baseline models.  

The multivariable fractional polynomial (mfp) process in Stata was used to choose the best 

function for the measures (with an alpha of 0.05) [175]. It was restricted to choose only 

powers from -2 to 2 as introducing a cubic term can sometimes lead to overfitting to values at 

the extremes. The fit of the fractional polynomial models and functions chosen were examined 

using residual plots. Then the functional form of the measure was plotted using the predicted 

hazard ratio relative to a child in the no bolus arm, with the median baseline value as 

reference.  

Time-updated models estimated the treatment effect adjusted for each baseline measure and 

its time-updated values, acknowledging the caveat noted in the statistical background section 

above regarding using change or absolute value.  Even if there was a better fit, using change 

from baseline, for one variable in one or more groups there may not be for another variable or 

group. To ensure consistency in modelling across the different variables and groups I used 

absolute values adjusted for baseline values for all analyses with time-updated models. 

All models were tested for interactions between the time-updated value and the bolus effect 

in the time-updated models, and baseline measure and bolus effect in the baseline models 

using the likelihood ratio test. Any evidence (p≤0.05) of interactions was investigated further 

and the hazard ratio over the values of the time-updated or baseline measure was plotted.  

The estimates of the hazard ratios from the time-updated models were used to calculate the 

proportion of treatment effect explained (PTE) using the Chen et al method (equation 

(12)[166]). These were then plotted to identify which markers explained the most of the 

treatment effect. The unadjusted hazard ratios for each measure were also plotted along with 

their corresponding adjusted hazard ratios to show the impact of the adjustment for each 

variable. Confidence intervals for the PTEs were calculated by bootstrapping 10,000 samples 

from a joint normal distribution with means equal to the coefficients from the adjusted Cox 

regression model and the covariance matrix from the same model. The calculated PTEs were 

also compared to a proportion of treatment effect measure estimated using two models (one 

unadjusted and the other adjusted for the time-updated and baseline measure) which I will 

refer to as the LFD (Lin, Fleming and DeGruttola) method (equation (4)). 
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A multivariable Cox model was used to estimate PTE, including all continuous time-updated 

variables and adjusted for their baseline values (rather than considering each measure one at a 

time). As this model used information from all time points, lactate and haemoglobin values 

from baseline were carried forward to 1 and 4 hours. The PTE from the multivariable model 

was then calculated in subgroups defined by malaria status and baseline base excess, and by 

oxygen saturation, as these were found to have had an interaction between baseline values 

and receipt of bolus.  

Models were also fitted for four pre-defined subgroups of interest: children with malaria, 

children without malaria (who were likely to have conditions such as sepsis), children who 

were 2 years old or younger, and children over 2 years old. Malaria was defined following the 

FEAST Statistical Analysis Plan (SAP) definition as, in (hierarchical) order of preference:  

positive for malaria parasitaemia on a quality-controlled double read microscopy slide; 

or if this result was unavailable then  

positive result on the Plasmodium falciparum lactate dehydrogenase Rapid Diagnostic 

Test (RDT) (Optimal, Diamed, Cressier, Switzerland) which detects current or 

recently cleared (~ 48 hours) infections; or if this was unavailable then 

positive result on any microscopy slide for that patient at admission.  

There was a similar distribution of malaria positive children in both age groups (Table 3.3.3). 

The reason for considering these different subgroups is that underlying mechanisms may be 

very different, and the trial may have been underpowered to detect this through 

heterogeneity tests.  

Table 3.3.3: The distribution of malaria and non-malaria by age subgroup.   

 Age ≤ 2 years  

n (column %) (row %) 

Age > 2 years 

n (column %) (row %) 

Total 

n (column %) (row %) 

Non malaria 703 (45%) (53%) 627 (40%) (47%) 1330 (43%) (100%) 

Malaria 860 (55%) (48%) 935 (60%) (52%) 1795 (57%) (100%) 

Total 1563 (100%) (50%) 1562 (100%) (50%) 3125 (100%) (100%) 
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Analyses also used types/causes of death called terminal clinical events (TCEs) as defined by 

the Endpoint Review Committee (ERC) [157]. TCEs were defined as:  

1) Cardiogenic/cardiovascular collapse: signs of shock at the point of death - severe 

tachycardia or bradycardia plus one of prolonged capillary refill time >2 seconds, cold 

peripheries or low SBP (undefined), or where hypoxia was present but circulatory 

failure was deemed to be the primary problem.  

2) Respiratory: Ongoing or development of hypoxia (PaO2 <90%) with chest signs 

(crepitations or indrawing); or the attending clinician had assigned the primary cause 

of death as pneumonia and/or possible pulmonary oedema.  

3) Neurological: Possible raised intracranial pressure (high SBP or relative bradycardia) or 

severely reduced conscious level (Blantyre Coma Score ≤2), focal neurological signs, 

abnormal pupil response to light or posturing at the point of death.  

4) Unknown/Other: Death was unwitnessed or it was an unknown or other cause of 

death.  

Children could have one or more of these TCEs but the predominant TCE was assigned as 

cardiogenic for cardiogenic and neurological TCEs, and neurological for neurological and 

respiratory TCEs (largely terminal lung aspiration in a comatose child). 
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3.3.3 Sensitivity analyses  

 

3.3.3.1 Missing data  

 

The measures at baseline from the i-STAT cartridge were missing for up to 38% of children 

(Table 3.3.4). The reasons for this missingness were mostly due to the technical difficulties in 

performing the tests, including air bubbles introduced when loading the cartridge, failure of 

the machine to operate at high temperatures and, finally, short expiry dates leading to ‘stock 

outs’ during international shipment of next batches and thus unavailability of the cartridges at 

some sites for some time periods. Additionally, a further reason for missingness may have also 

been connected with the blood samples used in the cartridge, as if the blood sample was very 

haemolysed (for example if the child had high parasitaemia) then it would be difficult to get 

results. Missingness was associated with malaria status (chi2 test p<0.001), with greater 

missingness in those with malaria. 

Multiple imputation was used to explore the impact of missing baseline values on the selection 

of the appropriate fractional polynomial modelling risk of mortality at different levels of the 

baseline measure. The data was assumed to be missing at random (MAR) and multivariable 

imputation by chained equations was used to produce 25 complete datasets. Data for 

incomplete baseline variables were imputed using four methods depending on the distribution 

of the variable with missing data (Table 3.3.4): logistic regression, ordered logistic regression, 

normal regression, and predictive mean matching (PMM) (using the closest 10 individuals). 

Skewed continuous variables were log transformed towards normality but where the 

transformation was not fully satisfactory predictive mean matching was also used. To enable 

interaction tests to be performed the imputation was done with two separate models – one 

for children in the bolus arms and one for those in the no bolus arm. Also, as an interaction 

was found between base excess and bolus in the malaria group only in the complete case 

analysis, an interaction between malaria status and base excess was included in the 

imputation model. Variables used in the models are presented in Table 3.3.4 below.  
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Table 3.3.4: Baseline variables included in the multiple imputation models 

Baseline variable % missing Log transformed? Method  
Systolic Blood Pressure 2% Yes PMM 
Haemoglobin 3% No PMM 
Oxygen Saturation 4% Yes PMM 
Lactate 5% Yes PMM 
Glucose 6% Yes PMM 
Sodium 33% Yes PMM 
Potassium 35% Yes PMM 
Chloride 34% Yes PMM 
PH 34% Yes PMM 
BUN 38% Yes PMM 
Base excess 34% Yes PMM 
MUAC 6% Yes Normal regression 
Heart rate <1% No Normal regression 
Respiratory rate 1% No Normal regression 
Temperature <1% No Normal regression 
Weight <1% Yes Normal regression 
Fits at admission 1% No Logistic regression 
Respiratory distress <1% No Logistic regression 
Malaria  1% No Logistic regression 
Capillary refill time <1% No Ordered logistic regression 
Conscious level <1% No Ordered logistic regression 
Bolus/No bolus arm Complete   
Gender Complete   
Age (months) Complete   
Site Complete   
FEAST A or B Complete   
Survival time estimate 
(Nelson-Aalen) 

Complete   

Death by 48 hrs 
(yes/no) 

Complete   

Weak pulse (yes/no) Complete   
 

Cox regression was used with Rubin’s rules [156] to evaluate fractional polynomials for each 

continuous measure, testing between possible fractional polynomials with the ‘stack’ method 

[176]. ‘Stacked data’ treats all the imputed datasets as one dataset, with all observations 

weighted by ݓ௖ = (1 − ௖݂)/ܯ where ௖݂  is the fraction of missing data for the c-th covariate 

and M is the number of imputed datasets [176]. The alternative method suggests using Wald 

tests based on Rubin’s rules to test between possible fractional polynomials [177]. The 

functions selected were then compared with the complete case analyses by plotting predicted 
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mortality risk across a range of values for that measure. Where variables had <1% missing data 

the stacked method selected fractional polynomials that were the same as the functions 

selected in the complete case analysis, whereas the Wald method selected functions that 

when plotted were similar but differed in the tails of the distributions. Thus the stacked 

method was used. 

  

3.3.3.2 Definition of malaria 

 

Malaria was defined in the analysis plan for the FEAST trial using results from both the rapid 

diagnostic test and microscopy as above (page 154). Children who live in a malaria endemic 

areas frequently have asymptomatic parasitaemia, thus may be positive on one or both of 

these tests (incidental parasitaemia) when they present to hospital with severe illness even 

though the illness may not be caused by malaria. Distinguishing which children have ‘true’ 

severe malaria remains challenging at a clinical level since many of the clinical features for 

bacterial infections and severe malaria are very similar.  Thus, from a management 

perspective, it is challenging to separate out children with severe malaria that will respond to 

anti-malarials or malaria-specific supportive therapy from children who have incidental malaria 

parasitaemia. The original analysis plan definition of malaria, in particular, may not distinguish 

the two clinically relevant groups and further refinements would be useful.  

Since malaria parasitaemia may be incidental and measures only the circulating parasite load, 

a more accurate measure of current malaria clinical status is P.falciparum histidine-rich protein 

2 (PfHRP2). PfHRP2 measures the total parasite burden (biomass) in a patient by counting 

mature parasites that have released proteins in the last 48 hours compared to parasites on a 

blood film that are from circulating parasites that have not yet sequestered in the vital organs 

[178]. Studies involving Asian adults [178, 179] and African children [41, 180] have 

demonstrated that plasma PfHRP2 concentration of > 1000 ng/mL, in contrast with the 

peripheral blood parasite density, was strongly correlated with disease severity, end-organ 

damage and mortality. A re-analysis of a trial comparing anti-malarial treatments in children 

(AQUAMAT [28]) demonstrated that only the children in the middle and upper tertiles of 

PfHRP2 had a substantial benefit from artesunate (over quinine) [41]. For children in the 

lowest tertile there was no difference in mortality between the two groups implying those 

with low levels of PfHRP2 had co-incidental parasitaemia with another cause of severe 

infection [181]. 
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The FEAST trial stored samples from admission, which were batch-tested retrospectively for 

PfHRP2 protein and the results used to define a subgroup of severe malaria to carry out 

sensitivity analyses. The refinement to the clinical definition of severe malaria included any 

child having PfHRP2>1000ng/ml [41]. Furthermore, total parasite burden ( ௧ܲ௢௧)	was calculated 

using the equation below [182] 

 

௧ܲ௢௧ = 1)	ܺ	ܮ/2ܴ݃ܲܪ݂ܲ	ܺ	7.3  10ଵଷ	ܺ(݃݇)	ݐℎ݃݅݁ݓ	ݕ݀݋ܾ	ܺ	(ݐ݅ݎܿ݋݉݁ܽܪ−

Any interactions with bolus and malaria previously found in baseline or time-updated models 

were then explored in children with severe malaria as defined above. The interactions were 

also investigated with a continuous measure of malaria - total parasite burden - rather than 

malaria as a binary variable. 
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3.4 Results 
 

3.4.1 Baseline Models 

 

3.4.1.1 Bedside Vital signs 

 

Cox regression models were first used to estimate mortality risk according to each baseline 

measure in complete cases, and hazard ratios for the effect of bolus vs no bolus adjusted for 

each baseline measure. These models, for exploratory analysis, included all children and 

randomised group as a single binary factor (bolus vs no bolus) but were not adjusted for other 

baseline measures. Figure 3.4.1, Figure 3.4.2 and Figure 3.4.3 below present the shape of the 

functions selected to best reflect the association between each baseline measure and 

mortality risk, for each baseline measure within each group only, adjusted for bolus vs no 

bolus. Malaria is defined using the SAP definition as above. The y-axis is the predicted hazard 

ratio relative to a child with the median reference value (e.g. 58 breaths per min for 

respiratory rate). The median reference value is plotted as a vertical dotted line and the clinical 

normal range for the measure is also indicated on the plot. The distribution of the measure is 

also described in histograms underneath and absolute numbers are provided in the appendix. 
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Figure 3.4.1: Associations between mortality and baseline bedside measures: SBP, respiratory 

rate, heart rate, oxygen saturation and temperature (rows) for all children, those with malaria, 

those without malaria, those ≤2 years old and those >2 years old (columns). Distribution of 

bedside measure by group in the histogram underneath each plot. 

 All children Malaria Non malaria Age ≤2 years Age>2 years  

Baseline 

SBP 

 

Respiratory 

rate 

 

Heart rate 

 
Notes: The grey horizontal lines represent a hazard ratio (HR) of 1, and the dashed vertical lines show the reference value (i.e value used for 

centering each distribution).  
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 All children Malaria Non malaria Age ≤2 years Age>2 years  

Oxygen 

saturation 

 

Temperature 

Notes: The grey horizontal lines represent a hazard ratio (HR) of 1, and the dashed vertical lines show the reference value (i.e value used for 

centering each distribution).  

 

The mfp process selected very similar functions across groups for each measure at baseline, 

with monotonic functions in all measures apart from SBP. The plots indicated that there was 

high mortality risk at both high and low levels of SBP in all groups although the confidence 

intervals were very wide for the high mortality risk at high SBP due to the low numbers of 

children with SBP>120 (n=128 (4%)).  

Children with SBP>120 were more likely to be in coma (26% compared to 14% for those with 

SBP<120) but were not more prevalent in those with malaria (4.5% had SBP>120 in the non-

malaria group versus 3.9% in the malaria group). Coma (inability to localise a painful stimulus) 

in the presence of malaria defines cerebral malaria and in non-malaria this may have been 

secondary to a bacterial or viral encephalopathy. Cushing’s Triad (hypertension, relative 

bradycardia and slowing of the respiratory rate in children with coma) is a well-recognised but 

late phenomenon in central nervous system (CNS) infections indicative of compensatory 

intracerebral perfusion pressure in meningitis, complicated by raised intracranial pressure 

(ICP). Cushing’s Triad is less well described in children with cerebral malaria as the major 

pathological event is cerebral hypertension and not raised ICP [183-185].  However, I found a 

similar mortality risk associated with high blood pressure in children with and without malaria.  
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There was a high mortality risk associated with low baseline heart rate (relative bradycardia), 

also demonstrated previously in children in the no bolus arm in Chapter 2 prognostic score. 

However, the high mortality risk at baseline of severe tachycardia (very high heart rate) 

identified in Chapter 2 was not observed in the analyses in this chapter. One reason may be 

that heart rate was not truncated in Chapter 2 to capture the information needed for a risk 

score, whereas it was truncated at the 99th centile for these analyses, reducing the impact of 

outlying values.  

Respiratory rate was modelled as a linear function in all groups, with a small increase in 

mortality risk as the respiratory rate increased in those with and without malaria. In older 

children the mortality risk increased faster with increasing respiratory rate, especially when 

compared to children aged ≤2 years who had no significant change in mortality risk across their 

levels of respiratory rate (test for heterogeneity p=0.01). Respiratory rates in children in the 

FEAST trial were also much higher than the normal range (median of 58 breaths/min compared 

to a normal range of 20-40 breaths/min) reflecting the inclusion criteria of respiratory distress 

(increased work of breathing) on admission. As expected, oxygen saturation had increased 

mortality risk at low levels of hypoxaemia (<90%) and a linear association for all groups.  

Mortality risk decreased linearly as temperature increased. A high temperature at baseline was 

protective and children with low temperature (hypothermia) had a much higher mortality risk. 

This has been shown before in other studies and beneficial effects of fever have been 

discussed in the literature [47, 186]. Also, hypothermia can be seen as maladaptive and is 

found in children in a late stage of decompensation. Of the 189 children with hypothermia 

(<36°C) on admission, 54 (29%) died, with 25 (46%) of the 54 deaths occurring within 4 hours 

of randomisation. In contrast, there were 113 (3.5%) children with a very high temperature 

(>40°C) of which 5 (4.4%) children died (only 1 before 4 hours).  
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3.4.1.2 Laboratory indices 

 

Figure 3.4.2: Associations between mortality and baseline glucose, haemoglobin, and lactate 

(rows) for all children, those with malaria, those without malaria, those ≤2 years old and those 

>2 years old (columns). Distribution of each measure by group in the histogram underneath 

each plot. 

 All children Malaria Non-Malaria Age ≤ 2 years Age >2 years 

Glucose 

 

Haemoglobin 

 

Lactate 

 
Notes: The grey horizontal lines represent a HR of 1, and the dashed vertical lines show the reference value (i.e value used for centering each 

distribution).  

 

The best functional form for associations with mortality was similar across the groups for 

glucose, haemoglobin and lactate. Only glucose had a non-monotonic relationship with risk.  

The fp(2) function for glucose demonstrated that mortality risk was increased for those with 

very low glucose or very high glucose, which is biologically plausible and well recognised in 

critical care where metabolic derangement is common. The NICE-SUGAR trial in adults 

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

Normal range

.4

.6

.8
1

1 .5

2

5

1 0

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
p

ar
ed

 to
 7

.3
 m

m
H

g 
in

 c
on

tro
l a

rm

2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 15 16 17 18 19 20
Glucose

N ormal rang e

.4

.6

.8
1

1.5

2

5

1 0

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
p

ar
ed

 to
 7

.3
 m

m
H

g 
in

 c
on

tro
l a

rm

2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 18 19 2 0
Glucose

Normal range

.4

.6

.8
1

1.5

2

5

1 0

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
p

ar
ed

 to
 7

.3
 m

m
H

g 
in

 c
on

tro
l a

rm
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 8 1 9 2 0

Glucose

Norma l range

.4

.6

.8
1

1.5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
p

ar
ed

 to
 7

.3
 m

m
H

g 
in

 c
on

tro
l a

rm

2 3 4 5 6 7 8 9 10 11 12 13 14 1 5 1 6 1 7 1 8 19 20
Glucose

Norma l range

.4

.6

.8
1

1 .5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
p

ar
ed

 to
 7

.3
 m

m
H

g 
in

 c
on

tro
l a

rm

2 3 4 5 6 7 8 9 10 11 12 1 3 1 4 1 5 1 6 1 7 18 19 20
Glucose

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

Normal range

.4

.6

.8

1

1.5

2

5

1 0

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
pa

re
d

 to
 7

.1
 g

/d
l i

n
 c

on
tro

l a
rm

1 2 3 4 5 6 7 8 9 1 0 11 12 1 3 14
Haemoglobin

Normal range

.4

.6

.8

1

1.5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
pa

re
d

 to
 7

.1
 g

/d
l i

n
 c

on
tro

l a
rm

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14
Haemoglobin

Norma l range

.4

.6

.8

1

1.5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
pa

re
d

 to
 7

.1
 g

/d
l i

n
 c

on
tro

l a
rm

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14
Haemoglobin

Norma l range

.4

.6

.8

1

1.5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
pa

re
d

 to
 7

.1
 g

/d
l i

n
 c

on
tro

l a
rm

1 2 3 4 5 6 7 8 9 10 1 1 12 13 1 4
Haemoglob in

Normal range

.4

.6

.8

1

1 .5

2

5

10

P
re

di
ct

ed
 h

az
ar

d 
ra

tio
 c

om
pa

re
d

 to
 7

.1
 g

/d
l i

n
 c

on
tro

l a
rm

1 2 3 4 5 6 7 8 9 10 1 1 12 13 1 4
Haemoglobin

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

Fr
eq

ue
nc

y

1000

900

800

700

600

500

400

300

200

100

0

F
re

qu
en

cy

1000

900

800

700

600

500

400

300

200

100

0

F
re

qu
en

cy

1000

900

800

700

600

500

400

300

200

100

0

F
re

qu
en

cy

1000

900

800

700

600

500

400

300

200

100

0

F
re

qu
en

cy

1000

900

800

700

600

500

400

300

200

100

0

F
re

qu
en

cy

Norma l range.4

.6

.8
1

1.5
2

5

10

P
re

di
ct

ed
 h

az
a

rd
 ra

tio
 c

om
pa

re
d 

to
 3

.5
 la

ct
at

e/
m

m
H

g 
in

 c
on

tro
l a

rm

1 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15
Lactate

Normal range.4

.6

.8
1

1 .5
2

5

10

P
re

di
ct

ed
 h

az
a

rd
 ra

tio
 c

om
pa

re
d 

to
 3

.5
 la

ct
at

e/
m

m
H

g 
in

 c
on

tro
l a

rm

1 2 3 4 5 6 7 8 9 10 11 12 1 3 14 15
Lactate

Norma l range.4

.6

.8
1

1.5
2

5

10

P
re

di
ct

ed
 h

az
a

rd
 ra

tio
 c

om
pa

re
d 

to
 3

.5
 la

ct
at

e/
m

m
H

g 
in

 c
on

tro
l a

rm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lactate

Normal range.4

.6

.8
1

1 .5
2

5

10

P
re

di
ct

ed
 h

az
a

rd
 ra

tio
 c

om
pa

re
d 

to
 3

.5
 la

ct
at

e/
m

m
H

g 
in

 c
on

tro
l a

rm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L actate

Norma l range.4

.6

.8
1

1.5
2

5

10

P
re

di
ct

ed
 h

az
a

rd
 ra

tio
 c

om
pa

re
d 

to
 3

.5
 la

ct
at

e/
m

m
H

g 
in

 c
on

tro
l a

rm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lactate



165 
 

compared tight glycaemia control (maintaining glucose levels between 4.5-6mmol/L) against a 

conventional threshold for glycaemic control (set at maintaining glucose levels <10mmol/L) to 

prevent hyperglycaemia, with severe hypoglycaemia as an adverse event. Hypoglycaemia 

occurred more frequently in the arm that had intensive or ‘tight’ glycaemia control and thus 

conventional control was recommended in adults [187]. A post-hoc analysis of that trial also 

indicated that hypoglycaemia was associated with increased mortality [188]. A similar trial in 

children also showed an increase in hypoglycaemic episodes with strict glycaemic control, and 

increased mortality associated with hypoglycaemia in a subgroup of children undergoing 

cardiac surgery [189]. Further, a study in Tanzania in children with febrile illness showed 

increased odds of mortality for children with glucose <2.5 mmol/L and in those with glucose 

levels of 2.5-5mmol/L, but did not report on hyperglycaemic events [190].  

Lactate has not been modelled with fractional polynomials in previous chapters and here 

showed high mortality risk across all groups at high levels of lactate, with a monotonic 

increasing function as lactate increased. The distribution of mortality risk across lactate levels 

between the non-malaria and malaria groups may be expected to be different but in fact was 

very similar, with the only small difference being that the mortality risk tended to plateau for 

non-malaria children with lactate over 11 mmol/L. Median lactates were lower in the non-

malaria group (median 3.0 (IQR 1.3, 6.3) compared to 4.4 (IQR 2.7, 8.8) in malaria). Lactic 

acidosis in severe malaria is multifactorial, with the high frequency of severe anaemia, shock 

and microcirculatory compromise evidenced by the correlation between lactate concentration 

and circulating and total parasite biomass [191], and with direct demonstration of impaired 

perfusion by orthogonal polarization spectral (OPS) imaging.  

Risk of mortality was very high at very low haemoglobin and then decreased as haemoglobin 

increased, plateauing as haemoglobin increased beyond 8g/dL. There were 989/3054 children 

in FEAST A with severe anaemia (haemoglobin <5g/dL) of whom 94% received a transfusion. Of 

those with haemoglobin <5g/dl who did receive a transfusion by 8 hours, 38/892 (4%) died 

(after receiving a transfusion), compared to 48/97 (50%) children who died out of those who 

did not receive a transfusion. Thus it was likely to be those that did not receive a transfusion 

that contributed most to the high risk at very low haemoglobin. 
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Figure 3.4.3: Associations between mortality and baseline i-STAT measures: BUN, base excess, 

sodium, PH, chloride and potassium (rows) for all children, those with malaria, those without 

malaria, those ≤2 years old and those >2 years old (columns). Distribution of baseline i-STAT 

measure by group in the histogram underneath each plot.  

 All children Malaria Non-malaria Age ≤2 years Age >2 years  

Sodium 

 

 

 

 

 

Chloride  

 

Base excess 

 

 

 

 

 
Notes: The grey horizontal lines represent a HR of 1, and the dashed vertical lines show the reference value (i.e value used for centering each 

distribution).  
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 All children Malaria Non-malaria Age ≤2 years Age >2 years  
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As for the previous measures, the mfp process generally selected very similar functions 

reflecting associations between baseline BUN, base excess, sodium, chloride, potassium, PH 

and mortality risk across the different groups. However, there were some exceptions, notably 

sodium and chloride in the non-malaria group, potassium in the malaria group and age>2 years 

group, and base excess in the age>2 years group. Some of these minor differences were due to 

mfp selecting only the ‘best’ model, with other models very close in terms of goodness of fit. 

For example, the AIC for the linear model for sodium in the non-malaria group shown in Figure 

3.4.3 was 1101, but if a fp(0 0) function was used, similar to the malaria group, then the AIC 

was 1100. Although the best fp functions in the malaria, age ≤2 years and overall groups were 

different - fp(0 0), fp(0.5 0.5) and fp(2 2) respectively - they all gave a very similar functional 

form for the non-linear association between baseline sodium and mortality risk. If the other 

fp(2) functions were used to model sodium in the non-malaria group then they gave AICs of 
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1098 (fp(2 2)) and 1100 (fp(0.5 0.5)). This shows that the mortality risk plausibly varied in a 

similar way in the non-malaria group compared to the other groups, with increased risk at 

both high and low sodium, and any of the models would be suitable.  

In contrast, applying the same process to look at the association between baseline chloride 

and mortality risk in the non-malaria group showed that the AIC for the model shown in Figure 

3.4.3 with fp(-2 -2) was 1247, whereas a linear function (as in overall and each age group) gave 

an AIC of 1257. As the difference between the AICs was >3.84 (chi-squared (1)) this suggests 

that mortality risk may have genuinely varied in a different way with chloride in the non-

malaria group compared to the other groups. However, the confidence intervals for low 

chloride in the non-malaria group were wide, indicating the mortality risk could have 

plateaued rather than increased, and the number of children with chloride<95 in the non-

malaria group was small (n=27).  

This situation was similar for base excess: in those aged >2 years the selected function (fp(2 2)) 

indicated that the mortality risk plateaued above -5 rather than continuing to decrease as in 

the other subgroups. The AIC of the fp(2 2) model shown in Figure 3.4.3 was 1197 compared to 

1205 from a model assuming a linear association between base excess and mortality risk, 

indicating evidence that there was a different risk profile for those in the older age group. 

There was a linear association between mortality risk and base excess in the other groups. 

Base excess <-8mmol/L was used as a cut-off value for high risk in the AQUAMAT score [103] 

which in the FEAST trial data would put 50% of children at high risk as -8mmol/L was the 

median value. 

Mortality risk decreased with increased pH as expected, although this was not a linear 

association in all groups. Overall, and for children ≤2 years, the high mortality risk plateaued at 

very low levels of PH. Models with a linear relationship between mortality risk and pH levels 

were fitted for children >2 years and non-malaria. The AICs from these models compared to 

the models with a plateauing of the mortality risk showed >3.84 difference in the AICs. This 

indicated that there was evidence for the risk of mortality plateauing when pH<7.0 in these 

groups rather than continuing to increase as pH decreased under 7.0. The number of children 

with pH<7.0 (where the mortality risk plateaus in Figure 3.4.3 was 70/2082 (3%) and is at a 

level where many other measures would be deranged as well). A pH<7.2 would be considered 

severely acidaemic and there were 204/2082 (10%) children overall under this level.  

The mortality risk increased sharply over the normal range of BUN (5-18mg/dl) before 

plateauing around 20 which is considered a cut-off for abnormally high values. The cut-off of 

20 in BUN was also used as a prognostic value in the AQUAMAT score [103]. However, this 
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analysis suggests that there was substantial variation in mortality risk as BUN decreased below 

this value.  

