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Modelling semi-attributable toxicity
in dual-agent phase I trials with
non-concurrent drug administration
Graham M. Wheeler,a Michael J. Sweeting,b Adrian P. Mander,a
Shing M. Leec and Ying Kuen K. Cheungc

In oncology, combinations of drugs are often used to improve treatment efficacy and/or reduce harmful side
effects. Dual-agent phase I clinical trials assess drug safety and aim to discover a maximum tolerated dose
combination via dose-escalation; cohorts of patients are given set doses of both drugs and monitored to see if
toxic reactions occur. Dose-escalation decisions for subsequent cohorts are based on the number and severity
of observed toxic reactions, and an escalation rule. In a combination trial, drugs may be administered con-
currently or non-concurrently over a treatment cycle. For two drugs given non-concurrently with overlapping
toxicities, toxicities occurring after administration of the first drug yet before administration of the second may
be attributed directly to the first drug, whereas toxicities occurring after both drugs have been given some present
ambiguity; toxicities may be attributable to the first drug only, the second drug only or the synergistic combi-
nation of both. We call this mixture of attributable and non-attributable toxicity semi-attributable toxicity. Most
published methods assume drugs are given concurrently, which may not be reflective of trials with non-concurrent
drug administration. We incorporate semi-attributable toxicity into Bayesian modelling for dual-agent phase I
trials with non-concurrent drug administration and compare the operating characteristics to an approach where
this detail is not considered. Simulations based on a trial for non-concurrent administration of intravesical Cabaz-
itaxel and Cisplatin in early-stage bladder cancer patients are presented for several scenarios and show that
including semi-attributable toxicity data reduces the number of patients given overly toxic combinations. © 2016
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

In oncology, phase I clinical trials are conducted to evaluate the toxicity profile of a novel agent. The aim
is to identify the maximum tolerated dose (MTD), defined to be the largest dose that is expected to cause
unacceptable toxicity in a specified proportion of patients [1]. The desired proportion is known in practice
as the target toxicity level (TTL) and is denoted here as Γ. What is considered as unacceptable toxicity
will depend on the drug, disease and patient population. In practice, unacceptable toxicity is known as
dose-limiting toxicity (DLT) and is usually restricted to the observation of one or more grade 3 or higher
toxic reactions, as defined by the National Cancer Institute’s Common Terminology Criteria for Adverse
Events [2]. For trials of cytotoxic drugs, such a dose is assumed to be the most promising for reducing
tumour size, with a constrained potential for inducing DLTs in patients.

Combinations of drugs are often required to effectively treat cancer patients. There may be synergis-
tic benefits in combining two or more cytostatic/cytotoxic agents, such as increasing the potential for
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reducing the size of tumours [3]. In addition, with more advanced molecularly targeted therapies, differ-
ent drugs that form a treatment regimen may be used to deal with cellular heterogeneity within tumours,
thus effectively combating tumours before they become resistant to drugs [4]. Combinations of
chemotherapeutic drugs may be administered concurrently or non-concurrently over a treatment cycle,
and such a choice is usually dependent on the disease being treated, the treatments being used, and the
biological mechanism via which the treatments act [5–9]. Administering treatments concurrently is often
undertaken in order to quickly kill tumour cells and/or prevent remaining tumour cells from developing
immunity to particular drugs and thus improve treatment efficacy with respect to disease-free survival
and overall survival [10]. However, whilst concurrent administration may be clinically efficacious, it
may lead to severe toxicities in patients because of the large doses and high dose-intensities that patients
receive. Administering drugs non-concurrently over a cycle may reduce the likelihood of patients expe-
riencing severe toxic reactions whilst still providing the clinical benefit of combining treatments to treat
tumours [3].

In a trial, clinicians are responsible for determining whether any observed toxicity is attributable to
one or more of the treatments, or a consequence of disease progression [11]. In a combination trial of two
known drugs, the issue of misattributing toxicity to an incorrect source (that is, attributing a treatment-
related toxicity to disease, or a disease-related toxicity to treatment) is less likely, because both drugs have
been studied previously and their toxicity profiles are reasonably well known. However, in dual-agent
phase I trials of two drugs with similar toxicity profiles, there is the issue of drug-related non-attributable
(NA) toxicity (for the remainder of this work, toxicity is that caused by the experimental agents, and
disease-related toxicity is ignored). In single-agent trials where only one drug is escalated and no other
therapies are administered, a DLT observed in a patient is due to the dose of that particular drug, that is,
the DLT is attributable to the drug. In dual-agent trials however, there possibly exists further ambiguity.
Because two drugs are being administered, depending on the trial context, it is possible that one cannot
attribute a DLT to a particular agent under investigation. One may say that such a DLT is NA. The
situation may be even more complex than this; there is the possibility of a synergistic interaction between
both drugs that leads to toxicity even though each drug given alone is deemed safe [12]. Yin and Yuan
[13] considered modelling the four possible toxicity outcomes (DLT/no DLT due to drug A coupled with
DLT/no DLT due to drug B) via a contingency table approach, which can be used when there are non-
overlapping toxicities for drugs A and B. When there are overlapping toxicities and toxicities that cannot
be attributed to specific drugs, the outcomes can be collapsed into a simpler DLT/no DLT outcome for
each combination.

Consider an example trial of two drugs A and B, again with overlapping toxicities, where the aim is
to identify the MTD combination with respect to the occurrence of first-cycle DLTs that are drug related
(i.e. we do not consider disease-related toxicity). In such a trial, drug A is administered at the start of the
treatment cycle, and drug B is administered at a much later time point within the cycle (e.g. several days
later) if and only if the patient does not experience a DLT after receiving drug A. Any DLT observed before
drug B is administered is attributable to drug A only. However, after a patient receives drug B, any observed
toxicity may be due to drug A (in the form of delayed toxicity), drug B or a synergistic combination of
both drug A and drug B, as mentioned previously. Such toxicity may be regarded as NA. This example trial
involves attributable and NA toxicity occurring; we define this mixture of attributable and NA toxicity
as semi-attributable (SA) toxicity. By incorporating details of when doses are administered and whether
a DLT was observed before or after drug B was given, if at all, we may be able to better determine
whether drug A and/or drug B should be escalated and ideally avoid early onset toxicities from drug A
alone, meaning more patients are likely to receive the full dose combination that is believed to be more
efficacious than each treatment given as monotherapies.

