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Abstract: The paper presents a distributed Sensor Fault Diagnosis architecture for Industrial
Wireless Sensor Networks monitoring HVAC systems, by exploiting a recently proposed
distributed clustering method. The approach allows the detection and isolation of multiple
sensor faults and considers the possible presence of modeling uncertainties and disturbances.
Detectability and isolability conditions are provided. Simulation results show the effectiveness
of the proposed method for an HVAC system.
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1. INTRODUCTION

In the last decade, the problem of energy management
in buildings has become a prominent research area in the
context of building automation (BA), both for monitoring
and control. This interest is motivated by the fact that
more than one third of the whole energy expenditure
in modern cities is due to residential and commercial
buildings and half of this consumption refers to heating,
ventilation and air conditioning (HVAC) (see for example
Pèrez-Lombard et al. (2008); Yuan et al. (2015), and ref-
erences cited therein). Even if an increased efficiency of
systems and materials and the adoption of green building
policies has allowed to prevent a dramatic growth of such
consumption in residential buildings, the design of control
solutions remains of paramount importance in large com-
mercial and industrial facilities to yield resource optimiza-
tion while guaranteeing comfort of the occupants (Gupta
et al. (2015); Sturzenegger et al. (2016)). From these
premises, it clearly appears how the punctual, accurate,
and robust monitoring of the environment thermal state is
a key ingredient for such BA applications: the monitoring
network appears as part of the HVAC system (Agarwal
et al. (2011)), and Industrial Wireless Sensor Networks
(IWSNs) are particularly suitable for this task, given the
additional attention posed to robustness, reliability and
maintainability features with respect to standard WSNs.

To meet these requirements, IWSNs usually adopt Fault
Detection and Isolation (FDI) procedures (see Gungor and
Hancke (2013); Reppa et al. (2016)) and it is agreed that
a clustering approach is beneficial to improve efficiency
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and attain fault resilience (Zhang et al. (2015); Bianchin
et al. (2015)). Indeed, the advantages of partitioning the
sensors into clusters for sensor fault detection are mainly
two. Firstly, by exploiting network decomposition (Abbasi
and Younis (2007)), it allows to reduce communication,
because each sensor can communicate for sensor fault de-
tection purposes only with neighboring sensors, i.e. sensors
belonging to the same cluster. Secondly, by adopting data
clustering (Ma et al. (2011)), it allows to group sensors
with similar modeling uncertainty and/or disturbances
and it allows to reduce the conservativeness of the fault
detection thresholds, by exploiting measurement locality.

Fault tolerant clustering approaches have been proposed
in the literature (as in Gupta and Younis (2003); Zhang
et al. (2015); Chen et al. (2015)), relying though on the
presence of special cluster–head (CH) nodes to facilitate
the clustering task and support the fault detection and
anomaly recognition procedures. Conversely, considerable
benefits in terms of scalability, robustness and reconfigura-
bility of the network would be yielded by a solution that is
completely distributed (see for example Boem et al. (2011);
Shames et al. (2011); Stankovic et al. (2010); Boem et al.
(2017) for an overview on distributed FDI).

Starting from the results in Bianchin et al. (2015);
Cenedese et al. (2017), in this paper we address the prob-
lem of FDI in HVAC systems focusing on the monitoring
IWSN. The main contribution we propose consists in:

(1) a methodology that considers heterogeneous sensors
measuring different quantities and a procedure to
tune the measurement model and properly design the
clustering threshold bounds for estimation and FDI;

(2) a FDI algorithm that takes advantage of such cluster-
ing procedure and provides a model-based clustering



reconfiguration strategy, able to cope with both single
and multiple sensor faults;

(3) a numerical validation within the scenario of temper-
ature monitoring for the smart management of an
HVAC system.

2. PROBLEM FORMULATION

We consider an IWSN composed of N sensors, which
communicate according to an undirected graph G = (V, E),
where V is the set of the nodes (the sensors) and E is the
set of the edges connecting the nodes. We define the set of
neighbours of node i: Ni = {l ∈ V : (l, i) ∈ E}. The sensors
V monitor the indoor temperature in different rooms of a
building. In each area the heat diffusion is modeled as

Ti(k + 1) = h(Ti(k), u(k), Pi) + ηi(Ti(k), u(k), Pi, ue(k)),
(1)

where Ti(k) is the temperature at a point Pi at time k; h
is a field modeling the nominal heat diffusion depending
on the past temperature, the local inputs u (including
the HVAC input and possibly the outdoor tempera-
ture if known) and the position Pi; ηi considers model-
ing uncertainty and disturbances ue, including the un-
known/unmodeled influence of neighboring rooms’ tem-
perature or unknown/unmodeled inputs or phenomena,
such as the effects of windows, lights or electrical appli-
ances, or the presence of people in the environment.