Overall, and in the non-malaria and age ≤2 years groups, the mortality risk was increased at 

both low and high levels of potassium. However, 95% CI were wide at low levels and the best 

fp function chosen was also consistent with plateauing risk below 3.5 mmol/L. For malaria and 

children aged >2 years a linear function reflecting a monotonic increase in mortality risk was 

selected. For both these groups the AICs of the linear functions were within 5 of the AIC of an 

fp(-1 -1) model where mortality risk would increase at both low and high levels; thus there was 

only relatively weak support for non-linearity. Hyperkalaemia at admission is known to 

complicate malaria, and high levels have been shown to be associated with higher mortality 

[105], whereas low potassium usually occurs after admission following treatment for acidosis 

[192]. In this population overall there were 86 (4%) children with potassium <3 mmol/L on 

admission.  
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3.4.1.3 Baseline measures combined 

 

These were exploratory analyses with models including just the measure of interest and 

adjusting for the randomised group of bolus vs no bolus in order to investigate what would be 

the best functional form for further modelling and testing for interactions. However, many of 

these measures would be impacted by levels of the other measures, and the high mortality risk 

for one particular group of children may not be independent of the levels of other baseline 

measures; thus, interpretation of these exploratory analyses requires caution. To further 

investigate this a Cox regression model was used to estimate mortality risk adjusted for all of 

the continuous baseline measures described above in children with all measures complete at 

baseline (n=1576). Thus, estimated mortality risk at each level of baseline measure was 

adjusted for all other baseline measures. This showed that some of the non-linear 

relationships between mortality risk and baseline measures in univariable models did not 

remain when adjusted for other baseline measures (for example, SBP, glucose, sodium, pH, 

BUN and potassium) (Figure 3.4.4). When adjusting for all the other baseline measures, I also 

found that mortality risk did not vary significantly over levels of SBP (p=0.33), respiratory rate 

(p=0.70), temperature (p=0.65), glucose (p=0.81), base excess (p=0.31), sodium (p=0.09), 

potassium (p=0.20), and pH (p=0.10). Associations with lactate (p<0.001), oxygen saturation 

(p=0.005), heartrate (p=0.006), haemoglobin (p<0.001), chloride (p<0.001) and BUN (p=0.06) 

remained in generally the same direction as unadjusted models, with the exception of 

haemoglobin, with some attenuation of effects at extremes for some factors. 

Interactions were not included in this model for comparisons with Figure 3.4.1, Figure 3.4.2 

and Figure 3.4.3. In the FEAST data an interaction has been identified between baseline 

haemoglobin and lactate when both were included as continuous variables in a multivariable 

model for mortality [161]. This showed that rather than mortality risk uniformly increasing 

with increasing lactate and decreasing with decreasing haemoglobin, the higher mortality risk 

associated with higher lactate values (>7mmol/l) was restricted to those with high 

haemoglobin (>6 g/dl) [161]. As the interaction was not included in the adjusted model above, 

this may explain why the mortality risk was highest at high levels of haemoglobin. Subgroups 

were not explored due to the large number of measures included in the model and the 

reduced number of children with all measures recorded at baseline.  
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Figure 3.4.4: Associations between baseline measures and mortality risk estimated from a cox 

regression model adjusted for all other measures in the figure and randomised group (bolus vs 

no bolus).  
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3.4.1.4 Interactions 

 

Each model was investigated to identify whether the impact of randomised group (bolus vs no 

bolus) varied according to the level of the baseline measure (an interaction between the 

baseline measures and bolus) using likelihood ratio tests (Table 3.4.1). Three measures across 

three groups were found to have interactions with bolus (p≤0.05): three interactions were 

found between oxygen saturation and bolus - one in a model with all children (p=0.02), one in 

the malaria group (p=0.04) and one in the aged ≤2 years group (0.04); one interaction between 

baseline base excess and bolus (p=0.02), and one between chloride and bolus (p=0.05) both in 

the malaria group. This was out of 70 interaction tests in total for baseline models, giving a 

rate of 5/70 (7%) which was only slightly higher than would be expected by chance. As a 

significance level of 0.05 or 1/20 was used, there was a chance that 1 out of 20 tests (or 3 tests 

out of 60) would be a false positive.  

Table 3.4.1: Results of heterogeneity tests between each baseline measure and impact of 

bolus vs no bolus. 

Measure  Interaction p-values from each model 
  Overall Malaria Non-malaria Age ≤2 years Age >2 years 
Systolic Blood 
Pressure 

0.91 0.86 0.42 0.47 0.50 

Respiratory rate 0.28 0.76 0.22 0.92 0.12 
Heart rate 0.87 0.97 0.33 0.79 0.09 
Oxygen saturation 0.02 0.04 0.15 0.04 0.19 
Glucose 0.82 0.95 0.51 0.31 0.83 
Temperature 0.72 0.10 0.30 0.41 0.93 
Haemoglobin 0.58 0.67 0.92 0.97 0.61 
Lactate 0.92 0.70 0.50 0.45 0.74 
Sodium  0.44 0.12 0.47 0.70 0.99 
Chloride  0.76 0.05 0.67 0.83 0.93 
Base Excess  0.11 0.02 0.85 0.08 0.95 
pH 0.96 0.89 0.18 0.82 0.55 
BUN 0.44 0.76 0.62 0.07 0.85 
Potassium 0.63 0.24 0.97 0.59 0.19 

NB: Significant p-values are presented in bold font. 
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3.4.1.4.1 Interactions with baseline base excess  

 

In children with malaria, there was some evidence that the effect of baseline base excess on 

mortality risk varied between bolus and no bolus groups or, equivalently, that the effect of 

bolus vs no bolus varied according to baseline base excess (p=0.02). There was borderline 

evidence for heterogeneity within the overall model (p=0.11) and children ≤2 years old 

(p=0.08) and no evidence within the non-malaria (p=0.85) model or for age>2 years old 

(p=0.95).  

Those with malaria with very low base excess <-8 (acidosis) had a much greater detrimental 

effect of bolus compared to those with base excess >0 and malaria (Figure 3.4.5a). The impact 

of bolus on those with no malaria was similar across the levels of base excess (Figure 3.4.5b). 

Overall, absolute mortality risk was higher for low values of base excess (Figure 3.4.3), but 

those with malaria in the bolus arms had an even higher risk at low values (Figure 3.4.5c). 

Given the differences between malaria and non-malaria subgroups, a three-way interaction for 

bolus, malaria and base excess was examined with the likelihood ratio test including all 

children (p=0.01). This suggested that the impact of the bolus on those in the malaria group 

compared to the non-malaria group was different depending on the level of base excess the 

child had at baseline (Figure 3.4.5c).  Compared to a child in the no bolus arm with no malaria 

and base excess of -8mmol/L, those with no malaria all have a similar distribution of absolute 

risk across base excess levels regardless of whether they had received a bolus or not; whereas, 

for children in the malaria group, those who had a bolus had an increased risk of mortality at 

extreme levels of base excess Figure 3.4.5c. 
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Figure 3.4.5a) Estimated hazard ratio comparing bolus vs no bolus at different levels of base 

excess in children with malaria (n=1139), b) Estimated hazard ratio comparing bolus vs no 

bolus at different levels of base excess in children with no malaria (n=925) and c) estimated 

hazard ratios relative to a child with base excess of -8 mmol/L in the no bolus arm without 

malaria from a model with a three-way interaction.  

a) 

 
b) 

 

c) 

 

 
 

NB: The two lines that overlap in Figure 3.4.5c describe mortality risk versus a child with no malaria and base excess 

of -8 in bolus (solid) vs no bolus (dashed). The fact that they overlap shows there is no evidence in the non-malaria 

group that bolus affected mortality differently according to baseline excess (Figure 3.4.5b) 

To further understand the base excess interaction with malaria and bolus, the TCEs as defined 

by the ERC (described in more detail on page 155) were examined in the malaria and non-

malaria groups and the base excess was categorised at -8mmol/L (median value in FEAST, 

threshold used in AQUAMAT) to create a binary variable. The majority of children with malaria 

and acidosis that died in the bolus group had a cardiogenic TCE (38/65 (59%)) and the majority 

of TCEs in the corresponding no bolus group were neurological (6/11 (55%)) (Table 3.4.2; exact 

p-value for all TCEs=0.15). The deaths of children in the non-malaria group with acidosis were 

distributed across the TCEs similarly between the bolus and no bolus groups (Table 3.4.2; exact 

p-value for all TCEs = 0.97).  
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Table 3.4.2: Effect of bolus on mortality risk and TCEs (causes of death) by base excess level 

and malaria status at baseline.   

  Base excess <-8mmol/L (acidosis) 

  Malaria  Non-malaria Total  

Bolus (% died)  65/369 (18%) 53/267 (20%) 118/637 (19%) 

Cardiogenic deaths 38/65 (59%) 22/53 (42%) 60/118 (59%) 

Neurological deaths 17/65 (26%) 14/53 (26%) 31/118 (26%) 

Respiratory deaths 7/65 (11%) 14/53 (26%) 21/118 (18%) 

Other deaths  3/65 (5%) 3/53 (6%) 6/118 (5%) 

No Bolus (% died) 11/177 (6%) 19/105 (18%) 31/283 (11%) 

Cardiogenic deaths 3/11 (27%) 8/19 (42%) 11/30 (37%) 

Neurological deaths 6/11 (55%) 6/19 (32%) 12/30 (40%) 

Respiratory deaths 2/11 (18%) 4/19 (21%) 6/30 (20%) 

Other deaths  0/11 (0%) 1/19 (5%) 1/30 (3%) 

Hazard ratio (HR) for bolus 3.01 (1.59, 5.71) 1.09 (0.64, 1.83) 1.74 (1.18, 2.59) 

Exact p-value comparing type 

of deaths between bolus and 

no bolus 

p=0.15 p=0.97  

  Base excess ≥ -8 mmol/L 

  Malaria Non-malaria Total 

Bolus (% died)  15/397 (4%) 10/356 (3%) 25/755 (3%) 

Cardiogenic deaths 7/15 (47%) 2/10 (20%) 9/25 (36%) 

Neurological deaths 6/15 (40%) 3/10 (30%) 9/25 (36%) 

Respiratory deaths 2/15 (13%) 4/10 (40%) 6/25 (24%) 

Other deaths  0/15 (0%) 1/10 (10%) 1/25 (4%) 

No Bolus (% died) 5/196 (3%) 7/197 (4%) 12/393 (3%) 

Cardiogenic deaths 1/5 (20%) 0/7 (0%) 1/12 (8%) 

Neurological deaths 3/5 (60%) 2/7 (29%) 5/12 (42%) 

Respiratory deaths 1/5 (20%) 4/7 (57%) 5/12 (42%) 

Other deaths  0/5 (0%) 1/7 (14%) 1/12 (8%) 

HR for bolus 1.48 (0.54, 4.09) 0.79 (0.30, 2.09) 1.09 (0.56, 2.17) 

Exact p-value comparing type 

of deaths between bolus and 

no bolus 

p=0.65 p=0.89  
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Observations that have non-missing base excess a  

(interaction between bolus and malaria p=0.009) 

  Malaria  Non-malaria Total  

HR for bolus 2.57 (1.50, 4.40) 1.00 (0.64, 1.59) 1.58 (1.13, 2.23) 

 

All observations (including those with missing base 

excess)b (interaction between bolus and malaria p=0.72) 

 Malaria Non-malaria Total 

HR for bolus 1.62 (1.10-2.37) 1.46 (1.02, 2.12) 1.47 (1.13, 1.91) 
a Model adjusted for continuous base excess. b Model not including base excess.  

Base excess had 34% missing values and the estimates for the effect of bolus in the malaria 

and non-malaria groups in children with base excess recorded were slightly different from the 

complete data estimates: HR 1.62 (95%CI (1.10, 2.37)) in children with malaria and HR 1.46 

(95% CI (1.02, 2.12)) in children with non-malaria (Table 3.4.2). The three-way interaction with 

malaria and continuous base excess was confirmed in multiple imputation analyses (which 

correctly incorporated the interaction into the imputation model) (p=0.001) and gave evidence 

that the interaction is not an artefact related to the missingness of base excess.  The data was 

also split into the categories in Table 3.4.3 and by using Rubin’s rules the HR and confidence 

intervals restricted by base excess category and malaria status were estimated (Table 3.4.3). 

Table 3.4.3: Estimated effect of bolus on mortality by malaria and acidosis using multiple 

imputation analyses. Percentage died is estimated across imputation datasets.  

 

Base excess <-8 (acidosis) 

  Malaria  Non-malaria Total  

Bolus (% died)  17% 24% 20% 

No Bolus (% died) 10% 19% 13% 

  

1.72 (1.12-2.65) 1.25 (0.46-3.39) 1.52 (1.13, 2.04); interaction p = 

0.15 

 

Base excess ≥ -8  

Bolus (% died)  3% 3% 3% 

No Bolus (% died) 2% 3% 3% 

  

1.25 (0.83-1.89) 1.06 (0.45-2.57) 1.12 (0.59, 2.14); interaction 

p=0.41 

 



177 
 

Table 3.4.3 showed that the multiple imputation analyses support the complete case analyses, 

but that the majority of the estimates of the bolus effect in Table 3.4.2 were further away from 

1 compared to the imputation analyses.  

 

3.4.1.4.2 Interaction with baseline oxygen saturation 

 

In the whole trial population, there was some evidence that the effect of baseline oxygen 

saturation on mortality risk varied between bolus and no bolus groups or, equivalently, that 

the effect of bolus vs no bolus varied according to baseline oxygen saturation (p=0.02). There 

was also evidence that the effect of bolus vs no bolus varied according to oxygen saturation in 

those with malaria (p=0.04) and those age ≤2 years (p=0.04), with no evidence for those 

without malaria (p=0.15) or age>2 years (p=0.19).  There was no evidence that the varying 

effect of bolus vs no bolus over oxygen saturation values was significantly different between 

the malaria and non-malaria groups (p=0.17 for a three-way interaction) or between the two 

age groups (p=0.18 for a three-way interaction). The varying of the bolus impact according to 

continuous baseline oxygen saturation in the whole trial population had been found before 

(Appendix Figure S2 of Maitland et al, BMC Med 2013) [157].  

The hazard ratios were estimated from a model allowing the bolus effect to vary continuously 

across the values of oxygen saturation in all children (Figure 3.4.6a). Children with good lung 

function at baseline had a greater detrimental effect of the bolus, for example with a hazard 

ratio of 1.98 if they had 98% oxygen saturation. If they had very low oxygen saturation then 

there was no evidence for an effect of bolus increasing mortality, but their overall mortality 

risk was higher. This is shown in Figure 3.4.6b which estimates the hazard ratio relative to a 

child with 95% oxygen saturation in the no bolus arm. The mortality risk was much higher for 

both groups at very low oxygen saturation (<70%) with no significant difference between them 

(Figure 3.4.6a), but at higher oxygen saturation (>85%) overall mortality risk was lower, but 

significantly higher with bolus compared to no bolus. 
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Figure 3.4.6a) Estimated hazard ratio for bolus vs no bolus at different levels of baseline 

oxygen saturation. b) Estimated hazard ratio relative to a child in the no bolus arm with 95% 

oxygen saturation. 

a) 

  

b) 

 

 

The median (IQR) of oxygen saturation was 95 (91-98) and a healthy/good level of oxygen 

saturation is generally considered to be 99% or 100%. The WHO definition of hypoxia is oxygen 

saturation <90% [193]. The HRs for bolus vs no bolus across this range, corresponding to Figure 

3.4.6a, are presented in Table 3.4.4 below.   

Table 3.4.4: Estimated hazard ratios for bolus vs no bolus at specific values of oxygen 

saturation, taken from Figure 3.4.6a) above. 

 

 

 

 

 

The interaction was further explored by splitting oxygen saturation baseline into two 

categories (<90% and 90-100%) (Table 3.4.5). Oxygen saturation <90% (measured by a pulse 

oximeter) is the definition of hypoxaemia in children given by WHO [194]. This gave hazard 

ratios for each subgroup in the two categories showing the increased risk at high levels of 

oxygen saturation.  
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Table 3.4.5: Effect of bolus by dichotomised baseline oxygen saturation level in each group.  

 
Oxygen 

saturation <90% 

Oxygen saturation  

90-100% 

Group 
HR for bolus vs 

no bolus 

HR for bolus vs no 

bolus 

Overall 1.09 (0.72, 1.64) 1.91 (1.30, 2.81) 

Malaria 1.10 (0.57, 2.12) 2.21 (1.29, 3.81) 

Non-malaria 1.10 (0.65, 1.87) 1.83 (1.04, 3.24) 

Age ≤ 2 years 0.97 (0.56, 1.69) 1.86 (1.07-3.22) 

Age > 2 years 1.26 (0.69, 2.31) 1.95 (1.14, 3.35) 

 

As children with ≥90% oxygen saturation at baseline (n=2384) was a large subgroup, TCEs were 

examined in them to further explore the interaction. Sub hazard ratios were calculated for 

each TCE (Table 3.4.6) taking into account the competing risks. 

Table 3.4.6: Sub hazard ratios for bolus vs no bolus in those with baseline oxygen 

saturation≥90% taking into account the competing risks.  

 Cumulative incidence of death at 48 

hours 

  

TCE Bolus No bolus  Sub-hazard ratio  p-value 

Cardiogenic 3.7% 1.9% 1.95 (1.11, 3.45) 0.02 

Neurological 2.7% 2.5% 1.08 (0.63, 1.83) 0.78 

Respiratory  1.6%  0.01% 12.65 (1.71, 

93.3)* 

0.01 

Other/Unknown 1.1% 0.9% 1.29 (0.54, 3.10) 0.56 

* There was only 1 respiratory death in the no bolus arm in children with oxygen saturation ≥90%, compared to 22 respiratory 

deaths in the bolus arm.   

This shows that the major difference between the bolus and no bolus groups for children with 

≥90% oxygen saturation at baseline was in the higher proportion of deaths adjudicated as 

having a cardiogenic or shock TCE, as well as in the much higher proportion of deaths 

adjudicated as having a respiratory TCE. There was some weak evidence for a difference in 

respiratory TCE between the bolus and no bolus group using all the children in the trial 

(p=0.09) [157], but the analysis above showed stronger evidence when restricting to those 

with ≥90% oxygen saturation at baseline.   
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In addition to analysing how children with ≥90% oxygen saturation died, the distribution of 

shock within these children was described by examining the four clinical characteristics that 

were part of the eligibility criteria for impaired perfusion at baseline – temperature gradient, 

capillary refill time >2s, severe tachycardia and a weak pulse. Children needed to have at least 

one of these characteristics, along with a fever or history of fever and respiratory distress 

and/or impaired consciousness, to be eligible for the trial. Children with ≥90% oxygen 

saturation had more severe tachycardia compared to children with <90% oxygen saturation 

(1745/2381 (73%) vs 423/651 (65%) chi-squared p<0.001). They were more likely to have only 

one feature of impaired perfusion (1197/2381 (50%) vs 288/651 (44%)) and less likely to have 

three features (309/2381 (13%) vs 124/651 (19%)) but were similarly likely to have two 

(783/2381 (33%) vs 210/651 (32%)) or four features (92/2381 (4%) vs 29/651 (4%); chi-squared 

over all four categories p<0.001).  

 

3.4.1.4.3 Possible weak interaction with baseline chloride 

 

There was weak evidence for a varying effect of the bolus across levels of baseline chloride 

(p=0.05) in those with malaria. There was no evidence of the bolus impact varying in the other 

groups (p=0.67, p=0.83, p=0.93 for non-malaria, age≤2 years and age>2 years respectively) nor 

overall (p=0.76). The evidence for a varying impact across levels of chloride disappeared when 

the model for children with malaria was adjusted for the base excess interaction (p=0.28).  The 

increased risk, in the unadjusted model, associated with bolus was highest in children with 

malaria and baseline chloride of 115mmol/L, which was only slightly higher than the clinically 

normal range of 98-109mmol/L, rather than the increased risk being highest at very high levels 

of chloride (Figure 3.4.7). Thus it was not simply that children with very high levels of chloride 

at baseline had highest risk from the bolus, as those with chloride of 105-110 mmol/L had 

similar mortality risk from bolus to those with chloride >120mmol/L. The fact that the 

interaction disappeared in the presence of the base excess interaction (which remained 

significant), suggests that this did not describe a different mechanism to the base excess 

interaction. This may have been expected since chloride is a component of base excess. 
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Figure 3.4.7: Estimated hazard ratio for bolus vs no bolus at different levels of baseline chloride 

in children with malaria.  

 

 

3.4.1.4.4 Combining interactions 

  

The interaction between bolus and baseline oxygen saturation and interaction between bolus, 

malaria and baseline base excess were included in a model, with all children that had base 

excess and oxygen saturation measured (n=1995) to investigate the impact of one interaction 

on the other and whether both were occurring independently. Likelihood ratio tests showed 

that both interactions held in the presence of the other (p=0.007 for oxygen saturation and 

p=0.002 for base excess three-way interaction with malaria). This indicated that there were 

two groups that had a greater impact of the bolus, those with higher oxygen saturation where 

there was relative increased risk of a respiratory TCE (and a slightly higher relative risk of a 

cardiogenic TCE) in the bolus group compared to the no bolus group, and those with malaria 

and low base excess where risk of a cardiogenic TCE was increased. Oxygen saturation and 

base excess were weakly positively correlated in children with malaria (rho=0.19, p<0.001) but 

not in children with non-malaria (rho=0.05, p=0.18) (Figure 3.4.8a and b).  

Figure 3.4.8c shows the impact of bolus across oxygen saturation levels and base excess levels 

for children with malaria.  The different shades of blue on the contour plot indicated different 

levels of risk: the darkest represent highest risk (hazard ratio ≥5) and the lightest shade 

represent lowest risk (hazard ratio <1) with base excess at baseline on the x-axis and oxygen 

saturation at baseline on the y-axis. The highest risk of mortality from receiving bolus was in 

those with malaria and a high oxygen saturation level and low base excess.  
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Figure 3.4.8: Correlations between base excess and oxygen saturation at baseline in a) children 

with malaria and b) children without malaria, c) Contour plot of bolus vs no bolus effect on 

mortality risk across baseline base excess and oxygen saturation levels in children with malaria. 

 

a) Children with malaria 

 

b) Children without malaria 

 

c)  

 

 

 

The bolus effect was also estimated for a binary categorisation of base excess and oxygen 

saturation (defined as above) in the malaria and non-malaria group to examine the bolus 

impact on children that had high oxygen saturation, low base excess and malaria (Table 3.4.7). 

Consistent with the contour plot, this showed the greatest impact of bolus was in those with 

malaria and oxygen saturation ≥90% and base excess<-8 (HR 7.06 (2.19-22.82).  Of note, I did 

not identify any subgroup where bolus was significantly beneficial. 
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Table 3.4.7: Impact of bolus vs no bolus on mortality defined by base excess, oxygen saturation 

and malaria status.  

  Base excess <-8 (acidosis) 

  Bolus (% died) No bolus (% died)  HR for Bolus 

Malaria  65/369 (18%)  11/177 (6%)  3.01 (1.59, 5.71) 

oxygen saturation <90% 14/72 (19%) 6/36 (17%) 1.22 (0.47, 3.17) 

oxygen saturation ≥90% 41/282 (15%) 3/137 (2%) 7.06 (2.19-22.82) 

Non-malaria 53/267 (20%)  19/105 (18%) 1.09 (0.64, 1.83) 

oxygen saturation <90% 25/82 (30%) 8/28 (29%) 1.05 (0.47, 2.33) 

oxygen saturation ≥90% 21/165 (13%) 8/70 (11%) 1.11 (0.49, 2.51) 

Total*  118/637 (19%) 31/283 (11%) 1.74 (1.17, 2.59)  

  Base excess ≥ - 8a 

  Bolus (% died) No bolus (% died) HR for Bolus  

Malaria  15/397 (4%) 5/196 (3%) 1.48 (0.54, 4.09) 

oxygen saturation <90% 3/46 (7%) 1/17 (6%) 1.08 (0.11, 10.36) 

oxygen saturation ≥90% 12/339 (4%) 4/174 (2%) 1.55 (0.50, 4.80) 

Non-malaria 10/356 (3%) 7/197 (4%) 0.79 (0.30, 2.09) 

oxygen saturation <90% 2/80 (3%) 6/57 (11%) 0.23 (0.05, 1.14) 

oxygen saturation ≥90% 7/272 (3%) 1/138 (<1%) 3.59 (0.44, 29.23) 

Total*  25/755 (3%) 12/393 (3%) 1.18 (0.55, 2.17)  

*There were 4 children with missing malaria status and 70 with missing oxygen saturation in those with recorded 

base excess. 
a There were few deaths in this group (37 in total) and so when split into subgroups by malaria and oxygen 

saturation (8 subgroups in total) there were very wide confidence intervals around the estimates and estimates of 

effect based on <10 deaths. 
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3.4.1.5 Missing data sensitivity analysis on baseline measures  

 

Many of the continuous variables used in the analysis above had missing data, some with up to 

a third missing (Table 3.3.4, page 157). Multiple imputation (MI) was used to create 25 

complete datasets which were then analysed to confirm the most appropriate function for 

each baseline continuous measure, which was then compared with the complete case analyses 

by plotting predicted values (Figure 3.4.9, Figure 3.4.10, and Figure 3.4.11).  

Figure 3.4.9: Fitted functions for associations between SBP, respiratory rate, heart rate, oxygen 

saturation and mortality comparing between complete case analyses and multiple imputed 

data (MI) by group (overall, malaria, non-malaria, age ≤2 years and age > 2 years).  
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Figure 3.4.10: Fitted functions for associations between glucose, temperature, haemoglobin, 

lactate and mortality comparing between complete case analyses and multiple imputed data 

(MI) by group (overall, malaria, non-malaria, age ≤2 years and age > 2 years).  

 Overall Malaria Non-malaria Age ≤2 years  Age > 2 years 

Glucose 

(6% missing) 

Temperature 

(<1% missing) 

Haemoglobin 

(3% missing) 

Lactate 

(5% missing) 

 

Figure 3.4.9 and Figure 3.4.10 show that the functions describing mortality risk over a range of 

values of baseline measures selected in the complete case analyses were supported by the 

multiple imputation analyses. This was as expected as there were low levels of missingness in 

these measures.   
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Figure 3.4.11: Fitted functions associations between sodium, chloride, base excess, pH, BUN, 

potassium and mortality comparing between complete case analyses and multiple imputed 

data (MI) by group (overall, malaria, non-malaria, age ≤2 years and age > 2 years).  
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Figure 3.4.11 showed there were some differences between functions selected with the 

complete case analyses compared to analyses in the multiple imputed datasets, although the 

majority of functions chosen were the same or very similar.   

The MI analysis for sodium confirmed a linear relationship between levels of sodium and 

mortality risk in the non-malaria group, which indicated that the increased mortality risk at low 

and high sodium seen overall and in both age groups may not be present for those without 
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malaria, although in complete case analyses the model with a linear function had an AIC within 

3.84 of the AIC from models with FP2 functions for this group. A linear function was also 

selected by the MI analysis for those aged ≤2 years, although on further investigation this may 

also be due to the ‘stacked data’ model selection process. If Wald tests were used to select the 

fractional polynomial for sodium in MI data then it selected the same FP2 function as the 

complete case analysis.  

The functions that the MI analyses selected to describe mortality risk over different levels of 

chloride were more consistent across the groups compared to the complete case analyses. The 

selected functions in MI analyses showed an increased risk of mortality at high chloride levels 

supporting the complete case analyses, and a suggestion of some increased risk at low levels of 

chloride, especially in the non-malaria group.  

The functions selected for base excess, pH and BUN by the mfp analyses were similar to those 

selected in the complete cases. The complete case analysis for base excess in aged >2 years 

children had a small increase in mortality risk at levels of base excess >0mmol/L which was 

supported by the MI data, though every other group had a linear function showing protection 

from risk at those levels. Also, there were few children with a base excess >0mmol/L 

(n=95/2068) which was reflected in the confidence intervals widening in Figure 3.4.3. The MI 

analysis for potassium suggested that the increased risk found at low levels of potassium in 

complete case analyses in non-malaria and children ≤2 years may have been exaggerated by 

missing data, as the increase was not found in MI in those two groups. There was a small 

increase in mortality risk at low potassium in the overall group but the MI analyses in the other 

groups did not support this.  

 

3.4.1.5.1 Interactions 

 

The interactions between base excess, malaria and bolus and between oxygen saturation and 

bolus were tested in the MI data using a global Wald test that the coefficients of the 

interaction terms were different from zero and thus the interaction was also present in MI 

data. The test gave p=0.001 for the interaction between base excess, malaria and bolus, 

confirming the evidence from the complete case analysis that the mortality risk from bolus was 

much higher at very low base excess in those with malaria. The test also confirmed the oxygen 

saturation interaction that had previously been found in complete cases with p=0.02. As the 

bolus and no bolus groups were imputed separately then other interactions between baseline 
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measures and bolus could be tested. I planned to conduct these tests only for i-STAT cartridge 

measures which had weak evidence for an interaction in the complete case analyses (p<0.1 in 

Table 3.4.1, page 172). As other non-i-STAT measures had low levels of missingness, I felt that 

the complete case analysis was sufficient to identify any interactions between bolus and the 

baseline measure in those measures.  

BUN and chloride satisfied the above criteria but the mfp command had identified that these 

measures did not have a linear association with mortality risk. In order to ensure that the 

analysis model was not mis-specified the transformed function needed to be imputed 

alongside the original variable [176]. I was not able to run the imputation model with the 

transformed variables for either BUN or chloride as the model would not converge. I had 

previously found that it is important to have the correct specification of the variables in the 

imputation model as I had tested the base excess malaria interaction in the MI data without 

the interaction in the imputation model and the global Wald test gave p=0.62. When the 

interaction was correctly included in the imputation model then the analysis model confirmed 

the interaction detected in the complete case analyses (p<0.001). 