The inclusion of non-concurrent drug administration has yet to be considered in statistical–
methodological research for phase I trials, and no novel designs for combination trials have incorporated
this detail. Therefore, we propose methodology for designing a dual-agent phase I trial of treatments
with overlapping toxicities, where it is not clear whether drug A, drug B or both drugs are respon-
sible for causing toxicities, and these treatments are given non-concurrently. Section 2 describes a
real-life dual-agent phase I trial that motivates this work, and Section 3 presents a method for a trial
where the doses of both drugs can be adapted between patients in order to estimate one or more MTD
combinations. Section 4 details a simulation study that compares our work with a design that assumes
drugs are being given concurrently, and Section 5 describes the results with respect to both accuracy
in MTD combination recommendations and chance of dosing patients at unsafe dose combinations. We
conclude this paper with a summary of our work, including limitations and areas of further research.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016
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2. Motivational trial

The work in this paper is motivated by a submitted protocol for a dual-agent phase I dose-escalation
trial featuring the non-concurrent administration of Cabazitaxel (A) and Cisplatin (B) intravesically (via
a catheter into the bladder) in patients diagnosed with recurrent high-risk non-muscle invasive bladder
cancer (at stages tumour in situ, Ta or T1) who have previously received standard treatment of intravesical
Bacillus Calmette–Guérin (Clinical Trials.gov Identifier NCT02202772). Both drugs have similar toxi-
cities associated with intravenous administration (urinary tract infections, renal problems and nausea),
and it is believed that this will also be the case for intravesical administration. Treatment cycles are
weekly (7 days), with Cabazitaxel being administered to patients on the morning of day 1 and Cisplatin
being administered on the morning of day 5 only if no DLT attributable to Cabazitaxel is observed in
the patient before the administration of Cisplatin. Therefore, any DLT in the first cycle occurring before
Cisplatin is administered is due to Cabazitaxel, whereas a DLT occurring after the administration of
Cisplatin may be due to Cabazitaxel alone, Cisplatin alone or a combination of the two. Patients will
receive a maximum of 6 weeks of treatment. A 2000 mg/100 ml dose of gemcitabine is also adminis-
tered to patients during the treatment cycle (on the morning of day 3), which has previously been shown
to be well tolerated when given intravesically at this concentration to patients with non-muscle invasive
bladder cancer [14] (we do not consider modelling the fixed dose of gemcitabine in our work, but if
we were to, our modelling approach would be amended accordingly; see discussion). Initially, the tox-
icity profile of a 2 × 4 dose combination grid formed by two dose levels of Cabazitaxel (

{
a1, a2

}
=

{2.5, 5}mg/100ml) and four dose levels of Cisplatin (
{

b1, b2, b3, b4

}
= {0, 66, 80, 100}mg/100ml) was

to be investigated. However, this was later amended to be five dose combinations from this set of eight({(
a1, b1

)
,
(
a2, b1

)
,
(
a2, b2

)
,
(
a2, b3

)
,
(
a2, b4

)})
because of sample size limitations. The definition of

DLT is deemed to be the observation of excessive toxicity (at least one grade 3 or grade 4 toxicity as
defined per the National Cancer Institute’s Common Terminology Criteria for Adverse Events) in the first
cycle (week) of treatment. In summary, the investigators wish to identify the dose combination that, when
given in the schedule stated, has an estimated probability of DLT over a cycle close to 0.25. Using this
as a motivational study, we consider how a dual-agent dose-escalation study with non-concurrent drug
administration can be designed so that exploration of a full dose-toxicity surface, whilst reducing dosing
at overly toxic combinations, can be achieved and compare its operating characteristics to an existing
approach that does not account for SA toxicity.

3. Methods

We present the methodology proposed to incorporate SA toxicity for dual-agent phase I dose-escalation
trials of non-concurrently administered drugs, as well as the approach where such detail is omitted (an
entirely NA approach).

3.1. Semi-attributable toxicity

Consider a dual-agent trial where aj denotes the jth dose level of drug A {j = 1,… , J} and bk denotes the
kth dose level of drug B {k = 1,… ,K}. For each patient, drug A is administered at time 0, and drug B is
administered at pre-planned time tB provided no DLT has been observed in the patient before time tB. An
entire cycle is observed for the time window [0,T], with tB < T (Figure 1). To incorporate the concept
of SA toxicity as defined in Section 1, let Yi be a trinary outcome variable for patient i such that

Figure 1. Timeline detailing administration of agents A and B for a single patient over time interval [0,T]. DLT,
dose-limiting toxicity.
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Yi =
⎧⎪⎨⎪⎩

0 if patient i does not have a DLT in time interval [0,T]
1 if patient i has a DLT in time interval

[
0, tB

)
2 if patient i has a DLT in time interval

[
tB,T

]
.

(1)

Let 𝜋tB
be a function such that 𝜋tB

(aj; tB,𝝍) denotes P
(
Yi = 1 | aj; tB,𝝍

)
, the probability of observing a

DLT before time tB when drug A is given alone conditional on dose level aj and vector of model parameters
𝝍 . The following conditions must hold for 𝜋tB

:

(i) 𝜋tB
(0; tB,𝝍) = 0 and

(ii) 𝜋tB
(aj+1; tB,𝝍) ⩾ 𝜋tB

(
aj; tB,𝝍

)
.

Condition (ii) states the assumption of monotonicity used in dose-escalation studies, that is, holding tB
and parameters 𝝍 fixed, the probability of DLT is non-decreasing as the dose of drug A increases. Let
𝜋T (aj, bk;𝜽) be the probability of DLT at combination (aj, bk) over time interval [0,T], that is, P(Yi =
1 | aj; tB,𝜽) + P(Yi = 2 | aj, bk; tB,𝜽). Here, 𝜽 denotes the vector of model parameters for 𝜋T , with 𝜋T
satisfying the following conditions:

(iii) 𝜋T (0, 0;𝜽) = 0,
(iv) 𝜋T (aj, bk;𝜽) ⩾ 𝜋tB

(
aj; tB,𝝍

)
, for all bk ⩾ 0 and 0 ⩽ tB ⩽ T ,

(v) 𝜋T (aj+1, bk;𝜽) ⩾ 𝜋T

(
aj, bk;𝜽

)
and

(vi) 𝜋T (aj, bk+1;𝜽) ⩾ 𝜋T

(
aj, bk;𝜽

)
.

Condition (iv) states that the addition of any dose of another agent (i.e. drug B), whilst the dose of drug
A is held constant will give a combination with probability of DLT over time window [0,T] greater or
equal to that of drug A given alone when observed over time window

[
0, tB

)
. Conditions (v) and (vi) are

the assumption of monotonicity (condition (ii)) for drug A and drug B, respectively. Let 𝜋T = 1 − 𝜋T .
Therefore, 𝜋T

(
aj, bk;𝜽

)
= P

(
Yi = 0 | aj, bk;𝜽

)
, the probability of not observing a DLT in the time period

[0,T] at dose combination
(
aj, bk

)
. Within this context, one may assume that 𝜋tB

and 𝜋T are related in
some way. One simplifying assumption is that 𝜋tB

is linearly related to 𝜋T , that is, 𝜋tB
= 𝜆𝜋T . Under this

assumption, 𝝍 = {𝜽, 𝜆}. Therefore,

𝜋tB

(
aj; tB,𝝍

)
= 𝜋tB

(
aj; tB,𝜽, 𝜆

)
= 𝜆𝜋T

(
aj, 0;𝜽

)
, (2)

where 0 ⩽ 𝜆 < 1 is a fraction that can be estimated in the model, or fixed at tB
T

, say. Although it is
unrealistic that 𝜆 will ever equal 1, this scenario may be understood as observing no DLTs after time
tB due to drug A, with drug B never being administered in the first cycle. If we were permitted to vary tB
in our trial, then such a situation would be easier to interpret. However, we assume for this trial that tB
is fixed.

