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Abstract: In this preliminary work, we consider the problem of detecting cyber-attacks in a
linear system equipped with a Model Predictive Controller, where the feedback loop is closed
over a non-ideal network, and the process is subject to a random Gaussian disturbance. We
adopt a model-based approach in order to detect anomalies, formalizing the problem as a
binary hypothesis test. The proposed approach exploits the analytical redundancy obtained by
computing partially overlapping nominal system trajectories over a temporal sliding window,
and propagating the disturbance distributions along them. The recorded data over such window
is then used to define a probabilistic consistency index at each time step in order to make
a decision about the presence of possible attacks. Preliminary simulation results show the
effectiveness of the proposed attack-detection method.
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1. INTRODUCTION

With the extensive diffusion of embedded computing,
networked control systems have become more and more
ubiquitous (see the surveys Baillieul and Antsaklis (2007),
Hespanha et al. (2007)), playing a key role in areas like au-
tonomous vehicles, UAVs, process industry, transportation
systems and other critical infrastructure such as, for exam-
ple, power networks. In the years to come, this tendency
is set to increase even more along with the progress in
robotics and autonomous systems and with the increasing
safety requirements in industrial automation systems and
critical infrastructures. While very useful to enable large-
scale control, the presence of links over communication
networks can potentially create entry points for malicious
activities – to which control systems are vulnerable – as
shown by the famous Stuxnet attack (see Langner (2011)),
or by the more recent incidents targeting the Ukrainian
power grid (Lee et al. (2016)).

In this connection, the problem of secure control is becom-
ing of crucial importance and it is receiving a significant
attention in the very recent literature (see, for instance,
the special issue editorials Sandberg et al. (2015); Cheng
et al. (2017) and the related papers).
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Therefore, of utmost importance are (i) the problem of
timely detection of cyber-attacks on communication links
of networked control system and (ii) the problem of ensur-
ing robustness to these attacks of the control system. Fault
diagnosis (FD) methodologies in a networked scenario (see,
for instance the seminal paper Patton et al. (2007), the
recent work Boem et al. (2017) and the references cited
therein) are potentially very relevant. Unfortunately, in a
typical cyber-attack scenario characterized by intelligent
adversaries the standard FD methodologies may not be
well suited, at least in a first instance (Cárdenas et al.
(2008)). A comprehensive survey of the literature is out of
the scope of the present paper and hence in the following
only a glimpse of some noticeable works is given.

There is a whole branch of research that deals with the
design of “optimal” attacks able to maximize potential
damage to system dynamics, while remaining undetected:
Mo and Sinopoli (2010) determine conditions under which
stealthy attacks against linear state estimators are pos-
sible, and Guo et al. (2016) investigate their optimality
from the attacker’s perspective. An approach including
modeling of the attacker is presented in Teixeira (2014),
where several deceptive strategies are shown. In Dutta and
Langbort (2016), an output injection attack is presented,
where an attacker with limited yet realistic information
maximizes the estimation error in a Model Predictive Con-
trol (MPC) architecture. De Persis and Tesi (2015) do not
consider signal attacks, but provide stability conditions for
different strategies of Denial of Service attacks.



Another batch of literature, that partially overlaps with
the attack design case, tackles the problem of detecting
adversarial activity. The focus has often been on iden-
tifying system vulnerabilities and monitoring limitations
(see for example Pasqualetti et al. (2013)). In terms of
notable strategies, Mo et al. (2015) exploit the idea of
watermarking signals as proof of integrity, by leveraging
their non-repeatability, and Forti et al. (2016) set the
problem in a Bayesian framework.

The methodology illustrated in this paper falls into this
latter category, since it is aimed at detecting malicious
activities by a model-based approach in which – as in
standard FD approaches – the knowledge of the nominal
dynamic model of the monitored controlled system entails
an analytical redundancy that can be exploited for on-line
detection of cyber-attacks while the nominal controller is
acting on the plant.

In this preliminary paper, we propose the integration of a
novel attack-detection scheme with a separately designed
networked Model Predictive Control (MPC) scheme. More
specifically, we consider a linear stochastic plant controlled
over a non-ideal link, where an attacker can delay network
packets through rerouting or buffering, thus possibly af-
fecting system performance quite severely. The availability
of a MPC controller and the knowledge of the nominal
model of the system allows the collection of past state and
control trajectories that can be used by a custom maxi-
mum likelihood scheme to detect the possible presence of a
malicious attack on the communication link. To the best of
the Author‘s knowledge, it is the first time that an attack
detection method is proposed for a networked MPC-based
control system. In Dutta and Langbort (2016), a similar
MPC framework is considered, but the aim of that paper
is the attack design.