Overall, the majority of the MI analyses were consistent with the complete-case analyses for 

the functions chosen to describe each baseline measure’s association with mortality. For 

potassium and chloride the MI analyses also demonstrated that the mortality risk at different 

levels of these measures may have been more similar across the groups than shown in 

complete case analyses. The analyses also confirmed the interactions between base excess and 

bolus in the malaria group and between oxygen saturation and bolus overall, found previously 

in compete-case analyses. However, the weak evidence for an interaction between chloride 

and bolus could not be examined in the MI data due to non-convergence of the imputation 

model. 
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3.4.2 Time-updated models     

 

Cox time-updated models were used to estimate the association of time-updated values for 

each measure with mortality, adjusted for their value at baseline. These models show the 

mortality risk from the most recent value that was recorded for each child whilst also taking 

into account their baseline value.  These models included all children and randomised group as 

a single binary factor comparing bolus vs no bolus but were not adjusted for any other 

measures. Missing data at or after the 1st post baseline time point was imputed by carrying 

forward the last non-missing value to time points whilst the child was still alive. This was done 

for 1-2% of data values (Table 3.3.2, page 152).  The estimated unadjusted and adjusted hazard 

ratios were then combined to give the proportion of treatment effect explained for respiratory 

rate, glucose, temperature, heart rate, SBP, oxygen saturation, haemoglobin and lactate.  
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Figure 3.4.12: Association between mortality and time-updated systolic blood pressure, 

respiratory rate, heart rate, oxygen saturation and temperature (rows) for all children, those 

with malaria, those without malaria, those ≤2 years old and those >2 years old (columns).   

 

 All children Malaria  Non-malaria Age ≤2 years old Age>2 years old 

SBP 

 
Oxygen 

saturation  

 

Respiratory 

rate 

 
Heart rate 

Glucose 

 

Temperature 

 
Notes: The grey horizontal lines represent a HR of 1, and the dashed vertical lines show the reference value (i.e value used for centering each 

distribution).  

 

In general, the association between time-updated values and mortality risk was similar across 

the groups for each measure in Figure 3.4.12. Also, the relationship with mortality risk in the 

time-updated models selected for oxygen saturation, glucose and SBP were the same as those 

selected in baseline models (Figure 3.4.1). This showed that abnormal SBP (either high or low) 

and abnormal glucose (either high or low) after admission increased mortality risk, and low 
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oxygen saturation after admission increased mortality risk with risk decreasingly linearly as 

oxygen saturation increased.  

Mortality risk increased linearly as respiratory rate increased for the malaria and age≤2 years 

groups. However, for the non-malaria, age>2 years groups and overall trial population, 

mortality risk plateaued at low values with then a small increase at very low levels of 

respiratory rate. The confidence intervals widened around the small increase in risk indicating 

larger uncertainty around the estimate of mortality risk at those levels, and the risk still 

remained lower than that of a child with the median value of 46 breaths per minute. These FP2 

models (that described a non-linear relationship) were compared with models fitting 

respiratory rate as a linear relationship with mortality risk, and the AICs from the FP2 models 

(Figure 3.4.12) were significantly lower which suggests that mortality risk may have genuinely 

varied in a different way at very low levels of respiratory rate (<30 breaths per min) in these 

groups. However, high respiratory rate after admission consistently across the groups had 

much higher mortality risk than very low respiratory rate, and the amount that mortality risk 

may have varied at low levels of respiratory rate was small. Respiratory rates are also known to 

vary by age in healthy children and thus the small difference at low levels of respiratory rate in 

the shape of the association between respiratory rate and mortality risk in the age≤2 years 

group compared to age>2 years group may be due to the difference in ages. Respiratory rate 

after admission was weakly inversely correlated with oxygen saturation after admission 

(spearman’s rho=-0.10 (p<0.001)). Children had lower mean oxygen saturation if they had a 

respiratory rate>70 breaths per min compared to those with ≤70 breaths per min although 

within a normal range (96% vs 97% median oxygen saturation respectively at 1hr, Wilcoxon 

test p<0.001; 97% vs 98% at 4hrs, p<0.001).  

The association between heart rate after admission and mortality was best described with a U-

shaped function (with increased mortality risk at high and low values of heart rate) which was 

consistent with the U-shape for the mortality risk by heart rate at baseline identified in 

Chapter 2 of this thesis. This indicated that the highest mortality risk was in those with high or 

low heart rate after admission. Thus if a child still had an abnormal heart rate (either high or 

low) or their heart rate became abnormal after admission then their mortality risk increased.  

The relationship between glucose and mortality risk was non-monotonic, similar to the 

relationship between heart rate and mortality risk in time-updated models, with an increase in 

mortality risk at both high and low values across all groups and overall. Having hypoglycaemia 

at admission has been shown to increase risk of mortality [105] and this analysis confirmed 

that if the child had low glucose levels (<3mmol/l) or recurrent hypoglycaemia (due to 
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impaired gluconeogenesis) after admission the mortality risk also increased. This indicated that 

either they did not receive the treatment they should have got for hypoglycaemia (either 

identified at baseline or subsequently), or despite treatment their glucose remained low or 

they had rebound hypoglycaemia, all of which plausibly would increase mortality risk. There 

were 187 (6%) children with glucose <3mmol/L at baseline, with 246 (8%) children that 

received treatment for hypoglycaemia during admission. There were more children with 

hypoglycaemia in the malaria group (131/1687 (8%)) vs the non-malaria group (56/1275 (4%); 

chi-squared p<0.001) at baseline, but no evidence for a difference in the number of children 

with hypoglycaemia between the malaria and non-malaria groups after baseline (90/1705 (5%) 

vs 57/1277 (5%) ever had hypoglycaemia post-baseline; p=0.31). Although there are concerns 

that quinine can cause hypoglycaemia in adults [195], these findings support evidence that this 

is not a concern in children [196]. The analysis also showed that mortality risk was high in 

children with high levels of glucose after admission. 

The mfp process selected a FP2 function for temperature leading to an increased mortality risk 

for those at very high or very low temperatures after admission, whereas there was a linear 

association with mortality risk from baseline measures. The increase in mortality risk at high 

levels of temperature which was not detected in the baseline models (Figure 3.4.1) may have 

been expected as these are post-admission measures. For example, if antimalarial or antibiotic 

treatment was immediately effective then those with high fever, especially with malaria, 

should have had their temperature reduced and so a continued high or increased temperature 

after admission may indicate the first line treatments (or dosages) may not have been effective 

in treating the underlying cause, thus putting the child at an increased risk of mortality.  

Quinine was the standard treatment for malaria in FEAST, which was conducted before the 

change in policy to artesunate (following the results of the AQUAMAT trial showing superiority 

of artesunate over quinine [28]). However, quinine remains an effective antimalarial if dosed 

correctly (since there were no reports of quinine resistance in Africa at the time of the FEAST 

trial).  
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Figure 3.4.13: Association between mortality and time-updated lactate and haemoglobin 

(rows) for all children, those with malaria, those without malaria, those ≤2 years old and those 

>2 years old (columns).   

 All children Malaria  Non-malaria  Age ≤2 years old Age>2 years old 

Lactate 

 

Haemoglobin  

 
Notes: The grey horizontal lines represent a HR of 1, and the dashed vertical lines show the reference value (i.e value used for centering each 

distribution).  

Haemoglobin and lactate were only measured at 8 hours and 24 hours compared to the other 

measures that were measured at 1, 4, 8 and 24 hours. The mortality risk across time-updated 

values of haemoglobin and lactate was similar to that for baseline values showing increased 

risk at low levels of haemoglobin as expected and increased risk at high levels of lactate. The 

associations between different levels of haemoglobin and mortality risk, and lactate and 

mortality risk were also all similar across the different groups.  

 

3.4.2.1 Examining association between randomised treatment and time-updated 

measures  

 

For a time-updated measure to be considered as explaining any of the treatment effect or to 

be a surrogate it also needs to have an association with treatment; for example, the measure 

should change differently over time between the two treatment arms. To assess this, 

generalised estimating equations (GEE) with an independent correlation structure were used 

to analyse whether the mean absolute value of the measures described in this chapter varied 

between the treatment arms across the time points (1, 4, 8, 24, and 48 hours for SBP, oxygen 

saturation, respiratory rate, heart rate, glucose and temperature; 8 and 24 hours for 

haemoglobin and lactate) adjusted for the baseline value. SBP, glucose, temperature, oxygen 

saturation and lactate were log transformed in the models due to non-normal distributions. 

Global tests of difference were performed comparing the bolus and no bolus arms (Figure 

3.4.14). These exploratory analyses did not account for mortality, but overall mortality by 48 
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hours was 9.5% and the absolute difference between arms was small (although significant) at 

3.3%; thus, there was likely to be low impact on these analyses of the missing data due to 

deaths.   

There was evidence for associations between bolus treatment and respiratory rate, glucose, 

heart rate, and haemoglobin over time (Figure 3.4.14). Those in the bolus arm had a higher 

mean respiratory rate at each time point compared to the no bolus arm (although the 

difference was <1 breath per min), and higher mean heart rate until 4 hours (a difference of 2 

beats per min at 1 hour) but after this point were similar to the no bolus arm.  

Children in the bolus arm had lower haemoglobin at each time point compared to the no bolus 

arm. The lower haemoglobin may have been due to blood transfusions for those with 

haemoglobin <5g/dl in the bolus arm being withheld until after the bolus had finished, but the 

difference between the arms remained when the model was restricted to children ≥5g/dl 

(where fewer children received an immediate transfusion) [197]. Some of the difference may 

also have been due to a dilution effect as haemoglobin was measured as g/dL and the children 

in the bolus arm had more fluid in their body by 8 hours. There was no difference in the 

number of children with hb<5g/dl who got transfused by 8 hours between bolus and no bolus 

arms (89% vs 91%; p=0.44). By 8 hours there were 34/357 (5%) with hb <5g/dl that died before 

they could have a transfusion in the bolus arms, and 14/332 (4%) that died before they could 

have a transfusion in the no bolus arm.   

There was a dip in glucose seen in the bolus arm at 1 hour which could be due to metabolic 

stress; alternatively, the maintenance fluids containing glucose in the bolus arms only started 

at 1 hour (post bolus). Those in the no bolus arm, who received maintenance fluids from 

admission, had an increase in glucose post admission which returned to similar levels to the 

bolus arm at 8 hours. This increase in the no bolus arm compared to the bolus arm between 

baseline and 8 hours remained even when all children with hypoglycaemia (defined as 

<3mmol/L and who would have received a glucose correction according to the trial protocol) 

were removed from analyses. There were more children in the bolus arm that developed 

hypoglycaemia after admission at 1 and 4 hours (glucose <3mmol/L after a glucose level ≥3 

mmol/L at admission) compared to the no bolus arm but the absolute numbers were low 

overall (38/1865 (2%) vs 9/931 (1%), exact p=0.04 at 1 hour; 20/1821 (1%) vs 3/921 (0.3%), 

exact p=0.04 at 4 hrs). After 8 hours the percentage of children developing hypoglycaemia was 

the same between arms, and there was no evidence the decrease and then increase over the 

first four hours seen in the bolus arms was more common in those that died.  
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Figure 3.4.14: GEE models for each measure over time split by whether they received bolus or 

not. P-values from a global Wald test 

Systolic blood pressure over time  

 

Respiratory rate over time 

 
Heart rate over time 

 

Glucose over time 

 
Temperature over time 

 

Oxygen saturation  

 
Lactate over time 

 

Haemoglobin over time 

 

 

  

Global p=0.48
88

90
92

94
96

S
B

P
 (m

m
H

g)

01 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p=0.001

40
45

50
55

60
R

es
pi

ra
to

ry
 ra

te
 (b

re
at

hs
 p

er
 m

in
)

01 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p=0.02

13
0

14
0

15
0

16
0

17
0

H
ea

rt 
ra

te
 (b

ea
ts

 p
er

 m
in

)

0 1 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p<0.001

6.
5

7
7.

5
8

G
lu

co
se

 (m
m

ol
/L

)

01 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p=0.66

36
.5

37
37

.5
38

38
.5

Te
m

pe
ra

tu
re

01 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p=0.96

98
.8

99
99

.2
99

.4
99

.6
99

.8
O

xy
ge

n 
sa

tu
ra

tio
n 

(%
)

0 1 4 8 24 48
Hours from randomisation

No Bolus Bolus

Global p=0.54

2
3

4
5

6
La

ct
at

e 
(m

m
ol

/L
)

0 8 24
Hours from randomisation

No Bolus Bolus

Global p<0.001

7
7.

2
7.

4
7.

6
7.

8
8

H
ae

m
og

lo
bi

n 
(g

/d
L)

0 8 24
Hours from randomisation

No Bolus Bolus



196 
 

 

3.4.2.2 Comparing unadjusted and adjusted HRs, and estimating PTE 

 

The estimated adjusted hazard ratio for bolus vs no bolus from time-updated models, 

including the time updated value and baseline value for each measure and subgroup, and the 

unadjusted hazard ratio for bolus vs no bolus for each subgroup (a model with just bolus vs no 

bolus restricted to children within each subgroup with the measure recorded) were then 

plotted together in Figure 3.4.15 below, and the PTE was calculated using the Chen method 

(Figure 3.4.16). 

Figure 3.4.15 shows which measures, either overall or within a subgroup, when included in a 

model with bolus vs no bolus, moved the HR towards the null (which would have been an 

indication the measure may have been explaining some of the treatment effect). The square 

symbols represent the unadjusted hazard ratio for bolus vs no bolus with the population 

indicated in brackets on the x-axis. The population sizes varied reflecting how much missing 

baseline data there was for each variable. The point estimates were approximately the same 

level in each subgroup across the plot and were plotted in three different colours depending 

on the strength of the bolus effect on mortality as indicated by the results of the Wald test. 

The estimate of the hazard ratio was plotted in green if the Wald test p<0.05 from the 

unadjusted model, in orange if p=0.05 – 0.1, and in red if p>0.1. The solid line represents the 

main trial result and the arrows point to the estimated hazard ratio for bolus vs no bolus after 

adjusting for baseline and time-updated values using the functional form from Figure 3.4.12 

and Figure 3.4.13. The first five measures (SBP, respiratory rate, heart rate, glucose and 

temperature) were recorded at baseline, 1, 4, 8, 24 and 48 hours from randomisation whereas 

the last two measures (lactate and haemoglobin) were only recorded at baseline, 8 and 24 

hours from randomisation. The symbols and arrows match with the PTE plotted in Figure 

3.4.15, for example, adjusting for respiratory rate moved the hazard ratios across all the 

groups towards the null and the corresponding PTEs were positive (which showed that a small 

amount of the bolus effect may have been explained by the measure); but adjusting for heart 

rate moved all the hazard ratios away from the null and the PTEs were negative (which showed 

none of the bolus effect was explained by the time-updated measure and adjusting for it gave 

a stronger effect of bolus). 

 

The proportion of treatment effect (PTE) explained by time-updated values in each covariate 

measured over the first 48 hours of randomisation and the 95% CI were calculated using the 
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Chen method (Figure 3.4.16). For comparison, the PTE calculated using the unadjusted hazard 

ratio from a separate model (a time-updated model with bolus vs no bolus only as used in the 

LFD PTE method) was also plotted (as an x) showing that the methods gave close estimates 

(30/35 were within the 95% CI for the Chen method) but for the majority of measures (24/35 

(69%)) the Chen method estimate was further away from the null (Figure 3.4.16). All the PTEs 

with confidence intervals that have upper and lower bounds outside of the interval [-100, 100] 

were from models where the unadjusted bolus effect was non-significant (p≥0.05 as indicated 

in Figure 3.4.15). These very wide confidence intervals, as well as the very large negative PTE 

estimate for glucose in the age ≤2 years group, may have been due to the fact there was no 

strong effect of bolus in these groups. 

Oxygen saturation has not been included in Figure 3.4.15 or Figure 3.4.16 as the effect of bolus 

varied by baseline oxygen saturation, and appropriately adjusting for that interaction with 

baseline would lead to separate PTE estimates per level of baseline oxygen saturation. There 

was also evidence for an interaction between bolus and oxygen saturation after admission in 

children with malaria; thus, estimates of overall hazard ratios and a PTE were not appropriate. 

This is discussed further below.
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Figure 3.4.15: Change in bolus vs no bolus hazard ratio once adjusted for the baseline and time-updated covariate. 

 

 

 

 

 

 

 

Footnote: Overall there were 3141 children available for analysis, 

1795 in malaria positive group, 1330 in non-malaria group, 1571 

aged ≤2 years and 1570 aged > 2 years. They had up to 5 

observations each for this analysis (0, 1, 4, 8, 24 hours (8 and 24 

hours only for haemoglobin and lactate)). Each group for each 

covariate gave a slightly different unadjusted HR as there are a 

different number of observations in each model (depending on 

the size of the group (malaria, non-malaria, aged ≤2 or >2 years) 

and how much missing baseline information there is). The overall 

unadjusted HR plotted was 1.47.  
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Figure 3.4.16: Proportion of treatment effect explained by measures over time from randomisation.

moves

HR

towards

null

moves

HR

    away from

null

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100

Pr
op

or
tio

n 
of

 T
re

at
m

en
t E

ffe
ct

 E
xp

la
in

ed
 (%

)

S
B

P
-o

ve
ra

ll

S
BP

-m
al

ar
ia

S
BP

-n
on

 m
al

ar
ia

S
B

P
-a

ge
≤2

 y
ea

rs

S
BP

-a
ge

>2
 y

ea
rs

R
es

pi
ra

to
ry

-o
ve

ra
ll

R
es

pi
ra

to
ry

-m
al

ar
ia

R
es

pi
ra

to
ry

-n
on

 m
al

ar
ia

R
es

pi
ra

to
ry

-a
ge

≤2
 y

ea
rs

R
es

pi
ra

to
ry

-a
ge

>2
 y

ea
rs

H
ea

rtr
at

e-
ov

er
al

l

H
ea

rtr
at

e-
m

al
ar

ia

H
ea

rtr
at

e-
no

nm
al

ar
ia

H
ea

rtr
at

e-
ag

e≤
2 

ye
ar

s

H
ea

rtr
at

e-
ag

e>
2 

ye
ar

s

G
lu

co
se

-o
ve

ra
ll

G
lu

co
se

-m
al

ar
ia

G
lu

co
se

-n
on

 m
al

ar
ia

G
lu

co
se

-a
ge

≤2
 y

ea
rs

G
lu

co
se

-a
ge

>2
 y

ea
rs

Te
m

pe
ra

tu
re

-o
ve

ra
ll

Te
m

pe
ra

tu
re

-m
al

ar
ia

Te
m

pe
ra

tu
re

-n
on

 m
al

ar
ia

Te
m

pe
ra

tu
re

-a
ge

≤2
 y

ea
rs

Te
m

pe
ra

tu
re

-a
ge

>2
 y

ea
rs

La
ct

at
e-

ov
er

al
l

La
ct

at
e-

m
al

ar
ia

La
ct

at
e-

no
n 

m
al

ar
ia

La
ct

at
e-

ag
e≤

2 
ye

ar
s

La
ct

at
e-

ag
e>

2 
ye

ar
s

H
ae

m
og

lo
bi

n-
ov

er
al

l

H
ae

m
og

lo
bi

n-
m

al
ar

ia

H
ae

m
og

lo
bi

n-
no

n 
m

al
ar

ia

H
ae

m
og

lo
bi

n-
ag

e≤
2 

ye
ar

s

H
ae

m
og

lo
bi

n-
ag

e>
2 

ye
ar

s

Updated measures

PTE estimated from Chen method

95% CI for PTE from Chen method

PTE estimated from LFD method



200 
 

None of the covariates in Figure 3.4.16 seem to explain the treatment effect; the largest PTE 

was 35% (from SBP in the non-malaria group) which was still small. For a measure to be 

considered a surrogate, Freedman et al [164] suggest the estimate would need to be around 

75% or higher and the lower bound of the confidence interval would be expected to be above 

50%. Some of the covariates, such as heart rate and temperature, even moved the hazard ratio 

away from the null giving negative values for PTE. Haemoglobin had very little impact on the 

treatment effect, and lactate, respiratory rate and glucose had PTE<33% in all groups. Lactate 

and respiratory rate gave consistent positive PTE values across all groups (all >10%); some also 

had confidence intervals excluding zero and so, of all the measures, these were the most likely 

to have explained a small amount of the treatment effect. But when analysing the association 

between bolus and lactate in a model with lactate as an outcome, I found that the bolus 

intervention had no impact on the mean lactate level at each time point (Figure 3.4.14). 

Lactate may still explain a small amount of the treatment effect but this may not have been 

seen in the GEE analyses, as the first post-randomisation time point was at 8 hours and so any 

impact of the bolus on lactate may have resolved by that time point. It may also have been 

that the impact of bolus on lactate was only in small groups of children at high levels of lactate. 

However, a quantile regression analysis of lactate at 8 hours, adjusted for lactate at baseline, 

showed no difference in the 90th percentile level between the bolus and no bolus group 

(p=0.79). A similar result was found for the 90th percentile level using quantile analysis for 

lactate at 24 hours (p=0.54). Absolute change from baseline in lactate at 8 and 12 hours was 

described as a useful surrogate for the effect of anti-malarial treatment on mortality in adults 

with severe malaria, in a reanalysis of the AQ study in Vietnam, with PTEs of 73% and 77% 

[198, 199]. However, serial lactate measurements were not available to calculate PTEs from a 

similar dataset in children with severe malaria (AQUAMAT study) [199]. Quantile regression of 

lactate at 8 hours adjusting for baseline lactate restricted to those in the malaria group only 

also showed no impact of bolus on the 90th percentile of lactate in this subgroup (p=0.68).  

Respiratory rate differed significantly between treatment arms over time (Figure 3.4.14) and 

may have explained a small amount of the treatment effect but the PTE estimates within the 

groups and overall were all <33%.    
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3.4.2.3 Interactions 

 

Each model was investigated to identify whether the effect of bolus vs no bolus on mortality 

risk varied over different values of the time-updated measures adjusted for the baseline 

measures (Table 3.4.8). Out of 40 tests, five gave p<0.1 and one gave p<0.05 giving a rate of 

1/40 (3%) for significant interactions.  

Table 3.4.8: Tests for heterogeneity between time-updated measures and bolus effect.  

  Interaction p-values from each model 

  Overall Malaria Non-malaria Age ≤2 years Age > 2 years 

Heart rate 0.38 0.81 0.39 0.85 0.49 

Respiratory rate 0.14 0.58 0.12 0.53 0.25 

Glucose  0.46 0.33 0.47 0.33 0.17 

Temperature 0.94 0.60 0.61 0.54 0.91 

Systolic Blood Pressure 0.41 0.50 0.58 0.23 0.09 

Haemoglobin 0.95 0.76 0.73 0.88 0.83 

Lactate 0.06 0.17 0.08 0.85 0.06 

Oxygen saturation*  0.49 0.02 0.28 0.39 0.92 

* Model for oxygen saturation only additionally adjusted for interaction between bolus and baseline measure of oxygen saturation 

 

3.4.2.3.1 Interaction between time-updated oxygen saturation adjusted for baseline 

interaction  

 

There was some evidence that the effect of bolus vs no bolus on mortality risk varied according 

to oxygen saturation as a time-updated covariate (i.e. an interaction between bolus and time-

updated values) in the malaria group, adjusting for the previously identified interaction 

between baseline oxygen saturation and bolus vs no bolus (p=0.02) (allowing the effect of 

bolus vs bolus on mortality risk to vary by oxygen saturation at baseline as well as by time-

updated oxygen saturation). There was no evidence that the effect of bolus vs no bolus on 

mortality risk over time-updated oxygen saturation varied differently between the malaria 

groups (p=0.51 for a three-way interaction). The baseline interaction remained significant in 

the presence of the time–updated interaction (p=0.02).  
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The functional form selected to best describe the relationship between time-updated oxygen 

saturation and mortality risk varying by bolus vs no bolus, in a model adjusted for a baseline 

interaction between oxygen saturation and bolus, was a quadratic function. The AIC of the 

selected model was estimated and compared to a model with a linear function for time-

updated oxygen saturation in an interaction with bolus vs no bolus and they were found to be 

very close (1754 vs 1757). The interaction also still held with oxygen saturation as a linear 

function (p=0.01). To simplify visualising the varying effect of bolus vs no bolus on mortality 

risk over oxygen saturation, a model with time-updated oxygen as a linear function in the 

interaction with bolus was used. The bolus vs no bolus effect on mortality risk from a model 

with the baseline interaction and time-updated interaction was plotted as a contour plot 

(Figure 3.4.17). The different shades of blue on the contour plot indicate different levels of 

risk: the darkest represents highest risk (hazard ratio ≥10) and the lightest shade represents 

lowest risk (hazard ratio <1) with oxygen saturation after admission on the y-axis and oxygen 

saturation at baseline on the x-axis.  

  



203 
 

Figure 3.4.17: a) Contour plot of bolus vs no bolus effect on mortality risk across baseline and 

time-updated (after admission) oxygen saturation levels in children with malaria  and b) scatter 

plot of distribution of oxygen saturation at baseline and oxygen saturation after admission in 

children with malaria. 

a) 

 

b) 

 

 

The interaction detected in the time-updated model was that the bolus effect increased as 

oxygen levels decreased in children with malaria, so the children with low levels of oxygen 

saturation and malaria after baseline had a worse effect of bolus compared to those with high 

levels of oxygen saturation and malaria after baseline (Figure 17a). This interaction was not in 

the same direction as the baseline interaction (if they had been in the same direction then the 
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highest risk would have been in the top right hand corner of the contour plot). The bolus had 

least effect on those with poor lung function (low oxygen saturation) and malaria at baseline 

whether it remained poor or improved over time, whereas those with good lung function 

(normal oxygen saturation) and malaria at baseline which then deteriorated, had highest risk 

from the bolus intervention. However, the scatter plot shows that there were few data in 

children with high baseline oxygen saturation and low post admission oxygen saturation. There 

were 88/1500 (6%) children with malaria and oxygen saturation <90% after admission who had 

previously had ≥90% on admission (out of those with malaria and oxygen saturation ≥90% on 

admission), and of these 24 had oxygen saturation <80% after admission. There was only 

evidence for an interaction with bolus with post-admission values in the malaria group. Given 

the number of tests performed, this could be due to chance.  

 

3.4.2.4 Multivariable model for estimating PTE  

 

All the previous models looked at each clinical measure individually but it was also important 

to consider them in a model together and to understand if, together, they could explain more 

of the treatment effect. The Chen method was used to estimate PTE from a model with 

respiratory rate, heart rate, SBP, temperature, glucose, haemoglobin and lactate as time-

updated values adjusted for their baseline values. Confidence intervals were estimated 

bootstrapping 10,000 replications around the Chen estimate of the PTE. An estimate of PTE 

calculated using the LFD method was also plotted (Figure 3.4.18).  
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Figure 3.4.18. Proportion of treatment effect explained by all measures combined over time 

from randomisation. 

 

Figure 3.4.18 shows that only 43% of the treatment effect was explained in the trial population 

using the time-updated measures together. The malaria and non-malaria groups had a 

negative PTE indicating that adjusting for all the clinical measures actually increased the bolus 

effect in these groups. The PTEs estimated from the LFD method were all <30% and closer to 

0% than the PTEs from the Chen et al method indicating that there was relatively little change 

in the hazard ratio for bolus vs no bolus after adjustment.  

One reason that the estimates for the PTEs in malaria and non-malaria both had wide 

confidence intervals could be due to the fact that this model ignores the baseline interaction 

that bolus had with base excess and malaria. Thus the PTE was calculated just for the 

significant bolus effect for low base excess (defined as <-8mmol/L) in children with malaria as 

presented in Table 3.4.2 (page 175) (3.01 95% CI (1.59, 5.71)). The PTE of the significant bolus 

effect for low base excess in children with malaria, estimated using all the time-updated 

measures above, was then estimated to be -73% (95% CI -236% to -18%). This can be 

compared to -51% for children with malaria in Figure 3.4.18, and shows that by ignoring the 

interaction the model may have underestimated how much the adjustment for all the clinical 
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measures moved the hazard ratio away from the null in the malaria group (rather than 

towards the null as would be expected if the variables were genuinely explaining the increased 

risk associated with boluses). As there was no evidence for an effect of bolus in the other 

groups (Table 3.4.2) the PTEs were not estimated.  

 

The model for Figure 3.4.18 also ignored the baseline interaction with oxygen saturation, and 

so PTE was estimated restricted to those with oxygen saturation ≥90%, for bolus vs no bolus 

on mortality risk from all the time-updated factors above and for the groups in which there 

was a significant effect of bolus. Overall, the estimated PTE by clinical measures for those with 

high oxygen saturation (Table 3.4.9) was less than that estimated for the trial population, but 

even in this subgroup all measured clinical measures combined were not able to explain much 

of the treatment effect. The treatment effects shown in Table 3.4.9 were calculated for each 

group from a model with no missing baseline values for all the clinical measures and the 

estimates were consistent in showing an increase in mortality risk from boluses in all groups.  

