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ABSTRACT: We propose a general high-throughput virtual
screening approach for the optical and electronic properties of
conjugated polymers. This approach makes use of the recently
developed xTB family of low-computational-cost density
functional tight-binding methods from Grimme and co-
workers, calibrated here to (Time-Dependent) Density
Functional Theory ((TD)DFT) data computed for a
representative diverse set of (co)polymers. Parameters
drawn from the resulting calibration using a linear model
can then be applied to the xTB derived results for new
polymers, thus generating near DFT-quality data with orders
of magnitude reduction in computational cost. As a result,
after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order
of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated
polymers show only a very minor variation when considering different conformers and that the results of high-throughput
screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

■ INTRODUCTION

High-throughput virtual screening (HTVS) has emerged as a
powerful tool across many areas of materials discovery.1 At its
core, it concerns the automated data-driven discovery of
promising candidate materials for a particular application. Low-
computational-cost techniques are applied in an initial
screening step to expose promising leads, which are then fed
through more accurate, higher-cost techniques to refine
computed properties.2 HTVS is applied to explore vast,
complex chemical spaces in order to accelerate the discovery
of promising materials, as well as to reduce experimental effort
spent on negative leads. Recent examples include the successful
screening of both organic and inorganic materials for
applications in areas including photovoltaics,3−8 light emitting
devices,9,10 information storage,11,12 gas storage,13−19 and
catalysis,20,21 often resulting in materials being synthesized
with record-breaking properties.10,18,19

Conjugated polymers are used as light absorbers and
electron donor layers in organic photovoltaics,22−26 the light-
emitting layer of organic light emitting diodes,27,28 electrodes
for batteries and supercapacitors,29,30 and photocatalysts for
proton reduction and overall water splitting.31−35 All of these
applications exploit a combination of the optoelectronic and/
or redox properties of conjugated polymers in combination
with their relatively facile tunability through copolymerization
and chemical modification, as well as the earth abundant
nature of their constituents (if not the catalysts used to make
them via Suzuki or Stille coupling). Applying HTVS

approaches to polymeric materials, however, remains challeng-
ing. Because of the size of the required oligomeric models,
calculations on polymers are inherently more computationally
costly than for small(er) molecules. Moreover, because of the
large numbers of potential monomer sequences, compositions,
and the potential for disorder along the polymer chains,
extremely large numbers of calculations can be required. For
example, constructing simple, ordered, two-component co-
polymers from a pool of 500 symmetric monomer units leads
to over 120 000 possible polymers. If three-component
copolymers are considered for the same monomer pool, the
number of possible polymer increases to more than 20 million.
Finally, most conjugated polymers form amorphous or poorly
crystalline solids, ruling out periodic calculations.
The fundamental optoelectronic properties of a material can

be understood36 in terms of (i) the optical gap (Δo), the
minimum energy to form a excited electron−hole pair bound
through their mutual electrostatic interaction (an exciton) and
below which the material is transparent to light, (ii) the
fundamental gap, the minimum energy to form a non-
interacting excited-electron and hole, (iii) the exciton binding
energy, the difference between the fundamental gap and optical
gap, a measure of how strong the excited electron and hole are
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bound in the exciton, and (iv) the ionization potential (IP)
and electron affinity (EA), the energy required to remove an
electron and released upon adding an electron to an oligomer,
respectively. IP and EA are commonly expressed in terms of
standard reduction potentials vs a standard electrode, e.g., the
standard hydrogen electrode (SHE). The fundamental gap,
finally, can be defined in terms of the difference between IP
and EA.
Because of the lack of periodicity, properties such as the