The previous assumption relating 𝜋tB
to 𝜋T means that only a choice of probability function for 𝜋T is

required, and thus, 𝜋T shares the same parameter vector 𝜽 with 𝜋tB
, but with 𝜋tB

also dependent on 𝜆.
This is valid because 𝜋T (aj, 0;𝜽) is the probability of DLT over the interval [0,T] solely due to drug A
and thus must be greater than or equal to 𝜋tB

(aj;𝝍), which satisfies condition (ii) previously. Under this
specification, the probabilities relating to each outcome (Yi = 0, 1, or 2) being observed are modelled
as follows:

P
(
Yi = 0 | aj, bk;𝝍

)
= 𝜋T

(
aj, bk;𝜽

)
, (3)

P
(
Yi = 1 | aj; tB,𝝍

)
= 𝜋tB

(
aj;𝝍

)
= 𝜆𝜋T

(
aj, 0;𝜽

)
and (4)

P
(
Yi = 2 | aj, bk; tB,𝝍

)
= 𝜋T

(
aj, bk;𝜽

)
− 𝜆𝜋T

(
aj, 0;𝜽

)
. (5)

It can easily be shown that 𝜋T

(
aj, bk;𝜽

)
− 𝜆𝜋T

(
aj, 0;𝜽

)
is non-negative. Because 0 ⩽ 𝜆 < 1, under

the assumption of monotonicity, 𝜋T

(
aj, bk;𝜽

)
⩾ 𝜋T

(
aj, 0;𝜽

)
> 𝜆𝜋T

(
aj, 0;𝜽

)
. Given the probability

function choices stated previously, the outcome Yi for patient i has a categorical distribution with the
following probabilities:

Yi ∼ Cat
(
3, 𝜋T (a(i), b(i);𝜽) , 𝜆𝜋T (a(i), 0;𝜽) , 𝜋T (a(i), b(i);𝜽) − 𝜆𝜋T (a(i), 0;𝜽)

)
, (6)
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where a(i) denotes the dose of drug A given to patient i and b(i) denotes the dose of drug B given to patient
i (if at all). Therefore, the likelihood contribution of patient i to the overall likelihood is as follows:

L
(
𝝍 | Yi, a(i), b(i)

)
=𝜋T (a(i), b(i);𝜽)[Yi=0]𝜋tB

(a(i);𝝍)[Yi=1] {𝜋tB
(a(i);𝝍) − 𝜋T (a(i), b(i);𝜽)

}[Yi=2]

=
{

1 − 𝜋T (a(i), b(i);𝜽)
}[Yi=0] {

𝜆𝜋T (a(i), 0;𝜽)
}[Yi=1]

×
{
𝜋T (a(i), b(i);𝜽) − 𝜆𝜋T (a(i), 0;𝜽)

}[Yi=2]
,

(7)

where [Yi = y] is the Iverson bracket, which takes value 1 if Yi = y, where y ∈ {0, 1, 2}, and 0 otherwise.
Therefore, after observing n patients, the overall likelihood is L(𝝍 |Dn) =

∏n
i=1 L(𝝍 |Yi, a(i), b(i)), where

Dn denotes the set of all accrued trial data, that is, dose combinations (a(i), b(i)) and binary DLT responses
Yi, given to patients i = {1,… , n}. Using Bayes’ theorem, with prior distribution f (𝝍) for parameter
vector 𝝍 , the posterior distribution of 𝝍 , denoted g

(
𝝍 |Dn

)
, is as follows:

g(𝝍 |Dn) =
f (𝝍)L(𝝍 |Dn)

∫𝚿 f (𝝍)L(𝝍 |Dn) d𝝍
. (8)

Once g
(
𝝍 |Dn

)
has been calculated, the posterior distributions for parameters contained in 𝝍 can be

used to compute the posterior distribution of 𝜋T

(
aj, bk;𝜽

)
, the probability of DLT at dose combination

(aj, bk) over the interval [0,T], for all dose combinations. Because the investigators wish to identify the
combination (a(∗), b(∗)) such that

(a(∗), b(∗)) = arg min
(aj,bk)

||𝜋T

(
aj, bk;𝜽

)
− Γ||, (9)

the aforementioned metric can be used to determine the next dose-escalation step from patient n to patient
n+1. Specifically, letN(a(n), b(n)) be the neighbourhood of dose combination (a(n), b(n)), that is, all dose
combinations in the dose combination grid immediately adjacent (vertically, horizontally and diagonally)
to the combination given to patient n. Then the dose combination for patient n + 1 may be expressed
mathematically as follows:

(a(n + 1), b(n + 1)) = arg min
(aj,bk)∈N(a(n),b(n))

||𝜋T

(
aj, bk;𝜽,Dn

)
− Γ||, (10)

where 𝜋T (aj, bk;𝜽) could be chosen to be, say, the posterior median of 𝜋T (aj, bk;𝜽). In the case where
two dose combinations are equally close to the TTL on the probability scale, one may consider choosing
the combination with the smallest dose aj of drug A, because this minimizes 𝜋T (aj;𝝍) and we ideally
want patients to receive both drugs in such a trial, although other approaches proposed by investigators
may be considered. The constraint of dosing in the neighbourhood of the previously administered dose
combination can also be dropped if investigators are happy to make larger changes to doses of each agent
than one-level increase/decreases.

3.2. Comparison to non-attributable toxicity

The previous model construction describes the idea of SA toxicity when drugs are administered non-
concurrently. This may be compared with the simpler setting where differentiation between whether a
DLT observed in patient i occurred before tB or afterwards is not considered. Under such a scenario, only
the fact of whether a DLT occurred or not within the interval [0,T], that is, whether Yi ≠ 0 or whether
Yi = 0, would be utilized. Furthermore, even if a DLT occurs in patient i before tB and thus drug B is not
administered, b(i) is recorded as the dose that would have been given. This is simply referred to as the NA
approach. Therefore, the NA approach only considers whether a DLT occurred or not at a combination
and does not incorporate any information regarding which agent(s) caused toxicity, or whether drug B
was given or not. The likelihood under the NA approach for patient i is as follows:

L(𝜽 |Yi, a(i), b(i)) =
{

1 − 𝜋T (a(i), b(i);𝜽)
}[Yi=0] {

𝜋T (a(i), b(i);𝜽)
}[Yi≠0]

, (11)

where a(i) and b(i) are the doses of drugs A and B that patient i is due to receive and the prior distribu-
tion h(𝜽) on 𝜽 is used to obtain posterior distribution g

(
𝜽 |Dn

)
for parameter vector 𝜽. The likelihood

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016
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Table I. Likelihood contribution of patient i dependent on modelling of toxicity and dose-
limiting toxicity outcome.

