
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Iigaya and colleagues analyse a previously published dataset obtained from mice performing a 
foraging task. While mice selected between two options for probabilistically delivered water 
reinforcement, the authors optogenetically activated 5-HT neurons in the dorsal raphe nucleus on 
subsets of trials. The authors analysed the choice data subsetted by intertrial intervals, and claim that 
the learning rate associated with rewards delivered following long intertrial intervals was specifically 
increased by 5-HT stimulation. The subject is certainly interesting, the claims novel, and the careful 
analyses shed light on the puzzling result that 5-HT activation showed no appetitive or aversive effects 
previously reported by some of the authors. Indeed, the careful analyses highlight the power and 
complexity of careful computational analyses of behaviour, and I believe that the results could 
significantly influence thinking in the field. However, I find the analyses not yet sufficient to strongly 
support the claims, and have some comments/suggestions for further analyses that could clarify key 
issues.  
 
Although the authors show that 5-HT activation increases the learning rate on some trials in their 
model, it seems more correct to say that SERT-cre mice have a deficit exposed by the task, which is 
normalised by photostimulation. This has hallmarks of a binary effect; SERT-cre mice show almost no 
learning from long ITI trials (Figure 2b), and stimulation brings the learning rate on these trials to the 
same level as WT mice (Figure 3c), but does nothing on trials with shorter ITIs (Figure S10). This 
could be interpreted (and possibly tested, see below) as if SERT-cre mice are off doing something else 
on long ITI trials, and photostimulation brings them back "on-task". This would be consistent with no-
effect on learning on short ITI trials since the animals are already on-task. This kind of effect would 
masquerade as a change in learning rate.  
 
It would be nice to see the actual ITI distributions for individual mice. While the authors state that 4 
seconds leads to equivalent results, these cutoffs are a little hard to justify from the single session of 
data in Figure 1. Can the authors say something about what the mice were doing during the longer 
ITIs? The tails are potentially very interesting here. What is happening for 20+ second ITIs? In 
particular, is this different between WT mice and SERT-cre mice? Did WT and SERT-cre mice work for 
the same amounts of fluid/# of trials? This could give some insight into the suggestion that long ITIs 
are related to low motivational state.  
 
It seems that a lot of useful information could be gleaned from no-stimulation sessions in SERT-cre 
mice. For example, it might indicate whether chronic stimulation leads to low learning on long ITI 
trials? Or whether chronic stimulation changes the distribution of ITIs? If this data is available, it 
would be useful to include it in the paper.  
 
It would be useful to present predictive accuracy on >7 second ITI trials for the model in Figure 3. The 
low accuracy of the WSLS model on these trials is striking in Figure 1, and it would be nice to see what 
ground was gained in the two-component model.  
 
I failed to understand the model-agnostic correlation analysis (Figure 2). It purports to show a 
correlation between two segments of data with different lengths (10 and 5 trials for rewards and 
choice respectively). Was this data somehow reduced to a single number for each step? The gaussian 
filter from Figure 1d? Please add just a bit more detail so readers can follow from Figure 2a to a pair of 
numbers that enter into vectors that are ultimately correlated. What kind of correlation?  
 
I am definitely appreciate the generative model testing (Figure 3d). However, I’m a little confused in 



this case since there is no model of ITI generation. How did the authors run the two-component model 
in this case? Are there simply no short ITIs in the generated data?  
 
MINOR  
Figure S10, the label says “all trials”, but I think it should say “<7 second ITI”.  
 
Figure 1g, S1, the label “7<“ might be easier for most to understand if it was changed to “>7"  
 
Why do the authors use “partially” self-paced? It seems fully self-paced?  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Summary  
 
In this manuscript the authors examine the effect of stimulating serotonin neurons on learning a self-
paced probabilistic stimulus-response choice task. To do this the authors reanalyze existing data from 
a prior publication (Fonseca et al. Current Biol 2015) in which they examined the effect of ChR2-
dependent stimulation of dorsal raphe serotonin neurons (using the Slc6a4::Cre line) on reward and 
waiting parameters. In this study they focus on the effect of serotonin neuron stimulation on response 
bias that depends on past response history. They use an error-prediction learning rate model to fit the 
data and estimate what type of decision strategy the animals use at each response choice. They make 
two major discoveries. First, they find that the animals use recent response history to guide choices 
when the inter-trial interval (ITI) is short (<7 s, under most circumstances) – a type of win-stay 
strategy, but use average response history following long ITIs (that occur sporadically). Second, they 
find that when they include serotonin neuron stimulation in their model it best fits the data when it 
influences learning rate for long ITIs. Based on these modeling data they argue that serotonin 
increases learning rates for reward. Understanding the role of serotonin neuromodulation in behavior 
is a major goal of neuroscience research with high clinical relevance. The data appear sound and are 
constructively imbedded in a logical experimental hypothesis and computational model and thus are 
an important addition to the field.  
 