Thus, each i-th node provides a noisy measurement yi of
temperature Ti:

yi(k) = Ti(k) + di(k) + fi(k), (2)

where di(k) is the measurement noise at time k and fi(k)
explicitly models the effect of possible faults affecting
sensor i at time k (clearly, fi(k) = 0 in healthy conditions).

Hypothesis 1. The measurement noise at each node is
assumed to be bounded, i.e. |di(k)| ≤ d̄i, i = 1, . . . , N ,
where d̄i is a known constant positive value.

For notation simplicity we assume in the following that all
the sensors are characterized by the same constant noise
bound d̄. This case can be trivially extended to account for
more heterogeneous sensors and to consider time-varying
or state-dependent measurement noise.

With the aim of performing fault detection on the sensor
network, we build on the clustering method proposed in
Cenedese et al. (2017) in order to group sensors in each
room into clusters having similar uncertainty conditions.
Clustering results and a novel model-based sensor fault
diagnosis strategy are used to detect the presence of faults
and isolate faulty sensors in the clusters.

3. DISTRIBUTED CLUSTERING

The distributed clustering technique introduced in Cenedese
et al. (2017) is briefly recalled. Each node i is associated
with the corresponding measurement yi at the time when
we perform the clustering, which has to satisfy the follow-
ing criteria:

(1) connectivity;
(2) measurements similarity, such that the difference be-

tween two measurements in the same cluster is lower
than a given clustering bound b;

(3) maximality, minimizing the number of clusters.

We replace the measurements similarity criterion with a
consistency criterion, allowing sensors to measure different
quantities, and designing the bound b based on the model
of the system. This allows to obtain clusters that have sim-
ilar modeling uncertainty or disturbances. In the following
section we explain how each sensor can compute the bound
b in a distributed way using only local communication with
neighbours.

3.1 The consistency criterion

Each sensor i communicates its own measurement yi
to the neighbouring sensors and compares it with the
measurements yj taken by neighbouring nodes j ∈ Ni.
For each pair (i, j) in healthy conditions:

|yi − yj | = |Ti − Tj + di − dj | . (3)

Since the actual temperature at each point is unknown,
and temperatures at different spatial points may be quite
different simply due to the physics of the problem and not
due to the presence of anomalies, each node can compute
an estimate of the temperature based on the nominal
model, past measurements, known inputs and position:

T̂i(k) = h(yi(k − 1), u(k − 1), Pi). (4)

Similarly, each node can compute the estimate also for
the neighbouring sensors, assuming that the positions Pj ,
j ∈ Ni are known to node i. In the case that the positions
Pj , j ∈ Ni are unknown to node i, the estimates T̂j

can be communicated to the neighbours together with
the measurements yj reducing the computation cost at
each node, but increasing the communication cost. By
substituting (1) in (3) and using (4), we have that

|yi − yj | ≤
∣∣∣T̂i − T̂j

∣∣∣+ |−Δhi +Δhj |+ |ηj − ηi|+2d̄, (5)

where Δhi(k) = h(yi(k), u(k), Pi) − h(xi(k), u(k), Pi).
Given Hypothesis 1, it is possible to compute a bound
Δ̄hi(k) for |Δhi(k)|:

Δ̄hi := max
|di|≤d̄

|h(yi, u, Pi)− h(yi − di, u, Pi)| .
Since the goal of the clustering is to partition the sensors
into groups with similar uncertainty, we neglect the term
ηj − ηi for the definition of the local clustering bound bi:

bi = min
j

[ ∣∣∣T̂i − T̂j

∣∣∣+ Δ̄hi + Δ̄hj + 2d̄
]
.

We then apply Algorithm 2 in Cenedese et al. (2017) to
partition the sensor network in clusters.