Method
Response of patient i

Yi = 0 Yi = 1 Yi = 2

Semi-attributable 1 − 𝜋T (a(i), b(i);𝜽) 𝜆𝜋T (a(i), 0;𝜽) 𝜋T (a(i), b(i);𝜽) − 𝜆𝜋T (a(i), 0;𝜽)

Yi = 0 Yi ≠ 0
Non-attributable 1 − 𝜋T (a(i), b(i);𝜽) 𝜋T (a(i), b(i);𝜽)

contributions under the SA and NA approaches for patient i given DLT outcome Yi = y for y = {0, 1, 2}
are given in Table I.

In the case where multiple dose combinations are equally close to the TTL on the probability scale
(call this set C), one may use weighted randomization to choose a dose combination [15], where each
dose combination selection probability is weighted by n−1

c , the inverse of the number of patients treated
at each candidate combination c ∈ C, that is,

P
(
Next cohort given

(
aj, bk

) | (aj, bk

)
∈ C

)
=

n−1
jk∑

c∈C n−1
c

. (12)

3.3. Dose-escalation algorithm

Here, we present a summary of the dose-escalation algorithm to be used in the simulation study. Assume
there are a maximum of N patients available, who will be enrolled in cohorts of size c such that N is
divisible by c. Based on the previous discussion and methodology outlined, dose escalation/de-escalation
proceeds as follows:

(1) For n = 0, dose the first cohort of c patients at a1.

(a) For each patient i ∈ {1,… , c}, if patient i does not experience a DLT by time tB, dose patient
i at b(i) = b1. Otherwise, do not administer drug B. Observe Y1,… ,Yc and obtain Dc.

(b) Given prior distribution f (𝝍) for 𝝍 , calculate g
(
𝝍 |Dc

)
and thus posterior distribution of

𝜋T

(
a1, b1;𝜽

)
.

(c) If P
(
𝜋T

(
a1, b1;𝜽

)
> Γ

)
> 𝜏, where 𝜏 is some upper threshold, stop the trial. Otherwise, set

n = c.

(2) For n ⩽ N,

(a) Let N(a(n), b(n)) be the set of all neighbouring dose combinations to combination
(a(n), b(n)), the combination prescribed to the previous cohort (including the nth person). For
all (aj, bk) ∈ N(a(n), b(n)), calculate the posterior probability distribution of 𝜋T (aj, bk;𝜽).

(b) Identify the dose combination (a(∗), b(∗)) ∈ N(a(n), b(n)) such that for target probability of
toxicity Γ,

(a(∗), b(∗)) = arg min
(aj,bk)∈N(a(n),b(n))

||𝜋T

(
aj, bk;𝜽

)
− Γ||, (13)

where 𝜋T (aj, bk;𝜽) is the posterior median of the distribution 𝜋T (aj, bk;𝜽). If there exists
more than one such combination that minimizes the aforementioned function, choose the
combination that also minimizes 𝜋T (aj;𝝍) (for SA) or use weighted randomization (for NA,
see Subsection 3.2).

(c) Administer dose level a(∗) of drug A to patients i ∈ {n + 1,… , n + c}. If patient i does not
experience a DLT by time tB, administer dose level b(∗) of drug B to patient i. Otherwise,
do not administer drug B. Observe Yn+1,… ,Yn+c and update Dn to Dn+c.

(d) Obtain the posterior distribution g
(
𝝍 |Dn+c

)
. Set n = n + c.

(e) If P
(
𝜋T

(
a1, b1;𝜽

)
> Γ

)
> 𝜏, stop the trial. Otherwise, proceed.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016
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(3) If n = N, the recommended dose combinations at the end of the trial, M, are those that have an
estimated posterior median probability of DLT (using the posterior distributions obtained in step
(2d)) over the interval [0,T] within [Γ − 𝜖,Γ + 𝜖], for some small 𝜖, and have previously been
experimented on during the trial, that is,

M =
{(

aj, bk

)
∈ DN ∶ ||𝜋T (aj, bk;𝜽) − Γ|| ⩽ 𝜖

}
. (14)

Trials that are terminated early for safety concerns or have dose combinations that are suitably
close to the TTL but have not been experimented at will not recommend an MTD.

4. Simulation study

A simulation study to evaluate the performance of modelling SA toxicity versus NA toxicity in a trial
with non-concurrent administration of Cabazitaxel (A) and Cisplatin (B), as discussed in Section 2, was
conducted, with a TTL of 0.25. All methods were compared on the basis of the percentage of patients
that received dose combinations with true DLT probabilities within the interval [Γ−𝜖,Γ+𝜖], the percent-
age of patients that received dose combinations with true DLT probabilities much higher than the TTL
(commonly known as overdoses) and the distribution of MTD recommendations at the end of the trial.
We also consider the mean bias and root mean-squared error (RMSE) for each model parameter 𝜈 ∈ 𝜽

and define each of these measures as follows:

Mean Bias = 1|A| ∑
l∈A

(
𝜈̂l − 𝜈

)
and RMSE =

√
1|A| ∑

l∈A

(
𝜈̂l − 𝜈

)2
, (15)

where 𝜈̂l is the the posterior median estimate of parameter 𝜈 at the end of the lth trial, A is the set of all
trials that did not stop early and |A| is the size of A. We limit these calculations to the set A because
trials that do stop early do not yield any MTD combination estimates and parameter estimates are biased
towards larger values; the worth of mean bias and RMSE metrics lies in how close parameter estimates
(and thus the estimated MTD contour) are to the truth for each scenario.

4.1. Dose-toxicity model

To model the probability of DLT 𝜋T (aj, bk;𝜽), we used the Farlie–Gumbel–Morgenstern copula model
[16], which has been previously investigated by Yin and Yuan [13], where

𝜋T

(
aj, bk;𝜽

)
= 1 −

(
1 − p𝛼

j

)(
1 − q𝛽k

)
+ p𝛼j

(
1 − p𝛼j

)
q𝛽k

(
1 − q𝛽k

) exp(𝛾) − 1

exp(𝛾) + 1
, (16)

which yields

𝜋tB

(
aj; tB,𝝍

)
= 𝜆𝜋T

(
aj, 0;𝜽

)
= 𝜆p𝛼j , (17)

where pj and qk are skeleton probabilities of DLT for actual dose levels aj and bk, respectively, when
administered as monotherapies, 𝛼 and 𝛽 are non-negative marginal parameters, 𝛾 ∈ R is an interaction
parameter and 0 ⩽ 𝜆 < 1. Therefore, 𝝍 = {𝛼, 𝛽, 𝛾, 𝜆} and 𝜽 = {𝛼, 𝛽, 𝛾}. This model was chosen for
its ability to model antagonistic interaction (when 𝛾 < 0), synergistic interaction (when 𝛾 > 0) and
independent action/no interaction (when 𝛾 = 0), and also for its parsimony, although other models may
be considered [12, 17].

For modelling of SA toxicity, 𝜆 may be treated as an additional parameter in the model. A sensible
choice of prior distribution for 𝜆 is as follows:

𝜆 ∼
⎧⎪⎨⎪⎩

Beta
(

tB
T−tB

, 1
)

if tB ⩾ T − tB

Beta
(

1, T−tB
tB

)
if tB < T − tB

. (18)
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This choice is recommended because the median of 𝜆 will be close to tB
T

, the mean of 𝜆, a sensible prior
guess of 𝜆. Furthermore, such a prior is invariant to the time units that define T . Under such a prior, we
expect 𝜆 >

tB
T

if the toxicities are more likely to occur for drug A only, and 𝜆 <
tB
T

if there are more
toxicities observed after time tB.

