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Abstract  

Study objectives: To compare polysomnographic parameters in high altitude (HA) native Andean 

children with low altitude (LA) native peers in order to a) explain the nocturnal oxyhaemoglobin 

saturation (SpO2) instability reported in HA native children and b) study impact on sleep quality.   

Methods: 98 healthy children aged 7-10 and 13-16 years were recruited at LA (500m) or HA 

(3650m) above sea-level. Physical examination was undertaken and genetic ancestry determined 

from salivary DNA to determine proportion of European ancestry, a risk factor for poor HA 

adaptation. Attended polysomnography was carried out over one night for 59 children at their 

resident location.  

Results: Of 98 children recruited, 85 met inclusion criteria, 59/85 (69.4%) completed 

polysomnography, of which, 56 were adequate for analysis: 30 at LA (17 male) and 26 at HA (16 

male).There were no altitude differences in genetic ancestry, but a high proportion of European 

admixture (median 50.6% LA; 44.0% HA). SpO2 were less stable at HA with mean 3% and 4% 

oxygen desaturation indices greater (both p<.001) than at LA. This was not explained by periodic 

breathing. However, more obstructive hypopnea was observed at HA (p<.001) and a trend towards 

more central apnea (p = .053), neither was explained by clinical findings. There was no difference 

in sleep quality between altitudes.  

Conclusions: HA native Andean children have more respiratory events when scoring relies on SpO2 

desaturation due to inherent SpO2 instability. Use of AASM scoring criteria may yield false 

positive results for obstructive sleep disordered breathing at HA.  

Keywords 

High altitude, hypoxia, polysomnography, adaptation, sleep disordered breathing, hypopnea, apnea.  

Statement of significance (112 words) 

This is the first published study of polysomnographic sleep quality and respiratory parameters in 

children and adolescents native to high altitude that includes a low altitude control group. While 

http://journal.publications.chestnet.org/ss/forauthors.aspx#Abstract
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sleep architecture does not differ between high altitude and low altitude peers, children living at 

high altitude have significantly more hypopnea. Increased hypopneas are likely to reflect 

oxyhaemoglobin kinetics in the low oxygen tension state rather than absolute differences in extent 

of airflow limitation. Standard respiratory event scoring criteria need to be adjusted for children 

living in situations of hypobaric hypoxia, or who are hypoxic by virtue of chronic ventilation 

perfusion mismatch, in order to avoid false diagnosis of airway obstruction.  

 

Background 

 

Over 140 million people live at high altitude (HA), that is, at greater than 2500m above sea level. 

At these altitudes, low barometric pressure results in a fall in the partial pressure of atmospheric 

oxygen such that populations living above 4000m breathe air containing only ~60% of the oxygen 

found at sea level (Figure 1). High altitude native populations have evolved ethnically unique 

responses to this hypoxic challenge. Andean adults increase oxygen carriage through erythrocytocis 

and increase oxygen uptake, through increased pulmonary artery pressure and increased pulmonary 

diffusion capacity. In contrast Himalayan HA natives increase oxygen uptake through higher resting 

ventilation and increase tissue oxygen delivery through denser capillarisation, but have lower 

hemoglobin concentrations than altitude equivalent Andean HA residents.1  

 

The sleep state further compromises respiratory adaptation at HA, due to decreased minute 

ventilation, circadian small airway constriction and vulnerability to upper airway obstruction2. Most 

research into sleep physiology at HA has been conducted in healthy, adult mountaineers in whom 

periodic breathing in sleep3 is commonly reported. Hypoxia at altitude stimulates hyperventilation 

which generates alkalotic hypocapnia. In sleep the eucapnic threshold is low and hyperventilation 

readily triggers apnea, thus generating periodic breathing.  Limited studies of native HA resident 

adults have, intriguingly, also reported respiratory instability in sleep. An early polysomnographic 