The paper is organized as follows. In the next section, the
problem formulation is provided while in Section 3 the
proposed approach is illustrated. In Section 4, extensive
simulation results are given showing the effectiveness of
the proposed technique.

2. PROBLEM FORMULATION

Consider a discrete-time Linear Time Invariant (LTI)
system, whose state dynamics is described by 1

xk+1 = Axk +Bũk + vk , (1)

where xk ∈ Rn denotes the state vector, ũk ∈ Rm the
applied control input, and vk ∈ Rn denotes the realization
of a white noise process disturbance v ∼ N(0, V ) with zero
mean and covariance matrix V .

System (1) is controlled by a Networked Control System
(NCS) based on a MPC controller described in the fol-
lowing. The basic layout of the NCS with multiple loops
sharing a packet-based communication network is depicted
in Fig. 1, where, in order to distinguish the time delays
in the sensor-to-controller and controller-to-actuator links,
the network has been partitioned in two segments affected
by delays τsc(k) and τca(k), respectively. In this paper, the
following assumption is in place.

1 In this preliminary work, we only consider the case of perfectly
measurable state variables.
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Fig. 1. Scheme of a NCS with multiple loops closed through
a shared packet-based network with delayed data
transmission.

Assumption 1. We assume that the sensor-to-controller
link is perfect with no delays, that is τsc(k) = 0, ∀k ≥ 0.
Moreover, we suppose that the random delay τca(k) intro-
duced by the controller-to-actuator link can be modeled
as an exponentially distributed delay with mean rate δ̄,
which is the typical choice for modeling network traffic
(Bertsekas and Gallager (1987)). /

Assumption 2. There is no packet loss in the communica-
tion. /

The MPC controller implements a receding-horizon strat-
egy, that is, at every time step k, it solves the problem of
finding a control sequence u, over a finite horizon N , that
minimizes a cost function J defined as

J(x, k,u) =

k+N−1∑
t=k

l(xt, ut) + F (xk+N ) , (2)

where l is a quadratic function in both its arguments and F
is a terminal cost, chosen to guarantee closed loop stability.
This minimization is subject to the state dynamics (1), and
in this work we consider an unconstrained scenario.

Once this problem is solved, only the first element uk of u
is used as input to the plant via a networked connection.
Due to the presence of delays, the input actually used by
the plant is

ũk = uk−τca(k). (3)

We assume the controller is designed offline, possibly in-
corporating the knowledge of the average delay, so to guar-
antee stability properties thanks to its intrinsic margins.
However, in this paper, the stochastic nature of the delay is
not taken into account by the controller, which relies on the
nominal model of the system and the network. Moreover,
the actuator follows a zero-order hold strategy thanks to
the use of a buffer, i.e. it uses the latest received sample
whenever a delay event happens. This makes the choice of
a continuous random distribution for the delay compatible
with our sampled time setting.

We consider an attacker that can alter the nominal param-
eters of the network by rerouting or buffering the original
signal, therefore imposing an arbitrary delay rate. This
strategy is similar to the wormhole attack described in
Hu et al. (2006), and it is particularly appealing for an
attacker as it does not require any particular information



about the plant or the controller model, and because it
can be performed even on confidential and authenticated
communications. The attacker’s aim is that of degrading
the dynamic performance of the controlled system, for
example by inducing oscillation within a certain tolerance,
possibly while remaining undetected.A complete analysis
of the attack detectability and design optimization is out
of the scope of this early and preliminary paper and will
be subject of future research efforts.

While approaching the problem from a time-delay perspec-
tive is difficult, this attack can be considered from a signal
point of view, which also allows for a more general frame-
work should we consider other cases of data injections. To
realize the effect of a d samples-long delay, with d > δ̄, the
attacker may utilize an internal buffer of appropriate size,
shifting at each time step the collected samples, storing
the current one, and giving as output the following signal

ak = uk−d − uk−τca(k) , (4)

for k within the attack interval, if uk−d is available in
the buffer. According to this design, the attack can start
after d time steps of input recordings. In view of these
considerations, when an attack is underway, (3) can be
rewritten as

ũk = uk−τca(k) + ak , (5)

which is the form typically considered for attack models
(Teixeira (2014)).