4.2. Priors

We consider dose-toxicity scenarios over a 4 × 4 dose combination grid formed by {a1, a2, a3, a4} and
{b1, b2, b3, b4}, with marginal prior probabilities of DLT

{
p1, p2, p3, p4

}
= {0.10, 0.15, 0.20, 0.25} and{

q1, q2, q3, q4

}
= {0.06, 0.12, 0.18, 0.25}. Although larger than the dose combination grid used in the

trial discussed in Section 2, this extended grid allows a better assessment of operating characteristics over
a wide range of scenarios, particularly those that feature dose combinations with high DLT probabilities.
The largest doses of each drug have prior probability of DLT equal to the TTL of 0.25, as it is often
the case that the largest dose level of a single drug in a dual-agent trial is the single-agent MTD. For
parameters of the model in equation 16, uniform priors over the interval [0, 2] are proposed for 𝛼 and
𝛽 (similar to those of Yin and Yuan [13]) and a normal prior with mean 0 and variance 10 is proposed
for 𝛾 . This is so that a priori, the means (and medians) of the marginal parameters are equal to 1, and
the mean (and median) of the interaction parameter equal to 0 indicates an assumption of non-interaction
between the two drugs. Furthermore, given the marginal prior probabilities pj and qk stated previously,
vague prior probability distributions for marginal and joint probabilities of DLT for each drug when given
alone and in combination are obtained. In practice, marginal prior distributions may be elicited from
clinicians based on monotherapy trials.

A cycle of treatment is considered to be 1 week; therefore, for the SA approach, T = 7 and tB = 4,
because we have 4 days elapsing between the administration of Cabazitaxel and Cisplatin. Simulations
were performed with 𝜆 ∼ 𝛽

(
4
3
, 1

)
so that E(𝜆) = tB

T
= 0.571 and the prior median of 𝜆 equals 0.595.

For NA and SA approaches, the threshold 𝜏 for determining whether the trial is terminated early is 0.80;
as well as being a sensible choice, this threshold also corresponds to terminating the trial early should
two DLTs be observed in the first cohort of two patients, regardless of when they occur in the observable
interval of [0,T]. MTD selection at the end of the trial was determined using the rules outlined in Subsec-
tion 3.3 with 𝜖 = 0.025. This was chosen in order to limit MTD selection to a 5% window of probability
around the TTL and is also based on other works that implement a similar constraint [15], although the
choice of 𝜖 may be related to the number of dose combinations and also the belief of how flat/steep the
dose-toxicity surface is, based on previous data and expert opinion.

4.3. Scenarios

Using the model in Subsection 4.1 and prior distributions specified in Subsection 4.2, we generated six
true dose-toxicity scenarios for our simulation study. The true probabilities of DLT over [0,T] per com-
bination under each scenario are specified in Table II, and the underlying dose-toxicity surfaces with true
parameter values and MTD contour are shown in Figure 2. Scenario 1 is generated by using the prior
means/medians of each parameter. Under scenario 2, the MTD is the largest dose combination, with all
other combinations deemed safe. Under scenario 3, there are two MTD combinations and one combina-
tion above the TTL; furthermore, the dose-toxicity surface is slightly asymmetric. Scenarios 4, 5 and 6
show very asymmetric dose-toxicity surfaces: scenario 4 has several combinations on or near the MTD
contour, with higher doses of drug A more toxic than higher doses of drug B; scenario 5 is similar to sce-
nario 4, but with no interaction and one MTD combination at

(
a1, b2

)
; under scenario 6, the increase in

toxicity is much faster as drug B is escalated relative to when drug A is escalated, and half of the 16 dose
combinations have a probability of DLT of 0.40 or larger.

We also require true probabilities of DLT for 𝜋tB
(aj;𝝍) = 𝜆𝜋T (aj, 0;𝜽) in order to conduct our sim-

ulation study. All that is required is specification of the true underlying value of 𝜆, denoted 𝜆TR. In this
simulation study, with tB = 4 and T = 7, the previous scenarios are investigated with 𝜆TR equal to
either 2

14
, 8

14
or 13

14
. Under the SA approach where the prior mean of 𝜆 is 8

14
, setting 𝜆TR = 2

14
represents

a scenario with a lower-than-expected probability of DLT in the time interval
[
0, tB

]
. Similarly, setting

𝜆TR = 8
14

represents a scenario with an as-expected probability of DLT in the time interval
[
0, tB

]
, and

setting 𝜆TR = 13
14

represents a scenario with a higher-than-expected probability of DLT in the time inter-
val

[
0, tB

]
. Table III displays the different true scenarios for 𝜋tB

(aj; tB,𝝍) under each of the scenarios for
𝜋T given in Table II, and the varying values of 𝜆TR.
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Table II. True combination probabilities of DLT over interval [0,T] for
scenarios 1–6.

Dose level of B
Dose level of A

1 2 3 4 1 2 3 4

Scenario 1 Scenario 2
4 0.32 0.36 0.40 0.44 0.17 0.19 0.22 0.25
3 0.26 0.30 0.34 0.38 0.12 0.15 0.17 0.21
2 0.21 0.25 0.30 0.34 0.08 0.11 0.14 0.18
1 0.15 0.20 0.25 0.30 0.06 0.08 0.12 0.15

Scenario 3 Scenario 4
4 0.18 0.22 0.25 0.29 0.27 0.32 0.36 0.41
3 0.13 0.17 0.21 0.25 0.23 0.28 0.33 0.38
2 0.10 0.14 0.18 0.22 0.20 0.25 0.31 0.36
1 0.08 0.11 0.16 0.20 0.17 0.23 0.29 0.34

Scenario 5 Scenario 6
4 0.33 0.39 0.44 0.48 0.46 0.48 0.51 0.53
3 0.29 0.34 0.40 0.45 0.39 0.41 0.43 0.46
2 0.25 0.31 0.37 0.42 0.31 0.34 0.36 0.40
1 0.22 0.28 0.34 0.39 0.22 0.25 0.28 0.31

MTD combinations shown in bold (those within a 5% window around the target
toxicity level (Γ = 0.25)).
MTD, maximum tolerated dose; DLT, dose-limiting toxicity.

Figure 2. Contour plots of true dose-toxicity surfaces compared with marginal prior beliefs (p and q) for scenarios
1–6. Red line indicates maximum tolerated dose contour.

4.4. Computational specifications

For each scenario considered (Subsection 4.3), 1000 simulations were run for a maximum of 60 patients,
who were dosed in cohorts of two patients. Simulations were conducted in the software package R [18]
and OpenBUGS v3.2.2 [19] via the BRugs package [20]. We use a Gibbs sampling MCMC approach
to estimate the posterior distributions of all relevant model parameters, which are used to determine the
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Table III. True marginal probabilities of dose-limiting toxicity
over interval

[
0, tB

]
for scenarios 1–6.