optical gap, IP, and EA of polymers are typically calculated for
a single oligomeric strand; a description that can be improved
upon by combining this description with embedding37−39 in a
dielectric continuum model to account for environmental
effects. In the latter case, one assumes that all intermolecular
interaction, be it with other polymer strands or a solvent or
electrolyte, can be described in terms of an (isotropic)
dielectric response. Generally, the underlying calculations are
performed using Density Functional Theory (DFT) or the
combination of DFT with GW theory, methods that, because
of their computational cost, are not ideally suited for HTVS.
Hutchison and co-workers pioneered the use of semiempirical
methods to perform high-throughput virtual screening for
properties of conjugated polymers.3,7,40 Semiempirical meth-
ods such as AM1,41 PM6,42 and PM743 approximate Hartree−
Fock or DFT by parametrizing integrals that are expensive to
calculate. This parametrization, combined with the use of
minimal basis-sets results, makes semiempirical calculations
orders of magnitude faster than DFT but potentially less
accurate.
In this paper, we introduce an approach for the fast and

accurate screening of the optoelectronic properties of
conjugated (co)polymers. Besides direct use for HTVS we
envisage that it can also be applied to generate data to train
machine-learning models. We demonstrate that, by combining
the recently developed xTB44 family of density functional tight-
binding methods with calibration using a linear model to
properties obtained through (Time-Dependent) DFT ((TD)-
DFT) calculations, one can not only rapidly screen polymers
but also achieve (TD)DFT-quality results. We predominantly
compare with results of (TD)DFT calculations using the
B3LYP density functional, since we previously showed that
calculations with this density functional yield accurate
potentials for conjugated polymers when compared to
experimental photoelectron spectroscopy data on polymeric
solids,39 while also predicting reasonable optical gap values.
The difference between our approach here and previous
work3,7,40,45 is 3-fold. Besides the use of xTB rather than
alternative semiempirical methods, we calculate adiabatic IP
and EA values directly rather than approximate them from
orbital energies, include an explicit description of the dielectric
environment of the polymers, and use an integrated family of
methods for both electronic and optical properties of the
polymers.

■ GENERAL WORKFLOW
Structure Library Generation. In this section, we give an

overview of the general workflow of the proposed high
throughput approach. As outlined in Figure 1, the process
involves multiple steps. Starting from a simplified molecular-
input line-entry system (SMILES)46 representation of each
monomer unit, linear polymer structures were generated using
the Supramolecular Toolkit (stk),47,48 a python library for the
assembly, structure generation and property calculation of

supramolecules, which takes base functionality from RDKit.49

stk allows for flexible copolymer formation from arbitrary
monomer units, control over monomer sequence within repeat
units, and the automatic generation of different structural
isomers where asymmetric monomer units (e.g., 2,5 linked
pyridine) are concerned. We restrict polymer chain length in
all cases to the approximate equivalent of 12 phenylene
monomer units. For example, a copolymer of thiophene and
phenylene contains 6 thiophene and 6 phenylene units (each
count as 1), a copolymer of fluorene and phenylene contains 4
fluorene and 4 phenylene units (phenylene counts as 1,
fluorene counts as 2), and a copolymer of fluorene and
carbazole contains 3 fluorene and 3 carbazole units (each
counts as 2), as shown in Figure 2b. Polymer models of this
length have previously been shown to provide approximately
converged properties with respect to oligomer length.39

Conformer Search Strategy. Linear copolymers generally
contain large numbers of rotatable bonds, and therefore a
conformer search on the initially generated polymer structures
is warranted. Here, we make use of a stochastic rather than
systematic approach, sampling the conformational space of the
polymer randomly using the Experimental-Torsion Distance
Geometry with additional basic knowledge (ETKDG)
method,50 where we typically generate 5000 conformers per
polymer. The resulting conformers are embedded in 3D space
and undergo a subsequent optimization and energy ranking
procedure using the Merck Molecular Force Field (MMFF)51

as implemented in RDKit. This second optimization step adds
little computational cost to the overall conformer search, as the
dominant contribution to computational cost stems from the
initial stochastic conformer generation and embedding.