Comments:  
 
1. The Slc6a4::Cre line they use is presumably a null allele of Slc6a4 and thus WT animals are not 
really the right control for these experiments. Several of the baseline, non-stimulation parameters 
appear to be affected by this genotype difference and the fact that the Slc6a4 mutation is likely to 
directly affect serotonin homeostasis, this confound is potentially problematic. The authors are aware 
of this point and are careful to point out where genotype may have influenced the data. However, they 
need to explicitly discuss the potential impact that heterozygosity of Slc6a4 could have on their 
findings. These animals are known to have altered serotonin tone and availability and have been 
widely studied as a model for the human low-expressing 5-HTT-LPR allele. Also, because there 
appears to be a significant difference in learning rate between WT and Slc6a4::Cre mice, there may be 
a ceiling effect in the WTs that confounds the data.  
 
2. Although the authors are generally careful to refer to their manipulation as stimulation of serotonin 
neurons, on occasion they talk about stimulation of serotonin or about serotonin affecting learning 
rates. Given that serotonin neurons also release other neurotransmitters and these have been shown 
to be responsible for at least some of the phenotypes associated with stimulation of their cell bodies, 
the authors cannot infer that their effects are the result of changes in serotonin.  



 
3. The title is overly baroque and misleading. The first phrase should be eliminated as it appears to be 
intended to play on the presence of the S and L alleles of the serotonin transporter, but the 
manuscript in fact does not refer to these.  
 
4. Figure 1 is very small and hard to read. All the figures would benefit from being made easier for the 
eye.  
 
5. The methods section relies on their earlier paper for many items. Better to reiterate the critical 
information here (e.g. animals, methods).  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
Iigaya and colleagues analyzed data from a previously published experiment (Fonseca et al., 2015) in 
which dorsal raphe serotonin neurons were stimulated in mice performing a foraging task. They show 
that serotonin activation increased learning rates following long ITIs, concluding that serotonin 
changes learning rates in an RL context. The previously published experimental data are beautiful, the 
model is conceptually exciting, but I found the conclusions vastly overstated given the data, and 
model selection seemed arbitrary.  
 
1. The boundary between long and short ITIs seems arbitrary. The claim on lines 132-133 is that 
"choices following short ITIs and long ITIs are qualitatively different." This ultimately leads to the 
conclusion that "different memory mechanisms may be involved in the decisions following short and 
long ITIs" (lines 143-144). Is there evidence for a nonlinearity in the effects as a function of ITI that 
would justify the arbitrary boundary? In any case, it would be useful to see a histogram of ITIs from 
one session and histograms of all ITIs for each mouse.  
 
2. Are the effects driven by long ITIs at the end of sessions? In this case, the effects could be 
interpreted as "persistence" or "task engagement," rather than learning rates, per se. The authors 
show that most long ITIs were at the end of sessions (Fig. S3), but do not evaluate the contribution of 
time within a session to the reported effects.  
 
Given that the ITIs were self-generated, it is difficult to disentangle forgetting (presumably a 
nondecreasing function of time) from "motivation" (a nonincreasing function of time, as the animal 
gets less thirsty). A new experiment, with experimenter-generated ITIs, could potentially resolve this.  
 
3. Did the RL model with slow learning still fit the behavior following short ITIs? It seems very strong 
to conclude different memory mechanisms due to quantitatively different fits (BIC score differences). 
Indeed, a more parsimonious explanation would be simply that the new model is better at describing 
behavior than the old one (which, by itself, would be interesting). If the authors believe there are two 
separate memory mechanisms (issues above notwithstanding), how would it work for the brain to 
"choose" one over the other in real time? Is the claim that T_Threshold is implemented neurally? Why 
would serotonin affect one but not the other? Why not parameterize ITI in the model, as opposed to 
using a threshold value?  



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Iigaya and colleagues analyse a previously published dataset obtained from mice performing 
a foraging task. While mice selected between two options for probabilistically delivered water 
reinforcement, the authors optogenetically activated 5-HT neurons in the dorsal raphe 
nucleus on subsets of trials. The authors analysed the choice data subsetted by intertrial 
intervals, and claim that the learning rate associated with rewards delivered following long 
intertrial intervals was specifically increased by 5-HT stimulation. The subject is certainly 
interesting, the claims novel, and the careful analyses shed light on the puzzling result that 
5-HT activation showed no appetitive or aversive effects previously reported by some of the 
authors. Indeed, the careful analyses highlight the power and complexity of careful 
computational analyses of behaviour, and I believe that the results could significantly 
influence thinking in the field.  
 