Table 3.4.9: Proportion of treatment effect in children with oxygen saturation 90-100% 

explained by all measures combined over time from randomisation. 

 Oxygen saturation 90-100% 

Group 
HR for bolus vs no 

bolus a  

Deaths/children in 

each model 

PTE by clinical 

measures  

Overall 1.83 (1.19, 2.82) 120/2104 
11%  

(95% CI -11- 40%) 

Malaria 2.50 (1.31, 4.78) 66/1270 
40%  

(95% CI 22-75%) 

Non-malaria 1.35 (0.74, 2.46) 54/831 Not estimated b  

Age ≤ 2 years 1.84 (0.97, 3.47) 58/1037 Not estimated b 

Age > 2 years 1.83 (1.01, 3.32) 62/1067 
44%  

(95% CI 17-149%) 
aThese are estimated from the time-updated model with complete baseline clinical measures.  
bThe PTEs were not estimated in this group as the bolus effect was non-significant.   
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3.4.3 Malaria Sensitivity Analyses  

 

Samples from the FEAST participants were tested for PfHRP2 protein to better describe the 

parasite burden in children enrolled in the trial, especially those with malaria as described in 

the methods section of this chapter, page 154. A substantial proportion of samples were not 

taken at sites during the trial and so there were only 2216/3141 (71%) available for analysis. Of 

these samples 1549 (70%) tested positive for any PfHRP2 protein. PfHRP2 levels of >1000ng/ml 

have been shown to denote a malaria attributable fraction of severe disease of 99% (95% 

credible interval 96%-100%) [182]. 

Thus, I considered an alternative definition of severe malaria (PfHRP2>1000ng/ml) to try to 

better distinguish between the malaria and non-malaria groups. The new definition is outlined 

below in relation to the statistical analysis plan (SAP) definition of malaria (Table 3.4.10). 

Table 3.4.10: SAP defined malaria compared to a definition of severe malaria in children with 

PfHRP2 protein measured.   

 Malaria by PfHRP2  

Malaria (SAP) Negative  

(PfHRP2 per 

ng/ml = 0) 

(% row)   

Low levels of 

PfHRP2 (PfHRP2 

per ng/ml  

1 - ≤1000)   

(% row)   

Severe malaria  

(PfHRP2 per 

ng/ml>1000)  

(% row) 

Total 

Negative (% col) 572 (86%) 

(60%) 

308 (36%) 

 (33%) 

70 (10%)  

(7%) 

950 (43%) 

(100%) 

Positive (% col) 95 (14%) 

 (7%) 

543 (64%)  

(43%) 

628 (90%)  

(50%) 

1266 (57%) 

(100%) 

Total     (% col) 667 (100%) 

(30%) 

851 (100%) 

 (38%) 

698 (100%) 

(32%) 

2216 (100%) 

(100%)  

 

 Mortality at different levels of PfHRP2 was also examined (Table 3.4.11). 
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Table 3.4.11: Mortality at different levels of PfHRP2.  

Category of PfHRP2 Bolus group  

 (% deaths) 

No bolus group 

(% deaths) 

Overall (% deaths) 

>1000 ng/ml 43/463 (9%) 15/235 (6%) 58/698 (8%) 

1-≤1000 ng/ml 49/569 (9%) 15/282 (5%) 64/851 (8%) 

None (0) 64/437 (15%) 15/230 (7%) 79/667 (12%) 

Total  156/1469 (11%) 45/747 (6%) 201/2216 (9%) 

 

A model restricted to those with PfHRP2-defined severe malaria showed that the impact of 

bolus changed over different levels of base excess (p=0.01) consistent with the previous 

finding in this chapter. A test of a three-way interaction between bolus, severe malaria (yes vs 

no, i.e. combining low and zero PfHRP2) and base excess confirmed that the impact of bolus 

changed over base excess levels in a different way in the severe malaria group to the non-

severe-malaria group (p=0.04).  

The categorisation of PfHRP2 as described in Table 3.4.11 was included in a model in all 

children with PfHRP2 measured as part of a three-way interaction with bolus and continuous 

base excess. There was some evidence that the impact of the bolus changed over different 

levels of base excess in a different way across the three categories of PfHRP2 (p=0.06). The 

plots of the hazard ratio for bolus vs no bolus at each level of base excess within each PfHRP2-

defined group demonstrated that it was the category with the highest PfHRP2 levels that had 

the most detrimental effect of bolus at lowest levels of base excess (Figure 3.4.19).  

The estimate of the harmful effect of bolus was very high for low levels of base excess when 

PfHRP2>1000 (HR=72.12 when base excess was -20) but the confidence intervals were also 

very wide (95% CI 2.04, 2546).  
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Figure 3.4.19: Hazard ratio for bolus vs no bolus over levels of base excess in a) those with no 

malaria defined by PfHRP2<0, b) those with PfHRP2 1-≤1000 ng/ml and c) PfHPR2 >1000 

ng/ml.  

a)  

 

b) 

 

c) 

 

 

The evidence that the impact of the bolus changed over base excess according to the level of 

PfHRP2 was also examined with the binary categorisation of base excess used earlier in the 

chapter, which also showed the increased effect of receiving bolus on mortality for those with 

severe malaria and severe acidosis (Table 3.4.12).  

Table 3.4.12: Effect of bolus on mortality risk by base excess level and malaria status (defined 

by PfHRP2) at baseline. 

  Base excess <-8 (acidosis) 

  
Bolus (% died) 

No bolus  

(% died)  
HR for Bolus 

Severe malaria (pfHRP2>1000ng/ml) 27/159 (17%) 2/65 (3%) 5.98 (1.42, 25.13) 

Low levels of PfHRP2 (1-≤1000ng/ml) 26/147 (18%) 8/74 (11%) 1.70 (0.77, 3.75) 

Non-malaria (pfHRP2=0) 30/117 (26%) 10/42 (24%) 1.10 (0.54, 2.26) 

Total  83/423 (20%) 20/181 (11%)   

  Base excess ≥ - 8 

  
Bolus (% died) 

No bolus  

(% died) 
HR for Bolus  

Severe malaria (pfHRP2>1000ng/ml) 4/145 (3%) 2/82 (3%) 1.48 (0.38, 5.72) 

Low levels of PfHRP2 (1-≤1000ng/ml) 10/215 (5%) 2/103 (2%) 2.43 (0.53, 11.09) 

Non-malaria (pfHRP2=0) 7/186 (4%) 3/116 (3%) 1.12 (0.21, 6.11) 

Total  21/546 (4%) 7/300 (2%)   

NB: Numbers in bold indicate a significant effect of bolus 
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PfHRP2 was also included in a model as a continuous measure, truncated at the 95th 

percentile, to describe severity of malaria in more detail. Fractional polynomials (fp) were used 

to estimate the most appropriate association between PfHRP2 >1000ng/ml as a continuous 

function and mortality, adjusting for PfHRP2≤1000ng/ml as a binary factor and for effect of 

bolus vs no bolus. The binary cut-off of 1000ng/ml was chosen to avoid issues with the mfp 

function when PfHRP2=0. This showed that a linear function of PfHRP2 was most appropriate. 

However, there was very little difference in mortality risk between high and low PfHRP2 above 

1000ng/ml as a continuous function adjusting for base excess and whether PfHRP2 was 

≤1000ng/ml or not. This was in contrast to a previous study of PfHRP2 which modelled it on 

the log scale and showed a U-shaped association with mortality [41]. This may be due to the 

authors not including binary factor to reflect when PfHRP2=0 in their estimation of a fp 

function, or that they had fewer children with PfHRP2≤1000ng/ml in their study compared to 

the FEAST trial and that children without malaria have other more severe diseases and usually 

have a higher mortality. A three-way interaction with PfHRP2 (both continuous as a linear 

function and binary (cut-off at ≤1000ng/ml)), bolus and continuous base excess as a linear 

function was tested with a likelihood ratio test and gave p=0.006.  

Total parasite burden was then calculated from PfHRP2 levels dependent on the child’s weight 

and haematocrit and truncated at the 95th percentile. Haematocrit in the FEAST trial was 

collected using the i-STAT cartridge and so there was a high level of missingness for this 

measure; thus calculated total parasite burden was available in only 1228/3141 (39%) children 

(94 deaths) (1228/2216 (55%) of those with PfHRP2 measured).  

Total parasite burden as a binary variable (split at the 33rd percentile of parasite burden>0, 

giving a cut-off of 0.22 x1012) and as a continuous variable (when >0.22 x1012) was included in a 

model adjusted for the effect of bolus vs no bolus. Fractional polynomials were used to 

estimate the most appropriate association between parasite burden>0 as a continuous 

function and mortality and found a linear association between mortality risk and parasite 

burden, with a slight non-significant increased risk at high levels of parasite burden (HR 1.20 

per 1x1012 increase (95%CI 0.99-1.48); p=0.07). Base excess was added to the model as a linear 

function (HR 0.86 (95% CI 0.84-0.89); p<0.001) and the linear association between continuous 

parasite burden and mortality risk remained, although with less evidence for an association 

(HR 1.12 per 1x1012 increase (95% CI 0.92-1.37); p=0.26).  
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A likelihood ratio test for both three-way interactions between 1) parasite burden (as binary), 

bolus and base excess, and 2) parasite burden (continuous), bolus and base excess gave 

p=0.0003 (Figure 3.4.20a). Each three-way interaction was also tested separately (p<0.001 for 

the binary variable three-way interaction with bolus and base excess, p=0.09 for the 

continuous variable three-way interaction). This confirms what was found with the SAP 

definition of malaria on page 154 of this chapter. Base excess was weakly inversely correlated 

with parasite burden (Spearman’s rho=-0.14; p<0.001) and PfHRP2 (Spearman’s rho=-0.12; 

p=0.006) (Figure 3.4.20b and 3.4.21) and children with PfHRP2>1000ng/ml had a lower mean 

base excess at admission (-9.3 vs -8.1; t-test p=0.003). PfHRP2 and parasite burden were highly 

correlated as expected (rho=0.97, p<0.001) (Figure 3.4.21). Analyses using either PfHRP2 or 

parasite burden both confirm the increased mortality risk from bolus at low levels of base 

excess when the children had malaria, but also showed that there was a dose-response impact 

that the more severe the malaria (i.e more parasitaemia) the higher the impact of bolus on 

mortality risk at low levels of base excess. 

Figure 3.4.20 a) Impact of bolus vs no bolus at different levels of base excess and parasite 

burden, b) correlation between base excess and parasite burden. 

a) 

 

b) 
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Figure 3.4.21: Correlations between PfHRP2 and base excess, total parasite burden and base 

excess, and total parasite burden and PfHRP2.  

  

 

 

The Cox models for time-updated analyses were also restricted to those with severe malaria 

defined by PfHRP2>1000ng/ml. The best fitting functions to describe the association between 

time-updated measures and mortality risk, adjusting for baseline measures, in children in 

severe malaria were compared to those found for children with the SAP definition of malaria. 

For 6/8 measures the functions selected for the association were the same as those found in 

the SAP malaria group. The 2 measures for which the selected functions were different were 

glucose and haemoglobin. The AICs of the models with glucose and haemoglobin in severe 

malaria were compared to models using the same function as had been identified in the SAP 

malaria group and found to have a difference of <3.84, giving no evidence that the association 

between mortality risk and the time-updated measure was different in the severe malaria 

group compared to the SAP malaria group.    

Restricting to the severe malaria group, the unadjusted hazard ratio was 1.46 (0.81-2.63) for 

the effect of bolus vs no bolus on mortality risk. As there was no evidence of an effect in this 

subgroup, the PTE estimates are likely to be very unreliable and less interpretable and thus 

were not calculated.   
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3.5 Discussion 
 

The analyses in this chapter showed that no one clinical measure recorded during the first 48 

hours of admission to hospital was able to explain the harmful effect of boluses in the FEAST 

trial. It also showed that combining the clinical measures during admission also could not 

explain the bolus effect that was seen in this trial.   

The exploratory analyses using baseline measures showed that there was not always a linear 

relationship between mortality risk and values of baseline measures (especially for SBP, 

glucose and sodium with non-monotonic risk functions) and so modelling these with fractional 

polynomials was important. By analysing these measures in the most appropriate functional 

form, I was able to identify the values where children were at greatest risk.  

The analyses confirmed that children with a high fever on admission were at lower mortality 

risk compared to those with hypothermia, suggesting a clinical benefit of fever which has been 

previously found in similar clinical settings [47]. But I also found that mortality risk at high 

values of temperature after admission did increase mortality risk indicating that development 

of fever or remaining at a high temperature after treatment had started was harmful, and this 

potentially identifies children for which treatment was not working leading to excess mortality 

risk. Thermometers are easily available in these settings and temperature can be easily 

monitored after admission, suggesting that continuation or development of a high fever after 

baseline could be a valuable tool to identify antimicrobial (for both malaria and bacteria) 

treatment failures (incorrect dosages/antibiotics given or antimicrobial resistance). This could 

be done at a specific time point (which could be 48 hours as this is when treatment failure is 

often defined) and identify children at increased risk of mortality after admission and could 

result in tailoring of treatment, especially where microbiological services are lacking. 

BUN at baseline has been dichotomised for risk scores in other studies at 20, with values >20 

defined as being at increased risk of mortality [103]. I found that mortality risk was high above 

this value and did not increase with values greater than 20, but I also detected a lot of 

variation in mortality risk below that value which would not be captured using a cut-off of 20.  

The FEAST trial showed that boluses were harmful and the categorical subgroup analyses 

presented with the main trial results all supported that finding; there were no subgroups in 

which there was any evidence of a benefit [33]. In this chapter instead I tested interactions 



214 
 

with continuous variables and found that boluses were more harmful in children with good 

initial lung function, defined by high levels of oxygen saturation (≥90%) in all children at 

admission, with some weak evidence that this effect was also present within all subgroups of 

children analysed in this chapter (malaria, non-malaria, age≤2 years, and age>2 years). This 

interaction has been reported previously [157], although no reasons were put forward at that 

time, and there was no indication from the endpoint review committee reviews that fluid 

overload on the lungs was the main mechanism by which the bolus was causing harm [157]. If 

immediate fluid overload had been one mechanism by which the boluses were causing harm 

(which would correspond to a respiratory TCE close to bolus administration) then it would be 

expected to have an even greater impact on children with poor lungs at baseline, as indicated 

by low oxygen saturation (<90%). However, it was children with high oxygen saturation at 

baseline in which boluses had greatest detrimental impact, thus making clinical interpretations 

difficult.  

The analyses in this chapter go further in describing how the bolus effect changed over 

different levels of oxygen saturation after admission; it was particularly those children with 

malaria and low values of oxygen saturation after admission that had the greatest detrimental 

impact of bolus, particularly in those who had high values of oxygen saturation at baseline. In 

terms of cause of death, children with ≥90% oxygen saturation at baseline had a higher 

proportion of deaths adjudicated as respiratory in the bolus arms compared to the no-bolus 

arm. However, they also had a higher proportion of deaths adjudicated as cardiogenic (or 

shock). Analyses using oxygen saturation as an outcome and looking at the impact of bolus 

showed that the mean oxygen saturation increased in both groups after baseline, and there 

was no difference between the arms; however, there was a difference between arms in 

respiratory rate, but this was very small in magnitude (<1 breath/min). Thus, there was not 

strong evidence that boluses worsened lung function (as measured by oxygen saturation) 

immediately in all children receiving boluses. Rather, boluses appeared to delay the rate of 

recovery in respiratory rate (consistent with findings in Chapter 4), and then led to a 

respiratory or cardiogenic TCE. The boluses may also have had a greater harmful effect in 

children with a normal oxygen saturation level at baseline as some of these children may have 

had less severe shock (as measured by the number of features of impaired perfusion (although 

52% still had 2 or more)) and thus a bolus of fluid was not acting to improve perfusion as it had 

done in prior studies and overall in the FEAST trial [30, 157]. Although there was little 

indication that it was fluid overload on the lungs that directly led to deaths in the bolus arms, it 
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may be that some mechanism involving the lungs further along in the admission was 

responsible, and that it was children with good lung function at randomisation (as measured 

by oxygen saturation) that were most adversely impacted by bolus. 

One of the findings of the paper looking to explain the mechanisms of mortality in the FEAST 

trial was that the cause of death with the greatest difference between arms was the 

cardiogenic TCE. Although base excess was not used in the definition of TCEs, because it was 

not sufficiently measured after baseline (67% missing at the only other timepoint (24 hours)), 

it was used in the definition of severe shock at baseline (base excess<-8mmol/L, or 

lactate≥5mmol/L, or WHO shock or moderate hypotension (SBP 50-75, 60-75, 70-85mmHg in 

children <12 months, 1 to 5 years and >5 years respectively)). Those with severe shock had the 

highest mortality risk and, consequently, largest absolute risk differences for bolus vs no bolus 

(7.0% compared to the overall risk difference of 3.3%) [157]. Base excess has not been 

modelled as a continuous variable previously, thus the evidence for an interaction found in 

these analyses may have been driving the previous finding. The baseline presentation of 

shock/acidosis, rather than respiratory or neurological syndromic presentations, was also 

closely aligned with the cardiogenic TCE.  

The analyses in this chapter showed that the bolus effect was highest in those with lowest 

base excess (particularly when base excess<- 8 (acidosis)) but only when children also had 

malaria. For children with no malaria the harmful effect of bolus was the same across all values 

of base excess. Sensitivity analyses using PfHRP2 showed the difference in bolus effect by level 

of base excess held when analyses were restricted to children with severe malaria (using a 

strict definition incorporating the degree of sequestered parasite load) and also held when 

modelled with total parasite burden (i.e a continuous measure of malaria instead of a binary 

indicator). The analyses also confirmed that the bolus impact increased as parasite burden 

increased, showing a higher impact of bolus in more severe malaria. Children needed to have 

had both malaria and severe acidosis for the bolus to have had the increased detrimental 

impact, in contrast to having had just malaria or just severe acidosis. For those with severe 

malaria I postulate that acidosis was secondary to deranged microcirculation in addition to the 

macrovascular derangements (signs of shock) and thus was more likely to be contributing to 

the excess mortality. However, another contributing mechanism is red blood cell deformability 

(occurring in both parasitised and non-parasitised red cells) [200], which has been shown to be 

a prognostic factor for mortality and more important than other parameters such as lactate 
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and acid/base status [201]. It is also correlated with base excess [201]. The bolus may have 

increased the ability of these cells with decreased deformability or increased rigidity (healthy 

red blood cells have good deformability) to circulate, reducing microcirculatory flow and 

oxygen delivery in the tissues. 

The varying impact of the bolus by baseline excess value in children with malaria was also 

found to be independent of the varying impact of the bolus by oxygen saturation levels, 

identifying two different groups of children with increased risk of mortality from bolus 

administration. But where the two groups overlapped the impact of bolus on mortality risk 

was even higher.  

The time-updated analyses showed that the risk of mortality was highest when clinical 

measures had not normalised after admission i.e. not returned to healthier values. For SBP, 

temperature, heart rate and glucose risk was increased at both high and low post-baseline 

values. For respiratory rate the gradient of the linear slope for mortality risk was steeper for 

the post admission values, showing that if respiratory rate remained high or increased since 

baseline then mortality risk was increased even more than equivalent differences in baseline 

values.  

None of the clinical or laboratory measures individually explained a large proportion of the 

bolus treatment effect: the largest of any group was SBP in non-malaria at 34%. For a measure 

to be considered a candidate as a surrogate marker it is generally considered that it would 

need to explain around 75% of the treatment effect or higher with a lower confidence interval 

bound > 50% [164]. Glucose and lactate in the age > 2 years group and respiratory rate in the 

malaria group had positive PTEs of 30% (95%CI 18, 90%), 32% (95%CI 20, 96%) and 18% (95%CI 

-30%, 98%) respectively. Further, in all groups respiratory rate and lactate consistently had 

positive PTEs, although some confidence intervals were wide. It is important that the bolus 

should also have an impact on the measure considered to be explaining some of the treatment 

effect [202], and this was shown for respiratory rate, although with a very small absolute 

difference between groups (<1 breath per min). There was no evidence for a difference 

between arms in lactate after admission, both using GEEs for a difference in means between 

the two groups but also analysing the difference in the 90th percentile. But it may be that there 

was a short impact of bolus on lactate occurring immediately after the bolus that I could not 

detect, as the first post admission lactate time point was 8 hours, especially given that the 

small effect of treatment on respiratory rate was mainly seen at 1 and 4 hours. Thus it may be 
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that I failed to identify lactate as a surrogate due to a mismatch between timing of deaths and 

of subsequent lactate measurements. Although respiratory rate had positive PTEs across the 

subgroups and overall, and an association with bolus effect over time (but with minimal 

absolute difference between the means of <1 breath per min), there was no strong evidence 

this explained any of the bolus effect.  

Jeeyapant et al suggested that changes in lactate assessed at 8 or 12 hours were valid 

surrogates for the treatment effect of anti-malarials on mortality in adults with severe malaria, 

with a PTE for absolute change in lactate of 73% at 8 hours [199], although the confidence 

interval for the estimate was wide (-607%, 673%). The authors suggest that this PTE was due to 

anti-malarials improving the microcirculatory flow which then reduces plasma lactate and 

mortality. There was no evidence in our malaria group that lactate correction/normalisation 

was a suitable surrogate for bolus treatment, but that may have been due to the differences in 

mechanisms of action between anti-malarials and boluses. Also, if boluses had an impact, it 

may have occurred prior to the first measurement at 8 hours, so it was not possible to see the 

change in lactate between the bolus and no bolus groups with the data that was collected. I 

found evidence that the parasite burden had a small but significant correlation with base 

excess (another measure of degree of acidosis) (rho=-0.15, p<0.001) and with lactate 

(rho=0.33, p<0.001) and so for children with malaria the levels of parasite burden may be 

explaining some of the metabolic acidosis. But across the whole trial the number of children 

with parasitaemia may not be large enough to show an impact of bolus on lactate as a 

surrogate for the effect of bolus treatment on mortality. Also, it has been shown that although 

lactate acid contributes to metabolic acidosis, it only accounts for one quarter of the strong 

anion gap [203] and that lactate acidosis of malaria has multiple aetiologies [204].    

The results of the PTE analyses indicated that the mechanism by which the bolus caused harm 

was not by one route in one organ that can be measured easily by changes in recorded clinical 

measures. Even combining all measures did not explain the treatment effect, indicating there 

may have been unmeasured clinical changes taking place that would better reflect the 

mechanism.  

A limitation of the analyses was that the bolus was given at baseline, and for some children 

again at 1 hour, but the next recorded measurements were at 4 and 8 hours. The effect of the 

bolus may have been better explained by the values that were not recorded in between these 

points, especially when 167/297 (56%) of the deaths occurred by 8 hours. Lactate and 
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haemoglobin were only measured at 8 and 24 hours after admission so there was even less 

information on these measures. Also, the measures collected and the times they were 

collected were focussed on clinical care and with the expectation of a benefit from boluses, 

and different measures at other time points could have been recorded which may have been 

better at explaining the harmful treatment effect.  

A second limitation is missing data in some of the laboratory measures at baseline. Although 

multiple imputation has given more information about mortality risk at different levels of 

baseline measures, which showed that for most groups the complete case and MI analyses 

were very similar, it also had its limitations and possible interactions were not able to be 

explored further. The sensitivity analyses regarding total parasite burden and PfHRP2 were 

limited, due to the large amount of missing samples, and the missing information on 

haematocrit for the calculation of total parasite burden, even where a sample had been 

tested. But the analyses with PfHRP2 were consistent with the SAP definition of malaria, giving 

more evidence across malaria definitions that the impact of the bolus varied across different 

levels of base excess only in children with malaria, with those at lowest base excess having had 

greater increased risk from bolus than those with normal base excess. The sensitivity analyses 

also showed a dose-response relationship with greatest mortality risk from boluses in those 

with low base excess and highest parasite burden. 

The analyses in this chapter showed that there were likely to be different mechanisms of 

action for the harmful effect of boluses in children with severe febrile illness, as no one clinical 

measure over time could explain the treatment effect that was found in the trial. The recorded 

clinical measures over time combined were also not able to explain the treatment effect. The 

strong evidence that the impact of the bolus varied over levels of base excess for children with 

malaria had not been shown before and was independent of the previously found interaction 

with oxygen saturation (where those with highest levels of oxygen saturation at baseline had 

greatest increased mortality risk from boluses) [157]. This suggests that base excess is an 

important clinical measure and should be recorded in more clinical trials in these populations 

in the future. Although there were difficulties in using the i-STAT machine and cartridge to 

measure base excess in the FEAST trial, it is a point-of-care test and so could be developed 

further to be used more frequently in low-income settings. Although there was no clear 

surrogate marker found in the analyses in this chapter, one of the more promising measures 

was lactate. This may show more of a relationship with the intervention if measured earlier 
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after baseline (for example at 1 and 4 hours instead of just 8 hours) in future trials. The 

findings in this chapter also highlight the need for PfHRP2 to be measured in more samples 

and a more consistent measurement of haematocrit to calculate parasite burden. This would 

provide vital information in future trials about the impact of fluid resuscitation in children with 

malaria. 
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4 Describing mortality risk over time from randomisation  
 

4.1 Aims and Objectives 
 

The aim of this chapter is to explore how the mortality risk changes with time from admission 

in the FEAST trial. In previous work, the Cox proportional hazards model has been used to 

model survival to 48 hours and estimate predictors of mortality in this population. The 

baseline hazard h0(t) is not directly estimated from the Cox model and is treated as a nuisance 

parameter. The alternative to the Cox model, parametric survival models, model the baseline 

hazard directly and smoothly and thus enable direct estimation of how mortality risk (hazard) 

changes over time. However, the disadvantage of parametric survival models is the need to 

assume a particular functional form. The objectives of this chapter are to use parametric 

survival models to: investigate more closely the underlying risk in the form of the baseline 

hazard; identify when the highest risk occurred; and to explore how the risk may change in 

those that received boluses compared to those who did not. In particular, my question is 

whether boluses immediately increased the mortality risk compared to the control arm or 

whether it took a longer time from randomisation for the hazard to return to a baseline rate in 

the intervention arms compared to the control arm. 
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4.2 Statistical Background  
 

The main command in Stata to implement parametric survival models is streg, which uses one 

of six distributions (exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized 

gamma). However, these distributions are not flexible enough. For example, it is not possible 

to find a well-fitting parametric proportional hazards (PH) model for an underlying hazard 

function with a turning point, because the distributions that are on the PH scale are monotonic 

(Weibull and Gompertz) or constant (exponential). The other models for streg, which would 

better capture a turning point or peak in hazard, only express estimates in the accelerated 

failure-time metric which is less well known in the medical literature.  

Flexible parametric models (FPMs) (also called Royston Parmar models)[205] are able to 

provide smooth estimates of the hazard and survival function for any combination of covariate 

values and model a turning point or peak on a proportional odds or proportional hazard scale.  

A simple standard parametric model is the Weibull distribution for survival, a generalisation of 

the most basic of parametric models – the exponential distribution. The exponential model 

holds the baseline hazard constant over time i.e ℎ଴(ݐ) 	=  The Weibull distribution .ߣ	

generalises the constant hazard of the exponential distribution as follows:  

ℎ(ݐ) = λݐߛఊିଵ       (1) 

log ℎ(ݐ) = +λ݃݋݈ log ߛ + ߛ) −  (2)    ݐ݃݋݈(1

The hazard function is then monotonic increasing when ߛ > 1 and monotonic decreasing 

when ߛ < 1 and is linear in log time.  The log cumulative hazard is then a linear function of 

logt. 

log(ݐ)ܪ = +λ݃݋݈ 	γlogt    (3) 

Royston and Parmar extended the Weibull parametric survival model by representing the 

baseline log cumulative hazard function as a restricted cubic spline function of log time instead 

of a linear function of log time. This gave greater flexibility to the shapes of the survival 

distributions they could then model. 

log(ݐ)ܪ = ;ݐ݃݋݈)ݏ (ߛ	 = 	 ଴ߛ + ݐ݃݋ଵ݈ߛ + ଵݖଶߛ (ݐ݃݋݈) + (ݐ݃݋݈)ଶݖଷߛ	 +⋯  (4) 
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where ݈ݖ ,ݐ݃݋ଵ(݈ݐ݃݋), ݖଶ(݈ݐ݃݋)	and so on, are the basis functions for cubic splines. This 

creates a function made up of cubic polynomial segments smoothly joined at values (referred 

to as knots) at which the function has a continuous second derivative. 

To ensure estimates in the tails of the distribution are not unduly affected by outliers, 

restricted cubic splines are used which force the function to be linear before the first knot and 

after the last knot. Royston and Parmar (2002) suggest knot positions based on empirical 

centiles of the distribution of log survival time as presented in Table 4.2.1 below [205]. To 

avoid over fitting to the data and potentially unstable curves they found that models did not 

generally need more than 3 interior knots (equivalent to 4 degrees of freedom). When there 

are no knots the z1, z2….zn basis functions in equation (4) are equal to 0 and the function 

reduces to the Weibull model.  

Table 4.2.1: Positions of interior knots in the distribution of uncensored log-survival times. 