Property Calibration. At this stage, we take a set of
around 40 simple copolymers that we will refer to as the
calibration set. This is a set of copolymer structures composed
of the monomer units shown in Figure 2a, for which the
optoelectronic properties span a wide range of values. Polymer
structures are generated and conformer searches are performed
on each. For each system in the calibration set, both (TD)DFT
and semiempirical calculations are performed on the lowest
energy conformer, according to MMFF, to compute ground
state geometries, ionization potentials (IP), electron affinities
(EA), and optical gaps (for specific computational details, see
below). This data is then used to fit linear models using Python
3.6 (numpy version 1.13.3) for IP, EA, and the optical gap;
calibrating properties calculated with the semiempirical

Figure 1. (a) Workflow of the calibration procedure, resulting in the
linear model used to calibrate semiempirically determined properties
(IP, EA, and optical gap (Δo)) to DFT-level calculations. (b)
Subsequent proposed high-throughput screening approach, where the
linear model produced in panel a is applied to new polymer structures
for optoelectronic property screening.
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method to (TD)DFT-derived data. The motivation behind
this approach is that the slopes and intercepts of this
calibration step can be used to provide DFT-quality data at
the cost of the associated semiempirical method. In turn, this
allows a much more rapid exploration of chemical space for
high-throughput screening of the intrinsic electronic properties
of polymer materials, with the relatively small initial computa-
tional investment required for calibration. Naturally, this
procedure relies on the semiempirical and DFT-derived data
being strongly linearly correlated.
(TD)DFT Calculations. For the (TD)DFT calculations, IPs

and EAs are computed using an adiabatic ΔDFT approach,
based around the DFT total energies of the neutral polymer
and its relaxed cationic/anionic counterparts. These calcu-

lations use the COSMO52,53 solvation model to approximate
the dielectric environment of a polymer chain (e.g., at a
polymer−water interface, εr 80.1, or within the polymer bulk,
εr 2.0). As in our previous work,39,54,55 the (TD)DFT
calculations use the B3LYP56−59 density functional and the
DZP60 basis-set. The absorption spectra of the polymer models
are approximated by vertical singlet excitations, calculated
using (TD)B3LYP/DZP. Here, we define the optical gap, i.e.,
the onset of light absorption, as the energy of the lowest
vertical excitation with nonzero oscillator strength. All
(TD)DFT calculations described until now have been
performed with Turbomole 7.01.61−63 Additional optical gap
calculations were performed using the CAM-B3LYP64 and LC-

Figure 2. (a) Repeat units of the polymers in the calibration set. (b) 3D geometries of the conformers of polymers with repeat units 8, 9, 23, 29, 32,
and 38 as illustration of the types of conformers encountered.
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ωHPBE65 range separated hybrid functionals in combination
with a 6-31G(d,p) basis set, all using Gaussian 16.66

Semiempirical Calculations. Though different semi-
empirical methods have been applied to conjugated polymers
previously,3,7,40 we make use of a recently developed density
functional tight binding approach (GFN-xTB)44 for structural
optimizations of the neutral polymers. For IP/EA calculations,
we use an extension of the parent GFN-xTB method, IPEA-
xTB,67 a differently parametrized variant of GFN-xTB for the
calculation of ionization potentials and electron affinities.
Essentially, IPEA-xTB performs vertical ΔSCF calculations,
and has previously been shown to result in typical errors for
computed vertical IP/EA values of 0.2−0.4 eV compared to
DFT in vacuum.67 For optical gaps, we use the tight binding
simplified Tamm−Dancoff approach (sTDA)68,69 applied to
orbitals and orbital eigenvalues obtained through xTB (sTDA-
xTB),70 an approach capable of ultrafast computation of entire
UV−vis absorption spectra. All GFN-xTB calculations were
performed using the xtb code,71 whereas the sTDA results
were obtained using the sTDA72 code. All GFN-xTB
calculations, but not sTDA calculations, used the generalized
Born surface area solvation model, with the default parameters
for benzene and water distributed with the xtb code. Finally,
for comparison we also perform analogous PM6,42 PM743

(MOPAC 2016),73 and ZINDO/S74 (Gaussian 16)66 calcu-
lations on the polymers to obtain IP and EA values.