Thank you very much for the enthusiastic opinion about our manuscript.  
 
However, I find the analyses not yet sufficient to strongly support the claims, and have some 
comments/suggestions for further analyses that could clarify key issues. 
 
Although the authors show that 5-HT activation increases the learning rate on some trials in 
their model, it seems more correct to say that SERT-cre mice have a deficit exposed by the 
task, which is normalised by photostimulation. This has hallmarks of a binary effect; SERT-
cre mice show almost no learning from long ITI trials (Figure 2b), and stimulation brings the 
learning rate on these trials to the same level as WT mice (Figure 3c), but does nothing on 
trials with shorter ITIs (Figure S10). This could be interpreted (and possibly tested, see 
below) as if SERT-cre mice are off doing something else on long ITI trials, and 
photostimulation brings them back "on-task". This would be consistent with no-effect on 
learning on short ITI trials since the animals are already on-task. This kind of effect would 
masquerade as a change in learning rate. 
 
We appreciate this comment. But we first would like to clarify possible confusions here. 
There are two separate questions: which rules govern choice; and what mechanism or 
learning rates underlie those rules. We found that the rule governing choice differed 
according to whether the ITI was short or long; with the latter being determined by a learning 
algorithm. We also found that the learning rate on a trial was affected by stimulation. This 
stimulation effect on learning did not depend on whether the ITI was short or long on that 
trial; however, it was only after a subsequent long ITI trial that the choice that the animal 
made revealed this changed learning rate. 
 
This is true for both our model-agnostic (Figure 2) and our model analysis (Figure 3). The 
model learns from all trials regardless of the duration of ITIs, but the learning rate is different 
according to the presence of stimulation. Choice, instead, is generated by one of the 
mechanisms determined by the most recent ITI. 
 
We realize that this part must have been very confusing, and we apologize for this. This is 
now clarified in the Results and Discussions sections as: 
 
(line 181): To assess how reward history with or without photo-stimulation affected choice  
following long ITIs, we estimated correlations between the temporal evolution of the reward 
bias and the choice bias. Importantly, we estimated the reward bias on trials preceded ITIs 
of any length, but separately for trials with or without photo-stimulation, while the choice bias 
was estimated on trials preceded by long ITIs, regardless of the presence of reward or 
photo-stimulation. 



 
(line 188) Importantly, there was a significant effect of photo-stimulation on the magnitude of 
the correlation. That is, for the SERT-Cre mice, the correlation was larger when reward bias 
was estimated from trials with stimulation than when it was estimated from trials without 
stimulation. This suggests that optogenetic stimulation of DRN 5-HT neurons modulated 
learning about reward history (independent of the ITI on the learning trial), which in turn 
affected future choices on trials that followed long ITIs. 
 

The equivalent analysis for choices following short ITIs (Figure S10) showed that they  
were not affected by photo-stimulation in the same way. Indeed, a direct comparison 
between choices following short and long ITI conditions shows that the stimulation  
had a larger impact on reward learning for choices following long ITIs than for choices  
following short ITIs in SERT-Cre mice, while there was no difference in WT mice (Figure  
S11). 
 
(line 217) Importantly both of the mechanisms learned values in parallel every trial; but 
choices were generated by one of the mechanisms according to the duration of the 
preceding ITI, where the ITI threshold was a free parameter that was fit to the data. 
 
(line 305) though it is critical to remember that stimulation affected learning on all stimulated 
trials regardless of ITIs, but that the effect of that learning could only be observed on future 
choices immediately following long ITIs. 
 
Nonetheless, we were intrigued by the reviewer’s idea that stimulation could make animals 
more engaged with the task. One way to test this is to see how long it took for animals to 
initiate the trials immediately after a stimulation (i.e. the duration of ITIs), assuming that 
animals would initiate the next trial particularly quickly if they were in a highly motivated 
state. We, however, did not find any effects of stimulation on subsequent ITIs (please see 
Figure S4).  This is discussed in the manuscript:  
 
(line 335) This may be due to chronic effects of optogenetic stimulation of DRN neurons, as 
suggested in recent experiments. For example, SERT-Cre mice may have been less 
motivated. Contrary to this, there was no difference in reward rates (Figure S21), and the 
stimulation itself did not change the duration of the subsequent ITI (Figure S4).   
 