Degrees of 
freedom 

Number of interior 
knots 

 Position of interior knots (centiles*) 

1 0 (no knots) (equivalent to Weibull distribution) 
2 1 50 
3 2 33, 67 
4 3 25, 50, 75 
5 4 20, 40, 60, 80 
*Centiles of the distribution of uncensored log-survival times 

FPMs can use proportional hazards (PH), proportional odds (PO) or probit scales (Probit) to 

give the best fit, with the coefficients of each having different interpretations (i.e hazard ratio 

from a proportional hazard model, odds ratio from a proportional odds model, acceleration 

factors on a lognormal scale from the probit model). To identify both the best fitting type of 

model as well as the most appropriate number of knots, the Akaike information criterion (AIC) 

of the three different types of unadjusted FPMs with no covariates over the number of 

degrees of freedom can be compared. 

Another advantage of FPMs is that time-dependent effects of covariates can be fitted allowing 

for non-proportional hazards. This is done by forming interactions with spline terms and the 

covariates of interest, allowing time-dependent effects to have a different number of knots 

and have those knots at different locations than for the baseline time effect. Thus if there are 
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D time-dependent effects of covariates then the log cumulative hazard function can be written 

as follows:  

(ݔ|ݐ)ܪ݃݋݈ = {γ,݇଴|ݐ݃݋݈}ݏ	 	+෍ݐ݃݋݈}ݏ	|δ௞ , ௝݇}ݔ௝ + ߚݔ
஽

௝ୀଵ

 

where ݐ݃݋݈}ݏ|γ, ௝݇}	is a restricted cubic spline function of log t with knots ௝݇ , j=0,1,…D and ݔ is 

the vector of covariates.  

The assumption of proportional hazards can be tested using scaled Schoenfeld residuals from 

Cox models where the residuals have an average value approximately equal to the log hazard 

ratio. If there is evidence of a trend over time in the residuals then this would indicate some 

non-proportionality. But this tests for (monotonically) increasing or decreasing effects over 

time and does not test for a non-proportional effect which is not monotonic. In a FPM, the 

assumption can also be explored by fitting time-dependent effects and checking if the degrees 

of freedom for the time-dependent effect needed for a best fitting model is 1 or more, 

showing that the hazard is not proportional to the baseline hazard.  

FPMs can also be used in competing risks analysis to examine the underlying mortality risk for 

specific causes of death (i.e the cause-specific hazard) where other causes of death are the 

competing risks [206].  

 

4.2.1 Sensitivity analyses 

 

Modelling the log cumulative hazard function on a log time scale may create an asymptote in 

the hazard going to zero or infinity when time approaches zero (personal communication M 

Crowther). To avoid this, the untransformed scale of time can be used as the basis for 

modelling and the log hazard function modelled instead of the log cumulative hazard, namely:  

log	{ℎ(ݔ|ݐ)} = {γ,݇଴|ݐ}ݏ	 	+෍ݐ}ݏ	|δ௞ , ௝݇}ݔ௝ + ߚݔ
஽

௝ୀଵ
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where ݏ{ݐ|γ,݇଴}	is a restricted cubic spline function with knots ݇଴, ߚ	is the vector of covariate 

effects, and ݔ is the vector of covariates, D is the number of time-dependent effects, and 

δ௞|	ݐ}ݏ , ௝݇}	is the spline function for the ݀th time-dependent effect. 

The log hazard can be represented as: 

log	{ℎ(ݔ|ݐ)} =  (ݐ)߮

which can then be written as: 

ℎ(ݔ|ݐ) =  {(ݐ)߮}݌ݔ݁

And the survival model follows 

(ݐ)ܵ = ݌ݔ݁ ቈ−න ݑ݀{(ݐ)߮}݌ݔ݁
௧

଴
቉ 

As estimating the survival function involves integrating the hazard function, which is a complex 

spline function, numerical integration techniques are used alongside analytical techniques. The 

function is integrable prior to the first knot and after the last knot as it is restricted to be 

linear, and then the cubic spline section of the function in between these two knots can be 

integrated using Gaussian quadrature. 

Although modelling the log hazard on a time scale avoids the asymptote in the estimated 

hazard that arises from modelling the log cumulative hazard as a function of log time, it may 

not have as good a fit as modelling on the transformed log time scale when using the same 

degrees of freedom [207]. Modelling on the log transformed time scale has been shown to be 

more stable to changes in the baseline degrees of freedom in the model, which is why it is the 

preferred default scale.  

As above, the exponential model is the most basic parametric model, holding the baseline 

hazard constant. This can be extended to have a changing baseline hazard with the piecewise 

exponential model, where the baseline hazard is held constant within defined intervals of 

time. This is a useful model to estimate rates (i.e the baseline hazard) within these time 

periods but discontinuities in the function between the time periods leads to a step function 

which is not generally considered to be biologically plausible. It is equivalent to categorising 

continuous data which has been to shown to lead to loss of power, residual confounding and 

bias [162]. Also, if the interval lengths are too long then the function may miss important 
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changes in the data, but if the lengths are too short then there are too many intervals with 

many parameters in the model and the underlying shape of the hazard may be difficult to see 

due to random variation [208]. 

The piecewise exponential function can also be used to simulate survival data with the 

assumption of a constant hazard over each interval. Starting with the basic parametric 

distributions described as survival and failure functions: 

(ݔ|ݐ)ܵ = (ݔ|ݐ)ܨ [(ݔ|ݐ)ܪ−]݌ݔ݁ = 1−  [(ݔ|ݐ)ܪ−]݌ݔ݁

  

 

If T is the simulated survival time, then 

ܼ = ܵ(ܶ) = exp	[−ܪ(ܶ)] 

has the uniform distribution ܷ(0,1) over the interval (0, 1), where S and H are the survival and 

cumulative hazard functions respectively. It follows that 

ܶ = −]ଵିܪ log(ܼ)]. 

For the exponential distribution with hazard (ݐ)ܪ ,ߣ =  thus ,ݐߣ

ܶ = − log(ܼ)/ߣ. 

For the piecewise exponential distribution, let 0 = ଴ݐ < ଵݐ < ⋯ < ௄ିଵݐ < ௄ݐ = ∞  be 

boundary time points for intervals of constant hazards  ߣଵ, … , ௄ߣ .  The hazard and cumulative 

hazard functions are 

ℎ(ݐ) = ;௜ߣ ௜ିଵݐ		 < ݐ ≤ ௜ݐ  ; ݅ = 1, …  .ܭ,

(ݐ)ܪ = ∑ )௜ߣ
௝ିଵ
௜ୀଵ ௜ݐ − (௜ିଵݐ + ݐ)௝ߣ − ௝ିଵݐ  ;  if	௝ିଵ)ݐ < ݐ ≤  ௝ݐ

Simulation from this piecewise exponential distribution proceeds by inverting (ݐ)ܪ.	 

Let ܪ௝ = ௝൯ݐ൫ܪ = ∑ )௜ߣ
௝
௜ୀଵ ௜ݐ − ௜ିଵ);  1ݐ ≤ ݆ ≤ ݕ Then for any real number  .ܭ > 0, there is a 

unique positive integer ݆(ݕ), 1 ≤ (ݕ)݆ ≤ ௝(௬)ିଵܪ such that ܭ < ݕ ≤  ௝(௬). Draw z from theܪ

uniform distribution ܷ(0,1)	 and let ݕ	 = 	  Then .(ݖ)݃݋݈−

ܶ = ௝(௬)ିଵݐ + ݕ) −  ௝(௬)ߣ	/(௝(௬)ିଵܪ
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4.2.2 Literature review 

 

Patrick Royston and Mahesh Parmar first published the FPMs approach in 2002 in a paper 

entitled: ‘Flexible parametric proportional-hazards and proportional-odds models for censored 

survival data, with application to prognostic modelling and estimation of treatment 

results’[205]. To September 2016, the paper had been cited 274 times in a variety of research 

areas, although most frequently in Mathematics/Statistics (48), Oncology (48), 

Public/Environmental/Occupational Health (44) and Computational Biology (31). The method 

was cited in 5 publications in Paediatrics and 12 in Infectious Diseases (with 1 publication in 

both categories) of which 6 modelled mortality risk, and is becoming more well known in the 

medical literature each year, with 43 citations in 2015 and 51 in 2016 (Table 4.4.2).  

Table 4.2.2: Citations of Royston and Parmar, Stats in Medicine 2002 by year. 

Publication years Number of citations 

2015-2016 94 

2011-2014 111 

2007-2010 48 

2003-2006 18 

 

Of the 6 papers in Paediatrics or Infectious diseases that used this method to model mortality 

risk, 2 showed a peak in mortality risk near time zero (i.e at diagnosis or initiation of 

treatment). The models outlined in one paper estimated the daily risk of death over the first 

year on antiretroviral treatment in HIV-infected children from Uganda and Zimbabwe with pre-

ART CD4<49 cells/μL and showed a peak at 34-51 days after ART initiation [209]. The second 

paper used FPMs to describe the excess mortality rate over years from diagnosis for children 

with brain tumours and showed mortality risk peaked in the first two years from diagnosis 

[210]. Three of the remaining four papers looked at cumulative incidence: one used FPMs with 

competing risks for time to discharge or death in neonatal care [211]; a second used these 

models to build a prognostic model for children on ART in Southern Africa [212] and a third 

estimated cumulative incidence mortality curves for children with and without Autism 

Spectrum Disorder (ASD) [213]. In the last paper the mortality risk in HIV infected patients 
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aged >13 years initiating antiretroviral therapy in Uganda was actually described by Weibull 

models with changepoints, which was the focus of the work, and the author discussed this in 

relation to FPMs. Although FPMs would add flexibility to the shape of their model (as their 

hazard curve had discontinuities at changepoints) their view was that the spline knots do not 

have the same direct biological interpretation as changepoints [214].  

The other papers that used FPMs in Infections or Paedatrics had non-mortality endpoints such 

as: incidence of HIV RNA <500 copies/ml [215]; incidence of peripheral neuropathy [216]; 

autism diagnosis [217]; presence of N3481 mutation in HIV-1 reverse transcriptase [218]; 

Clostridium difficile recurrence risk [219]; time to relapse in malaria for geographic regions 

[220]; rates of acquisition of staphylococcus aureus [221]; diagnostic delay [222]; time to viral 

load rebound [223]; or were not in humans [224].  

Paul Lambert and Patrick Royston published an extension to FPMs in The Stata Journal in 2009 

– this has been cited 136 times but with only 2 citations in paediatrics and 2 in infections. Two 

of these are described above as they also cited the original paper in Statistics in Medicine [209, 

210]. The other two did not describe mortality risk but looked at infection-related 

hospitalisations [225] and at incidence of TB in children [226].  
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4.3 Methods  
 

4.3.1 Data 

 

The dataset used in this chapter is from the FEAST clinical trial and is the same dataset used in 

previous work but includes follow up time to 28 days, thus adding an additional 48 deaths to 

the 297 occurring before 48 hours used in previous analyses. Time and date of death was 

recorded on standardised case report forms and where time of death was missing for 9 deaths 

after discharge, it was given a nominal value of midday. Analysis includes all deaths in the main 

trial follow up period (28 days) as I am interested in both: 1) the hazard around the time of the 

bolus (given within the first hour of randomisation, and for some children a second bolus was 

given shortly after completion of the first bolus if indicated) and 2) whether, and for how long, 

any increased risk from receiving a bolus was maintained.  

 

4.3.2 Statistical modelling 

 

The overall predicted hazard in children in the FEAST trial was first examined using a Weibull 

model with time from randomisation to the earliest of death, lost to follow up or 28 days. The 

value of gamma in this model was then checked for departure from the exponential 

distribution. The hazard estimated from the model was plotted to show the distribution over 

time from randomisation. The cumulative hazard was also estimated and plotted with the 

widely used empirical Nelson-Aalen estimate to show the fit of the model.  

FPMs were then examined to estimate the baseline hazard and improve on the fit of the 

Weibull model. FPMs can use proportional hazards (PH), proportional odds (PO) or probit 

scaled (Probit) to give the best fit, with the coefficients of each having different interpretations 

(i.e hazard ratio from a proportional hazard model, odds ratio from a proportional odds model, 

acceleration factors on a lognormal scale from the probit model). To identify both the best 

fitting type of model as well as the most appropriate number of knots, the AIC of the three 

different types of unadjusted FPMs with no covariates over the number of degrees of freedom 

were plotted.  
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The FPMs with the most appropriate scale and number of knots for the cubic spline function 

was identified and the estimate of cumulative hazard was plotted with the Weibull and 

Nelson-Aalen estimate to check the fit. The estimated mortality risk (hazard) was then plotted 

over time from randomisation.   

A time-dependent effect of bolus was then added to the FPM, following a scaled Schoenfeld 

residual test for non-proportionality of the bolus effect in a Cox model. To identify the 

appropriate number of knots for the time-dependent effect, the AIC of models over a number 

of degrees of freedom for both the baseline effect and time-dependent effect were compared. 

The most appropriate model was selected and the mortality risk in the bolus arms and the 

control arm were plotted over time from randomisation, for time up to 28 days, but also 

focussing in on the first 4 days (96 hours).  

FPMs were also used in a competing risk analysis with different causes of death. The endpoint 

review committee (ERC) for the FEAST trial reviewed all the deaths blinded to randomisation 

arm and classified them into 4 different terminal clinical events (TCE) [157] as described in 

Chapter 3 (page 155).  

I used FPMs to estimate the mortality risk from each terminal clinical event, and the absolute 

difference in mortality risk between bolus and control, by modelling the cause specific hazard 

with competing risks analysis. 

 

4.3.3 Sensitivity analyses  

 

I performed sensitivity analyses to investigate the influence of early deaths both prior to 

randomisation and immediately after randomisation on model estimates. The analysis looking 

at deaths prior to randomisation included children that had died between screening and 

randomisation (n=11) by using time from admission and randomly allocating these children a 

unique death time between 1 and 11 minutes of admission (1 child per minute in the first 11 

minutes). This analysis did not include treatment arm as these 11 children had not been 

randomised to a specific arm. The analysis looking at the influence of early deaths immediately 

after randomisation excluded all deaths within 1 hour of randomisation.  
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FPMs were also fitted to the log hazard using the untransformed time scale rather than 

modelling on the log time scale. The log hazard rather than the log cumulative hazard was 

modelled as the most appropriate command in Stata (strcs) to fit on the untransformed time 

scale used FPMs for the log hazard. The AICs of models with different numbers of knots were 

compared to identify the most appropriate number for the baseline and time-dependent 

effects. The difference in hazard was also estimated from these models and plotted. A 

bootstrapped 95% CI (with 1000 replications) was generated for estimates of the difference in 

hazard between the bolus and control at specific time points (12, 24 and 48 hours). 

To further understand the shape of the underlying hazard function, a piecewise exponential 

model was fitted to the data with changepoints at 1, 2, 3, 6, 12, 24 and 48 hours from 

randomisation and the interval-specific rates estimated. These were then used to simulate 20 

datasets with 3000 observations and survival times following this piecewise exponential 

distribution. Flexible parametric models for both the log cumulative hazard scale and log 

hazard scale were then fitted to the simulated data. The predicted hazard from the parametric 

models, with the same number of knots as found for the flexible parametric model fitted to 

the log cumulative hazard in the FEAST data (5 df, 4 internal knots, see Results section below), 

was estimated and plotted to explore how the models dealt with estimates of constant high 

hazard immediately after randomisation (when time = 0) which then dropped at each hour 

from randomisation.  

A piecewise exponential model was also fitted to the data, including an interaction term 

between time (split at 1, 2, 3, 6, 12, 24 and 48 hours from randomisation) and bolus vs control 

and the predicted hazard estimated separately for each group to examine the risk of mortality 

between 1 and 4 hours. 

On further consideration, the observed times of deaths may have been subject to some 

recording bias, in that the first observation time point for the control arm was exactly 1 hour 

after randomisation but the first observation time point for the bolus arm would be at 1 hour 

after the first bolus started which could be 15-30mins after randomisation i.e the first 

observation would likely be more than 1 hour after randomisation. Thus, children close to 

death in the control arm may have been identified slightly earlier than those in the bolus arm 

and when the mortality risk at 1 hour is modelled the control arm would be removed from the 

risk set earlier than the bolus arm deaths due to design. Interval censored survival data allows 

individual children to have an interval in which their death was recorded instead of an exact 
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time. Parametric models were fitted to interval censored data where the death times for the 

first three hours were recorded as intervals instead of exact times and their AICs compared. 

Only basic parametric models (Weibull, exponential, Gompertz, lognormal, loglogistic and 

generalized gamma) were available to use with interval censored data.  

 

  

4.4 Results  
 

4.4.1 Weibull model 

 

I first used a Weibull model to first look at mortality rate in the first 28 days after 

randomisation, under the assumptions of this parametric model; Figure 4.4.1 shows the overall 

predicted hazard. The value of ߛ in this model was 0.23 (95% CI 0.21, 0.26) demonstrating 

strong departure from the exponential distribution (ߛ = 1). The mortality rate was very high 

in the first hour, dropped steeply until around 3-4 hours after randomisation and then declined 

steadily until the rate was very low after 48 hours and remained low for the remainder of the 

follow up time.  

Figure 4.4.1: Overall predicted hazard over time using a Weibull model  
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The estimate of the cumulative hazard from the Weibull model and the Nelson-Aalen estimate 

are shown in el does not fit the data well.  

Figure 4.4.2 below. This shows that the Weibull function was not a good fit as it over estimated 

the cumulative hazard between 0-2 hours and then underestimated the cumulative hazard for 

the rest of the time period. Thus a linear function of log time in a parametric model does not 

fit the data well.  

Figure 4.4.2: Overall Cumulative hazard function estimated by Nelson-Aalen (NA) and Weibull 

model  

 

4.4.2 Flexible parametric models 

 

Flexible parametric models (FPMs) with time in hours from randomisation up to 672 hours (28 

days) were then fitted to the data and the model AICs compared to identify the best fitting 

model and most appropriate scale. Figure 4.4.3a and Figure 4.4.3b  show that 5 degrees of 

freedom (df) (4 knots) minimises the AIC of the PH and PO models, and 2 df minimises the AIC 

of the Probit model, and further that the PO and probit models gave AICs that were very 

similar to the PH model for 2-5 degrees of freedom. The 5 df model for PO and PH was 

however within 3.84 (chi-squared (1)) of the overall minimal value from the Probit model 

showing that any of these models would be a reasonable choice.  
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Figure 4.4.3a: AIC of three different scales for FPM 

 

Figure 4.4.3b: AIC of three different scales for models with degrees of freedom>1 to show 
minimum and model AICs 
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As previous work looking at survival in these data has used the (proportional hazards) Cox 

model and as the fit of PH models and PO models were comparable, I decided to use the 

proportional hazards scale for ease of comparison and interpretation of hazard ratios as 

estimates. Figure 4.4.4 below shows that the cumulative hazard estimates from each model 

were very similar even though the probit model gave the lowest AIC.  

Figure 4.4.4: Cumulative hazard function estimated by the best fitting model on each scale 

 

Figure 4.4.5 compares the unadjusted cumulative hazard function from the PH FPMs with 5 df 

(4 knots) with the non-parametric NA estimate and the Weibull model. This showed that the 

PH FPM 5 df estimate fitted the empirical function well, especially when compared to the 

Weibull model.  
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Figure 4.4.5: Cumulative hazard function estimated by Nelson-Aalen, Weibull and FPM with 5 

degrees of freedom (4 knots)  

 

Figure 4.4.6 below shows the estimated hazard from the PH FPM 5 df both over 28 days and 

the inset graph focuses on the first 48 hours. The inset graph along with the knot positions in 

the baseline hazard show that the hazard rose to a high peak at 1.6 hours. It then declined 

sharply through to 5.2 hours and continued to decline but more slowly from 5.2 to 11.8 hours. 

Then the decline became even slower through to 31.0 hours with the large panel showing that 

this decline continued slowly beyond 31 hours.  
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Figure 4.4.6: Estimated overall hazard over 28 days (672 hours) from a model with 5 df (4 

knots) in large panel, with time from randomisation restricted to 48 hours in inset panel.  
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4.4.3 Sensitivity analyses for overall hazard  

 

Two possible reasons for an overall increase in mortality risk immediately after randomisation 

are that it is a consequence of the design or analysis of this randomised trial, or that 

interventions (other than bolus) given immediately increase mortality risk. The screening and 

consent process in clinical trials usually prevents randomisation of children about to die and 

this could create an artificial peak in risk after randomisation, but in FEAST there was a verbal 

assent process from the parent or guardian (to enable immediate recruitment with minimal 

time delay) so critically ill children could get quickly randomised. Full consent was deferred to 

when the child had stabilised and the parent deemed to be able to make an informed choice 

about participating in research. It is also not clear that other immediate interventions, such as 

IV antibiotics, that are designed to treat the children would cause this peak so soon after 

randomisation, given that many children had travelled long distances before presentation (4 of 

6 hospitals had regional referrals with no paramedical service) and thus survived long enough 

to get to hospital. Moreover, most interventions need some time to work or to cause side 

effects.  

There were a small number of admissions (n=11) that died between screening and 

randomisation and were not included in the main analysis. I therefore investigated whether 

including these could reduce the size of the peak in early hazard I had found shortly after 

randomisation in Figure 4.4.6, or show that the risk simply starts high and then reduces over 

time. I examined this in a first sensitivity analysis by including these 11 children in the dataset, 

starting analysis time from time of first contact with the study team (usually through triage). 

These additional 11 children were randomly allocated death times (as time of death was not 

recorded for these screening deaths) between 1 minute and 11 minutes after admission, one 

per unique minute, and the overall hazard rate was plotted (Figure 4.4.7). Adding these deaths 

made the initial estimate of the immediate hazard of death higher (~1.1 compared to ~0.6 in 

Figure 4.4.6), with the maximum risk occurring at a similar magnitude and time point as the 

main analysis. However, in this analysis, the lower 95% confidence limit remained at about the 

same level as the initial estimate of the immediate hazard of death across the 1st hour from 

time of first contact with the study team, in contrast to Figure 4.4.6 where the lower 95% 

confidence limit increased markedly over the first hour at risk. Thus, this sensitivity analysis 
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suggests that there is relatively little evidence that mortality risk was really changing over this 

period.  

 

Figure 4.4.7: Overall hazard rate per 100 person hours including children dying before 

randomisation.  

 

 

To understand whether the peak in risk may be an artefact of the statistical modelling process, 

rather than a clinically meaningful increase prior to a decrease, a piecewise hazard model was 

fitted to the FEAST data assuming high constant hazard for the first 1 hour. The interval-

specific values estimated from this model were then used to simulate 20 datasets with 3000 

observations and FPMs (with 5 df (4 knots)) were fitted to the simulated data. The overall 

estimated hazard shows that the FPM creates a peak even though the data truly has a 

monotonically decreasing hazard from a high rate at zero (Figure 4.4.8). Some of the datasets 

had a flatter peak – with a hazard of 1 per 100 person hours, and some had a very little or 

sharper peak with a hazard of 2 per 100 person hours. FPMs are reasonably robust to changes 

in knot positions and so the default knot positions used here (at centiles of the censored 

survival times) are not likely to be affecting this [205]. Also, using the default knot position 

avoids overfitting the model to the data, and if the interior knots are not too far from the 

median uncensored log survival time then the data will be most closely modelled in the region 
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of greatest density [205]. Moving the knot positions (but keeping the same number of knots) 

for the flexible parametric models fitted to the simulated datasets did not remove the peak 

unless the first interior knot was at >48 hours compared to a median uncensored survival time 

of 8 hours. Moving the lowest boundary knot (and thus forcing a linear function over a longer 

initial time period) also did not remove the peak until the knot was at 2 hours, which was after 

86 deaths (25th percentile of uncensored survival times).  

Figure 4.4.8: Estimated hazard over the first 12 hours from 20 simulated datasets (modelling 

log cumulative hazard over log time). 

 

As modelling on the log time scale may lead to an asymptote in the hazard function to zero (or 

infinity) when events times are very close to zero (minimum event time in FEAST was at 0.04 

hours from randomisation), the flexible parametric models were fitted to the log hazard on the 

observed time scale rather than the log time scale. The AIC of models with different degrees of 

freedom (up to a maximum of 6 df as these models have been found to overfit with a higher 

number of df) were compared and the model with the lowest AIC had 6 df (5 knots). The 

estimated predicted hazard was then estimated from a model with 6 df using data from the 20 

simulated datasets (Figure 4.4.9).  
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Figure 4.4.9: Estimated hazard over the first 12 hours from 20 simulated datasets (modelling 

log hazard over time). 

 

The estimated hazard from the models on the untransformed time scale, instead of the log 

time scale, show a monotonically decreasing hazard which better reflects the piecewise 

exponential hazard that has created the true underlying hazard in the simulated datasets. 

However, the estimated hazard does appear to underestimate the underlying hazard for the 

first 2 hours and overestimates it from 2 to 8 hours of randomisation.  
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4.4.4 Effect of bolus 

 

The test of the residuals from a Cox model with bolus as a covariate (with no other covariates) 

gave a p-value of 0.56 indicating no strong evidence for non-proportionality; however, this 

only tested for (monotonically) increasing or decreasing effects in the residuals over time and 

does not test for a non-proportional effect which increases and then decreases, which I 

hypothesize may occur here given the overall changes in mortality shown above.  

To investigate the possibility of a time varying effect of bolus over 28 days, I compared the AIC 

of survival models, based on the original model relating log cumulative hazard to log time, 

including a time-dependent effect of bolus vs control with 0 to 3 interior knots (1 df for the 

time-dependent effect (dftvc) to 4 dftvc) and varying the baseline hazard allowing 0 to 6 

interior knots (1 df to 7 df). I included boundary knots placed at the minimum and maximum of 

the distribution of uncensored survival times. There was some difficulty with fitting some 

models but initial values were obtained by fitting only the first spline basis function, and using 

these parameter estimates as initial values enabled the full models to fit. Several models were 

within 3.84 (chi-squared(1)) of the minimum AIC (Figure 4.4.10a and b).  

Figure 4.4.10a: AICs from models including bolus as a time-dependent effect 
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Figure 4.4.10b: AICs from models including time-dependent effects (with baseline df>1) 

 

The model with 5 df for baseline function and 2 df for the time varying effect of bolus gave the 

lowest AIC, producing the baseline hazard below (Figure 4.4.11). The model with the next 

lowest AIC comes from a proportional hazards model (with 1 df for the time varying effect)) 

and when the time was restricted to 48 hours from randomisation this became the best model, 

indicating that the non-proportionality was occurring over a longer time from randomisation, 

i.e. that the hazards converged after 48 hours (Figure 4.4.11 and Figure 4.4.12). 
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Figure 4.4.11: Estimated hazard rate per 100 person hours (phrs) over 28 days by bolus vs 

control using 5 df for the baseline function and 2 df for the time varying effect.  

 

It is difficult to see the shape of the peak in Figure 4.4.11 as the x-axis goes to 672 hours (28 

days) to show the full length of time in the analysis. Figure 4.4.12 restricts time from 

randomisation to 4 days (96 hours) as this where there is most difference between the arms. It 

also shows more clearly that the peak was very similar between the arms, indicating that at 

the time the children were receiving the bolus, their risk was similar to those not receiving a 

bolus. It was after that point that they appeared to have a longer period of moderately 

increased risk.   
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Figure 4.4.12: Estimated hazard over 100 phrs in the first 4 days (96 hours) of randomisation 

by bolus vs control. 

  

To look more closely at where risk was highest in the first few hours, the hazard rate was 

plotted restricted to 12 hours from randomisation in Figure 4.4.13 below. The distribution of 

the first bolus start and end times has been superimposed, with a median 41 minutes (IQR 13-

78) from randomisation to start of bolus administration and median 78 minutes (67-126) from 

randomisation to the end of bolus administration. This shows that the peak in death rate was 

prior to when the majority of boluses were started which is consistent with the control arm 

also having a peak soon after randomisation and consistent with admission (and 

randomisation) of acutely unwell children and/or boundary issues with the modelling 

procedure as described above. However, the plot also indicates that the hazard remained 

higher in the bolus group over a long period of time, potentially preventing children from 

recovering at the same rate they would without a bolus, rather than them suffering a sudden 

increased risk of death during bolus administration. The times of deaths for each arm have also 

been included as scatter points on the plot to show the deaths during the first few hours from 

randomisation.  
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Figure 4.4.13: Estimated hazard per 100 phrs in the first 12 hours by bolus vs control also 

showing box and whisker plot of bolus start and end times (in hours from randomisation) and a 

scatter plot of times of death.  

 

The difference in mortality risk (hazard) between the arms was also plotted (Figure 4.4.14 

below) which shows the difference was zero, or very close to zero shortly after 4 days (96 

hours) and before 5 days (120 hours) as mentioned above. The lower (pointwise) 95% CI 

bound crossed zero at 4.2 days (101 hours). This shows that the risk of mortality in the bolus 

arms remained higher than control arm long after the bolus itself was administered.  
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Figure 4.4.14: Estimated difference in hazard rates per 100 person hours between bolus and 

control over 240 hours from randomisation. 

 

To investigate the difference (bolus – control) in hazard rate in more detail, it was plotted over the 

first 72 hours in Figure 4.4.15 below. This shows the peak of the difference more clearly which 

occurred 90 minutes after randomisation, where the difference was 0.274 per 100 person hours. 