(PSG) study of 8 healthy, young, native, Peruvian, adult males residing at 4380m reported episodes 
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of periodic breathing resulting in marked oxygen desaturation4. This was later confirmed in 20 

native, adult males at the same location5. There is only one published, PSG study in HA resident 

children. This was limited to infants aged 1-18 months born and living at 2640m in Bogotá, 

Colombia6. As there was no ancestry similar, sea-level comparison group in this study, values were 

compared to published, normative data. Results indicated preservation of sleep architecture, but 

higher numbers of respiratory events (both obstructive and central apnea) as well as a higher 

oxygen desaturation index, both associated with, and independent of, respiratory events in HA 

native children. Improvements in these parameters were noted across infancy. A PSG study of 45 

children aged 3-5 years, who had been resident in Colorado at 1600m for at least one year, an 

elevation technically below the 2500m threshold for HA, nonetheless, reported findings consistent 

with the infant study: specifically, higher central and obstructive apnea indices compared to 

published, sea-level data7. Importantly, these children were mostly White, Non-Hispanic (88.9%) 

and unlikely to have the advantage of genetic adaptation to HA residence conferred by Amerindian 

inheritance. We have recently reported significant differences in oxyhaemoglobin saturation (SpO2) 

stability in Andean native children resident at 500m, 2500m and 3650m who were matched for 

socioeconomic status and genetic ancestry.8 In line with the Colombian infant study, we found 

improvements in these parameters from late infancy to childhood, suggesting developmental 

adaptation in sleep respiratory physiology at HA.  

 

In summary, convergent literature indicates that children residing at HA are likely to be vulnerable 

to sleep-related breathing abnormalities. This is important, as children spend half of their lives 

asleep, a critical period for brain plasticity and maturation9. Early exposure to intermittent, 

nocturnal hypoxia may compromise neurocognitive development10 both directly through hypoxia 

and indirectly through sleep fragmentation. In this study, we aimed to compare PSG variables 

between carefully characterised samples of healthy children living at HA and children with similar 

ancestry who lived at 500m. 
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Methods 

Design and Subjects 

This was a cross-sectional study of 98 healthy children aged 7-10 and 13-16 years across two altitude 

settings in Bolivia: a low altitude (LA) city - Santa Cruz, 500m above sea-level, and a high altitude 

(HA) city – La Paz, at 3650m. All children were studied in their native altitude setting, that is HA 

native children were studied in La Paz and LA altitude native children were studied in Santa Cruz. 

Children were recruited through advertisement in the Universities of each town. Inclusion criteria 

specified that children were native to their resident altitude. Native status required children to have 

been born at and have continuously resided at their resident altitude, other than visits of less than 6 

months’ duration to other altitudes, but not within the last year. All participants were from families 

where Spanish was spoken as the first language. Children were excluded if they had an established 

cardiorespiratory disease (other than mild asthma or snoring), neurological or neurodegenerative 

condition, epilepsy, or were smokers. Approval for the study was obtained from the Institutional 

Ethics committees of the Universidad Privada Abierta Latinoamericana, de Santa Cruz de la Sierra, 

Bolivia and the University of Western Australia (reference RA/4/1/2553).  

Procedures 

All participants were provided with information sheets about the study and parents signed consent 

forms. Data collection took place within University premises at Universidad Privada de Santa Cruz 

de la Sierra, Santa Cruz (500m) and Universidad de La Salle, La Paz (3650m) in October and 

November when the temperature was temperate at high altitude and warm at low altitude. Parents 

provided information on maternal education, parental smoking in the household and their child’s 

medical and developmental history, including whether the child was a regular snorer (defined by a 

positive response to the question does your child snore ‘usually’ or ‘all the time’) and their history 

of wheeze. In addition, the Chronic Mountain Sickness Score was completed based on neurological, 

cardiovascular, and haematological variables, where a score of 12 is considered normal11.  
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Physical examination:  

All children underwent a detailed, physical examination supervised by a consultant physician or 

otolaryngologist (CMH/KH) including: cardiorespiratory examination, resting blood pressure 

(Microlife, Zurich), Brodsky grading of tonsillar size, Mallampati score and height and weight.  