■ RESULTS

In the following, we explore each stage of the high-throughput
screening methodology, assessing the accuracy of the
combination of the semiempirical calculation and linear
calibration model, robustness of the approach when applied
to various oligomer lengths and compositions, and how the
conformer searching strategy ultimately affects predicted
properties.
Calibration−Ionization Potential and Electron Affin-

ity. The IPs and EAs computed by IPEA-xTB and DFT/
B3LYP for the calibration set are shown in Figure 3. For each
dielectric environment, simple linear models are fitted to IP
and EA, yielding intercept and gradient values that can be

applied to calibrate semiempirical data to obtain B3LYP-
quality results. All calibration parameters resulting from the
regression models are given in Table 1 and Table S12. There is

a strong linear correlation between the B3LYP and IPEA-xTB
data, with R2 values of 0.99 for both dielectric environments.
For the aqueous environment, the mean absolute differences
(MAD) between IPEA-xTB and DFT data are 0.37 and 0.16 V
for IP and EA, respectively. After calibration using the linear
model, these are reduced to 0.08 and 0.06, respectively. The
considerable reduction in MAD after calibration demonstrates
that not only the trends between different copolymer
properties but also the absolute values predicted by DFT are
recovered well by calibrated IPEA-xTB. Furthermore, the same
calibration procedure for the nonpolar (benzene) environment
data results in MAD of 0.10 (IP) and 0.06 (EA) between
IPEA-xTB and DFT results, indicating that the calibration
quality holds across strongly differing dielectric environments
with high and low dielectric constants.
The above discussion was based on linear models where IP

and EA values are fitted separately. We repeated this
procedure, this time fitting the IP and EA results
simultaneously (Figure 3), a so-called global fit. Calibration
using models based on a global fit results in slightly higher

Figure 3. IP (up triangles) and EA (down triangles) values calculated for the copolymer calibration set using IPEA-xTB and B3LYP/DZP. In each
case, properties are computed within a low dielectric screening environment resembling benzene (left) and a high dielectric environment
resembling water (right). Two different fits to linear models are performed in each case. (i) Single fit performed for both IP and EA, with the
predictions of the resulting model and its 95% prediction bounds shown as dashed line and light blue shaded region, respectively. (ii) Two separate
fits are performed for IP and EA, with the predictions of the resulting models and its 95% confidence bounds shown as solid lines and blue shaded
region, respectively. All values are presented versus the standard hydrogen electrode potential (4.44 V).

Table 1. Parameters (slope and intercept) of the Linear
Models Applied to Calibrate xTB data (obtained with IPEA-
xTB and sTDA-xTB for IP/EA and optical gaps,
respectively) to DFT data, alongside Mean Absolute Errors
of Calibrated Semiempirical Results vs DFT (B3LYP)

Property Environment Slope Intercept
MAD after calibration

(eV)

IP Low dielectric 0.91 0.15 0.10
EA Low dielectric 0.92 −1.05 0.06
IP and EA Low dielectric 1.27 −0.32 0.18
IP High dielectric 0.88 −0.24 0.08
EA High dielectric 0.84 −0.75 0.06
IP and EA High dielectric 1.02 −0.41 0.10
Optical Gap Low dielectric 0.83 −0.21 0.13
Optical Gap High dielectric 0.85 −0.25 0.13
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MAD values for both dielectric environments (0.18 and 0.10 V
for the IP and EAs of low and high dielectric environments,
respectively). The small difference in performance for each
dielectric environment is reflected in the residual sum of
squares, which is lower for the calibration performed in the
high dielectric environment (1.23) than the low dielectric
environment (2.44), indicating that, although they perform
similarly, the global calibration procedure yields a better fit for
the former than the latter. Here, we see that the effect of
reducing the total number of parameters when moving from
two separate models for IP and EA to one global fit is smallest
in the high-dielectric range, indicating that a global fit may be
appropriate when considering high-dielectric environments.
For each linear model, 95% prediction bands indicate that

with new polymers not used for fitting, we can expect an
accuracy of ±0.25 V with respect to the B3LYP calculations.
Below, unless explicitly stated otherwise, all calibrated IPEA-
xTB data will have been obtained using separate models for IP
and EA.
We attempted analogous calibrations for PM6,42 PM7,43 and