4. SENSOR FAULT DIAGNOSIS

Once the IWSN is partitioned into clusters, the distributed
fault detection and isolation method is implemented at
each sensor i. We assume that the initial clustering is
performed in healthy conditions. At each time step, each
node communicates its measurements (and estimates) only
to neighbouring nodes belonging to the same cluster Ci:
N ∗

i = Ni ∩ Ci. At each time step, sensor i computes

two different residual signals rij1 and ri2 for sensor fault
detection:

rij1 (k) = yi(k)− yj(k),

ri2(k) = yi(k)− ŷi(k),



where

ŷi(k) = h(yi(k− 1), u(k− 1), Pi) +λ(yi(k− 1)− ŷi(k− 1))

is the model-based observer estimate (with 0 < λ < 1 to
guarantee the convergence).
Then, it firstly checks the coherence with neighbouring
sensors. In fact, in healthy conditions, ∀j ∈ N ∗

i ,∣∣∣rij1 (k)
∣∣∣ ≤ ∣∣∣T̂i(k)− T̂j(k)

∣∣∣+Δ̄hi+Δ̄hj+2d̄ := r̄ij1 (k). (6)

Secondly, it checks the coherence with respect to its own
past measurements and the model. In healthy conditions,∣∣ri2(k)∣∣ = ∣∣λri2(k − 1) + Δhi(k − 1) + ηi(k − 1) + di(k)

∣∣
≤ ∣∣λri2(k − 1)

∣∣+ Δ̄hi(k) + η̄i(k − 1) + d̄ := r̄i2(k),
(7)

where η̄i satisfies the following

Hypothesis 2. The modeling uncertainty at each node is
assumed to be bounded, i.e. |ηi(k)| ≤ η̄i(k), ∀k, i =
1, . . . , N , where η̄i(k) is a known positive value.

In healthy conditions the residual signals (rij1 , ri2) are lower

than the corresponding thresholds (r̄ij1 , r̄i2). When at least
one of the two residual signals crosses the corresponding
threshold in at least one of the sensors of the cluster, then
it is possible to conclude that a fault has occurred in one or
more sensors of the cluster. It is important to note that the
proposed thresholds guarantee the absence of false-alarms
thanks to the way they are defined in (6)-(7). It is also
worth noting, as it will be deeply explained in Section 5,
that residual rij1 is sensitive both to faults in sensor i and
sensor j. On the other hand, residual ri2 is sensitive only
on faults on sensor i. This double redundancy allows the
isolation of the faulty sensor(s) in each cluster.

After fault isolation, the faulty sensors are removed from
the sensor network. The clustering algorithm can be per-
formed to reconfigure the clusters.

5. DETECTABILITY AND ISOLABILITY ANALYSIS

In this section, we analyse some sufficient conditions on the
faults, with respect to noises and uncertainties, to allow
the detection by the proposed distributed method. The
proofs are omitted due to space constraints.

5.1 Detectability of a single fault

Let us consider a general fault fi occurring on sensor i,
that is, for k ≥ kf , the i-th output equation is

yi(k) = Ti(k) + di(k) + fi(k), (8)

where fi(k) could even be zero at some time after kf in the
case of intermittent faults. We are not assuming a specific
type of sensor fault (persistent, intermittent, bias, drift,..).

Proposition 3. Let us consider that sensor i is affected
by a fault fi for k ≥ kf . It is sufficient that the fault
effect satisfies the following condition to guarantee fault
detection by means of residual ri2:∣∣∣∣∣∣

k−1∑
h=kf

λk−h−1fi(h+ 1)

∣∣∣∣∣∣ > 2r̄i2(k).

The condition in the previous proposition gives a charac-
terization of the cumulative fault effect needed to guaran-
tee fault detection by the proposed architecture by means
of residual ri2 in the worst case scenario, despite the pres-
ence of uncertainties and disturbances that may hide its
effect. We now provide a sufficient condition regarding the
instantaneous effect of the fault.

Proposition 4. Let us consider that sensor i is affected by a
fault fi at time k̄. It is sufficient that the fault satisfies the
following condition to guarantee fault detection at time k̄:∣∣fi(k̄)∣∣ > 2r̄i2(k̄).

Furthermore, we provide the following sufficient condition
for a fault fi to be detected at time kd ≥ kf by means of

the residual rij1 .

Proposition 5. Let us consider the case that sensor i is
affected by a fault fi. It is sufficient that at time kd the
fault satisfies the following condition to guarantee fault
detection:

|fi(kd)| > 2r̄ij1 (kd).

In a similar way, it is possible to prove the following.

Proposition 6. If a fault fj is occurring in sensor j, j ∈ N ∗
i ,

• it will not be detected by residual ri2 in sensor i;
• the following condition is sufficient for sensor i to

detect the fault by means of residual rij1 at time kd:

|fj(kd)| > 2r̄ij1 (kd).

5.2 Detectability of multiple faults

We have the following theoretical result.

Proposition 7. Let us consider the case that sensor i is
affected by a fault fi and simultaneously a fault fj is
occurring in sensor j, j ∈ N ∗

i . The following condition
is sufficient to guarantee the fault detection at time kd by
the proposed distributed sensor fault detection scheme:

|fi(kd)− fj(kd)| > 2r̄ij1 (kd).