BMI centiles were derived from standard CDC growth charts. Gender and height referenced 

systolic blood pressure centiles were computed.12   

Genetics: DNA were extracted from saliva samples (Western Australia DNA Bank, University of 

Western Australia) and whole gene amplified (K BioSciences, Hoddesdon, UK). Individual 

European, Amerindian, and African admixture proportions were estimated using a panel of 28 

ancestry informative markers (AIMS) previously noted to demonstrate high frequency differences 

in allele frequency between these different ancestry groups13 ,14. The admixture modelling program 

admixmap15  was used to model the distribution of admixture in the cohort 

(http://homepages.ed.ac.uk/pmckeigu/admixmap/index.html) and to generate individual ancestry 

estimates. AIM ancestry-specific allele frequencies were estimated from their reported counts in 

modern European, African, and Amerindian populations.14,13  

 

Polysomnography  

Attended PSG was carried out in an established sleep laboratory setting at LA (Santa Cruz) and 

temporary, adapted facility at HA (La Paz), in both settings using computerised ambulatory systems 

(Compumedics PS2 system, Melbourne, Australia) according to accepted guidelines16. All studies 

were performed by an experienced polysomnographic technologist (AC). Sleep montage included 

electroencephalography (C3/A2, C4/A1) with electrode placement according to the international 

10-20 system,17 electromyography at sub-mentalis, bipolar electrooculography, electrocardiography 

and oxyhaemoglobin saturation (SpO2) monitoring (Nonin, Plymouth,MN) with 1Hz sampling rate 

and data averaged over 4 successive pulse beats.). Respiratory inductance plethysmography (RIP) 

http://homepages.ed.ac.uk/pmckeigu/admixmap/index.html
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bands were used to measure abdominal and thoracic excursions and nasal thermistors (Protech, 

Mukilteo, WA) provided a constant flow monitor. Polysomnographs were scored by a single 

technologist (AC), based on the established sleep staging18 and respiratory19 criteria for paediatrics, 

and all studies were peer-reviewed by a certified somnologist (CMH). Obstructive apnea was 

defined as chest or abdominal wall movement in the absence or decrease of airflow by > 90% of the 

preceding breath, for two or more breaths. Hypopneas were classified as for apneas, but where the 

reduction in flow was 50-90% of the previous breath and only if accompanied by either 

oxyhaemoglobin (SpO2) desaturation ≥ 3% or arousal within 2 breaths of event termination. Central 

apneas were scored if there was a reduction in airflow amplitude by >90%, in the absence of 

respiratory effort, associated with either an arousal, an awakening or a >3% oxyhaemoglobin 

desaturation. Periodic breathing was scored if there were greater than 3 episodes of absent 

respiratory effort of at least 3 seconds duration separated by no more than 20 seconds of normal 

breathing. Percentage of time in periodic breathing was calculated as time in periodic 

breathing/total sleep time x 100. The obstructive apnea-hypopnea Index (OAHI) was defined as the 

number of obstructive apneas, hypopneas and mixed apneas per hour of total sleep time.  

Analysis 

Data were analysed in SPSS v22. Simple age-group or altitude differences were explored using 

Mann-Whitney U tests, given the non-normality of some variables. For analyses exploring 

interaction terms, for which there is no non-parametric alternative, ANOVA were conducted and 

then non-parametric comparisons were run to confirm significant effects, for the sake of parsimony 

only significant effects are reported. Given the exploratory nature of these analyses, adjustments to 

P values for post hoc analyses were not made, to reduce the risk of a Type 2 error. 20,21 Where the 

ANOVA and non-parametric follow-up tests did not agree, to reduce the risk of a Type 1 error, 

results are taken as non-significant. Partial eta-squared effect sizes (2p) were computed for all 