Given this setting, we want to design a detection strategy
able to discriminate between the nominal and attacked
behaviors. Ideally, we want to exploit the knowledge of the
model and of the controller local data streams for enforcing
the integrity of the closed loop, thus limiting the degrees
of freedom of a possible attacker.

To address the aforementioned problem, we define the
following hypotheses:

H0 : “The system is attack-free”

H1 : “The system is under attack”.

The aim of the present preliminary paper is to design
an on-line attack-detection model-based algorithm able
to build a statistics allowing the rejection of the null
hypothesis H0 when an attacker is tampering with the
communication network between controller and actuators.

3. A MOVING-WINDOW ATTACK-DETECTION
METHODOLOGY

We develop a novel strategy for detection that exploits a
moving window, called observation window (see Figure 2),
whose length L is fixed and represents a design parameter.
The idea of using a sliding window based on past samples
is not new, as it has been used for estimation (Alessandri
et al. (2003)), fault detection (see for instance (Gatzke and
Doyle, 2002) and Lauricella et al. (2017)), and even for
detecting and correcting attacks on sensors by Shoukry
et al. (2017) within the context of formal methods. Our
approach is novel as we simulate a bundle of trajectories
within the sliding window at every time step. These
virtual trajectories are based on the nominal model and
on nominal computed input values, and therefore they
embody the expected behavior that the actual trajectory
should have, within a certain error due to the disturbance.

To better understand the concept, let us consider the
controller C: at each time k it produces a forward sequence
of length N of predicted open loop states

xfN (k) =
{
xfk+1|k, . . . , x

f
k+N |k

}
= {xfn|k}

k+N
n=k+1 (6)

and inputs
uN (k) = {un|k}k+N−1n=k (7)

over the control horizon. We use the notation un|k to
explicitly remark the dependence of the entire sequence on
the information available at time k. At the next time step,

the sequences xfN (k + 1) and uN (k + 1) will be available,
and so on. The elements of (6) and (7) are related by the
controller’s disturbance-free model

xft+1|k = Axft|k +But|k , (8)

for a given k and for t ∈ [k, k + N − 1]. xk|k is the
initial state from which the finite horizon optimal control
problem is solved. As shown in Figure 2, these sequences
shift at each iteration, each time with an updated initial
state.

For monitoring reasons, we adjust the MPC predictions
in the past observation window of length L, by using the
control inputs ut|t actually communicated by the MPC
controller to the actuators at each time step, that we
recorded between k − L and k − 1, that is

x̂t+1|j = Ax̂t|j +But|j +B(ut|t − ut|j), (9)

for j ∈ [k − L, k − 1] and t ∈ [j, k − 1], and with x̂j|j = xj
being the measured state. This sequences are highlighted
in green in Figure 2. In this way, in the observation win-
dow, the monitoring unit has available a set of sequences
based on the nominal model, the actual initial states, and
it is driven by the control inputs actually computed at
each time step. Under the assumption that there are no
attacks acting on the network, these adjusted sequences
differ from the real system trajectories only due to process
disturbances. By exploiting the linearity of the control law
and the Gaussian distribution of the disturbances, we can
propagate the disturbance distributions ahead in time, in
order to characterize those of prediction errors.

Let µn|k
.
= E[x̂n|k] and Qn|k

.
= Var[x̂n|k] denote the

mean and variance of the prediction values x̂n|k seen as
stochastic variables with respect to time n. Then, using
the same notation as in (9), the mean and variance can be
characterized by

µt+1|j = Aµt|j +But|t + E[vt] (10)

Qt+1|j = AQt|jA
T + Var[vt]. (11)

Remark 1. The adjusted state sequences x̂ only depend
on the actual control actions fed to the system and the
measured initial conditions at every time step. Therefore,
they could be obtained even independently of the specific
controller implementation, as we only rely on the super-
position principle granted by the system linearity.