It is worth noting that, depending on the sign of the
faults, the presence of multiple faults may either improve
or compromise the fault detection.

By analyzing the results in the previous propositions, it is
important to note that the use of two different residual sig-
nals may possibly increase the detectability performance of
the proposed distributed architecture and, as we will see in
the following section, allows to isolate faults distinguishing
between local and neighbouring faults.

5.3 Isolability analysis

After fault detection, node i communicates the alarm to
neighbouring sensors j, j ∈ N ∗

i , according to the following:

dij1 (k) =

⎧⎨
⎩

0 if
∣∣∣rij1 (k)

∣∣∣ ≤ r̄ij1 (k)

1 if
∣∣∣rij1 (k)

∣∣∣ > r̄ij1 (k)

di2 =

{
0 if

∣∣ri2∣∣ ≤ r̄i2

1 if
∣∣ri2∣∣ > r̄i2

and receives analogous information from the neighbours.



In order to reduce the communication cost, the communi-
cation is required only after fault detection. If not received,
the quantities dj1 are assumed to be null. By exploiting
the fact that, as shown in the previous sections, residual
ri2 is sensitive only on local faults fi, while residual rij1 is
sensitive both to local faults affecting sensor i, and faults
occurring in the neighbouring sensor j, it is possible to
develop a fault isolation logic. In Table 1, we provide
the Fault Isolation (FI) decisions for each couple (i, j)

depending on the values of the signals dij1 = dji1 , d
i
2, d

j
2.

dij1 di2 dj2 FI Decision

1 0 0 fi OR fj

1 1 0 fi

1 0 1 fj

1 1 1 fi AND fj

0 1 0 fi

0 0 1 fj

0 1 1 fi AND fj

Table 1.

Due to the way the detection thresholds are designed, if the
residual crosses the corresponding threshold, the presence
of a fault is guaranteed. Viceversa, as long as the residual
is lower than the corresponding threshold, the absence of
the fault cannot be guaranteed, since it could be ‘hidden’
by the noise, disturbances or other faults presence. The
communication with other neighbouring sensors l ∈ N ∗

i ,
l �= j, may support the isolation decision when it is not
possible to distinguish between the presence of fi or fj (see
the first row of Table 1) only considering the signals of the
couple (i, j). It is interesting to note the scenario described
by the last row of Table 1. The simultaneous presence of
fi and fj may be not detected by dij1 for two different

reasons: in the specific application threshold r̄ij1 could be
slightly more conservative than r̄i2 or the two faults may
have the same sign and similar magnitude (see Prop. 7).

6. SIMULATION RESULTS

In this section, we illustrate the application of the dis-
tributed clustering-based sensor fault detection method
to an IWSN monitoring the performance of an HVAC
system, composed of the electromechanical part and a
single zone, i.e. a room. We simulate the HVAC system
presented in Reppa et al. (2015), using the same pa-
rameters except for the dimension of the room, chosen
as 4.5m× 1.75m× 4.5m. The system is controlled by 2
feedback linearization controllers whose gains are selected
as K = 1. The desired values of the temperature of the
cooling coil and the room are set up as follows: T e = 10◦C
and T = 22◦C. The diffusion of the heating in the room
at time k is modelled according to the heat equation
(Guenther and Lee (1996), Myint-U and Debnath (2007))
solution for a room of length L:

Ti(Pi, k)=Tf (k)+
∞∑

n=1

Bn(k) sin

(
2n− 1

L

π

2
Pi

)
e−(

2n−1
L

π
2 )

2
k

(9)

where Tf is the temperature of the air introduced in the
room by the fan and

Bn(k)=
2

L

∫ L

0

[Ti(Pi, k − 1)− Tf (k)] sin

(
2n− 1

L

π

2
Pi

)
dPi.

(10)

The room temperature is characterized by some uncer-
tainty modelled everywhere as the sum of a noise η(1) ∼
N (0, 10−4) and a term computed at each position Pi as
η(2) = −2.3e−l, being l = |Pi − Ps| the distance between
Pi and the source of an unmodelled phenomenon, such as
the presence of a window or a door, located in Ps = (4m,
4.5m). This phenomenon, not considered in the nominal
model for estimation, causes a reduction of the tempera-
ture in the top-right corner of the room that decays from
−2.3 in Ps to 0 going towards the centre of the room. The
bound on the uncertainty is set to η̄i = 2.006 at each point.
In the room, N = 20 sensors are randomly deployed such
that the resulting graph is connected (see Figure 1 for a
network example).
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Fig. 1. IWSN with 20 sensors. The green nodes belong
to C1, the red nodes belong to C2 and the blue ones
belong to C3.