ANOVA. Categorical group differences were explored using χ2 (Fisher’s Exact) test.  
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Results 

Of 98 children recruited, 13 were excluded as there was no confirmation that they met our criteria 

as native to the relevant altitude. Of the remaining 85, 59 (69.4%) completed overnight PSG. Of 

these, 3 studies recorded insufficient total sleep time to be included (<234 minutes), leaving 56:  

30 at low altitude (17 male) and 26 at high altitude (16 male), with no difference in gender 

distribution, mean age, the number of years of education completed by the mother,  nor in the 

proportion of children where either or both parents smoked in the home. (Table 1).   

 

Clinical measures (Table 1) 

Medical history: Regular snoring was reported in a total of 16 children (28% of participants), 11/30 

at LA and 5/26 at HA, although this did not differ between HA and LA children. Similarly there 

were no differences between the number of LA and HA children with a history of wheeze (13, 

43.3% children at LA and 5, 19.2% at HA, p = .218) or wheeze in the 12 months prior to study (7, 

23.3% at LA and 3, 11.5% at HA, p = .507).  All children had normal Chronic Mountain Sickness 

Scale scores 

 

Clinical examination: Cardiorespiratory examination was normal in all participants.  There were no 

significant differences between HA and LA children in Brodsky tonsillar classification, or in 

Modified Mallampati scores.  Six children at LA and 3 at HA were obese (16% overall) with no 

altitude differences in the distribution of children categorized as obese, overweight or of normal 

weight (no child was categorized as underweight), 2 < 1. Six children were hypertensive (age, 

gender, and height referenced > 95th centile): 5 at HA and 1 at LA, but this did not differ by 

altitude, p = .086. 

 

MANOVA of admixture (European, African, Native Andean) by Altitude (High, Low) revealed no 

differences between altitudes in genetic admixture, [Pillai’s Trace = .10, F(3, 47) =  1.88, p =  .145, 
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2
p = 0.11].  

 

Polysomnography 

 

Sleep architecture and sleep quality 

Age group by altitude ANOVA, confirmed by non-parametric comparisons, revealed a significant 

effect of age group on % N3, [F(1,52) = 9.78, p = .003,  2p = .16], where younger children had 

more slow wave sleep (median 29.9%; IQR 8.5) compared to adolescents (median 25.7%, IQR 9.1)  

but no significant effects of altitude, and no interactions (see Table 2, for altitude comparisons).  

 

Oxyhaemoglobin saturation 

Mean overnight SpO2 and minimum oxygen saturation were much lower in HA children (Table 2), 

[F(1,50) = 494.03, p < .001, η2p = .91 and F(1,52) = 102.80, p < .001, η2p = .67], respectively. 

Likewise, mean percentage desaturations, [F(1,52) = 5.67, p = .021, η2p = .10], and mean 

desaturations associated with respiratory events,  [F(1,52) = 7.39, p = .009, η2p = .12] were greater 

in HA, confirmed by a significantly higher proportion of 3%, [F(1,52) = 27.21, p < .001, η2p = .34], 

and 4% desaturations, [F(1,52) = 19.03, p < .001, η2p = .27].  

 

Respiratory Events 

Whilst the obstructive apnea/hypopnea index was higher at HA, [F(1,52) = 15.96, p < .001, η2p = 

.24], this was driven by differences in obstructive hypopnea, [F(1,52) = 16.84, p < .001, η2p= .25], 

with no differences in obstructive or mixed apneas by altitude. A trend-level altitude difference in 

central apneas by altitude, [F(1,52) = 3.93, p  = .053, η2p = .07], was confirmed by non –parametric 

follow-up testing (see Table 2). Finally, there were no differences in the number of spontaneous or 

respiratory arousals, but sigh arousals were more common at HA, [F(1,52) = 27.7, p < .001, η2p = 

.35].  One HA child spent 5% of total sleep time in periodic breathing; no other children at either 

LA or HA had periodic breathing. Excluding either the 2 children at HA who had an obstructive 

apnea index >= 1 and <2/hour or the 18 with an obstructive apnea hypopnea index >= 2/hour (see 
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Table 2), the altitude differences were maintained in all oxyhaemoglobin, respiratory event 

parameters, and in sigh arousals.  