It would be nice to see the actual ITI distributions for individual mice. While the authors state 
that 4 seconds leads to equivalent results, these cutoffs are a little hard to justify from the 
single session of data in Figure 1. Can the authors say something about what the mice were 
doing during the longer ITIs? The tails are potentially very interesting here. What is 
happening for 20+ second ITIs? In particular, is this different between WT mice and SERT-
cre mice? Did WT and SERT-cre mice work for the same amounts of fluid/# of trials? This 
could give some insight into the suggestion that long ITIs are related to low motivational 
state. 
 
Following the reviewer’s suggestion, we now include distributions of ITIs for all mice as new 
Figures S1, S2. We also plotted the average reward rate for both groups (please see new 
Figure S21), but found no significant difference between the groups. Further, we tested 
whether choices following long ITIs in the first parts of sessions and ones in the last parts of 
sessions were qualitatively different. We found no evidence for this (new Figure S7).  This is 
discussed in the manuscript: 
 
(line 141) However, choices following long ITIs (ITIs > 7 s) were not well-predicted by the 
same model when fitting the model to all trials (Figure 1g), suggesting that choices following 
short ITIs and long ITIs are qualitatively different. This is also evident from our additional 
parametric analysis showing that predictive accuracy of the win-stay lose-switch strategy 



dramatically decreased as ITIs lengthened (Figure S6).  This did not depend on whether 
long ITI trials were in the beginning of, or in the last part of, each experimental session 
(Figure S7; being at, or slightly below, chance).  These results also suggest that choices 
following long ITIs cannot be accounted for by a short-term-memory-based win-stay lose-
switch strategy. 
 
Occasional video recordings of the task show that mice behaviors were very heterogeneous 
during long ITIs. This includes grooming, moving along the wall of chamber, and stopping at 
various positions. We agree that characterizing the nature of behaviors during ITIs, and 
determining what caused long ITI events, would be important steps toward a better 
understanding of behavior. For this, we would need to develop an automated algorithm to 
extract behavioral features dynamically from videos during ITIs. We plan to address this in 
our future projects.  
 
It seems that a lot of useful information could be gleaned from no-stimulation sessions in 
SERT-cre mice. For example, it might indicate whether chronic stimulation leads to low 
learning on long ITI trials? Or whether chronic stimulation changes the distribution of ITIs? If 
this data is available, it would be useful to include it in the paper. 
 
We agree with the reviewer, but unfortunately there was no no-stimulation session in the 
main task (one of the two choice ports was always associated with stimulation). Though 
stimulation was not given during training periods, the task was designed with a specific focus 
on stimulation. Thus, the pre-stimulation shaping schedule was tailored to the individual 
animals’ performance, and so would be hard to generalize. Furthermore, the training 
sessions were shorter than the experimental ones. Thus we cannot perform reliable 
estimation for the training sessions.  
 
It would be useful to present predictive accuracy on >7 second ITI trials for the model in 
Figure 3. The low accuracy of the WSLS model on these trials is striking in Figure 1, and it 
would be nice to see what ground was gained in the two-component model. 
 
We appreciate this comment.  We now have included figures showing predictive accuracy 
for the full model (new figures S12 and S13). The model well predicts choices following long 
ITIs, as well as ones following short ITIs.  
 
(line 220) This model well predicts choices following short and long ITIs (Figures S12 and 
S13). 
 
We have now also fit the kernel model to choices following long ITIs, while allowing the 
model to learn outcome histories over all trials. New figure S8 shows that the model can 
predict choices following long ITIs; but substantially fails to predict choices following short 
ITIs. Indeed, we found that the time constants of the model were very long (>50 trials). This 
supports the idea that choices following long ITIs are driven by slower learning. This is now 
extensively discussed in the manuscript. 
 
(line 150) We hypothesized that choices following long ITIs might reflect slow learning of 
reward history over many trials [39,34]. We first fit the same kernel model only to choices 
following long ITIs, by allowing the model to learn over all trials but maximizing the likelihood 
only from the choices following long ITIs. We found that the model could now well predict 
choices following long ITIs, while failing to account for choices following short ITI (Figure 
S8). Further, the time constants of the model were now very long (Reward kernel: 91 trials 
for WT, 59 trials for SERT-Cre mice; Choice kernel: 100 trials for WT, 143 trials for SERT-
Cre mice). This supports the idea that choice following long ITIs were driven by slow 
learning of outcomes over many trials. We should note, however, that the difference 
between the choice and reward kernels becomes somewhat obscure over this timescale, 



since the reward and choice histories are strongly correlated over the long run. Thus one 
should take this result as inspiration, and be cautious about interpreting the precise 
parameter values. 
 