After this, the difference decreased steadily from 4 hours to 16 hours and then slowly from that 

point onwards. There were also very early deaths (before 20 minutes) in both arms which may have 

caused the crossover from negative (favours bolus) to positive (favours control) as the model tries 

to estimate the changing early hazard. The difference crossed between negative and positive at 24 

minutes which was 17 minutes prior to the median start time for boluses (41 minutes) and was at 

the 46th percentile of the distribution of time to start of the bolus. The lower (pointwise) 95% CI 

bound for the difference crossed at 97 minutes, showing the difference between arms became 

significant at a point where 86% of boluses had started and 67% had finished.  
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Figure 4.4.15: Difference (bolus – control) in hazard rate in the first 72 hours  

 

The difference and pointwise 95% confidence interval was also estimated at specific time 

points to better demonstrate for how long the increased risk (hazard) was present for those in 

the bolus group Table (4.4.1). 

Table 4.4.1: Difference in mortality risk (bolus-control) over time from randomisation 
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4.4.4.1 Sensitivity analyses around effect of bolus  

 

Another question of interest is regarding the impact that very early deaths (deaths in the first hour 

(n=39)) had on the difference in mortality risk between the arms. As the median time to bolus start 

was 41 minutes, those in the intervention arm may not have even received any bolus or would not 

have completed a bolus if one had started. These early deaths were noted in the main trial paper 

and included in all analyses. Some secondary analyses with the ERC defined terminal clinical events 

in a subsequent paper excluded this subgroup [157]. Thus, a sensitivity analysis for this chapter 

excluded these early deaths.  

The hazard was estimated with the same model as above but without deaths within 1 hour of 

randomisation. Figure 4.4.16 and Figure 4.4.17 below show that the size of the peak was reduced, 

as expected, given that deaths have been removed, but the shape was very similar compared to the 

main analyses. The difference in hazard was also very similar to the main analysis but without the 

initial crossover from negative to positive, supporting the crossover being due to the FPM trying to 

model the early deaths.   

Figure 4.4.16: Estimated hazard by bolus vs control over the first 12 hours excluding deaths prior to 

1 hour from randomisation.  
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Figure 4.4.17: Difference in hazard excluding deaths within the first hour from randomisation  

 

 

As discussed in the section on sensitivity analyses for the overall hazard (page 237), another 

consideration regarding the peak in hazard is whether modelling on the log time scale forced the 

estimates of the hazard to create an asymptote going to zero or infinity when time was less than 1 

hour. A straightforward sensitivity analysis simply added 1 hour to all survival times in the FEAST 

data set and fitted the same flexible parametric model as the main analysis (with 5df (4 knots) and 

2df (1 knot) for the time-varying covariate). This made very little impact on the overall shape of the 

estimated hazard (Figure 4.4.8). This perhaps might have been expected, since the knots merely 

shift 1 hour into the future.  
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Figure 4.4.18: Estimated hazard by bolus vs control over first 12 hours, having added 1 hour to all 

event times. 

  

 

As described above, a model fitting flexible parametric models on the untransformed time 

scale rather than log time was also fitted to the FEAST data, and the AIC of models with 

different numbers of knots for the baseline and time-varying effect were informally compared. 

The lowest AIC was given by a model with 6 df for the baseline hazard and 3 df for the time-

varying effect (Figure 4.4.19).  
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Figure 4.4.19: Estimated hazard per 100 person hours by bolus vs control in the best fitting 

model on the untransformed time scale (df(6), dftvc(3)) 

 

 

The estimated hazard from this model, shown in Figure 4.4.19, allowing a time-varying effect 

of bolus, was consistent with the model using log cumulative hazard and log time (shown in 

Figure 4.4.12 and Figure 4.4.13). Although the maximum of the peak in the bolus arm was 

higher than the control arm using this model compared to modelling with log time, the 

difference at the time of the maximum was not significant (Figure 4.4.20). What remained 

clear was the extended period of higher risk in children receiving boluses compared to 

maintenance fluids. Furthermore, these data did suggest a period of increased risk post 

randomisation was present in the FEAST data.  
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Figure 4.4.20: Difference in hazard per 100 person hours estimated using a flexible parametric 

model on the untransformed time scale.  

 

 

The 95% CI in Figure 4.4.20 are pointwise and it was unclear how to best represent the 

uncertainty across the whole curve. To confirm these 95% CI were not unduly affected by the 

model fitting procedure I calculated a bootstrapped 95% CI based on percentiles with 1000 

replications (Figure 4.4.2). These estimates confirmed that the mortality risk in the bolus arm 

remained higher than the control for longer than 48 hours after randomisation when 

modelling with untransformed time compared to log time (see Table 4.4.1 for pointwise model 

based 95% CI from a model for cumulative log hazard and log time). To determine at what time 

the risk become significantly different from zero, using the model on the untransformed time 

scale and bootstrapped confidence intervals, I used the bisection method. This showed the 

difference in the hazard between the two arms became non-significant at the 5% level at 53 

hours.  
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Table 4.4.2: Estimated difference in estimated hazard per 100 person hours at different time 

points 

Time point Difference (bootstrapped 95% CI ) 

12 hours 0.16 (0.06, 0.27) 

24 hours 0.04 (0.02, 0.07) 

48 hours 0.01 (0.002, 0.03) 

52 hours 0.01 (0.003, 0.02) 

53 hours  0.01 (-0.0001, 0.02) 

54 hours  0.01 (-0.0004, 0.02) 

72 hours  0.005 (-0.002, 0.01) 

96 hours 0.002 (-0.005, 0.009) 

 

I then decided to model the hazard over time making as few assumptions as possible, using a 

piecewise exponential function, which assumes a constant hazard for a defined time period 

and then a different constant hazard for the next defined time period (Figure 4.4.19). Although 

this model is not generally considered to be a realistic portrayal of the underlying hazard, as 

the hazard is unlikely to have discontinuities and jump from one level to another, it does allow 

the estimated hazard to take any value for those defined time periods. Another disadvantage 

is that it has limited power to detect a difference between two groups within each period (with 

relatively few events) since this is based on a test between groups within each interval. The 

changepoints used here were at 1, 2, 3, 6, 12, 24, and 48 hours from randomisation and the 

plot below shows that there was slightly higher estimated hazard in the bolus arm after 1 hour 

compared to 0-1hr but that this difference was compatible with chance (p=0.27). This slightly 

higher estimated hazard matched the estimated hazard in the control arm from the previous 

time period. Then, for both arms, the hazard dropped quickly over the subsequent 5 hours 

from randomisation. The shape of the piecewise constant hazard in both arms in Figure 

4.4.21b) was consistent with the estimated hazard from the flexible parametric model in 

Figure 4.4.13 (page 245) and the model in Figure 4.4.18 (page 250) and all three models were 

plotted in Figure 4.4.21 below. However, as expected given power issues above, I found no 

evidence of a difference between bolus and control in 0-1 hour (p=0.73), or 1-2 hours (p=0.25) 

in the piecewise model. 
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Figure 4.4.21: Estimated hazard per 100 person hours by bolus vs control within 12 hours of 

randomisation from a) model using log time scale and log cumulative hazard, b) piecewise 

exponential model and c) model using untransformed time scale and cumulative hazard.  

a) Model using log time scale and log 

cumulative hazard 

 
 

b) Piecewise exponential model  

 

 
 

c) Model using the untransformed time 

scale and the cumulative hazard 

 
 

 

 

The sensitivity analyses give some indication that the peak in risk immediately after 

randomisation was present in the FEAST data. To further understand the data without making 

model assumptions, a piecewise exponential model was fitted with smaller intervals in the first 

two hours. Cut points were at 15 minutes, 30 minutes, 45 minutes, 1 hour, 1 hour 15 minutes, 

1 hour 30 minutes, 1 hour 45 minutes, 2 hours, 2 hours 15 minutes, 3 hours, 4 hours, 5 hours, 

6 hours, 12 hours, 24 hours, and 48 hours. The model included an interaction between the 
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bolus effect and time which allowed the bolus effect to vary within each time period (Figure 

4.4.22).  

Figure 4.4.22: Estimated rate per 100 person hours for bolus vs control from a piecewise 

exponential model fitted to the FEAST data.  

 

Although the piecewise exponential model had a discontinuous hazard at each cutpoint, the 

figure showed an interesting shape around the 1 hour point. The estimated hazard per 100 

person hours in the bolus arm was low in the 15 minutes prior to the 1 hour cutpoint, and then 

for the 15 minutes after 1 hour rose to the level the no-bolus arm had been in the previous 15 

minutes. This suggests there may have been some differences between arms in how the data 

were recorded. The bedside observations in the trial were done at specified intervals during 

the trial and the first one was at 1 hour. The hour was measured from randomisation for the 

control arm and from initiation of the first bolus for the bolus arm. This may be due to the fact 

that getting intravenous access in some children was very hard and caused delayed start of 

bolus therapy, and boluses were given over 1 hour so the most appropriate time to review the 

child was after the bolus had finished. Even though intravenous access was also required in the 

control arm, the review at 1 hour did not depend on this and so was more likely to be exactly 

at 1 hour from randomisation. This may have led to more deaths being recorded at just past 
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the hour from randomisation for the bolus arm as that was when they were more likely to be 

observed, compared to just at or prior to the hour for the control arm. In addition, there was 

also a digit preference for recording times as ending in 0 or 5 indicating that the recording of 

times of death may have been occasionally unconsciously rounded to the nearest 5 minutes. In 

the first two hours there were 26/76 (34%) death times ending in 0 and 23/76 (30%) ending in 

5, compared to a maximum of 9% for each other digit. There may also have been delays due to 

ongoing resuscitation where some children may have had a delayed time to final declaration of 

death, although this is unlikely to have introduced any differences between the arms. 

To account for possible bias in the recording of death times, especially in the first two hours, 

parametric models for interval censored survival time were explored. These models enabled 

times in the first two hours to be known within intervals but not given exactly, thus allowing an 

appropriate risk set to be calculated when the death occurred. The intervals I chose were from 

0-45 minutes, 45 minutes to 1 hour 15 minutes, 1 hour 15 minutes to 1 hour 45 minutes, 1 

hour 45 minutes to 2 hours 15 minutes and 2 hours 15 minutes to 3 hours from randomisation. 

The exact time of death was used when the time occurred outside of these time intervals. 

Interval censored survival analysis was only available for analyses in Stata using standard 

parametric models (exponential, Weibull, Gompertz, lognormal, loglogistic and generalised 

gamma) and so each of these models was applied to the interval censored FEAST data and the 

AICs of the models compared. The Gompertz model had the lowest AIC (3872) and gave a 

monotonically decreasing function over time with a higher estimated hazard in the bolus arm 

(Figure 4.4.23a). The other model on the proportional hazards scale (rather than the 

accelerated failure time scale) that could be considered with interval censored data was the 

Weibull model (AIC of 3922) (Figure 4.4.23b).  
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Figure 4.4.23: Estimated hazard for bolus vs control from interval censored data using a) 

Gompertz model and b) Weibull model at the upper endpoint of the time intervals. 

a)  

  

b) 

  

  

Analysing the event times in the first three hours as interval censored data showed that the 

estimated hazard was high just after randomisation and monotonically decreased using the 

Weibull model, and was highest within 1 hour of randomisation with a slow steady decrease 

using the Gompertz model. But these parametric models were not able to model the 

estimated hazard over time in the same way the FPMs do allowing for increases and decreases 

in the same function. Thus a direct comparison with the FPM used to estimate the hazard with 

a complex function was not possible.  

 

4.4.5 Competing risks analysis 

 

The terminal clinical events (TCE) have been previously analysed using competing risks analysis 

to estimate their cumulative incidence and sub-hazard ratios for bolus vs control [157]. Here, I 

am interested in the hazard (instantaneous mortality risk) so instead I modelled the cause 

specific hazards using FPMs for each terminal clinical event (TCE) taking into account that a 

fatal event adjudicated as one predominant TCE logically means that it was not possible that 

the mode of death could be predominantly from any of the other TCEs. The same model as the 

main analysis with bolus as a time-dependent effect on the scale of log time was used to fit 

these models (with 5 df (4 knots) in the spline function for the baseline effect and 2 df (1 knot) 

in the time-dependent effect on a proportional hazard scale). 
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The mortality risk with a cardiogenic TCE (Figure 4.4.24a) peaked within 4 hours and had a 

slightly higher peak in the bolus arm than the control arm (up to 1.2 deaths per 100 person 

hours (phrs) compared to 0.9 deaths per 100 phrs respectively) with the shape of the peaks in 

both arms similar to those seen overall. This peak was also where there was the greatest 

difference between the arms (Figure 4.4.25a). The risk at four hours in the bolus arm was still 

significantly higher than the control arm and decreased slowly until around 24 hours but 

remained significantly above the control arm until 30 hours.  

The mortality risk for neurological TCEs (Figure 4.4.24b) was increased in the control arm for 

the first 8 hours, but this difference was not significant as seen (Figure 4.4.25b). Of relevance, 

is that a series of small phase II trials showed that albumin was better than other fluids in 

children with cerebral malaria [32]. To investigate whether the results were consistent with 

those findings the mortality risk was estimated for the saline and albumin arms separately 

compared to the control arm (inset Figure 4.4.24b). This showed that mortality risk was 

increased in both the saline and control arms compared to the albumin arm but the 

differences between albumin and the control arm, and the albumin and saline arms were not 

significant (inset Figure 4.4.24b).  

The mortality risk for a respiratory TCE (Figure 4.4.24c) was increased in the bolus arm similar 

to the overall mortality model but with a much smaller peak of mortality risk in the first four 

hours. There was only weak evidence for a significant difference between arms, though with 

the lower (pointwise) 95% confidence interval of the difference just above zero for 3 hours to 

29 hours from randomisation (Figure 4.4.25c).  

An unknown TCE could still occur during admission (essentially an unwitnessed death) and this 

was when there was the highest initial mortality risk. Figure 4.4.24d shows that the mortality 

risk was very similar between bolus and control and showed no peak in risk but simply a steep 

decrease following randomisation and then a slow decline after 4 hours. There was no 

evidence of a difference between arms for this TCE (Figure 4.4.25d).  
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Figure 4.4.24: Hazard rates for bolus vs control for different terminal clinical events  

a) Cardiogenic terminal clinical event (n=146 deaths) 

 

b) Neurological terminal clinical event (n=106 deaths) (inset 

showing rates by fluid) 

 

c) Respiratory terminal clinical event (n=76 deaths) 

 

d) Unknown terminal clinical event (n=41 deaths) 

 



260 
 

Figure 4.4.25: Difference in hazard rates for different terminal clinical events  

a) Cardiogenic terminal clinical event  

 

b) Neurological terminal clinical event  

 

c) Respiratory terminal clinical event  

 

d) Unknown terminal clinical event  
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4.4.6 Analyses by oxygen saturation level 

 

Chapter 3 of this thesis found that there was there was a differing impact of fluid resuscitation 

on mortality dependent on a child’s level of oxygen saturation (SPO2) at baseline, and those 

with higher oxygen saturation were at a relatively greater risk of mortality if they received 

boluses. To understand this interaction further, the timings of the deaths were analysed 

comparing between those with <90% oxygen saturation on admission and those with ≥90% 

oxygen saturation (judged by WHO as not a target for oxygen therapy) [227]. A Kaplan-Meier 

plot to compare the time to death between the groups showed that the difference between 

the bolus and control arms appeared after 5 hours from randomisation for those with ≥90% 

oxygen saturation (Figure 4.4.26 below). Those with <90% oxygen saturation had a higher 

mortality risk overall and the two arms (bolus vs control) were similar, although diverged a 

little between 3 and 8 hours. 

Figure 4.4.26: Kaplan-Meier failure plot split by bolus vs control and <90% vs ≥90% baseline 

oxygen saturation over 48 hours from randomisation. 

 

 

Flexible parametric models were used to examine the underlying mortality risk by oxygen 

saturation group and randomisation arm. The AIC of models with differing numbers of degree 

of freedom (df) for the time varying effects of oxygen saturation (categorised as <90% vs 
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≥90%) were compared, keeping 5 df for the baseline hazard and 2 df for the bolus time-varying 

effect, as in previous models in this chapter, to find the most appropriate number of knots for 

the oxygen saturation time varying effect. The model with the lowest AIC had 4 df for the 

oxygen saturation subgroup effect. (Figure 4.4.27). 

Figure 4.4.27: Estimated hazard per 100 phrs in the first 12 hours by bolus vs control and split 

by <90% and ≥90% oxygen saturation at baseline. 

  

The figure above shows that the mortality risk was higher in those with <90% oxygen 

saturation on admission which is as expected as they were likely to be more severely ill 

compared to those with ≥90% oxygen saturation. However, the mortality risk for those with 

oxygen saturation<90% at randomisation plateaued at 0.4 per 100phrs for the bolus arm and 

0.2 per 100phrs for the control arm between approximately 4 and 8 hours which was in fact 

lower than the mortality risk for those with ≥90% oxygen saturation during this period. This 

may be as some children at highest risk in the <90% oxygen saturation group had died by 4 

hours, and those remaining have a lower risk. However, conditional on surviving to that 

timepoint, the instantaneous mortality risk in those with ≥90% oxygen saturation at baseline, 

and particularly in those in the bolus arm, was still higher between 4 and 8 hours.   

The peak in the risk difference for those with <90% oxygen saturation at baseline led to a 

higher risk difference between bolus and control within the first 3 hours from randomisation 

compared to those with ≥90% oxygen saturation, possibly reflecting organ failure in a high risk 
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group, but then the mortality risk difference was in fact lower for the remaining 45 hours. 

(Figure 4.4.28a and b).  

 

Figure 4.4.28: Difference in hazard rates for a) children with ≥90% oxygen saturation at 

baseline and b) children with <90% oxygen saturation at baseline.   

 

a) ≥90% oxygen saturation 

 
 

b) <90% oxygen saturation 

 
 

 

The timing of deaths presented using a Kaplan Meier plot in Figure 4.4.26 could also be linked 

to terminal clinical event information to look at causes of death over time by the different 

oxygen saturation groups.  

  



264 
 

Figure 4.4.29: Cumulative incidence of a) cardiogenic and b) respiratory terminal clinical events 

by oxygen saturation levels and bolus vs control.  

a) Cardiogenic TCE 

 

b) Respiratory TCE 

 
 

 

These show that the difference between arms in cardiogenic deaths appeared very quickly 

(around 1 hour) for those with <90% oxygen saturation, whereas for those with ≥90% oxygen 

saturation the difference appeared later from 4 hours. The eight cardiogenic deaths in children 

with <90% oxygen saturation in the control group also all occurred before 20 hours (out of 34 

deaths in this group in total). Thus, the other causes of death reduced the difference between 

the bolus and control arms as seen in the overall Kaplan Meier plot in Figure 4.4.28. Figure 

4.4.29b) also shows that there was a gradual increase in cumulative incidence for those in the 

bolus arm with ≥90% oxygen saturation, appearing after 4 hours, similar to that seen in 

cardiogenic deaths for children with ≥90% oxygen saturation.  Children with <90% in the 

control arm had very similar cumulative incidence over time from both cardiogenic and 

respiratory TCEs; whereas children with <90% oxygen saturation in the bolus arms had a 

greater cumulative incidence of cardiogenic TCEs compared to respiratory TCEs.   
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4.5 Discussion 
 

The FEAST clinical trial showed a 3.3% absolute increase in mortality by 48 hours (and 3.4% 

increase by 28 days) in the bolus arms compared to the control arm [33]. There were two 

plausible hypotheses regarding this increased mortality risk from the bolus intervention: either 

that the risk in the bolus arms increased directly following administration of the bolus or that 

there was a slower decrease in risk over time. Flexible models allowed me to distinguish 

between the two, and by estimating the mortality risk (overall hazard) directly I was able to 

estimate the time point the rate was highest in these children and how long the excess risk 

remained higher in the bolus arms relative to the control arm. I found that there was a similar 

peak in mortality risk for both randomised arms (bolus and control) in the first four hours from 

randomisation and then a slow decrease in risk. The risk in the bolus arm did not increase 

further but remained higher until 96 hours after randomisation, compared to the control arm. 

This shows that children in the bolus arms were recovering more slowly than those in the 

control arm and that the detrimental impact of receiving a bolus on mortality risk continued 

beyond admission up to 4 days after randomisation. Sensitivity analyses also supported the 

extended detrimental impact of receiving a bolus, although only to 53 hours from 

randomisation.  

These findings are implicit within the Kaplan Meier (KM) plots from the main trial publication 

[33] which suggested that mortality risk was high soon after randomisation and peaked at a 

similar time in both arms; however, the specific changes in risk are not explicit just from the 

KM plots. If the peak in risk had been at different times for each arm then the cumulative 

probability of death from the KM plot would have clearly increased at different times. But from 

the Kaplan Meier plot alone it is difficult to distinguish between a much higher immediate peak 

increase in mortality risk or a slower decrease in risk.  

There has been much discussion around why there was excess mortality in the bolus arm of 

the FEAST trial. One hypothesis is based on re-perfusion injury, where the protective response 

was preventing a vascular spread of pathogens [228, 229] and the fluid resuscitation could 

have resulted in a ‘flush’ mechanism in the tissues, resulting in poor outcomes further along in 

the admission or post-admission [157, 230]. Another hypothesis is that bolus fluid 

resuscitation may cause adverse effects on vascular hemodynamics and myocardial 

performance [33]. On admission children’s organs may have been hypoperfused (so non-

critical areas such as the skin, liver/gut and kidney are temporarily shut-down to conserve 

blood flow and the blood is diverted to the vital organs (brain, lungs, heart)), serving as a 
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protective physiological response. When circulation is rapidly restored the ‘protective 

response’ is diverted and cardiac output is unable to perfuse the non-critical areas (as it is at 

its greatest compensation) leading to cardiovascular collapse. This is supported by a study in 

sheep which found a marked increase in levels of cardiac troponin I at 16 hours in the sepsis 

group resuscitated with saline compared to a control group with sepsis not resuscitated with 

saline and a healthy group resuscitated with saline [231]. Cardiac troponin I is a protein 

released when the heart muscle has been damaged. Thus an increase in this marker following 

bolus resuscitation in sheep is compatible with our finding that the largest difference in 

mortality risk in FEAST was seen in those that have a cardiogenic TCE (i.e cardiovascular 

collapse). We did not have any post bolus stored samples to test this hypothesis directly in the 

FEAST trial however.   

The peak in mortality risk was similar in both arms and very close to randomisation, occurring 

even before most boluses had finished. In the literature identified through the review at the 

beginning of this chapter, a peak in mortality risk has previously been seen in HIV-infected 

children starting treatment in a trial (ARROW) where mortality was highest 34-51 days after 

randomisation and was not accounted for by adverse treatment effects [209]. However, in the 

ARROW trial, the authors suggest that the peak was due to the fact there was a full two stage 

(i.e over a number of days) consent process in clinics and so children that were within days of 

death were plausibly not randomised into the trial, leading to an increase in mortality risk 

shortly after randomisation. A peak in excess mortality rate was also found in children with 

brain tumours within 2 years of diagnosis [210]. This was, however, an analysis of a population 

based cancer registry and thus there was not the same consent process as a clinical trial to 

exclude those about to die. In that paper the excess mortality rate was presented as part of 

relative survival analysis which is the mortality risk compared to the expected mortality risk in 

the general population, and it is plausible that children with cancer genuinely have a peak in 

mortality around this time. Although it has been well documented that child mortality rates 

shortly following hospital admission are high (14% of deaths were within 4 hours of admission 

in one study in Kenya [47]) I found that mortality risk in these settings has not been modelled 

over time with FPMs in the published literature, so I was not able to directly compare my 

findings with other studies.  

The sensitivity analyses for estimating hazard overall suggested that the flexible parametric 

modelling on a log time scale may be artificially creating a peak, as the log hazard function 

creates an asymptote to zero (or infinity) when time from randomisation is very close to zero. 

Fitted to the simulated data with underlying initial high constant hazard, FPMs gave a peak in 

mortality risk even though the underlying hazard was high and then decreasing. This 
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hypothesis was supported by modelling on the untransformed time scale which estimated a 

monotonically decreasing function in the simulated datasets. This was a better reflection of 

the underlying shape of the hazard function used to simulate the data. I have not found 

discussions of this issue in the published literature, which may be due to FPMs having been 

widely used in diseases where there would usually be a few months or years prior to the first 

event, particularly cancer. But nevertheless, even using an untransformed time scale, there is 

evidence that there was an underlying peak in mortality risk (hazard) in the FEAST data which 

may be due to the way that deaths were discovered and recorded in the first two hours. The 

piecewise exponential model by bolus vs control suggested a small peak in mortality risk and 

the FPMs on the log time scale, including the time varying effect of bolus, were consistent with 

the piecewise model. The FPM fitted on the untransformed time scale with a time-varying 

effect of bolus was also consistent with an underlying peak in the data, whereas when these 

models were fitted to the simulated piecewise exponential models with constant high hazard 

initially there was no peak estimated. This suggests there may have been changing (and not 

constant) high hazard in the data immediately after randomisation.  

The piecewise exponential models also showed how variable the hazard was when broken 

down into small intervals; unfortunately there was not enough power to show differences 

between arms for any of the time intervals in these models. Table 4.5.1 below summarises the 

findings when considering whether the early increase in the hazard prior to a decrease, found 

when using FPMs on a log cumulative hazard scale, was an artefact of the model or was 

present in the data. In summary, although FPMs may artificially create a peak in the hazard, 

there was some evidence that the peak is actually present in the FEAST data. However, what is 

consistent across all statistical approaches, both modelling with log time and modelling on an 

untransformed time scale, is that I found no immediate difference in mortality risk between 

randomised arms around the time of the peak, but instead the excess mortality risk in the 

bolus group occurred after the first 4 hours and remained up beyond 48 hours from 

randomisation.  The models on the log time scale indicated that this excess mortality risk in the 

bolus group could have remained until up to 4 days from randomisation. 
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Table 4.5.1: Evidence for and against a true underlying peak in mortality risk (hazard) in the 

FEAST data 

Peak present in data  Artificially created by model  

Piecewise exponential fitted by bolus vs 

control suggests there was a small peak in 

mortality risk, possibly caused by the way 

deaths were recorded around the 1 hour 

point.  

FPM fitted using log time on simulated 

data from an underlying initial high 

hazard that did not vary still gave a peak 

in mortality risk.  

The peak remained (although was lessened) 

when deaths between screening and 

randomisation were included.  

The potential for the use of splines of log 

time to create an asymptote (going zero 

or infinity) in the hazard function when 

event times are close to zero is a 

disadvantage of FPMs that has not been 

fully explored (personal communication – 

M Crowther).  

Modelling on the untransformed time scale 

gives no peak in the simulated data with an 

underlying constant high initial hazard that 

did not vary, but did give one with FEAST 

data suggesting the underlying hazard was 

may have differed from the piecewise model 

used to simulate data.  

Peak lessened and 95% CI widened in 

analysis including deaths between 

screening and randomisation. 

Modelling bolus vs control with 

untransformed time and with log time both 

gave peaks in mortality risk in the first four 

hours from randomisation 

 

 

 

One clinical hypothesis for the peak in mortality risk is that early supportive care may have 

adverse consequences i.e that the child has survived to hospital and then is given various 

treatments which imbalances the mechanisms that are keeping them alive. There is some 

literature discussing this [232] but very few clinical trials or studies have taken place, as much 

of early supportive care is an intrinsic part of clinical practice. In the FEAST trial standard 

supportive treatments included oxygen therapy, rapid correction of hypoglycaemia, anti-
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pyrectics and for all children parenteral antibiotics were recommended (to be given 

immediately to comply with surviving sepsis recommendation (ie within the first hour)). 

Literature on toxin release by bacteriocidal antibiotics, including the Jarisch-Herxheimer 

reaction (a systemic reaction believed to be caused by the release of endotoxin-like substances 

when harmful microorganisms are killed during antibiotic treatment) remains a controversial 

and debatable topic. Few trials have been prospectively designed to address this question in 

the critically sick patient. One in melioidosis showed differential antibiotic endotoxin release 

but no difference in survival, although patients were more stable than those enrolled in the 

FEAST trial [233]. Another study compared mortality rates before and after implementation of 

a new more rapid protocol for sepsis, including antibiotics and fluids within the first three 

hours, and found lower mortality with completion of rapid administration of antibiotics (but no 

difference for fluids), although many other factors may have changed in the study site in the 

two time periods thus potentially confounding the results [234]. Increased mortality was found 

with an early resuscitation sepsis protocol in adults in Zambia, but the main components of the 

intervention were fluid boluses and vasopressors rather than other supportive treatments 

[235]. In FEAST, including deaths between screening and randomisation widened the 

confidence intervals around the overall mortality risk, but did not impact the maximum of the 

peak. Therefore, although the hypothesis that early supportive care is harmful cannot be 

excluded, there was at least some support for the alternative, namely that children were 

simply arriving at hospital with high mortality risk over the first 2 hours and which steeply 

declined following treatment. This was also consistent with the hypothesis that the peak in 

mortality risk seen in the FEAST data was due to the trial processes and data collection, rather 

than a clinically meaningful increase immediately after randomisation.  