 

Characteristics of children meeting standard criteria for diagnosis of obstructive sleep apnea 

There were no relationships between PSG indices of OSA and history of snoring, obesity or 

Mallampati/Brodsky scores. Of the 18 children (3 LA, 15 HA) with OAHI > 2, five (all 3 LA and 2 

HA) were reported as snorers, by their parents, and three were obese (2 LA, 1 HA). Of the 2 

children with OAI >1 (both HA, both also with OAHI > 2), neither was a snorer or obese. 

Furthermore, restricting the analysis to the 40 children with no parent report of snoring did not 

change the effects reported. 

 

Discussion  

 

Amerindian peoples settled on the Andean HA plains around 11,000 years ago22 and developed 

unique phenotypic adaptation to hypoxia. Spanish colonisation, 500 years ago, diluted the original 

native Amerindian gene pool, potentially threatening this adaptation. Children in our study had 

roughly equal European and Amerindian ancestry. Adaptation to HA survival may, therefore, be 

imperfect in these children. This is the first published study, of which the authors are aware, that 

describes the polysomnographic features of sleep architecture alongside respiratory and oximetry 

parameters in a healthy sample of non-infant children, native to HA. Importantly, we compare our 

data to a control group of children living at 500m who share a similar, mixed, European and 

Amerindian genetic ancestry and socio-demographic background.  

 

Our initial motivation for performing sleep studies at altitude was further to explore the respiratory 

physiology underlying the increased oxyhaemoglobin saturation variability we have previously 

reported in children at HA.8 . We hypothesised that the periodic breathing, observed in adult 

Andeans, was a potential cause of this instability. Children and adolescents in this study, however, 

did not display periodic breathing, rather they had a higher prevalence of obstructive sleep 
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disordered breathing, characterised principally by hypopnea. To put this in context, using diagnostic 

thresholds from a recent multi-centre study of adenotonsillectomy for obstructive sleep apnea in 

children23 (obstructive apnea hypopnea index of > 2 events/hour or apnea index of > 1 event per 

hour), 57.7% of children at HA in this study would, potentially, be classified as having obstructive 

sleep apnea compared to 10.0% of a comparable group at LA. Whether or not this represents 

genuine alterations in upper airway function is questionable. Clinical data did not indicate a higher 

prevalence of snoring at HA, although overall prevalence was high in this population, at 28%.  

Habitual snoring has previously been reported in 18% of healthy children aged 7-17 years in Chile, 

suggesting that South American children may be phenotypically more vulnerable to mild, upper 

airway obstruction24. 

A more plausible explanation for the higher prevalence of hypopnea at HA relates to our scoring 

criteria. Alongside a drop of 50-90% in the amplitude of the airflow, scoring required either an EEG 

arousal or a 3% SpO2 desaturation.  AASM scoring criteria are based on normative data derived 

from healthy populations living below 2500m18. At HA, where oxyhaemoglobin saturation is low, 

small perturbations in arterial, partial pressure of oxygen, due to sleep-related fluctuations in 

ventilation, will be associated with larger drops in SpO2. This is reflected in significantly higher 3% 

and 4% desaturation indices at HA in this study.  In further support of this theory, the mean central 

apnea index, also scored when events are associated with SpO2 desaturation, showed a trend level 

increase at HA.  Some caution should be exercised in interpreting the central apnea index data, 

however, which did not produce consistent altitude differences across parametric and non-

parametric follow-up tests. Given that the effect size of .07 suggests that altitude explains just 7% 

of the variance in the central apnea index as a function of variance in each of the effects and the 

associated error that is accounted for by that effect25, differences in central apnea may not be a 

marked feature of altitude dwelling in Andean children. Higher hypopnea and central apnea indices 

were also reported by Burg and colleagues in 3-5 year old asymptomatic healthy children in 
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Colorado, living at intermediate altitude, namely 1600m7 , lending support to the need for adapted 

scoring criteria in conditions of low oxygen tension.  