We also added a figure showing how the win-stay lose switch strategy can and cannot 
account for choices following different durations of ITIs (new Figure S6): 
 
(line 143) This is also evident from our additional parametric analysis showing that predictive 
accuracy of the win-stay lose-switch strategy dramatically decreased as ITIs lengthened 
(Figure S6). 
 
I failed to understand the model-agnostic correlation analysis (Figure 2). It purports to show 
a correlation between two segments of data with different lengths (10 and 5 trials for rewards 
and choice respectively). Was this data somehow reduced to a single number for each step? 
The gaussian filter from Figure 1d? Please add just a bit more detail so readers can follow 
from Figure 2a to a pair of numbers that enter into vectors that are ultimately correlated. 
What kind of correlation? 
 
We apologize for not making the description of our analysis clear. We estimated a pair of 
numbers (reward bias, choice bias) for each pair of sliding windows. The reward bias was 
computed over a 10 trial window in two conditions: trials with or without stimulation, but this 
was done regardless of the duration of ITIs. The choice bias was computed over a 5 trial 
window only on trials following long ITIs, regardless of the presence of stimulation or reward. 
The 10 trial reward window preceded the 5 trial choice window. By sliding these windows, 
we obtained many pairs of the numbers (reward bias, choice bias). We then estimated 
Pearson’s correlation for each mouse from these numbers. This is now clarified in figure 
caption for Figure 2: 
 
The correlation between the recent reward bias (window = 10 trials) and choices following 
long ITIs (window = 5 trials) was estimated using adjacent sliding windows. The reward bias 
was estimated on trials only with (top) or without (bottom) photo-stimulation, but regardless 
of the duration of ITIs. The choice bias was estimated only for choices following long ITIs, 
regardless of the presence of stimulation or reward. The greyed-out trials in this example 
were ignored for the assessments. The windows were shifted together one trial at a time.  
For each realization of the sliding windows, the reward and adjacent choice biases were 
estimated. However, we excluded cases in which the choice window contained no long ITI 
trials. By sliding these windows, we obtained many pairs of reward bias and choice bias. We 
then estimated Pearson's correlation from these points, separately for each mouse. 
 
We also added a new Figure S10a which illustrates the same analysis, but only for choices 
following short ITIs.  
 
I am definitely appreciate the generative model testing (Figure 3d). However, I’m a little 
confused in this case since there is no model of ITI generation. How did the authors run the 
two-component model in this case? Are there simply no short ITIs in the generated data? 
 
We appreciate this comment. As we do not have an account of how ITIs were generated by 
the mouse, we simply took the ITIs from actual data when simulating the model. This is now 
mentioned in the manuscript: 
 
(line 253) We used the ITIs from the real data in determining which trial was preceded by a 
long or a short ITI when simulating choices from the model. The ITI threshold was given by 
the model. 
 



MINOR 
Figure S10, the label says “all trials”, but I think it should say “<7 second ITI”. 
 
Figure 1g, S1, the label “7<“ might be easier for most to understand if it was changed to “>7" 
 
Thank you very much. We corrected this.  
 
Why do the authors use “partially” self-paced? It seems fully self-paced? 
 
Trials were aborted if the mice didn’t choose a side port within 100s after poking into the 
center port. Also, the center port was illuminated 1.1 s after the mice entered the choice port. 
We have now described this in the Methods section.  
 
Reviewer #2 (Remarks to the Author): 
 
Summary 
 
In this manuscript the authors examine the effect of stimulating serotonin neurons on 
learning a self-paced probabilistic stimulus-response choice task. To do this the authors 
reanalyze existing data from a prior publication (Fonseca et al. Current Biol 2015) in which 
they examined the effect of ChR2-dependent stimulation of dorsal raphe serotonin neurons 
(using the Slc6a4::Cre line) on reward and waiting parameters. In this study they focus on 
the effect of serotonin neuron stimulation on response bias that depends on past response 
history. They use an error-prediction learning rate model to fit the data and estimate what 
type of decision strategy the animals use at each response choice. They make two major 
discoveries. First, they find that the animals use recent response history to guide choices 
when the inter-trial interval (ITI) is short (<7 s, under most circumstances) – a type of win-
stay strategy, but use average response history following long ITIs (that occur 
sporadically). Second, they find that when they include serotonin neuron stimulation in their 
model it best fits the data when it influences learning rate for long ITIs. Based on these 
modeling data they argue that serotonin increases learning rates for reward. Understanding 
the role of serotonin neuromodulation in behavior is a major goal of neuroscience research 
with high clinical relevance. The data appear sound and are constructively imbedded in a 
logical experimental hypothesis and computational model and thus are an important addition 
to the field.  
 
We greatly appreciate the reviewer’s enthusiasm for our manuscript.  
 