ZINDO/S74 as examples of alternative semiempirical methods.
For PM6 and PM7, we calculated IP and EA both using ΔSCF
and by making the orbital approximation, while only applying
the latter for ZINDO/S. The orbital approximation is often
made in the literature,7,75 here one approximates IP and EA by
the negative of the HOMO and LUMO orbital energies of a
given neutral polymer. The results of these calibration attempts
can be found in the Supporting Information (Figures S15−
S17). In summary, PM6/PM7 ΔSCF calculations and PM6/
PM7/ZINDO/S calculations that make the orbital approx-
imation yield poorer results than IPEA-xTB data, before, and
importantly after, calibration (Table S12). However, we should
note that ZINDO/S performs similarly to IPEA-xTB for IP but
that IPEA-xTB offers significant improvements for EA (MAE
of 0.18 V for ZINDO/S, 0.06 V for IPEA-xTB in the low
dielectric case). The improved performance of IPEA-xTB over
PM7, PM6, and ZINDO/S is likely to be at least partly due to
the fact that IPEA-xTB was specifically developed to predict IP
and EA values.
Calibration−Optical gap. Figure 4 shows computed optical

gaps (defined as the vertical excitation to the lowest excited
state associated with nonzero oscillator strength) of the
calibration set. In analogy to the above, we fit a linear model
using data obtained with (TD)B3LYP and with sTDA-xTB.
For both dielectric environments, (TD)DFT computed optical

gaps are reproduced well by the combination of sTDA-xTB
and a calibrated linear model. At least part of the latter shift is
probably due to the fact that the (TD)B3LYP calculations
employed a dielectric screening model, something that is
unavailable for sTDA-xTB.
To investigate effects of self-interaction and the potential

overestimation of conjugation length by the B3LYP hybrid
functional, we also employ the range-separated hybrid
functional CAM-B3LYP, which has previously been shown to
result in consistent agreement between experimental and DFT
calculated optical gaps in conjugated polymer systems,
particularly when applied to different oligomer lengths.76

CAM-B3LYP indeed improves the fit quality relative to
B3LYP. However, the improvement is marginal and results in a
minor change in the slope and a largely rigid shift of the DFT
calculated absorption energies to higher values. This improve-
ment upon switching to a long-range corrected functional is
also exemplified when reperforming a fit against data obtained
with LC-ωHPBE. The improved fits are reflected in the
reduced MAD of noncalibrated sTDA-xTB optical gaps
compared to density functionals with improving asymptotic
behavior, which induces a more even treatment of polymers
with different conjugation lengths used in the calibration set
(i.e., those with meta-lined monomer units). Specifically, MAD
values of optical gaps computed for the calibration set in an
aqueous environment compared to B3LYP, CAM-B3LYP and
LC-ωHPBE are 0.72, 0.20, and 0.18 eV, respectively. Similarly,
the MADs for the nonpolar (benzene) environment are 0.83,
0.22, and 0.18 eV respectively. As we have seen above for IP
and EA, these MAD values are significantly reduced through
calibration (0.15, 0.10, and 0.08 eV in an aqueous environ-
ment, 0.15, 0.10, and 0.09 eV for the nonpolar (benzene)
environment for B3LYP, CAM-B3LYP, and LC-wHPBE,
respectively). The effect of going from B3LYP to CAM-
B3LYP/LC-ωHPBE can be attributed to the improved
asymptotic behavior of the exchange-correlation (electronic)
potentials of these density functionals relative to B3LYP,
reducing self-interaction error and subsequent over- delocaliza-
tion of π orbitals along the polymer backbones.77 As the
electronic potential in xTB displays the exact asymptotic
behavior,70 the better quality fit is obtained when a long-range
corrected density functional is expected.