Dose level of A
Value of 𝜆TR

2

14

8

14

13

14

2

14

8

14

13

14

Scenario 1 Scenario 2
4 0.04 0.14 0.23 0.02 0.08 0.13
3 0.03 0.11 0.19 0.01 0.06 0.09
2 0.02 0.09 0.14 0.01 0.04 0.06
1 0.01 0.06 0.09 0.01 0.02 0.04

Scenario 3 Scenario 4
4 0.03 0.11 0.17 0.05 0.19 0.31
3 0.02 0.08 0.13 0.04 0.16 0.26
2 0.01 0.06 0.09 0.03 0.13 0.20
1 0.01 0.04 0.06 0.02 0.09 0.15

Scenario 5 Scenario 6
4 0.05 0.22 0.35 0.02 0.08 0.13
3 0.05 0.19 0.30 0.02 0.06 0.10
2 0.04 0.15 0.25 0.01 0.04 0.07
1 0.03 0.11 0.19 0.01 0.02 0.04

Table IV. Dose escalation recommendations for patients 3 and 4 after observing different DLT
outcomes for patients 1 and 2 under both NA and SA approaches, with respective posterior
median parameter estimates.

NA SA

(Y1,Y2) Dose (𝛼, 𝛽, 𝛾)
(
Y1, Y2

)
Dose (𝛼, 𝛽, 𝛾)

No
DLTs

(0, 0) (a2, b2) (1.29, 1.25,−0.09) (0, 0)
(
a2, b2

)
(1.29, 1.12,−0.03)

One
DLT

(0, 1) (a1, b1) (0.78, 0.80, 0.03) (0, 1)
(
a1, b1

)
(0.53, 1.16,−0.09)

(0, 2)
(
a1, b1

)
(0.98, 0.62,−0.01)

Two
DLTs

(1, 1) STOP (0.37, 0.42, 0.14)
(1, 1) STOP (0.15, 1.00,−0.01)
(1, 2) STOP (0.25, 0.63, 0.16)
(2, 2) STOP (0.82, 0.21, 0.14)

NA, non-attributable; SA, semi-attributable; DLT, dose-limiting toxicity.

posterior distributions of the probability that each response is observed at every dose combination. For
all simulations, two chains were run, each with a burn-in period of 500 iterations and posterior sample
of 4000 iterations, with thinning occurring every two iterations. Gelman–Rubin plots and autocorrela-
tion plots from OpenBUGS were checked to ensure both chains converged and that autocorrelation was
not present.

5. Results

We first consider early trial behaviour under both NA and SA approaches and observe how the contour
plots of 𝜋T (aj, bk;𝜽) change when we observe the response of the first cohort of two patients.

5.1. Early trial behaviour

Table IV shows the dose-escalation recommendation for patients 3 and 4 given different DLT responses
for patients 1 and 2, who receive starting dose (a1, b1), under both the NA and SA approaches. We see
that the recommendations do not differ between approaches for the first two cohorts but the resultant
posterior median parameter estimates that describe the shape of the dose toxicity surfaces are very dif-
ferent (Figure 3). Under the SA approach, observing DLTs before tB leads to a dose-toxicity surface that
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Figure 3. Contour plots for dose-toxicity surfaces after observing particular dose-limiting toxicity (DLT)
responses for the first two patients under the semi-attributable (SA) and non-attributable (NA) approaches,

including the estimated maximum tolerated dose contour (red line).

shows drug A to be exceedingly toxic; additionally, observing DLTs after time tB, the dose-toxicity sur-
face reflects a belief that drug B is likely to be more toxic than under the NA approach, because no DLT
was observed in time interval [0, tB), when the patient had received drug A only. This is also shown when
comparing the NA approach when (Y1,Y2) = (0, 1) and the SA approach when (Y1,Y2) = (0, 2), when a
DLT is observed after time tB in one patient.

5.2. Experimentation and recommendation

Table V shows the distribution of patients dosed at combinations with true DLT probabilities falling in
certain intervals, as well as the mean and standard deviation of the DLT rates, across all simulations for
each dose-toxicity scenario and value of 𝜆TR, using the NA and SA approaches, respectively. Under the SA
approach, we observe similar or increased experimentation at combinations with DLT probability within
5% of the TTL Γ = 0.25; scenario 6 shows that under the SA approach, over 16.5% of patients are dosed
within this interval, relative to the 14.4% under the NA approach. When considering a wider probability
interval of (0.2, 0.3], one observes similar results, with fewer patients receiving doses with probability of
DLT greater than 30% and 40%; again for scenario 6, 50.8% of patients receive combinations with DLT
probabilities between 0.20 and 0.30, which is several percentage point below the SA approaches (53–
54.3%). For scenarios 4 and 5, under the NA approach, we have 41.5% and 56.9%, respectively, which
is less than nearly all SA approaches in the same scenarios (43.5–45.1% and 54.6–58.6%, respectively).
Overall, the mean DLT rate for the SA approach (for all underlying values of 𝜆TR studied) is less than
or equal to that under the NA approach, although Figure 4 illustrates that the mean DLT rate of each
approach as the number of patients increases is fairly similar. Table V also shows the mean percentage
(and standard deviation) of DLTs in each trial that occur before time tB. Although changes are small, it
is shown that a slightly reduced DLT rate is observed under the SA approach when 𝜆TR = 13

14
relative

to the NA approach when the percentage of DLT rates before time tB is higher, which can be seen in all
scenarios.

Table VI shows the percentage of trials recommending each dose combination after all patients have
been evaluated for NA and SA method, respectively, as well as the mean bias and RMSE for model
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Table V. Percentage of experimentation at combinations with DLT probabilities within different probability
intervals and DLT rate (mean % and SD) for NA and SA approaches, and percentage of DLTs before time tB
(mean % and SD) under SA approach, for various values of 𝜆TR under scenarios 1–6.

Probability of DLT DLT rate (%) DLTs pre-tB (%)