Comments: 
 
1. The Slc6a4::Cre line they use is presumably a null allele of Slc6a4 and thus WT animals 
are not really the right control for these experiments. Several of the baseline, non-stimulation 
parameters appear to be affected by this genotype difference and the fact that the Slc6a4 
mutation is likely to directly affect serotonin homeostasis, this confound is potentially 
problematic. The authors are aware of this point and are careful to point out where genotype 
may have influenced the data. However, they need to explicitly discuss the potential impact 
that heterozygosity of Slc6a4 could have on their findings. These animals are known to have 
altered serotonin tone and availability and have been widely studied as a model for the 
human low-expressing 5-HTT-LPR allele. Also, because there appears to be a significant 
difference in learning rate between WT and Slc6a4::Cre mice, there may be a ceiling effect 
in the WTs that confounds the data.  
 
Sorry for not being completely clear. The reviewer might have thought that in SERT-CRe 
mice, the original SERT gene has been replaced by Cre, which might indeed have disturbed 
5-HT homeostasis. However, the SERT-Cre line we used is a BAC transgenic line (Gong et 



al., 2007), meaning that SERT-Cre gene is randomly inserted in the gene, rather than 
replacing the original gene. Indeed, it turns out that SERT-Cre was inserted on chromosome 
18, whereas the original gene is on chromosome 11 
(https://www.mmrrc.org/catalog/sds.php?mmrrc_id=31028).  
 
Thus both SERT-Cre mice and WT mice have the original SERT gene, which justifies the 
hypothesis that the WT mice are in fact a good control.  We however appreciate that there is 
always a possibility that the replaced gene, though not the SERT gene, had an impact on 
some aspects of learning and decision making in mice. 
 
 
2. Although the authors are generally careful to refer to their manipulation as stimulation of 
serotonin neurons, on occasion they talk about stimulation of serotonin or about serotonin 
affecting learning rates. Given that serotonin neurons also release other neurotransmitters 
and these have been shown to be responsible for at least some of the phenotypes 
associated with stimulation of their cell bodies, the authors cannot infer that their effects are 
the result of changes in serotonin.  
 
Thank you for this corrective. Indeed, we intended to talk about manipulations to serotonin 
neurons – and can only speculate that 5-HT itself mediates the effect. We have scoured the 
paper to make sure that we do not introduce any accidental solecisms along these lines. 
 
3. The title is overly baroque and misleading. The first phrase should be eliminated as it 
appears to be intended to play on the presence of the S and L alleles of the serotonin 
transporter, but the manuscript in fact does not refer to these.  
 
We apologize for the confusion. We did not mean the presence of the long and short alleles 
of the serotonin transporter, but we just meant the long and short ITIs. We changed the title 
accordingly.  
 
4. Figure 1 is very small and hard to read. All the figures would benefit from being made 
easier for the eye. 
 
We again apologize for this. We have now made the figures larger.  
 
5. The methods section relies on their earlier paper for many items. Better to reiterate the 
critical information here (e.g. animals, methods). 
 
Thanks very much for the suggestion. We have now included an extended summary of 
experimental methods in the Methods section (please see new section M1).  
 
 
Reviewer #3 (Remarks to the Author): 
 
Iigaya and colleagues analyzed data from a previously published experiment (Fonseca et 
al., 2015) in which dorsal raphe serotonin neurons were stimulated in mice performing a 
foraging task. They show that serotonin activation increased learning rates following long 
ITIs, concluding that serotonin changes learning rates in an RL context. The previously 
published experimental data are beautiful, the model is conceptually exciting,  
 
Thank you very much for the enthusiastic comments.  
 
… but I found the conclusions vastly overstated given the data, and model selection seemed 
arbitrary. 
 

https://www.mmrrc.org/catalog/sds.php?mmrrc_id=31028


We have now conducted additional analysis and clarifications to address reviewer’s 
concerns. 
 
1. The boundary between long and short ITIs seems arbitrary. The claim on lines 132-133 is 
that "choices following short ITIs and long ITIs are qualitatively different." This ultimately 
leads to the conclusion that "different memory mechanisms may be involved in the decisions 
following short and long ITIs" (lines 143-144). Is there evidence for a nonlinearity in the 
effects as a function of ITI that would justify the arbitrary boundary? In any case, it would be 
useful to see a histogram of ITIs from one session and histograms of all ITIs for each 
mouse. 
 
We appreciate this comment. We now have included a histogram of ITIs from one session 
(new Figure S1, corresponding to the session shown in Figure 1), and histograms of all ITIs 
for each mouse (new Figure S2). We also included new Figures S6; S8, showing that one 
model can only predict either choices following short ITIs or choices following long ITIs. We 
also show in new figures S12 and S13 that the full model can predict choices following both 
short and long ITIs. 
 