Even though the previous equations have been written in
feed-forward form for the sake of clarity and notational
convenience, we stress that (9) is computed on past pre-
dictions by means of the recorded inputs. That said, (10)
and (11) allow to parametrize the distribution of each
data point given the initial condition and time step of the
prediction, thus we can associate with a measured sample
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Fig. 2. Intuitive diagram illustrating the MPC open-loop prediction sequences xf (boxed in black) and the adjusted
sequences x̂ (in green) available at time k, considering an MPC horizon of length N and an observation window of
length L. In the red boxes the actual samples recorded in the considered time span are shown.

xt, t ∈ [k−L+ 1, k] an index I(xt;H0, j), j ∈ [k−L, t− 1]
related to the probability of observing the data assuming
the null hypothesis is true. For example, such index could
be the likelihood of an observation for a time t in the
window, given a past initial state within the same window.

L(xt;H0, j) = p(xt;µt|j , Qt|j) (12)

where p(x) is the probability density function. We remark
that since each expected distribution is the result of
successive iterations, then its validity depends on the null
hypothesis being true during the entire interval in which
the uncertainty has been propagated using the nominal
model.

However, to be representative the likelihoods in (12) need
to be weighed into a normalized sum, so that their com-
bination preserves the properties of a probability density.
We first notice that in the observation window previously
defined, at time t = k − i, i ∈ [0, L − 1], there exist L − i
distributions available for comparison. This can be visual-
ized again in Figure 2, by looking at the adjusted sequences
“column-wise”. We introduced the forward index i relative
to the window, as opposed to the absolute index j in order
to simplify the following sums. We define weight vectors
dt such that the sum of their elements satisfies

L−i∑
s=1

d
[s]
t = 1, (13)

where the superscript [s] denotes the s-th component.
Once all the weight vectors dt are found, one can obtain
the weighted indices for all time steps in the window

It(xt;H0) =

L−i∑
s=1

d
[s]
t I(xt;H0, t− s) (14)

While (13) gives some degrees of freedom as to the optimal
choice of dt, in this work we consider decaying weights,
based on the rationale that older predictions become less
and less accurate as the time difference increases. One
possible candidate that agrees with this principle and that
does not excessively penalize the tail terms is the geometric
progression with common ratio dt < 1 and initial index

m = 1, so we choose d
[s]
t = dst , subject to

dt − dL−i+1
t

1− dt
= 1. (15)

The equation above has a unique solution in dt in the open
interval (0, 1) for each t ∈ [k − L + 2, k]. For t = k − L +
1, (15) is the partial sum of the geometric progression,
and the trivial solution is d = 1. The decay terms then
need to be correctly ordered so that the vectors dt are
consistent with the previous considerations. Furthermore,
these solutions can be found offline, because they depend
on the remaining length of the observation window, which
in turn depends only on its size.

The last step consists in aggregating the individual indices
in (14) in order to obtain a scalar index for the entire
observation window:

IL(k) =
1

L

k∑
t=k−L+1

It(xt;H0). (16)

Let Xf
N and UfN be the collections of {xfN (k − L), . . . ,

xfN (k − 1)} and {uN (k − L), . . . ,uN (k − 1)} respectively,
for example arranged in matrix form. We summarize
in Algorithm 1 the steps described in this section in a
procedural fashion. The two outer loops mirror the two
phases of the method, namely the propagation of the
uncertainty, and the evaluation of the index I.

The index produced is finally compared to a threshold in
order to decide between the two hypotheses.

4. SIMULATION RESULTS

To evaluate the effectiveness of the proposed method, we
implemented the architecture illustrated in Section 2. We
consider the discrete-time linear system

A =

[
1.2214 0.1681

0 0.5488

]
, B =

[
0.0178
0.1504

]
. (17)

The choice of an unstable system is motivated by the
fact that we adopt a ZOH strategy for the system inputs,



Algorithm 1 Computation of IL(k)

Require: k > L

procedure ComputeIndex(Xf
N , U

f
N )

for j ← k − L, k − 1 do
for t← j + 1, k do

compute x̂t|j as in (9)
compute µt|j , Qt|j as in (10), (11)

end for
end for
for t← k − L+ 1, k do

compute It as in (14) . use offline dt
end for
return IL(k)← Mean([Ik−L+1, . . . , Ik])

end procedure

that is the latest control input is applied when a sample
is not received, which can potentially cause the state to
diverge. As a result, the system is particularly sensitive to
communication effects in a networked setting. The control
objective is to steer the state to the origin from an initial
condition x0 = [1, 1]T . In this case we choose δ̄ = 0.25Ts,
with Ts the sampling interval, in order to limit the delay
variance and obtain reasonable nominal conditions. The
system is controlled via unconstrained MPC with N = 15
samples, designed on the system with no delay, given the
choice of δ̄. The simulation time is 80 s, and the observation
window has size L = N .