Pointwise confidence intervals were used throughout the chapter. The alternative would be 

continuous confidence intervals for the function in question. Instead of using the value from a 

chi-squared distribution with 1 degree of freedom to estimate the confidence interval, the 

value would be found from a chi-squared distribution with the number of degrees of freedom 

based on the number of model parameters. As the flexible parametric models have at 

minimum 7 parameters, this would lead to a very wide confidence interval which may be 

uninformative and is likely to be highly over-conservative. I therefore used bootstrapping as an 

alternative approach to try and estimate confidence intervals.  

I chose to model cause specific hazards in the competing risks analysis as these estimate an 

instantaneous death rate (hazard) from the specific TCE out of those that had survived to that 

point (as children are censored at the date of their death or the end of follow up). The 

alternative would be to estimate the sub-distribution hazard which corresponds to the overall 
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effect on death from a specific TCE. When overall event rates are low, as here, these two 

quantities are similar. 

The results from the cause specific hazard analyses in this chapter support the findings in 

previous analyses, where the cumulative incidence was higher in the bolus arms for those with 

a cardiogenic TCE and that this TCE contributed most to the excess mortality in the bolus arms 

[157]. I found the greatest difference in mortality risk in this TCE and that the distribution of 

the difference over time is very similar to the overall difference between arms. The 

neurological and respiratory TCEs showed a low and straightforward decline following a peak, 

and the unknown TCE had small numbers with increased risk only soon after randomisation. 

These results fit in within the conclusions from the previous analyses that the detrimental 

effect of bolus was not due to fluid overload affecting the brain or lungs. Analyses splitting by 

oxygen saturation (<90% compared to ≥90%) indicated that it was the period of 4-8 hours 

where the difference in mortality risk appeared in those with ≥90% oxygen saturation, and that 

the excess mortality was similar for cardiogenic and respiratory TCEs. In contrast, the excess 

risk in those with oxygen saturation <90% was predominantly from cardiogenic TCEs.  

The main strength of these analyses is the novel application of flexible parametric survival 

models, enabling us to further elucidate potential mechanisms. To my knowledge, no studies 

have applied such models to critically ill children in these settings, and our application 

highlights their potential. In conclusion, more detailed analysis of the FEAST trial data 

demonstrates that fluid boluses did not substantially increase mortality risk on administration, 

but rather delayed normalization of mortality risk, preventing children from recovering at the 

same rate they would without a bolus for longer than 48 hours and potentially up to 4 days 

from randomisation.   
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5 Discussion 
 

5.1 Background 
 

There are very high levels of mortality for paediatric admissions to emergency rooms in sub-

Saharan African hospitals, most often from life-threating complications of common illnesses 

such as malaria, and pneumonia [2]. Children can deteriorate quickly, with most mortality 

occurring within hours of admission. Case management of childhood diseases remains an area 

where good intervention coverage was not achieved in all countries that were striving towards 

the millennium development goals by 2015 [9] and there is a continued need to improve case 

management and treatment for critically ill children arriving in hospitals. There are new goals 

that were adopted by many countries in 2015 called the Sustainable Development Goals 

(SDGs) which are active until 2030 [236], and which are being monitored closely. Goal number 

3 ‘good health and well-being’ includes ending preventable deaths in children under-5 years 

old by 2030. A review of the under-5 year old causes of mortality in 2015 indicated the leading 

cause of death in sub-Saharan Africa was pneumonia (17%), followed by preterm birth 

complications (12%), intrapartum-related events (12%), diarrhoea (10%), malaria (10%) and 

sepsis/meningitis (10%) [1]. The introduction of preventive strategies such as the Haemophilus 

influenza type b and pneumococcal vaccines for pneumonia, improved water and sanitation 

and the rotavirus vaccine for diarrhoea, and insecticide treated bednets for malaria, should 

have had an impact on the burden and spectrum of disease hospital admissions [1], although 

data has not yet been updated to reflect this. Nevertheless, there are still many children 

presenting to hospital who are critically ill. For example, there were estimated to be over 

25,000 children in Uganda alone in 2015 who died from pneumonia, diarrhoea or malaria [1]. A 

major issue for many of these critical diseases is the overlap in presentation (including sepsis 

which is not prioritised in the WHO guideline) since these are largely defined by clinical 

criteria, with many children mis-classified by the syndromic classification; in addition they may 

occur together. An analysis of data from a large randomised clinical trial for antimalarial 

treatment in children (AQUAMAT) found that those in the lowest tertile of plasma PfHRP2 

(<829ng/mL) had a low probability of malaria-attributable death, despite all being classified as 

having malaria to enter the trial [41]. Also, where blood cultures are available they lack 

sensitivity and are only positive in a small proportion of children with pneumonia; identifying 

the pathogen(s) causing pneumonia remains challenging despite advances in diagnostic tests 

[237, 238].  



272 
 

One specific, high-risk and frequent complication of the undifferentiated critically-ill child 

presenting to the emergency room in Africa is shock. There are strong recommendations 

regarding management of these children but until the FEAST trial, these were based on a 

low/weak evidence base. Whilst there is an active debate on how shock is clinically defined 

[239], there is limited research into the best way to treat shock, especially in low-income 

settings. Between 2009 and 2011, the Fluid Expansion As Supportive Therapy (FEAST) trial was 

conducted to determine whether treating children in shock with fluid resuscitation (boluses) 

would decrease the high mortality observed in these critically ill children [33]. Fluid 

resuscitation, worldwide, was commonly used in high income settings to treat shock. The 

World Health Organisation (WHO) define paediatric shock as a child having all of the following 

signs: cold extremities, capillary refill time>2s and a weak and fast pulse [227]. These signs are 

individually associated with poor outcome but have not been formally validated by 

physiological studies against evidence of macro-vascular and micro-vascular compromise and 

identify very few children (only 65/3141 (2%) in FEAST) and <1% in other cohorts [239]. The 

WHO 2013 guidelines on how best to treat this group of children include fluid boluses [227]. 

Other definitions of paediatric shock (such as the American Academy of Critical Care Medicine 

– Paediatric Advanced Life Support (ACCM-PALS), or Advanced Paediatric Life Support (APLS)) 

are broader and similar to the FEAST inclusion criteria, focusing on impaired circulation and for 

these children boluses are not recommended [227]. Internationally, there has also been 

research to investigate the best fluid for resuscitation (which has focused on debate around 

colloids versus crystalloids) [240-242]. In Kenya, small Phase II trials also addressed the safety 

and efficacy of different fluids in children with severe malaria in Kenya prior to the 

commencement of the FEAST trial [30, 31]. These Phase II trials were undertaken with the aim 

of investigating whether crystalloid (saline) or colloid fluid (human albumin solution, dextran 

or gelofusin) boluses in these settings were safe and superior as a possible supportive therapy 

in severe malaria.   

However, since fluid resuscitation for shocked children presenting to the emergency room in 

sub-Saharan Africa was not standard of care, apart from the small number of children meeting 

the WHO definition of shock and very critically ill, there was increasing recognition of the need 

to conduct a large clinical trial to investigate fluid resuscitation in a wider group of children in 

shock (due not only to sepsis, but also to malaria). The trial needed to be powered to detect a 

difference in mortality between different fluids and also between fluids delivered as boluses 

and a control group (receiving maintenance fluids only). As fluid boluses for shock should be 

started very soon after admission, this treatment was hypothesised to be life-saving globally, 

but more especially in these settings where mortality within 24 hours of admission is high. 

Other treatments including anti-malarials and/or antibiotics tend to be reliant on test results 
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which can take time (although some point-of-care tests have made this quicker) or have to be 

given empirically before the diagnosis is known. The FEAST trial enrolled 3170 children 

presenting to hospital in shock, of whom two thirds have malaria. The trial stopped early and 

results showed that fluid resuscitation was not appropriate in this setting without intensive 

care facilities. There was an increased mortality risk in the bolus arms compared to the control 

arm (which received maintenance fluids only) with a risk ratio for mortality of 1.45 (95%CI 

1.13-1.86; p=0.003). There was no difference between the fluid arms (risk ratio 1.01 (95%CI 

0.78-1.29) for albumin bolus vs saline bolus.  

 

5.2 Key results: summary 
 

This thesis has applied recently developed statistical methods, not commonly used in this 

research area, to investigate key questions arising from the FEAST trial results and from the 

need for research in critically ill children presenting to hospital in sub-Saharan Africa. 

Firstly, I identified children at highest risk on arrival to hospital and created and validated a 

prognostic risk score which is easy to use and tailored to low-income settings [161]. The FEAST 

Pediatric Emergency Triage (PET) score uses bedside measures, has a range of 0-10 and 

showed good validation on external data. Secondly, continuous measures at baseline and 

throughout admission were modelled with fractional polynomials to identify any interactions 

with bolus. I found strong evidence for interactions with bolus and oxygen saturation and 

bolus and base excess in children with malaria. These were further explored with other 

measures of malaria severity. For this analysis I included a refinement to malaria diagnosis 

using quantitative PfHRP2 measurement which more accurately predicts true severe malaria 

(separating those with severe malaria from children with severe illness and incidental 

parasitaemia). I also investigated whether base excess (a measure of severe acidosis) may play 

an important part in understanding the impact of fluids on critically ill children with malaria. 

The mechanisms by which fluid resuscitation increased the risk of death in FEAST were 

explored by estimating the proportion of treatment effect explained by different physiological 

measures measured over time. Overall, none of the above physiological measures were found 

to explain any of the treatment effect, which I suggest indicates the potential difficulties in 

identifying harm from treatment in a group of children with diverse presentations and 

syndromes where one measure is not sufficient to explain the physiological impact of boluses.   
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Thirdly, using flexible parametric models to estimate the mortality risk over time, I also found 

that the ‘mechanism of harm’ did not translate to an immediate clinically definable reaction to 

the boluses (ie simultaneously or shortly following bolus therapy as has been hypothesised). 

Instead, I found mortality risk in children who received boluses took longer to return to normal 

compared to those who received maintenance fluids. In summary, the finding of the analyses 

in my thesis supports the hypothesis that the mechanism of harm could be the rapid reversal 

of a protective response (shock) to severe illness by giving large amounts of fluids fast. Future 

trials in this area should focus on measurement of biomarkers in children receiving fluid 

resuscitation (for example in intensive care settings in well-resourced settings) that may give 

some insight into this mechanism.  

 

5.2.1 Key results: What prognostic indicators for death could be used in African 

hospitals to identify children at greatest risk? (Chapter 2) 

 

Chapter 2 of this thesis identified the children at highest risk in the FEAST trial and created a 

risk score called the FEAST PET score that could be either used to stratify children in a study or 

for enrolment into a trial, or for triage in the admission area [161]. Triage scores need to be 

simple and created from easily recorded bedside measures and the PET score includes: 

temperature, heart rate, weak pulse, capillary refill time, conscious level, respiratory distress, 

lung crepitations, and severe pallor. These signs can all be measured in the critically ill child 

and require little equipment and no tests. Blantyre coma score, respiratory distress and 

capillary refill time had been shown previously to be prognostic for mortality [47, 62, 103, 104, 

109, 110, 243] . Previous research has shown that improving triage systems to better identify 

those at highest risk of mortality can reduce mortality rates [10]. Of note, even without using a 

risk score, but with better triage systems in the FEAST clinical sites, the children in the control 

arm of the trial had reduced mortality compared to admission mortality rates prior to the trial 

(or recorded in other similar settings) [33]. This could also have been due to closer monitoring 

and more point-of-care tests than may have been offered or affordable in usual clinical 

practice, but implementing improved triage is very likely to have played an important role. As 

well as reorganising how children are assessed and admitted, it is important to collate 

information from basic bedside measures that are recorded regularly on all children. This is 

why risk scores that are simple and include easy-to-use (and to teach) signs and measurements 

are important to develop and validate in these settings. In this regard, the FEAST PET score 

uses a simple addition process with a maximum score of 10 and a minimum of 0 to help enable 

possible use of the score as part of triage systems. Risk scores are also useful for risk 
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stratification and thus enable cross-site comparisons of hospitals adjusted for the type of 

patient that they treat as well as ensuring particular patients are enrolled into a studies. For 

example, a clinical trial may only want high risk patients and so with a risk score calculated at 

admission then they can more easily identify those that should be enrolled. It can also help 

with stratification so a future trial can also investigate treatment effects in high risk and low 

risk patients by using a risk score calculated at admission.  

The need for risk scores to be appropriate to the countries that they are being used in was also 

highlighted in Chapter 2. Thus, risk scores that involve a lot of monitoring or laboratory tests 

are not as useful in low-income settings where those facilities are not available and scores 

from high-income settings are not usually generalisable to low-income settings. It is also 

difficult to properly validate such scores in low and middle-income country (LMIC) settings as 

many score components are usually not recorded, and so values for missing components are 

set to clinically normal levels (as directed by the researchers that developed the score). This 

has also been found with adult prognostic scoring systems developed in high income countries 

where they were found to be at best performing moderately in LMIC ICUs with limitations in 

calibration [244]. Many of the laboratory tests included in scores such as PRISM and PRISMIII 

(for example: total bilirubin, calcium, potassium, arterial oxygen tension, creatinine, and 

prothrombin time) that are commonly done in high-income settings are not 

measured/available routinely at admission in most African hospitals. Care must also be taken 

in applying adult risk scores to paediatric populations, even within high income countries. The 

quick Sequential Organ Dysfunction Assessment (qSOFA) score was developed as part of the 

Sepsis-3 guidelines [245] and only uses three components (hypotension, tachypnoea and 

conscious level) but was found to have poor performance to identify children at risk for worst 

outcomes in a large dataset of PICU admissions in Australia [246]. It is also important for risk 

scores to be validated to show good generalisability: a strength of the PET score was that it 

was validated on data from similar settings to the trial (Kilifi admissions data) and was shown 

to have good discriminatory ability. The FEAST PET score had slightly better discriminatory 

ability in the more general dataset from ward admissions, indicating it could identify high risk 

patients amongst a more general population compared to when restricted to those admitted 

to the KEMRI high dependency ward who were a selected group at higher mortality risk. 

Importantly some of these children had deteriorated in hospital prompting admission to the 

KEMRI ward; admission characteristics might be expected to perform more poorly in predicting 

overall mortality risk in these children. Even though many laboratory tests are not available in 

these settings, improvements in technology mean that there are more point-of-care tests 

becoming available and more robust and smaller machines for testing. This is why I also 

considered some laboratory measures, in order to test whether they could provide additional 
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discrimination. Three laboratory measures (BUN, lactate and pH) were added to the PET score 

based on their NRI statistics to create the Paediatric Emergency Triage and Laboratory (PETaL) 

score. This score includes lactate, which is more likely than other tests to become part of 

routine care; hyperlactataemia has been shown to be predictive of mortality in FEAST both in 

analyses in this thesis and in a separate analysis [247].   

 

5.2.2 Key results: Exploring mechanisms of action of the boluses (Chapter 3) 

 

The FEAST trial findings were unexpected and the questions around volume of fluids and speed 

of administration to the critically ill child have been debated widely since the trial results were 

published [248-252]. In the FEAST trial, most children who received bolus-therapy largely 

received 20 mls/kg over one hour. This was only repeated over the following hour after 

admission in those with unresolved signs of shock (37% children in the bolus arms combined). 

Comparing this to the WHO guidelines at the time [18], in which WHO recommended 20mls/kg 

as fast as possible with up to two repeats as fast as possible, and international guidelines 

recommending 60mls/kg over 15 minutes, the FEAST trial volumes and rates of infusion were 

exceptionally conservative. The amounts given in the FEAST trial were even reviewed during 

the trial and a protocol amendment was made to increase the amount of fluids for the first 

bolus to 40mls/kg as it was thought the hypothesised beneficial effect may not been seen due 

to the conservative amounts. The amendment was in place for the last 606/3141 (19%) 

children enrolled. Whilst international recommendations for fluid-bolus therapy prior to FEAST 

had not been tested in clinical trials, despite weak evidence supporting the recommendations 

in guidelines, as a result of FEAST there are now a number of trials that have been proposed in 

high-income countries to investigate a similar question [253-255]. Choice of endpoints is 

difficult for these trials; because primary mortality rates are so low in high-income Paediatric 

Intensive Care Units (PICUs) a very large trial would be needed.  

Two of the trials evaluating fluid boluses in children in hospital in high income settings are 

Fluids in Shock (FiSH) in the UK (ISRCTN 15244462) and a Trial to Determine Whether Septic 

Shock Reversal is Quicker in Pediatric Patients Randomized to an Early Goal Directed Fluid-

sparing Strategy vs. Usual Care (SQUEEZE) in Canada (NCT01973907) [254]. There is also one 

trial registered in adults - Restricted Fluid Resuscitation in Sepsis-associated Hypotension 

(REFRESH) in Australia (ACTRN12616000006448) [255]. Both paediatric trials were enrolling 

children who have already received boluses of fluids and the randomisation is either to the 

amount given in second boluses (10mls/kg vs 20mls/kg) or to a fluid sparing strategy instead of 
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standard of care for subsequent boluses. FiSH was a pilot study with two different elements, 

one a qualitative study in 21 children which was looking at whether parents would be happy 

with deferred consent [256], and the second looked at recruitment and adherence to fluid 

resuscitation strategies in 108 children. The FiSH trial protocol does not directly mention any 

blood tests although they describe ‘physiology’ as being measured every 15 minutes for the 

first 4 hours. The statistical analysis plan (SAP) for the study indicates a PIM2 score will be 

calculated which involves measuring PaO2 and base excess. The SQUEEZE trial is also a pilot 

trial comparing standard of care to a fluid sparing resuscitation strategy in 50 children, with 

recruitment and adherence to fluid resuscitation strategies as primary outcomes.  The 

proposed primary outcome for a subsequent full trial is time to shock reversal as defined by 

meeting all of the following criteria: free from vasoactive medication support; normalisation of 

heart rate (above the 5th and below the 95th percentile for age); normalisation of blood 

pressure (SBP and MBP above the 5th percentile for age); and capillary refill <3s. No specific 

biomarker or laboratory tests are indicated in the protocol but there will be continuous cardiac 

monitoring.  

REFRESH is a phase II clinical feasibility trial in 100 adults with a primary outcome measure of 

total volume administered in the first 6 hours. The REFRESH trial is measuring a variety of 

biomarkers (including troponin, atrial natriuretic peptide, inflammatory cytokines, NGAL (a 

marker of renal injury), endothelial cell activation biomarkers and soluble markers of 

glycocalyx degradation) and plans to look at peak values as well as patterns over time at 0, 3, 6 

and 24 hours. By comparing the protocols of these three trials it appears that REFRESH may be 

able to investigate more biomarkers to understand the mechanism of bolus resuscitation in 

more detail compared to the paediatric trials, but all trials are initially looking at management 

factors and protocol adherence as outcomes. They are also small trials and thus will not have 

power to correlate the biomarkers with more clinically serious events.  

There has been debate as to the most appropriate non-fatal outcome for fluid trials in high-

income settings and the subjectivity of such non-fatal outcomes, with only one clinical 

outcome for large trial having been proposed so far (SQUEEZE trial). A commentary published 

in Intensive Care Medicine in 2016 indicated that there is a need to find non-invasive, 

reproducible and reliable haemodynamic measures that can be suitable outcomes in studies 

looking at fluid resuscitation in children [257]. With respect to this challenge Chapter 3 aimed 

to identify if there were any surrogate markers which may have been useful to measure and 

then validate for use in smaller trials where mortality rate is very low.   

Firstly, Chapter 3 modelled physiological measures over time looking at their associations with 

mortality, importantly modelling these associations as continuous variables using fractional 
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polynomials. This is an approach not often taken as much research categorises bedside 

measures. However, it is important to retain all the information the measurements provide 

without categorisation or needing to assume a linear relationship [162], both to adequately 

adjust for confounding and to represent biologically plausible associations. This also ensured 

the appropriate functional form of the physiological measure was included in models looking 

at the proportion of treatment effect explained. A key finding from these analyses was that 

children with a high fever on admission were at lower risk of mortality compared to those with 

hypothermia. Temperature was also identified as part of Berkley et al’s prognostic score, with 

fever shown to be beneficial and hypothermia to predict higher mortality [47]. I also showed 

that children with a persistent high temperature or developing a fever after the initial 

admission were at higher risk of mortality. This potentially identifies children for which 

treatment may not be working (for example antimicrobial treatment failures – where they may 

have had the incorrect dose or incorrect antibiotic or there was antimicrobial resistance). This 

could be a potential future cheap and simple point of care test for identifying high risk children 

during their hospital stay but after initial admission to the ward, and highlights the importance 

of basic clinical monitoring.  

One method to identify surrogate markers is by calculating the proportion of treatment effect 

(PTE) explained by a physiological measure. This is a reasonably intuitive measure to 

understand and it has been suggested that if it is above 75% (with a lower confidence interval 

bound of >50%) then the measure may be considered either a surrogate marker by itself or 

worth further investigation [164]. There is some debate as to the best way to calculate the 

proportion of treatment effect explained and other similar measures have been proposed, but 

the method used in this thesis is widely known and understood and overcomes some 

methodological issues identified in initial methods (such as the hypothesis that two different 

statistical models are both the true models) [167]. Jeeyapant et al identified absolute lactate 

value measured at 8 hours as a possible surrogate marker for the effect of antimalarials on 

mortality in hyperlactataemic adults [199]. They showed that artemether had a greater impact 

on absolute change from baseline in lactate (-1.7 (95% CI -2.9, -0.5) vs quinine (+0.7 (95% CI -

0.4, +1.8) at 8 hours, and the PTE of artemether by lactate was 73%. However, in that study 

the 95% CI was very wide (-607%, 673%) and thus covered all possible interpretations. In the 

analyses presented in my thesis the PTE by lactate for each subgroup was positive for all 

subgroups considered (malaria, non-malaria, age≤2 years, age>2 years) but the estimates were 

low, all between 10% and 20%, with confidence intervals within the interval [-100, 100]. There 

was also no evidence in the FEAST data for a difference between bolus and no bolus groups for 

absolute lactate value at 8 hours adjusted for the baseline value, which is also necessary for a 

measure to be considered a possible surrogate marker.   
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Jeeyapant et al recommended change in plasma lactate at 8 or 12 hours could be considered 

as an appropriate endpoint for trials in severe malaria [199], but analysis of the FEAST data did 

not provide evidence to support this in critically ill children overall or in the subgroup with 

malaria. This may be due to a large number of deaths in the FEAST trial occurring prior to 8 

hours (167/345 (48%)) thus meaning that any true surrogacy was missed, or that the 

mechanisms of action of anti-malarials and boluses were different, meaning that lactate may 

be a surrogate for the specific antimalarial treatment effect. However, in the AQ study used to 

assess the proportion of treatment effect explained by lactate, 15/38 (40%) deaths occurred by 

8 hours which is similar to the FEAST data, and the 8 hour lactate measurement was available 

for 158/173 (91%). In terms of mechanism of action, the Jeeyapant et al study compared 

artesunate, which has an action against all stages of parasites (and thus the deep sequestered 

parasite load hypothesised to cause microvascular obstruction (and anaerobic respiration)), 

with quinine, which only acts on late stages. It is therefore plausible that lactate acts as a good 

surrogate for the metabolic effects of malaria. Also, even though lactate clearance is putatively 

recommended by the surviving sepsis guidelines as being a measure of improved perfusion, 

and thus a marker that would change with the receipt of fluids, I did not find that this was the 

case in the FEAST dataset.  

The only other physiological measure with positive PTEs across the subgroups and overall in 

FEAST was respiratory rate, which did have an association with receiving boluses as there was 

a small but significant difference (<1 breath per min) from 1 to 48 hours between bolus arms 

and control (global p-value = 0.001). However, the PTEs were all <35% indicating lack of strong 

evidence that respiratory rate could be a useful surrogate endpoint. The PTE analyses overall 

showed there was no single physiological measure, nor any combination of measures, 

recorded over time that could explain the mechanism by which boluses caused harm. 

In the FEAST trial, bolus resuscitation (irrespective of fluid type) in the African setting was 

shown to be of no benefit in any of the pre-planned and subsequent subgroup analyses; 

conversely most analyses showed evidence of substantial and consistent harm [33, 157]. In 

looking to understand the mechanisms of the detrimental impact of boluses, physiological 

measures at baseline and over time were examined as possible effect modifiers in the four 

groups of interest – malaria, non-malaria, age≤2 years, and age>2 years. I examined the 

measures separately in the subgroups as their associations with mortality may have differed in 

ways that would not be identified through simple heterogeneity tests. This showed strong 

evidence that the impact of bolus varied over levels of base excess for children with malaria, 

indicating an especially harmful impact of boluses in those with severe acidosis and malaria. 

The harmful effect of the bolus was constant across levels of base excess if the child did not 
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have malaria. Sensitivity analyses also showed that the difference in bolus effect across levels 

of base excess held when analyses were restricted to those with ‘true’ severe malaria, as 

defined by PfHRP2, and if modelled with a continuous measure of malaria (total parasite 

burden). This was in addition to, and independent of, a varying impact of boluses over levels of 

oxygen saturation (where children with the highest oxygen saturation (ie largely normal levels 

of oxygen saturation) that were at least risk of mortality overall were counterintuitively at 

most risk from boluses). 

Although bolus resuscitation was shown to be deleterious, with evidence of harm in both the 

non-malaria and malaria subgroups (as defined by the main trial statistical analysis plan) [33], 

the heterogeneity of the impact of boluses according to base excess in those with malaria 

points to one possible mechanism of harm. This was consistent with and extends an analysis 

where base excess was used to define presentation syndromes and then the risk of mortality 

was compared between bolus and no bolus groups in those with different clinically identifiable 

presentation syndromes [157]. Importantly, those with just a severe shock/acidosis 

presentation (defined by lactate≥5mmol/L or base excess≤-8 or WHO definition of shock or 

moderate hypotension as included in most international definitions of shock) had a much 

greater risk difference for mortality in boluses vs no bolus (10% vs 3%) compared to other 

presentation groups (neurological, or respiratory) and even to any child with more than one 

presentation syndrome [157]. A commentary on the paper describing presentation syndromes 

hypothesised that the boluses may have induced hyperchloremic metabolic acidosis [258], 

which would have been exacerbated in those presenting with severe acidosis. Nevertheless, 

the dose of ‘acidemic fluids’ is substantially less than would have been given under other 

guidelines, and I found no evidence that children with high chloride on admission were at 

more harm from boluses compared to those with low chloride.  

The presence of malaria parasites in children with severe acidosis at baseline is also important. 

I found a correlation between base excess and PfHRP2, and children with PfHRP2>1000ng/ml 

had a lower base excess at admission. As high PfHRP2 is a marker of deep sequestration this 

could suggest that the PfHRP2 is a possible cause of severe acidosis in these particular 

children. Severe acidosis caused by deep sequestration of parasitaemia may be better treated 

with sevuparin [259] compared to severe acidosis as part of shock. Another contributing 

mechanism could be red blood cell deformability (both in parasitised and non-parasitised red 

cells) in those with severe malaria which has been shown to be a prognostic factor for 

mortality and more important than other parameters such as lactate and acid/base status 

[200, 201]. Red blood cell deformability is also correlated with base excess [201]. The bolus 

may have increased the ability of these cells with decreased deformability to circulate, 
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reducing microcirculatory flow and oxygen delivery in the tissues. Children without malaria 

would not have been subject to these effects.  

The other important bedside measure explored in Chapter 3 was oxygen saturation, as my 

analyses confirmed a previously identified interaction between levels of oxygen saturation at 

baseline and the effect of the bolus. This had been described with a binary categorisation of 

oxygen saturation with a cut-off at <92% but also as a continuous variable [157]. This was 

extended in this thesis by considering levels of oxygen saturation after baseline which also 

changed the effect of the bolus, namely children with low oxygen saturation levels after 

baseline and with malaria had the higher mortality risk after receiving boluses compared to 

those in the no bolus arm. However, putting the two factors together, it was children with 

malaria with high (normal) levels of oxygen saturation (≥90%) at baseline that then dropped at 

any timepoint after baseline, the bolus led to the highest mortality risk compared to the no 

bolus arm. For children without malaria, it was simply high oxygen saturation at baseline that 

increased the harmful effect of boluses and there was no evidence that the levels of oxygen 

saturation after baseline had an impact. The endpoint review committee adjudicated all causes 

of death as well as mode of death/terminal clinical event (cardiogenic, respiratory, 

neurological or unknown) blinded to randomised allocation, and they found no pulmonary 

oedema events possibly or probably related to fluid in children that died in the bolus arms and 

only one possibly or probably related in the no bolus arms, with only 19 pulmonary oedema 

events possibly present and contributing to death in the bolus arms overall (5 unlikely related 

to fluids, 12 uncertainly related and 2 with insufficient information) [157]. However, the 

adjudication was not done by malaria subgroup, nor were analyses in the paper describing 

terminal clinical events.  