(line 108) This resulted in a wide distribution of inter-trial-intervals (ITIs). It was notable that 
some ITIs were substantially larger than others (Figure 1f; see also Figures S1 and S2).  
 
(line 141) However, choices following long ITIs (ITIs > 7 s) were not well-predicted by the 
same model when fitting the model to all trials (Figure 1g), suggesting that choices following 
short ITIs and long ITIs were qualitatively different. This is also evident from our additional 
parametric analysis showing that predictive accuracy of the win-stay lose-switch strategy 
dramatically decreased as ITIs lengthened (Figure S6).  This did not depend on whether 
long ITI trials occurred in the beginning of, or in the last part of, each experimental session 
(Figure S7).   These results also suggest that choices following long ITIs cannot be 
accounted for by a short-term-memory-based win-stay lose-switch strategy. 
 
(line 220) This model well predicts choices following short and long ITIs (Figures S12 and 
S13). 
 
We agree that the ITI boundary for our model-agnostic analysis is rather arbitrary; thus we 
allowed the boundary to be a free parameter in our model-fitting analysis (Figure S16). We 
should note, though, that we introduced the hard threshold of ITI as a first approximation for 
capturing the non-trivial behavior that we observed. Ideally, as the reviewer rightly pointed 
out, the choice behavior can be characterized by subject’s internal states, which may be 
recurrently influenced by ITIs. We now discuss this point at some length in the manuscript. 
 
(line 359) Though as a first approximation, we assumed that a hard threshold separates ITIs 
for taking one choice strategy from another on following trials, we expect that this can be 
improved upon. For instance, which rule determines choice is presumably controlled by 
other variables associated with the subjects' internal states, to which we had limited access 
in our current study. It is also possible that both decision strategies co-exist on every trial, 
but their relative contributions to each ultimate decision are determined by some rules, as 
suggested for the integration of so-called model-based and model-free RL strategies [44]. In 
fact, there is evidence in macaque experiments that subjects shift to performing win-stay 
lose-switch if this cheap strategy offers a reasonable rate of rewards [43]. This is consistent 
with our finding that mice largely relied on the win-stay lose-switch, since switching behavior 
is known to be beneficial for this task (In fact, experimentalists often need to introduce a 
penalty (often in the form of a change-over delay) to deter such switching behavior [31,61]). 
Future studies in which the benefits and the costs of various strategies would address this 
issue. 



 
2. Are the effects driven by long ITIs at the end of sessions? In this case, the effects could 
be interpreted as "persistence" or "task engagement," rather than learning rates, per se. The 
authors show that most long ITIs were at the end of sessions (Fig. S3), but do not evaluate 
the contribution of time within a session to the reported effects. 
 
We appreciate this comment. We tested if choices following long ITIs at the end of the 
sessions were different from choices following long ITIs in the beginning of the sessions. We 
however found null results (new Figure S7). This is now discussed in the manuscript.  
 
(line 143) This is also evident from our additional parametric analysis showing that predictive 
accuracy of the win-stay lose-switch strategy dramatically decreased as ITIs lengthened 
(Figure S6).  This did not depend on whether long ITI trials were in the beginning of, or in 
the last part of, each experimental session (Figure S7).    
 
Given that the ITIs were self-generated, it is difficult to disentangle forgetting (presumably a 
nondecreasing function of time) from "motivation" (a nonincreasing function of time, as the 
animal gets less thirsty). A new experiment, with experimenter-generated ITIs, could 
potentially resolve this. 
 
We tested a model that learns and forgets reinforcement history in real time, instead of on a 
trial-by-trial basis. However, this model performed significantly worse than the conventional 
trial-by-trial model.  
 
(line 226) One might wonder if the behavior could be better accounted for by a model 
specifying forgetting as a function of elapsed time, including the ITIs. To test this, we 
constructed a model that learns and forgets outcome history according to wall-clock time 
(measured in seconds) rather than according to the number of trials. For this, we simply 
adapted the previously validated two-kernel model that integrates choice and reward history 
over trials [42,23] such that the influence of historical events is determined by how many 
seconds ago they happened, using the factual timing of the experiments. Our model 
comparison analysis using WT mice, however, substantially favored the account of trial-

based model Figure3a (iBIC = 218).  Introducing two time constants to the reward 
integration kernel did not change this conclusion. 
 
The new experiment suggested by the reviewer is interesting. However, we suggest that 
there would remain a circularity – since motivation can be influenced by ITIs just as ITIs can 
be influenced by motivation. We would therefore prefer to leave this thorny problem to future 
studies.  
 