In interpreting our findings, technical limitations in PSG data acquisition should be considered. Our 

ambulatory monitoring equipment lacked constant CO2 measures, or more sophisticated, calibrated 

plethysmography or oesophageal pressure monitoring, all of which could have provided a more 

confident classification of respiratory events.  This was a pragmatic decision, based on the study 

setting and a trade-off between cost and the risk of impaired sleep quality with extended 

monitoring. Furthermore, the use of a thermistor alone, rather than alongside a nasal pressure 

gauge, may have resulted in under-estimation of obstructive respiratory events26. Studies were 

limited to a single night with the potential for “first night effect”, although night-to-night variability 

in respiratory events is unlikely to be significant given the adequate, total sleep times reported. 

Importantly, however, these technical limitations applied equally across the entire study, allowing 

valid comparison between the altitude locations. Finally, the sleep technologist was not blinded to 

the altitude location of the child, risking bias in reporting.  However, given that our a priori 

hypothesis was that children may exhibit periodic breathing, the fact that our findings did not 

support this suggests no systematic reporting bias. 

 

Little is known about the impact of HA residence on sleep quality in childhood. This is a relevant 

question as sleep quality is associated with academic performance27 and neuro-behavioural health in 

children 28  and we have demonstrated that HA-dwelling Andean children are susceptible to subtle, 

neurocognitive impairments29,30
. Certainly, sleep quality is impaired in adult lowlanders who ascend 

to altitude, generally as a consequence of sleep disordered breathing31. There are no prior data, to 

our knowledge, reporting sleep quality in matched groups of children at high and low altitude 

settings. Our data indicate that macroscopic sleep architecture and sleep quality are preserved in 

children at HA with no differences in total sleep time, wake after sleep onset, sleep efficiency or 

sleep stage distribution. Differences were noted, however, in respiratory event-related arousals and 
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sigh arousals, albeit subtle ones, with no differences in total arousal indices between the altitude 

settings. It would be of interest to study associations between sleep quality, respiratory and SpO2 

variables and cognitive performance in this HA population.   

 

We report samples of Andean children with unique, mixed European and Amerindian ancestry and 

findings may not translate to other populations of children living at HA. However, data from the 

Colorado study, representing a predominantly White population, albeit at intermediate altitude, 

show similar findings. Future studies in children of different genetic ancestry will confirm this. 

Selection bias is always a risk in resource-poor settings where participants may be attracted to what 

is perceived as a free health check. This was offset by the fact that children were from middle-high 

income families and there were no differences between altitudes in socio-economic status.  

 

In summary, Andean children aged between 7 and 17 years living at HA demonstrated a higher 

hypopnea index and greater SpO2 desaturation compared to ancestry and socioeconomically 

matched peers living at LA. This apparent difference is likely to reflect a lower threshold for 

scoring hypopnea in low oxygen tension settings and indicates that scoring rules should 

accommodate such differences at both HA settings and in medical conditions where ventilation 

perfusion mismatch means that a child’s PaO2 is chronically low. While most paediatric populations 

living at HA are unlikely to be subject to unnecessary surgery based on a false diagnosis, due 

largely to inequalities of health access in these settings, the same may not be true in children in first 

world settings with chronic hypoxia, whose very survival indicates privileged access to healthcare 

and a lower threshold for intervention. Future studies should seek to replicate these findings in 

paediatric populations living at HA and children with chronic hypoxia due to ventilation perfusion 

mismatch.  
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