Children in the bolus arms with high oxygen saturation (≥90%) had a higher proportion of 

deaths adjudicated as respiratory TCEs (1.6% (22 deaths) in bolus arms vs 0.1% (1 death) in no 

bolus arm) but also a higher proportion adjudicated as cardiogenic TCEs (3.7% (56 deaths) in 

bolus arms vs 1.9% (14 deaths) in no bolus arm); that is, children with high oxygen saturation 

had similar excess mortality from both respiratory and cardiogenic causes. In contrast, excess 

mortality risk associated with boluses in children with low oxygen saturation was 

predominately from cardiogenic causes. There was no evidence of a difference in deaths 

adjudicated as neurological TCEs between arms for those with high oxygen saturation. When 

analysing oxygen saturation as an outcome there was no evidence of a difference between the 

arms and the mean oxygen saturation increased in both arms after admission; however, as 

discussed above, there was a small difference in the respiratory rate with a slower reduction to 

normal levels in the bolus group.  
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5.2.3 Key results: Describing mortality risk over time (Chapter 4) 

 

Chapter 4 showed the bolus and no bolus groups had a similar high mortality risk within the 

first 1.5 hours of admission to hospital, which subsequently decreased in both groups. 

However, excess mortality risk in the bolus arms persisted for up to 96 hours, indicating that 

the detrimental effect of fluids continued beyond the primary outcome endpoint of 48 hours 

and thus children in the bolus arms were recovering more slowly than those in the no bolus 

arm. This result supports two hypotheses. One hypothesis is that it could be that there is a 

protective physiological response (where non-vital organs (for example skin, liver/gut, kidney) 

are hypo-perfused to conserve blood flow) but when circulation is restored rapidly the 

protective response is diverted and the cardiac output is unable to perfuse the non-critical 

areas (as it is at its greatest compensation) and this leads to cardiovascular collapse [33]. This 

should be identified as a cardiogenic terminal clinical event. Assessment of shock usually 

includes assessment of features that pertain to limb perfusion, for example capillary refill time 

or temperature gradient, and shock reversal (in relation to peripheral perfusion) is what 

guidelines suggest is associated with better outcomes; however, we did not find that time-

updated values of these physiological measures were associated with survival. By reversing the 

impaired perfusion quickly it may be that the protective physiological response can no longer 

sustain the perfusion of all the organs and cardiovascular collapse occurs; this was shown to be 

the terminal clinical event with the largest cumulative incidence difference between children 

receiving boluses and no boluses [157], and the largest difference over time from the 

competing risk analyses using flexible parametric models presented in this thesis. This is also 

supported by a study in sheep which found a marked increase in levels of cardiac troponin I at 

16 hours in the sepsis group resuscitated with saline compared to a control group with sepsis 

not resuscitated with saline and a healthy group resuscitated with saline [231]. Cardiac 

troponin I is a protein released when the heart muscle has been damaged. A research group in 

Australia is also examining this hypothesis in children by monitoring cardiac index closely 

through ultrasound every 5 minutes during fluid resuscitation (and 60 minutes after fluids have 

finished) to better understand physiological changes [260]. There is also a second hypothesis, 

although this has not been possible to explore as much in my analyses, which is that impaired 

perfusion could be a protective response preventing a vascular systemic spread of pathogens 

and there is re-perfusion injury when there is a ‘flush’ mechanism in the tissues, probably 

damaging the glycocalyx which is critical for microcirculation health, resulting in poorer 

outcomes further at a later time after bolus administration [228, 229].  
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Different modelling techniques for estimating the mortality risk over time were also examined, 

using flexible parametric models on the untransformed time scale (to avoid an asymptote in 

the risk as time approaches zero) and the log time scale (which is more common and more 

stable to changes in baseline degrees of freedom) [207]. Both methods suggested that there 

may have been a sharp increase in risk immediately after randomisation followed by a drop by 

2 hours indicating changing high risk in this period. One clinical hypothesis for a peak in 

mortality risk at this time is that early supportive care may have adverse consequences, but 

this is intrinsic to clinical practice so very little research has been done in this area [232]. Early 

goal directed therapy (EGDT) has been compared in previous studies to standard of care 

(where treating clinicians determined rates and amounts of fluid administration) especially 

within sepsis protocols (where a bundle of interventions has been mandated to start very 

quickly after admission) and has been reported to have discordant results and to be both 

effective and not effective in different settings. However, of importance, 3 large clinical trials 

undertaken between 2008 and 2015 and comparing EGDT to standard of care in adults showed 

no difference in mortality by 90 days in the US (ProCESS [261]), Australia (ARISE [262]) or the 

UK (ProMISe [263]). An individual patient-level meta-analysis of these trials also showed that 

EGDT was associated with a greater mean use of intensive care and cardiovascular support (in 

days) compared to usual care [264]. In low-income settings increased mortality was found with 

early goal directed therapy in a clinical trial comparing an early sepsis protocol (including fluid 

boluses and vasopressors) to standard of care in 212 adults in Zambia [235]. In contrast, no 

difference in mortality was found in 328 children with sepsis in Bangladesh comparing pre and 

post protocol implementation of an EGDT bundle, although interestingly there was an increase 

in fluid overload, heart failure and increased length of stay post implementation [265]. There 

was also no evidence of a difference in mortality in a trial in 96 children in India comparing 

20mls/kg boluses given over 5-10 minutes compared to the same amount over 15-20 minutes, 

but there was increased need for mechanical ventilation in the first 6 and 24 hours in the 5-10 

minutes group [266]. More rapid completion of a 3-hour bundle of care and rapid 

administration of antibiotics was associated with lower mortality in 40,696 adults in the USA, 

but rapid completion of a bolus of fluids was not associated with mortality [234]. However, 

two of these studies were not randomised and either compared two different time periods in 

the same hospital or two different bundles of care and so are open to unmeasured 

confounding by other factors changing between the time periods (Bangladesh) and between 

those who did and did not receive the 3 hour bundle in the study (USA). The study in India was 

small and stopped early (sample size calculations were based on 210 children) due to the 

researchers’ Institutional Ethics committee deciding a-priori that a significant increase in 
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ventilatory requirements in either group would be a potential trigger for termination of the 

trial.     

Although the hypothesis that early supportive care could be harmful cannot be excluded, there 

was also support in the sensitivity analyses in Chapter 4 for the alternative - that children were 

simply arriving in hospital with high mortality risk over the first 2 hours which steeply declined 

following treatment. Of note, including deaths between screening and randomisation reduced 

the peak in the mortality risk estimate in the first 2 hours, and the 95% confidence band was 

consistent with constant risk over this period. There was also a suggestion that a peak in 

mortality risk may have been caused by the way deaths were recorded around the 1 hour time 

point which was the first mandated observation time. The strength of the analyses in Chapter 

4 is the consistent finding that boluses delayed normalisation of risk, preventing children from 

recovering at the same rate as those not receiving boluses. Of importance, this finding was 

present, regardless of analysis method used.  

 

5.3 Limitations and challenges  
 

A limitation of the analyses in this thesis is missing data in the dataset, which varies from <1% 

to 33% depending on the variable recorded. Baseline clinical measures were well recorded and 

there were very low levels of missing data in bedside measures recorded over time. There was 

slightly more missing data for point-of-care tests such as haemoglobin, lactate and glucose.  

Despite being provided at sites by the trial, there was up to 34% missing data for tests included 

in the i-STAT cartridge (sodium, potassium, chloride, BUN, pH, base excess) due to difficulty in 

maintaining the machine, cartridge stock-outs and some issues with very haemolysed blood 

samples (possibly caused by high parasitaemia). Multiple imputations were used, where 

appropriate, to take into account the missing data but had limitations when investigating 

interactions with baseline measures on the i-STAT cartridge when the baseline measure did 

not have a linear association with mortality (models would not converge). However, the 

multiple imputation analyses, when used, all supported the complete cases analyses with no 

indication of large biases. Another limitation of the analyses in this thesis is that there are data 

of interest that were never recorded or not recorded frequently enough, such as lactate, which 

was only measured at 8 hours after baseline. There may also have been biomarkers of interest, 

such as cardiac troponin I as discussed in Chapter 4, which if measured, may have given some 

further insight into the mechanism of action. Unfortunately, there were no samples stored 

after randomisation to investigate this. There were also limited baseline samples available for 
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quantifying PfHRP2 levels which has been shown to be a good marker of severe malaria [41] 

and has refined the definition of severe malaria enabling better distinction between children 

with severe malaria and children with a different severe illness but with incidental 

parasitaemia. Complete case analyses showed PfHRP2 levels were important when combined 

with extreme values of base excess in identifying the subgroup at greatest harm from the 

boluses. Due to missing data in both the PfHRP2 measure and in the haematocrit recorded 

total parasite burden could be estimated in only 1228/2216 (55%) of those with PfHRP2 

measured, 1228/3170 (39%) of the trial as a whole.  

Data from clinical trials are good for creating risk scores as there are few missing data, thus 

reducing potential bias even when a model is built from complete cases; trial data also provide 

a large number of events to be included in the model building process. However, trial data can 

also be criticised for being non-generalisable as the amount of treatment or monitoring post 

randomisation may not be representative of clinical practice, and the trial population may be a 

selected subset of the target population for the risk score. FEAST was a large pragmatic trial in 

febrile children with severe infection using broad eligibility criteria, and was designed to 

include as many children as possible without focusing on particular diseases or presentations. 

The broad eligibility criteria were informed by a critical review of international shock criteria 

and also applied to clinical surveillance dataset from Kilifi [239]. All children received standard 

of care and additional medications where necessary following national guidelines, with the 

only difference between the arms being the administration of boluses. Although there was a 

higher level of monitoring of children in the trial compared to those not enrolled, this was 

done by routine hospital nursing staff rather than from equipment not usually available in 

these settings; I, therefore, am confident that the data used to create the PET score are still 

generalisable. In addition, half (3/6) the study sites had not undertaken large research studies 

before and did not have a higher standard of laboratory facilities or hospital facilities 

compared to other hospitals in Uganda. The FEAST PET score could also be criticised for having 

measures that could be subject to variability depending on the healthcare professional 

recording it [267]. In FEAST the staff were trained at the beginning of the trial and monitored 

during it, but this could be something that limits implementation in other hospitals. Although 

the PET score was validated on the Kilifi data, its ease-of-use and implementation as part of 

triage can only be tested in future research. The FEAST PET score was expanded to include 

some measures that were available from point-of-care tests which will hopefully become even 

more widely available at the bedside, but unfortunately the FEAST PETaL score could not be 

externally validated as the measures were not available in the Kilifi datasets. 
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The proportion of treatment effect (PTE) measure used to find potential surrogate markers to 

examine the mechanism of effect also has limitations. It does not have a causal interpretation, 

as the hazard ratio of bolus vs no bolus adjusted for the potential surrogate marker cannot be 

interpreted as the direct effect of the treatment (i.e an effect not mediated through the 

surrogate marker) unless there are no confounders for the association between the biomarker 

and the outcome. Also, even if all surrogate marker outcome confounders were measured, the 

adjustment for these confounders may not be straightforward unless we can assume the 

confounders are not affected by the intervention. Furthermore, PTE often has very wide 

confidence intervals, as it requires a large number of events for better precision; these can also 

be outside of the [-100%, 100%] interval making interpretation more difficult. 

  

5.4 Areas for further exploration 
 

In trials going forward, I feel that my analyses highlight the importance of including 

quantitative PfHRP2 testing in malaria endemic areas for refining diagnosis of severe malaria 

(including the recording of haematocrit) to calculate parasite burden. In FEAST this would have 

helped to investigate what was causing greater harm from fluid resuscitation in those with 

high parasite burden and extreme values of base excess. A quantitative PfHRP2 test is planned 

to be incorporated into point-of-care diagnostics with a malaria rapid diagnostic test (RDT) so 

may be able to be more widely completed on all children enrolled in future trials in these 

settings, where the mechanisms of malaria are being targeted by specific therapies [268]. In 

general, point-of-care tests are increasingly being used in intensive care facilities globally as 

they provide much quicker test results [269] and are generally easier to implement in countries 

where laboratory facilities are sparse. However, many point-of-care tests’ still require some 

machinery which needs maintaining and issues of quality control, training of healthcare 

workers and flow of patients in facilities all require attention, so there is a need for more 

robust point-of-care systems that can withstand the conditions in sub-Saharan Africa.   

It would be beneficial for the FEAST PET score to be further externally validated in other 

African populations outside of the FEAST trial centres, but even without this, it could be used 

as part of screening for clinical trials and to stratify children into groups or perform risk-

adjusted comparisons of emergency care. The advantage of the FEAST PET score is that when 

used as part of a triage system it would work across specific syndromes and diseases to 

identify those that need prioritisation of any supportive therapies available. Further validation 

leads to wider implementation and future work could include validating this score and the 
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FEAST PETaL score on data collected through ongoing large clinical trials in these settings, such 

as Transfusion and Treatment of severe Anaemia in African Children Trial (TRACT) [270] and 

Children’s Oxygen Administration Strategies Trial (COAST) [271]. The FEAST PET score is also 

something that could be tested as part of research into implementing new triage systems, 

and/or developed into a mobile application in a similar way to other triage measurements; for 

example, researchers at British Columbia’s Child and Family Research Institute have developed 

a way to measure respiratory rate on a mobile app [272]. The FEAST PETaL score included 

lactate which could be very important to monitor during admission, along with temperature, 

as a way to look for treatment failure as continued or recurrence of high temperatures after 

admission were shown to have high mortality risk. Lactate has been shown to be an important 

prognostic factor when measured at admission in this thesis, in addition to failure to clear 

lactate by 8 hours; both identified children at persistent high risk in FEAST [247]. Single lactate 

measurements have also been used in other studies in critically ill children [243, 273-275] and 

in adults [276], and is an area on which future research could focus. Monitoring temperature 

at certain timepoints after admission, easily done in this setting with thermometers, could 

result in tailoring of treatment, especially where microbiological services are lacking. This 

hypothesis could be explored more fully in future work considering what other bedside 

measures impact the association between high temperature and high mortality risk only after 

admission; an easy-to-use tool could be developed for identifying possible treatment failure in 

these settings.  

In several recent PICU studies, early fluid overload (defined as fluid accumulation of at least 

10% of admission body weight) has been identified as associated with poor outcomes such as 

increased ventilation days, length of stay and mortality [257]. Children with early fluid 

overload were also shown to be more likely to develop respiratory failure [277]. Those studies 

were in high income settings where the amount of fluid given is substantially greater than that 

received by children in the FEAST trial (for example, standard of care in the FiSH trial is 

20mls/kg in 15 mins plus up to maximum of 120mls/kg in 20mls/kg/15mins boluses). In 

general, children who receive more fluids in PICUs are those who are sicker patients so it may 

not be unexpected that those who receive more fluid are at higher risk of mortality; however, 

they also have to survive for long enough to receive more fluids so this association is subject to 

time-dependent confounding. Future work may be able investigate the dose-response 

relationship between receiving fluids and mortality in the FEAST data using probability 

weighting methods (so called g-methods) that adjust for time-dependent confounding. This 

work could include bedside observations as predictors of receipt of fluid but could also have a 

focus on oxygen saturation in order to explore this mechanism further.  
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The analyses using PTE did not identify any one measure that explained a large proportion of 

the treatment effect of boluses on mortality. Given the limitations of PTE, an alternative 

analysis could be to use mediation methods to try and better identify surrogate markers that 

are on the causal pathway between the bolus administration and death. Causal diagrams could 

be used to display indirect and direct effects, and the indirect estimates estimated. This would 

be of particular interest for oxygen saturation and the models could consider how much of the 

effect of boluses is mediated through oxygen saturation and could calculate the proportion net 

effect explained.  

 

Options for treating critically ill children presenting to hospital in low-income settings are still 

limited to the mainstays of antimalarials and antibiotics and there is a continuing need to 

identify suitable supportive therapies that can be applied across underlying diseases in these 

settings. A search of ISRCTN registered trials in children in the ‘infections and infestations’ or 

‘haematological’ categories completing after 2011 brought up 104 trials of which 8 were in 

sub-Saharan settings. A similar search on Clinicaltrials.gov brought up 793 trials that 

completed after 2011 in children using ‘infections’ and ‘hospitals’ as search terms. 73/793 

were in sub-Saharan Africa, of which 14 trials were in critically ill children (aged >2 months) in 

hospital (Table 5.4.1)..  

 

  



289 
 

Table 5.4.1: Trials researching treatment in critically ill children in hospitals in Africa between 

2011 and 2018. 

Trial number 
(and name of 
trial if known) 

Location Disease area Comparison Sample 
size 

Status 

ISRCTN 49726849 
(TABS-PKPD) 

Uganda  Bacterial 
infections 

Dosing of azithromycin 105 Not yet 
enrolling 

ISRCTN 18051843 
(FLACSAM) 

Uganda, 
Kenya 

Severe acute 
malnutrition 

IV ceftriaxone to IV 
benzyl penicillin plus 
gentamicin (usual care) 

2000 Enrolling 

ISRCTN 15622505 
(COAST) [271] 

Uganda, 
Kenya 

Pneumonia High flow vs low flow 
vs permissible hypoxia 
(no oxygen).  

4200 Enrolling 

ISRCTN 84086586 
(TRACT) [270] 

Uganda, 
Malawi 

Severe 
anaemia 

20mls/kg vs 30mls/kg 
vs no blood transfusion 

3960 Completed 
enrolment 

ISRCTN 11594437 
(PAC study) 

Uganda, 
Congo 

Malaria Primaquine vs placebo 1600 Enrolling 

ISRCTN 91805477 
(Coco Trial) 

Rwanda Malaria Coartem vs coarnate 900 Completed  

ISRCTN 17472707 
[278] 

Burkina 
Faso, 
Kenya, 
Tanzania 

Malaria artesunate-mefloquine 
vs artemether-
lumefantrine 

945 Completed 

ISRCTN 96891086 
[279] 

Ghana Sickle cell 
disease and 
malaria 

artesunate-
amodiaquine vs 
artemether-
lumefantrine 

119 Completed 

NCT02760420 Malawi Fast breathing 
and 
Pneumonia 

3 days amoxicillin vs 
placebo 

1126 Not yet 
enrolling 

NCT02678195 Malawi  Chest 
indrawing and 
pneumonia 

3 days vs 5 days 
amoxicillin 

2000 Enrolling 

NCT02414399 
(Tota Bora) [280] 

Kenya Hospitalised 
children 

Azithromycin vs 
placebo post discharge 

1400 Enrolling 

NCT00934492 
[281] 

Kenya Severely 
malnourished 
children 

Cotrimoxazole vs 
placebo 

1778 Completed 

NCT01247909 
[282] 

Malawi Sepsis Ceftriaxone vs penicillin 348 Completed 

NCT01868113 Uganda Acute 
respiratory 
infection 

Inhaled corticosteroids 
vs placebo 

1010 Completed  
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NCT01255215 
[283] 

Uganda Severe 
malaria 

Inhaled nitric oxide vs 
placebo 

120 Completed 

NCT02025452 Botswana Acute 
gastroenteritis 

Probiotics vs placebo 76 Completed 

NCT01014988 
[284] 

South 
Africa 

Flu IV Zanamir (single arm) 202 Completed 

NCT01540838 
[285] 

Angola Bacterial 
meningitis 

beta-lactam infusion 
with vs without 
concomitant oral 
paracetamol 

723 Completed 

NCT01461590 
(Tx-30) [286] 

Uganda Severe 
anaemia 

20mls vs 30mls blood 
transfusion 

160 Completed 

NCT01258049 
[287] 

Rwanda Malaria ArTiMist (sublingual 
artemether) vs quinine 

182 Completed 

 

My PhD supervisors and I are involved in TABS-PKPD, COAST and TRACT (which are not yet 

completed). We are also planning to investigate how best to use adjunctive supportive therapy 

and other interventions to optimise the treatment pathway for children with severe malaria 

through a new consortium for research and trials called SMAART. There is ongoing discussion 

and need for more evidence on how best to treat paediatric sepsis in low-income settings 

[288] and how best to treat children with blackwater fever (also known as haemoglobinurea) 

which is prevalent in Eastern Uganda [289]. The trials above that have completed and 

published have not identified any specific adjunctive supportive therapy that is able to treat 

critically ill children quickly in LMIC settings, and thus more research seems urgently needed.  
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7 Appendix  
 

Table A1: The distribution of SBP at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

SBP at baseline 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139 140-149 150-159 ≥160 Total Missing 

Overall 46 324 853 949 576 207 79 13 12 6 35 3100 41 

Malaria 19 192 527 534 325 100 39 4 7 4 24 1775 20 

Non-malaria 27 131 321 413 246 106 39 8 5 2 11 1309 21 

Age≤2 years 26 146 426 485 276 104 45 9 5 2 18 1542 29 

Age>2 years 20 178 427 464 300 103 34 4 7 4 17 1558 12 

 

Table A2: The distribution of respiratory rate at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

Respiratory rate at baseline 20-29 30-39 40-49 50-59 60-69 70-79 80-89 ≥90 Total Missing 

Overall 53 265 576 805 784 375 179 87 3124 17 

Malaria 19 147 341 498 473 199 73 33 1783 12 

Non-malaria 33 116 233 306 306 173 105 54 1326 4 

Age≤2 years 13 48 173 360 481 283 135 73 1566 5 

Age>2 years 40 217 403 445 303 92 44 14 1558 12 
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Table A3: The distribution of heart rate at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

 

 

Table A4: The distribution of oxygen saturation at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

 

 

Heart rate at 

baseline 

80-

89 

90-

99 

100-

109 

110-

119 

120-

129 

130-

139 

140-

149 

150-

159 

160-

169 

170-

179 

180-

189 

190-

199 

200-

210 
≥210 Total Missing 

Overall 35 22 34 52 103 165 268 264 666 530 546 268 128 54 3135 6 

Malaria 19 10 12 21 52 88 154 159 377 330 318 153 72 25 1790 5 

Non-malaria 16 12 21 30 49 76 111 104 287 198 227 113 56 29 1329 1 

Age≤2 years 15 6 6 9 21 21 55 71 283 287 428 212 107 47 1568 3 

Age>2 years 20 16 28 43 82 144 213 193 383 243 118 56 21 7 1567 3 

Oxygen saturation at 

baseline 
50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-100 Total Missing 

Overall 41 20 23 35 53 76 156 247 715 1669 3035 106 

Malaria 19 10 10 16 22 32 65 112 386 1067 1739 56 

Non-malaria 22 10 13 19 31 42 91 133 325 596 1282 48 

Age≤2 years 25 8 14 20 35 45 74 134 395 782 1532 39 

Age>2 years 16 12 9 15 18 31 82 113 320 887 1503 67 
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Table A5: The distribution of temperature at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

 

 

 

 

 

 

Table A6: The distribution of glucose at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 
 

 

 

 

 

 

 

 

 

Temperature at 

baseline (°C) 

35.0-

35.4 

35.5-

35.9 

36.0-

36.4 

36.5-

36.9 

37.0-

37.4 

37.5-

37.9 

38.0-

38.4 

38.5-

38.9 

39.0-

39.4 

39.5-

39.9 
≥40.0 Total Missing 

Overall 44 109 142 235 301 484 512 461 375 288 148 3135 42 

Malaria 22 51 70 118 165 263 311 272 235 181 89 1792 18 

Non-malaria 22 10 13 19 31 42 91 133 325 529 67 1328 48 

Age≤2 years 15 38 44 94 148 258 277 258 213 155 59 1569 12 

Age>2 years 29 71 98 141 153 226 235 203 162 133 89 1566 30 

Glucose at 

baseline 

1.0-

1.9 

2.0-

2.9 

3.0-

3.9 

4.0-

4.9 

5.0-

5.9 

6.0-

6.9 

7.0-

7.9 

8.0-

8.9 

9.0-

9.9 

10.0-

10.9 

11.0-

11.9 

12.0-

12.9 

13.0-

13.9 

14.0-

14.9 

15.0-

15.9 

16.0-

16.9 

17.0-

17.9 

18.0-

18.9 

19.0-

19.9 
≥20.0 Total Missing 

Overall 85 102 149 260 420 518 444 339 223 154 86 48 32 26 14 10 16 7 4 30 2967 174 

Malaria 57 74 90 149 226 302 251 197 129 79 35 23 17 14 10 4 5 3 3 19 1687 108 

Non-malaria 28 28 59 111 193 216 190 142 94 74 51 25 15 12 4 6 11 4 1 11 1275 55 

Age≤2 years 46 46 75 137 220 261 224 174 119 72 34 19 15 14 6 5 5 4 1 12 1489 82 

Age>2 years 39 56 74 123 200 257 220 165 104 82 52 29 17 12 8 5 11 3 3 18 1478 92 
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Table A7: The distribution of haemoglobin at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 
 

 

 

 

 

 

 

 

 

 

Table A8: The distribution of lactate at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 
 

 

 

 

 

 

 

 

 

 

Haemoglobin at baseline 1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9 5.0-5.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-9.9 10.0-10.9 11.0-11.9 12.0-12.9 ≥13.0 Total Missing 

Overall 69 249 342 329 255 242 289 267 281 298 245 122 66 3054 87 

Malaria 23 117 211 235 193 182 176 153 131 139 109 44 23 1736 59 

Non-malaria 46 129 131 93 62 60 110 113 148 159 135 77 43 1306 24 

Age≤2 years 32 96 155 164 136 119 176 148 153 177 122 42 13 1533 38 

Age>2 years 37 153 187 165 119 123 113 119 128 121 123 80 53 1521 49 

Lactate at baseline 1.0-

1.9 

2.0-

2.9 

3.0-

3.9 

4.0-

4.9 

5.0-

5.9 

6.0-

6.9 

7.0-

7.9 

8.0-

8.9 

9.0-

9.9 

10.0-

10.9 

11.0-

11.9 

12.0-

12.9 

13.0-

13.9 
≥14.0 Total Missing 

Overall 513 630 418 260 173 129 112 106 71 72 60 102 120 110 2980 265 

Malaria 202 308 245 174 124 91 76 81 46 45 40 70 77 68 1707 148 

Non-malaria 311 322 173 83 49 38 36 25 25 26 20 32 41 42 1267 107 

Age≤2 years 280 328 205 109 81 51 61 55 34 38 34 48 65 54 1483 128 

Age>2 years 233 302 213 151 92 78 51 51 37 34 26 54 55 56 1497 137 
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Table A9: The distribution of sodium at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

 

 

 

 

 

 

 

Table A10: The distribution of chloride at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

Chloride at baseline 90-94 95-99 100-104 105-109 110-104 105 -109 110-114 115-119 ≥120 Total Missing 

Overall 58 245 775 698 204 39 15 10 23 2067 1074 

Malaria 31 166 470 332 89 19 8 8 15 1138 657 

Non-malaria 27 78 303 366 114 20 7 2 7 924 406 

Age≤2 years 21 90 364 388 117 20 8 2 16 1026 545 

Age>2 years 37 155 411 310 87 19 7 8 7 1041 529 

 

Sodium at 

baseline 
110-114 115-119 120-124 125-129 130-134 135-139 ≥140 Total Missing 

Overall 36 31 78 266 769 743 185 2108 1033 

Malaria 23 21 46 156 477 365 77 1165 630 

Non-

malaria 
13 10 32 110 288 378 107 938 392 

Age≤2 years 13 15 28 125 403 386 76 1046 525 

Age>2 years 23 16 50 141 366 357 109 1062 508 
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Table A11: The distribution of base excess at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

Base excess at baseline <-20 -20 to -16 -15 to -11 -10 to -4 -5 to -1 0 to 4 5 to 10 Total Missing 

Overall 53 101 184 361 651 567 124 2068 1100 

Malaria 32 64 112 210 360 297 51 1139 669 

Non-malaria 21 36 72 150 291 269 72 925 419 

Age≤2 years 31 51 78 194 351 252 52 1020 562 

Age>2 years 22 50 106 167 300 315 72 1048 538 

 

 

Table A12: The distribution of PH at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

PH at baseline <6.90 6.91-6.99 7.00-7.09 7.10-7.19 7.20-7.29 7.30-7.39 7.40-7.49 ≥7.50 Total Missing 

Overall 34 44 88 250 704 736 168 22 2082 1095 

Malaria 21 24 53 138 368 417 91 11 1147 672 

Non-malaria 13 20 35 112 334 318 76 11 931 411 

Age≤2 years 22 25 41 126 377 348 64 8 1027 560 

Age>2 years 12 19 47 124 327 388 104 14 1055 535 
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Table A13: The distribution of BUN at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

 

 

 

 

Table A14: The distribution of potassium at baseline for all children and within malaria, non-malaria, age≤2 years and age>2 year subgroups. 

 

Potassium at baseline 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 ≥70 Total Missing 

Overall 31 55 203 484 571 387 144 69 33 19 33 2029 1112 

Malaria 11 27 126 295 306 198 68 37 15 11 17 1111 684 

Non-malaria 19 28 77 187 265 189 75 32 18 8 15 913 417 

Age≤2 years 13 20 86 212 294 211 80 41 18 9 20 1004 567 

Age>2 years 18 35 117 272 277 176 64 28 15 10 13 1025 545 

 

BUN at baseline <5 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 ≥85 Total Missing 

Overall 153 1144 352 142 73 28 19 14 7 23 1955 1186 

Malaria 49 664 241 86 37 19 11 7 5 9 1128 667 

Non-malaria 104 477 111 56 35 9 8 7 2 14 823 507 

Age≤2 years 99 594 158 56 20 10 6 3 1 3 950 621 

Age>2 years 54 550 194 86 53 18 13 11 6 20 1005 565 