3. Did the RL model with slow learning still fit the behavior following short ITIs? It seems very 
strong to conclude different memory mechanisms due to quantitatively different fits (BIC 
score differences). Indeed, a more parsimonious explanation would be simply that the new 
model is better at describing behavior than the old one (which, by itself, would be 
interesting). If the authors believe there are two separate memory mechanisms (issues 
above notwithstanding), how would it work for the brain to "choose" one over the other in 
real time? Is the claim that T_Threshold is implemented neurally? Why would serotonin 
affect one but not the other? Why not parameterize ITI in the model, as opposed to using a 
threshold value? 
 
We now have fit the kernel model to choices following long ITIs, while allowing the model to 
learn outcome histories over all trials. New figure S8 shows that the model can predict 
choices following long ITIs; but it substantially fails to predict choices following short ITIs. 
Indeed, we found that the time constants of the model were very long (>50 trials). This 



supports the idea that choices following long ITIs are driven by slower learning. This is now 
extensively discussed in the manuscript. 
 
 
(line 150) We hypothesized that choices following long ITIs might reflect slow learning of 
reward history over many trials [39,34]. We first fit the same kernel model only to choices 
following long ITIs, by allowing the model to learn over all trials but maximizing the likelihood 
only from the choices following long ITIs. We found that the model could now well predict 
choices following long ITIs, while failing to account for choices following short ITI (Figure 
S8). Further, the time constants of the model were now very long (Reward kernel: 91 trials 
for WT, 59 trials for SERT-Cre mice; Choice kernel: 100 trials for WT, 143 trials for SERT-
Cre mice). This supports the idea that choice following long ITIs were driven by slow 
learning of outcomes over many trials. We should note, however, that the difference 
between the choice and reward kernels becomes somewhat obscure over this timescale, 
since the reward and choice histories are strongly correlated over the long run. Thus one 
should take this result as inspiration, and be cautious about interpreting the precise 
parameter values. 
 
One reason that we mentioned different memory mechanism is that fast system was 
described by RL including a forgetting model (kernel model), while the slow system was 
better described by RL without forgetting model. The former indicates working memory, 
while the latter may not. However, we definitely agree that more studies would be necessary 
to pin down the memory mechanisms that are involved.  
 
We also do not believe that animals have a fixed, hard threshold for the ITI to arbitrate two 
decision modes, as it depends on animals’ internal states and the threshold could also be 
more gradual and stochastic. We should also point out that our model could not capture the 
effect of much slower learning that we observed in data (figures S18, S19, S20). Thus in 
reality, learning may be taking place over multiple (more than two) timeconstants in parallel, 
of which the shortest is well-captured by the win-stay lose-switch strategy. In turn, animals’ 
choice is determined by a weighted average of what is learned over multiple time constants, 
as recently suggested in a similar experimental paradigm in macaque [Iigaya, Ahmadian, 
Sugrue, Corrado, Newsome, Fusi, bioRxiv 141309 (2017)], where subjects used reward 
histories of 1 trial to thousands of trials at the same time. It could be that the relative weights 
are strongly influenced by the duration of ITIs. Thus making the hard threshold be a free 
parameter, as we did, is a very crude first approximation of what may actually be happening. 
We however believe that our study is a first, but non-trivial, step toward more refined 
understanding of how ITIs, and indeed animal’s internal states between trials, can modulate 
the impacts of learnings over distinctive timescales on choice.  
 
We covered this in the Discussion: 
 
(line 359) Though as a first approximation, we assumed that a hard threshold separates ITIs 
for taking one choice strategy from another on following trials, we expect that this can be 
improved upon. For instance, which rule determines choice is presumably controlled by 
other variables associated with the subjects' internal states, to which we had limited access 
in our current study. It is also possible that both decision strategies co-exist on every trial, 
but their relative contributions to each ultimate decision are determined by some rules, as 
suggested for the integration of so-called model-based and model-free RL strategies [44]. In 
fact, there is evidence in macaque experiments that subjects shift to performing win-stay 
lose-switch if this cheap strategy offers a reasonable rate of rewards [43]. This is consistent 
with our finding that mice largely relied on the win-stay lose-switch, since switching behavior 
is known to be beneficial for this task (In fact, experimentalists often need to introduce 
penalty for such switching behavior, which is often referred to as the change-over-delay 



[31,61]). Future studies in which the benefits and the costs of various strategies would 
address this issue. 
 
 

 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have done a good job responding to my comments. I appreciate their efforts and feel the 
additional work clarifies several important points. I have no further comments, and recommend the 
paper for publication.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have satisfactorily addressed my concerns.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have addressed all my previous comments.  
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