Other parameters used for the simulations are the filter
gain λ = 0.7 and the measurement noise bound d̄ = 0.4.
Moreover, since we are considering a sensor network, a
discretization of the system has been performed using
Euler’s explicit method, with sampling rate equal to 1 min.
In the simulations, we consider both single and multiple
sensor faults scenarios for three different kind of faults:

• constant sudden faults : f(k) = c · u(k − kf ),
• temporary faults: f(k) = c · [u(k − kf1)− u(k − kf2)],

kf2 > kf1 ,• linear degrading faults : f(k) = c · k · u(k − kf ),

where c is a positive random constant representing the
amplitude of the fault and u(·) is the unit step.
At the first time step, the proposed distributed cluster-
ing algorithm is performed, assuming that no faults are
affecting the sensors. The result of the clustering (see
Figure 1) is the set of clusters C∗ = {C1, C2, C3}, with
C1 = {1, 2, 3, 4, 5, 6, 7}, C2 = {8, 9, 10, 11, 12, 13, 14, 15} and
C3={16, 17, 18, 19, 20}, which satisfies both the conditions
on connectivity and on measurement similarity. Moreover,
as expected, the sensors in the top-right corner, namely
the area with higher uncertainty, are grouped together.

Let us consider a first scenario where a single abrupt fault
f18(k) = 0.8 · u(k − kf18) occurs in the 18-th sensor at
time kf18 = 60 min. The results of the distributed sensor



fault detection and isolation method are shown in Figure
2, where the performances of the faulty sensor 18 are
compared with those of the healthy sensor 20 belonging
to the same cluster C3. Due to space constraints, we show
the results only for a couple of sensors, but similar and
coherent behaviours are obtained for the other sensors.
By analyzing rij1 (Figure 2, (c) and (d)), both sensors can
detect the presence of a fault at k = 61 min. At the same
time, by observing the residuals |ri2| (Figure 2, (e) and (f),
detection for |r182 | and no detection for |r202 |), the correct
fault is isolated.
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(f) |ri2| and r̄i2, i = 20

Fig. 2. Comparison between sensor 18, affected by a single
sudden fault f(18)(k) = 0.8 · u(k − kf18) at kf18 = 60
min, and the healthy sensor 20.

We can observe similar results in Figure 3 for the case of a
temporary fault f(18)(k) = 1.5·[u(k−kf18,1)−u(k−kf18,2)],
kf18,1 = 60 min, kf18,2 = 70 min. The detection and
isolation method is successful from the very beginning of
the fault where the residuals cross the related thresholds
in correspondence of the faulty values.

In Figure 4 we illustrate the relationship between the
detection time and the amplitude of the fault, represented
by the rate c in the case of linear degrading faults occurring
at kf = 60 min. The parameter c is chosen in the
interval [0.02, 1]. As expected, as the amplitude of the fault
increases, the detection delay (kd − kf ) becomes smaller.

Let us now consider the case that multiple faults may
simultaneously affect the sensors in the sensor network. In
Figure 5 we can see the case of multiple linear degrading
faults occurring in sensors 18 and 20 belonging to the same
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Fig. 3. Comparison between sensor 18, affected by an
intermittent fault f(18)(t) = 1.5 · [u(k−kf18,1)−u(k−
kf18,2)], kf18,1 = 60 min, kf18,2 = 70 min, and the
healthy sensor 20.
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Fig. 4. Detection time vs. fault amplitude (c parameter)
for single linear degrading faults, kf = 60 min.

cluster. The considered faults are f(18)(k) = 0.06 · u(k −
kf18) occurring at kf18 = 60 min and f(20)(k) = 0.02 ·u(k−
kf20) occurring at time kf20 = 61 min.

Other scenarios have been considered in simulation show-
ing the effectiveness of the proposed method. They are
omitted due to space constraints.

7. CONCLUSIONS

In this paper, a distributed sensor fault diagnosis architec-
ture based on a clustering approach is proposed for IWSN
monitoring HVAC systems. Detectability and isolability
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Fig. 5. Comparison between sensor 18, affected by fault
f(18)(k) = 0.06 · u(k − kf18) at kf18 = 60 min and
sensor 20 affected by f(20)(k) = 0.02 · u(k − kf20).

properties are analyzed. Simulation results showing the
effectiveness of the proposed method are provided. As a
future work, we are going to consider the possible simul-
taneous presence of process and sensor faults.
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