In the case of unconstrained MPC it is possible to deter-
mine the equivalent linear feedback gain K by means of the
Fake Algebraic Riccati Equation (see Bitmead et al. (1990)
for a detailed discussion on the topic). This allows to assess
stability margins, for example via state augmentation tech-
niques, under the assumption that the dwell time between
model switches is sufficiently long. In this scenario, the
closed loop is stable for delay values up to δmax = 2
samples. In the time interval [40, 60] s, an attacker applies
strategy (4) imposing a fixed delay rate of d = δmax + 1
samples.

In Figure 3, we show how the index computed via (12)–
(16) is sensitive to the attack action, as a steep drop with
respect to nominal conditions can be noted. The graph
also shows smaller drops that correspond to random non-
malicious delays. Future research efforts will be devoted
at defining – in a model-based way – suitable thresholds
for detecting the change and distinguish normal random
deviations from attacks. In this paper, we consider the
cumulative density function parametrized by (10) and (11)
and evaluate the double-tailed probability (Casella and
Berger (2002)) of an event; namely, for a sample xt in
the observation window, we evaluate

It(xt;H0, j) = 2P (X ≤ −|xt|), (18)

where X ∼ N(µt|j , Qt|j), for j ∈ [k−L, t−1], and process
them as described in (14) and (16). We then compute
IL(k) as described in the previous section, and the trend
of this index is shown for one simulation in Figure 3(b),
where a behavior similar to that of the likelihood can be
noticed. We set a detection threshold α for IL(k), and
reject the null hypothesis when IL(k) < α.

Given the stochastic nature of the scenario, we ran a
batch of 100 simulations for a given variance matrix. In
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Fig. 3. Trends for a randomly chosen simulation in the
batch for V = 0.001I. 3(a) shows the behavior of the
index I when chosen to be the likelihood, 3(b) when
using tail probabilities instead.

Table 1. Performance of the proposed method
evaluated on the simulation batch for variance

V = 0.001I

α FPR FNR Precision Recall DD [s]

.10 .0125 .2008 .9587 .7992 4.2

.15 .0178 .1556 .9448 .8444 3.2

.20 .0229 .1238 .9318 .8762 2.6

.25 .0307 .0946 .9127 .9054 2.2

Table 2. Performance of the proposed method
evaluated on the simulation batch for variance

V = 0.01I

α FPR FNR Precision Recall DD [s]

.10 .0173 .2081 .9428 .7919 4.4

.15 .0216 .1625 .9318 .8375 3.4

.20 .0263 .1281 .9210 .8719 2.8

.25 .0358 .0977 .8982 .9023 2.2

Table 1, some rates for the simulated batch are reported;
specifically, for different choices of α we compute mean
values of False Positive Rate (FPR), False Negative Rate
(FNR), precision, recall, and Detection Delay (DD) over
the batch. The detection delay is rounded up to the next
discrete time step. Notice that increasing the threshold
causes the system to be more reactive and increases the
performance with respect to false negatives and recall, at
the expense of an higher rate of false positives. In this
case, recall is of particular importance, since it represents
the ability of detecting an attack when it is taking place.



In Table 2, we repeat the experiments for a batch of the
same size, but using a noise signal with larger variance
V = 0.01I. Whereas the performance relative to the
parameter α shows a consistent behavior as commented
for the previous case, we notice that the larger uncertainty
results in worsened performance, especially in case of lower
thresholds.

5. CONCLUDING REMARKS

In this work, some preliminary results for a novel strategy
to detect cyber-attacks in networked MPC-based control
systems have been presented. A model-based approach
has been illustrated in which the inherent analytical re-
dundancy provided by the MPC controller is exploited.
Extensive simulation results show the effectiveness of the
proposed technique.

Future research efforts will be devoted to the important
issue of attack detectability, more realistic control archi-
tectures will be considered removing, for example, the
assumption on perfect state accessibility thus allowing for
considering possible attacks also in the sensor-to-controller
communication links. The issue of deriving analytically
probabilistic detection thresholds will also be considered
as well as the extension to the more difficult case of
distributed large-scale systems controlled via decentralized
schemes. Finally, the proposed approach will also be com-
pared with other techniques of the state of the art, and
will be tested in those cases where traditional approaches
have been proven to fail.
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