Calibration and Polymer Length. Following the
observations described above, we further test the robustness
and versatility of calibration through a linear model by

Figure 4. Optical gap, defined as lowest computed vertical excitations with nonzero oscillator strength, values calculated for the copolymer
calibration set at sTDA-xTB and (TD)DFT level (using B3LYP, CAM-B3LYP, and LC-ωHPBE). In each case, properties are computed using a
dielectric screening model for benzene. Corresponding results for the water dielectric model can be found in the Supporting Information. Linear
model fits are performed in each case, with the predictions of the fitted model and the 95% prediction bounds shown as blue dashed lines and blue
solid lines, respectively.
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considering oligomers of varying length. To do so, we extract a
subset of polymer structures from the calibration set and
consider how IP, EA, and optical gap values vary with oligomer
length. The results are shown in Figures S5 and S6 of the
Supporting Information compared to the predictions of the
linear model and 95% prediction intervals from Figures 3 and
4. Considering IP and EA, we can see that the linear
relationship between IPEA-xTB and B3LYP holds for all
oligomer lengths, indicating that issues with self-interaction
observed in the optical gap calibration do not carry over to
those of IP and EA. This is consistent with the excellent quality
of fit observed in Figure 3 for IP and EA, despite the fact that
the calibration set contains meta-linked polymers with a
formally shorter conjugation length.
Now considering optical gaps, issues with self-interaction

become apparent for B3LYP. As the oligomer length decreases
from 12 to 8 and then to 4 equiv phenylene units, we see the
systematic increase in optical gap relative to sTDA-xTB with
decreasing oligomer length associated with the self-interaction

error. Moving to CAM-B3LYP, this effect is mitigated, though
not entirely eliminated, consistent with the improved (but not
exact) asymptotic behavior of the exchange-correlation
potential. Now considering LC-ωHPBE, the effect is further
reduced compared to CAM-B3LYP, in line with the previous
analysis of computed optical gaps in Figure 4.

Validation of the Approach. Here we demonstrate the
robustness of the calibration procedure by introducing
additional polymer systems and molecules not used during
fitting. Figure 5 shows the previous IP, EA, and optical gap
calibrations for the benzene dielectric screening model,
alongside results for this validation set. The validation set,
see Figure S3, includes polymers potentially relevant to organic
photovoltaics, e.g., those based on benzothiazole or thieno[3,2-
b]thiophene and polymers from the literature on photo-
catalytic water splitting, e.g., the carbon nitride polymer melon,
consisting of a linear chain of heptazine units linked by −NH−
bridges. It also includes some relevant nonpolymeric
molecules, e.g., the fullerene OPV acceptor material PCBM,

Figure 5. (a) IP (triangles)/EA (circles) and (b) optical gap (circles) values computed at IPEA-xTB/sTDA-xTB and B3LYP/DZP level for the
validation set (Figure S3). In each case, a dielectric screening model for benzene is used. The corresponding linear regression prediction line and
95% prediction bounds from Figures 3 and 4 are included. Analogous results obtained using a dielectric screening model for water can be found in
Figure S19 of the Supporting Information.

Figure 6. (a) IP and (b) EA values computed with IPEA-xTB and (c) optical gap values computed with sTDA-xTB for 5000 randomly generated
conformers of polymers shown in panel d. The energy of each conformer is expressed as a Boltzmann factor relative to the lowest energy conformer
obtained for each polymer model. In this case, each conformer structure has been optimized via GFN-xTB. Symbol colors on plots match the colors
of the polymer repeat units shown in panel d. Boltzmann factors are calculated at a temperature of 298 K.
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and even two nonconjugated polymers (fully reduced polyani-
line and poly(p-xylene)). Aside from application, a crucial
feature of the validation set is that it is composed of polymers
that are drastically different from those used for calibration. We
can see from Figure 5 that the properties of all systems in the
validation set follow the same linear trends as identified for the
calibration set and thus the calibration developed above is not
biased to the polymers in the calibration set, but can be applied
more generally to others. Differences between calibrated IPEA-
xTB/sTDA-xTB and B3LYP data reflect this, with MAD values
of 0.21 and 0.16 V for IP and EA and 0.17 eV for optical gaps
calculated using both B3LYP and CAM-B3LYP. For the water
dielectric screening model, MAD values of 0.16 and 0.14 V for
IP and EA and 0.16 eV for optical gaps calculated using both
B3LYP and CAM-B3LYP were obtained.
Sensitivity of Results to Conformational and Repeat Unit