[0,0.2] (0.2,0.225] (0.225,0.275] (0.275,0.3] (0.3,0.4] (0.4,1] Mean SD Mean SD

Scenario 1
NA 13.5 19.2 26.1 8.7 29.6 2.9 29.1 9.0 —- —

SA
(
𝜆TR = 2

14

)
12.0 16.9 26.5 13.5 28.4 2.8 29.4 9.0 2.2 2.6

SA
(
𝜆TR = 8

14

)
12.5 19.1 26.1 10.5 28.7 3.0 28.8 8.6 9.9 6.7

SA
(
𝜆TR = 13

14

)
12.5 18.6 27.5 10.7 27.7 3.0 28.8 8.8 16.1 8.2

Scenario 2
NA 36.7 20.7 42.5 — — — 20.5 4.7 — —

SA
(
𝜆TR = 2

14

)
38.3 20.8 40.9 — — — 20.3 4.6 1.4 1.5

SA
(
𝜆TR = 8

14

)
36.7 19.9 43.3 — — — 20.4 4.6 6.4 3.2

SA
(
𝜆TR = 13

14

)
37.0 20.3 42.7 — — — 20.3 4.6 10.7 4.7

Scenario 3
NA 30.4 20.9 21.6 27.1 — — 22.7 5.8 — —

SA
(
𝜆TR = 2

14

)
31.3 20.3 22.0 26.3 — — 22.5 5.6 1.9 1.7

SA
(
𝜆TR = 8

14

)
31.4 19.3 21.3 28.1 — — 22.6 5.3 8.9 5.7

SA
(
𝜆TR = 13

14

)
32.5 19.9 20.9 26.7 — — 22.5 5.4 13.9 6.2

Scenario 4
NA 25.0 0.0 28.9 12.6 29.2 4.4 29.9 9.9 — —

SA
(
𝜆TR = 2

14

)
21.1 0.0 29.0 14.8 30.9 4.2 30.1 9.7 3.2 3.3

SA
(
𝜆TR = 8

14

)
24.3 0.0 30.7 12.8 28.0 4.3 29.3 9.4 14.5 8.6

SA
(
𝜆TR = 13

14

)
23.8 0.0 32.6 12.5 27.5 3.7 29.7 10.0 24.4 10.8

Scenario 5
NA — 26.7 13.7 16.5 36.3 6.9 34.7 11.1 — —

SA
(
𝜆TR = 2

14

)
— 26.4 8.0 20.2 39.1 6.4 34.6 10.7 4.1 5.1

SA
(
𝜆TR = 8

14

)
— 25.9 14.0 18.4 35.8 6.0 33.8 10.8 16.6 10.5

SA
(
𝜆TR = 13

14

)
— 26.0 14.7 17.9 35.7 5.7 34.6 11.1 28.6 12.1

Scenario 6
NA — 30.9 14.4 5.5 37.0 12.3 34.9 11.0 — —

SA
(
𝜆TR = 2

14

)
— 26.2 16.7 12.4 33.5 11.1 34.8 11.1 1.3 2.9

SA
(
𝜆TR = 8

14

)
— 25.8 16.8 11.4 34.9 11.2 34.8 10.9 3.8 4.4

SA
(
𝜆TR = 13

14

)
— 26.6 16.5 9.9 35.6 11.3 34.6 10.9 6.9 5.9

DLT, dose-limiting toxicity; NA, non-attributable; SA, semi-attributable.

parameters 𝛼, 𝛽 and 𝛾 . With respect to MTD recommendations and their true DLT probabilities, the
SA approach when 𝜆TR equals 8

14
or 13

14
has in general higher recommendation percentages within

(0.225, 0.275] and the larger interval (0.2, 0.3], and fewer recommendations at combinations with DLT
probability greater than 30%, which can be seen in scenarios 4, 5 and 6. Under scenario 2, fewer trials
stopped under the SA approach for all values of 𝜆TR, and the SA approaches had more MTD combinations
recommended in the interval (0.225, 0.275] (25.5–27.1%) compared with the NA approach (23.5%).
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Figure 4. Mean probability of dose-limiting toxicity (DLT) for each method for scenarios 1–6. Solid horizontal
black line indicates target toxicity level Γ = 0.25. NA, non-attributable; SA, semi-attributable.

With respect to the bias and RMSE, it is observed that the mean bias and RMSE for the interaction
parameter 𝛾 are fairly similar across all methods per scenario and the bias seems to indicate that the final
parameter estimates are close to 0; given that the prior on 𝛾 is reasonably vague, it is likely that changes
in the dose-toxicity surface are determined by the marginal parameters 𝛼 and 𝛽. The results for RMSE on
scenarios 4, 5 and 6 suggest that when toxicity increases slowly for one drug at the marginal level (seen in
drug B for scenarios 4 and 5, and drug A for scenario 6), more precise parameter estimates are obtained,
because more experimentation is permitted at increasing dose levels of that drug. The converse can be
seen for the RMSE around the parameter relating to the other agent, which in truth has DLT probability
rate increasing much faster.

5.3. Sensitivity analysis

We also conducted a sensitivity analysis to assess how the SA approach performs relative to the NA
approach when 𝜆TR is increasing with aj, that is, higher dose levels of drug A have an increased probability
of DLT in time window [0, tB) relative to the case where 𝜆TR is constant for all aj. We compared both
approaches on scenario 5, so the true probabilities of DLT over the interval [0,T] were identical to those
given for scenario 5 in Table II, but with 𝜆TR

(
aj

)
= 1∕14 for j = 1, 3∕14 for j = 2, 5∕14 for j = 3

and 8∕14 for j = 4. Therefore, the probability of DLT due to drug A was not directly proportional to the

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016



G. M. WHEELER ET AL.

Ta
bl

e
V

I.
Pe

rc
en

ta
ge

of
M

T
D

re
co

m
m

en
da

tio
ns

w
ith

in
D

LT
pr

ob
ab

ili
ty

in
te

rv
al

s,
bi

as
an

d
R

M
SE

ar
ou

nd
pa

ra
m

et
er

es
ti-

m
at

es
,a

nd
nu

m
be

r
of

tr
ia

ls
st

op
pi

ng
ea

rl
y,

no
tr

ec
om

m
en

di
ng

an
M

T
D

(n
ot

in
cl

ud
in

g
ea

rl
y

st
op

pi
ng

)
an

d
m

ea
n

nu
m

be
r

of
M

T
D

re
co

m
m

en
da

tio
ns

fo
r

sc
en

ar
io

s
1–

6.
E

ar
ly

N
o

M
ea

n
Pr

ob
ab

ili
ty

of
D

LT
B

ia
s

R
M

SE
st

op
M

T
D

M
T

D
s

(0
,0

.2
]

(0
.2

,0
.2

25
]

(0
.2

25
,0

.2
75

]
(0

.2
75

,0
.3

]
(0

.3
,0

.4
]

(0
.4

,1
]

𝛼
𝛽

𝛾
𝛼

𝛽
𝛾

(N
)

(N
)

(N
)

Sc
en

ar
io

1
N

A
1.

9
16

.7
34

.7
17

.8
28

.5
0.

4
0.

14
0.

05
0.

02
0.

23
0.

20
0.

21
13

2
8

2.
2

SA
( 𝜆

T
R
=

2 14

)
3.

0
20

.7
30

.5
16

.5
28

.9
0.

4
0.

42
−

0.
15

0.
14

0.
47

0.
23

0.
23

13
2

28
1.

7

SA
( 𝜆

T
R
=

8 14

)
1.

9
16

.5
33

.7
16

.2
31

.4
0.

4
0.

09
0.

09
0.

08
0.

22
0.

22
0.

21
11

1
11

2.
2

SA
( 𝜆

T
R
=

13 14

)
2.

2
15

.9
33

.5
14

.1
33

.9
0.

4
−

0.
05

0.
28

−
0.

09
0.

16
0.

35
0.

24
12

0
6

2.
3

Sc
en

ar
io

2
N

A
38

.8
37

.7
23

.5
—

—
—

0.
06

0.
05

1.
81

0.
17

0.
18

1.
83

8
28

8
1.

4

SA
( 𝜆

T
R
=

2 14

)
33

.2
39

.7
27

.1
—

—
—

0.
21

−
0.