Disorder. To investigate the sensitivity of calculated properties
to polymer conformation, we calculate IP, EA, and optical gaps
for 5000 randomly generated conformers of six selected
copolymers. Each conformer is optimized at GFN-xTB level,
with IP/EA and optical gaps calculated using IPEA-xTB and
sTDA-xTB, respectively. Figure 6 shows the properties
calculated for each conformer plotted against the calculated
Boltzmann factor relative to the lowest energy conformer.
None of the properties are very sensitive to the polymer
conformation, with the maximum variation of a given property
with respect to conformation around 0.1 (e)V, in line with
previous findings.78 Further, the maximum dispersion in
predicted properties lies at higher energy regions (low
Boltzmann factor), with far lower variation in IP, EA, and
optical gap in low-energy regions (approaching zero for IP and
EA and ∼0.05 eV for optical cap). This highlights that,
although an exhaustive search of all possible conformers of
each polymers may be desirable, it is not necessary to predict
the intrinsic electronic properties of a polymer accurately using
an oligomer model. In turn, this supports our use of a
stochastic approach coupled with a classical molecular
mechanics optimization for conformer generation, which
inherently may not necessarily be exhaustive.
As a secondary observation, comparing the distribution of

Boltzmann factors for each of the polymers, it appears that
differences between the different polymers can be linked to
different inter-repeat unit interactions. As an example, for
polyphenylene, we calculate a broad distribution of conformers
at different energies, while for polypyridine and polythiophene
we obtain a narrow distribution centered at high energy, with
far fewer conformers at low energy. This highlights a greater
thermodynamic preference for polypyridine and polythiophene
to assume particular structures, while polyphenylene and PPV
remain more conformationally flexible from an energetic point
of view. Finally, the lack of sensitivity of the computed
properties with respect to conformation appears to hold even
for two copolymers containing meta-linking 1,3-phenylene
groups, where changes in conformation can lead to larger
overall changes in geometry.
To test the effects of repeat unit disorder along polymer

chains, i.e., the fact that for asymmetric monomers there will be
different regioregular and regiorandom structures, we also
produced 100 conformers of 25 randomly generated isomers of
polymers comprising asymmetric repeat units, generating
analogous plots to Figure 6 (see Supporting Information
Figure S13). In the same vein as the above analysis,
introducing random disorder along polymer chains seems to

have little effect on this in all, with maximum deviations in IP,
EA, and optical gap around 0.2 (e)V, which reduces to around
0.05 (e)V for lower-energy structures.

Expected Screening Rate. Within the entire process, the
conformer-searching step is the clear bottleneck, predom-
inantly because 5000 conformers per polymer are generated,
but also because the full set of calculations with xTB on the
lowest energy conformer are extremely rapid (typically
resulting in <1 min of computation for a typical polymer
model on a typical 24 core desktop machine). As an illustrative
example, using such a setup we expect a screening rate of
approximately 500 polymers per day. However, because of the
observed relative insensitivity of IP, EA, and optical gap values
to conformational degrees of freedom (Figure 6), the number
of conformers sampled per polymer can be further reduced and
as a result the screening rate suggested above should be viewed
as a lower limit.

Perspectives. As demonstrated above, both IPEA-xTB and
sTDA-xTB perform well in terms of reproducing the ordering
of the IP, EA, and optical gap values predicted by (TD)B3LYP
for the polymers in the calibration set. After fitting to linear
models for EA, IP, and the optical gap, calibrated IPEA-xTB
and sTDA-xTB also accurately reproduce the corresponding
absolute values. More importantly, calibrated IPEA-xTB and
sTDA-xTB also perform well when reproducing the IP/EA and
optical gap values predicted by (TD)B3LYP for the polymers
in the validation set, which are not included in the fitting. This
ability to accurately predict properties of systems outside of the
calibration set is a critical feature for high-throughput virtual
screening, where one expects to screen orders of magnitude
more polymers than in the calibration set. Bearing in mind that
high-throughput approaches may resort to higher-level (DFT)
calculations after the identification of promising leads from a
low-cost approach, we show that this step could effectively be
avoided altogether as a result of the inherent accuracy of the
calibrated xTB data.
It is interesting to see that even if we performed our

calibration exclusively for conjugated polymers, the properties
of the nonconjugated polymers (fully reduced polyaniline and
poly(p-xylene)) and a nonpolymeric molecule (PCBM) in our
validation set are also reasonably well described. As such, the
calibrated models proposed here are likely reasonably trans-
ferrable and can, for example, be used to predict open-circuit
voltages and approximate energy conversions efficiencies using
the Scharber model79 for bulk-heterojunction organic solar
cells using a conjugated polymer as a donor and PCBM (or
other molecular materials) as an acceptor.
We have performed separate calibrations for the low and

high dielectric environment cases, relevant to organic photo-
voltaics/organic light emitting diodes and water splitting
photocatalysis, respectively. However, one would expect that
the same procedure would yield results of equal accuracy for
the case of intermediate dielectric permittivity values relevant
for polymers in contact with moderately polar solvents,
relevant to the applications of conjugated polymers in
batteries, as well as the characterization of their IP/EA values
using cyclic voltammetry.
The accuracy of the calibrated IPEA-xTB and sTDA-xTB

results is, at best, that of the DFT functional they were
calibrated to. Conceptually, it would be just as easy to calibrate
IPEA-xTB and sTDA-xTB to experimental data or results from
higher-level quantum chemical calculations. Our rationale for
calibrating to DFT rather than experimental data is that, at
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least for IP and EA, there is very limited experimental data to
calibrate to, especially in the presence of water. Similarly, there
is limited data from accurate quantum chemical calculations for
adiabatic potentials of polymers in the presence of a dielectric.
Following on from the above, our usage of the word

calibration is not meant to signify that (TD)DFT using a
particular functional inherently yields results that are more
accurate and as such we do not benchmark here the xTB family
of methods or any of the other semiempirical method
discussed above. Rather, the process of calibration and the
fitting of a linear model means that the semiempirical methods
can be used to predict the answer DFT would give for a
fraction of the computational cost. A good illustration of this is
the case of the optical gap, where, as discussed above, at least
the trend in optical gap values predicted by sTDA-xTB might
be more reliable than that predicted by (TD)B3LYP, as the
former captures the correct asymptotic behavior of the
electronic potential and the latter does not.
The observed relative insensitivity of the predicted IP, EA,

and optical gap values to conformational degrees of freedom is
an attractive property for high-throughput virtual screening for
two reasons. First, it implies that the effect of not finding the
true lowest energy conformer on the predicted optical and
electronic properties is only very minor and that hence a
minimal conformer search will suffice. Second, and perhaps
more importantly, it suggests that the effect of conformational
disorder on the predicted properties is likely equally minor.
Based on the good correlation between properties predicted by
the xTB family of methods and (TD)B3LYP, it stands to
reason that the observed insensitivity to conformational
degrees of freedom will translate to property predictions by
(TD)DFT, even if orders of magnitude more computationally
expensive to probe.

■ CONCLUSIONS
We demonstrate that the xTB family of density functional
tight-binding methods from Grimme and co-workers form a
powerful basis for a high-throughput screening method for the
optoelectronic properties of conjugated polymers. We show
that after fitting a linear model using a calibration set of IPEA/
sTDA-xTB and (TD)B3LYP results, one can use the former to
predict the latter at a fraction of the computational cost. We
also demonstrate that the (opto)electronic properties of
conjugated polymers are relatively insensitive to conforma-
tional degrees of freedom and that hence a minimal conformer
search will probably suffice as well as, perhaps more
importantly, that the effect of conformational disorder on the
predicted properties is likely minor.
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