07
2.

03
0.

23
0.

21
2.

04
7

24
4

1.
3

SA
( 𝜆

T
R
=

8 14

)
35

.9
37

.9
26

.2
—

—
—

0.
06

0.
05

1.
92

0.
19

0.
18

1.
94

7
27

1
1.

4

SA
( 𝜆

T
R
=

13 14

)
34

.5
40

.1
25

.5
—

—
—

−
0.

05
0.

17
1.

73
0.

20
0.

23
1.

76
7

24
2

1.
5

Sc
en

ar
io

3
N

A
21

.6
34

.6
31

.5
12

.3
—

—
0.

17
−

0.
13

−
0.

90
0.

24
0.

22
0.

93
26

10
3

2.
0

SA
( 𝜆

T
R
=

2 14

)
20

.1
28

.2
36

.2
15

.4
—

—
0.

35
−

0.
27

−
0.

72
0.

37
0.

34
0.

74
22

81
1.

7

SA
( 𝜆

T
R
=

8 14

)
22

.5
32

.9
31

.0
13

.6
—

—
0.

13
−

0.
09

−
0.

85
0.

23
0.

20
0.

88
18

93
2.

1

SA
( 𝜆

T
R
=

13 14

)
20

.7
34

.1
33

.0
12

.1
—

—
0.

00
0.

06
−

1.
06

0.
19

0.
17

1.
10

20
93

2.
2

Sc
en

ar
io

4
N

A
10

.2
0.

0
35

.7
16

.7
36

.7
0.

7
0.

30
−

0.
28

2.
00

0.
35

0.
35

2.
01

16
5

9
2.

1

SA
( 𝜆

T
R
=

2 14

)
14

.5
0.

0
31

.0
16

.3
37

.3
0.

8
0.

52
−

0.
48

2.
15

0.
56

0.
53

2.
15

16
3

35
1.

7

SA
( 𝜆

T
R
=

8 14

)
10

.3
0.

0
39

.2
19

.9
29

.9
0.

7
0.

16
−

0.
11

1.
94

0.
23

0.
23

1.
95

14
7

13
2.

1

SA
( 𝜆

T
R
=

13 14

)
11

.1
0.

0
40

.1
19

.8
28

.3
0.

6
0.

04
0.

17
1.

63
0.

14
0.

22
1.

66
18

4
19

1.
9

Sc
en

ar
io

5
N

A
—

12
.4

14
.1

28
.9

41
.6

3.
0

0.
29

−
0.

29
0.

02
0.

35
0.

36
0.

24
34

5
23

1.
3

SA
( 𝜆

T
R
=

2 14

)
—

15
.7

12
.9

24
.0

43
.5

3.
9

0.
50

−
0.

48
0.

14
0.

55
0.

51
0.

23
33

9
37

1.
1

SA
( 𝜆

T
R
=

8 14

)
—

10
.3

16
.9

30
.3

40
.6

2.
0

0.
17

−
0.

13
−

0.
02

0.
22

0.
24

0.
22

32
0

23
1.

4

SA
( 𝜆

T
R
=

13 14

)
—

15
.0

16
.5

28
.4

38
.7

1.
4

0.
05

0.
20

−
0.

27
0.

12
0.

25
0.

39
38

3
27

1.
2

Sc
en

ar
io

6
N

A
—

14
.8

21
.1

11
.1

48
.7

4.
3

−
0.

34
0.

27
−

0.
97

0.
39

0.
31

1.
00

36
3

29
1.

1

SA
( 𝜆

T
R
=

2 14

)
—

16
.7

22
.9

13
.1

44
.3

3.
0

0.
04

0.
09

−
0.

86
0.

18
0.

14
0.

88
37

1
55

0.
9

SA
( 𝜆

T
R
=

8 14

)
—

14
.3

20
.4

15
.2

46
.9

3.
2

−
0.

09
0.

14
−

0.
87

0.
23

0.
19

0.
89

35
8

37
1.

0

SA
( 𝜆

T
R
=

13 14

)
—

12
.1

21
.1

14
.4

48
.1

4.
3

−
0.

23
0.

21
−

0.
91

0.
32

0.
26

0.
93

34
1

38
1.

1

D
LT

,d
os

e-
lim

iti
ng

to
xi

ci
ty

;N
A

,n
on

-a
ttr

ib
ut

ab
le

;S
A

,s
em

i-
at

tr
ib

ut
ab

le
;R

M
SE

,r
oo

tm
ea

n-
sq

ua
re

d
er

ro
r.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016



G. M. WHEELER ET AL.

marginal probabilities of DLT at each dose of drug A, as previously assumed. This gave the probabilities
of DLT in time window [0, tB) at

(
a1, a2, a3, a4

)
as (0.01, 0.06, 0.12 and 0.22). We simulated 1000 trials

per approach, under the same conditions detailed in Subsection 4.4 (results are provided in Supporting
Information to this paper). We found a trade-off between experimentation and MTD recommendation,
with the SA approach identifying the MTD combination (in this scenario, (a1, b2)) 1.9% more than the
NA approach; furthermore, the NA approach recommended 1.5% more overdoses (DLT probability over
[0,T] greater than 0.30) than the SA approach. However, with regard to experimentation, 1.7% more
patients received the true MTD combination under the NA approach than the SA approach, and 1% more
patients received combinations with true DLT probability greater than 0.40 under the SA approach.

6. Conclusions

In this paper, modifications to standard dual-agent dose-escalation methodology that may be used for clin-
ical trials with non-concurrent administration of agents over a cycle have been investigated. By changing
the structure of the likelihood and modelling the response as a trinary categorical variable, rather than
a simple binary variable, improvements to the performance of model-based trial design are observed in
several scenarios, including slight increases in the percentage of patients receiving dose combinations
with true DLT probabilities close to the TTL Γ, reductions in the percentage of patients receiving dose
combinations with true DLT probabilities much higher than the TTL Γ and the distribution of MTD rec-
ommendations at the end of the trial. For the simulation study in Sections 4 and 5, the SA approach dosed
more patients at target combinations and fewer patients at overdoses relative to the NA method. However,
the SA approach did not universally outperform the NA method. Also, the SA approach recommends
target combinations (or those close to target combinations on the probability scale) more often than the
NA method.

However, we acknowledge that there are limitations with the work presented here. As stated previously,
the submitted protocol includes a 2000 mg/ 100ml fixed dose of gemcitabine to be administered on day
3, between the administration of Cabazitaxel (day 1) and Cisplatin (day 5). The methodology introduced
here is intended to incorporate dual-agent dose-escalation methodology into statistical model-based trial
design, and therefore focus on the two agents with adjustable dose levels as per the submitted protocol.
The addition of a third agent, albeit a fixed dose that has shown to be well-tolerated in patients at the
proposed concentration, introduces further complexity into the modelling framework; Yin and Yuan [21]
acknowledge such an extension via the use of copula regression. Such an expansion to a three-agent
dose-escalation problem, along with exploration of new methodology for SA toxicity, is particularly
challenging and requires an extremely detailed analysis of operating characteristics. Furthermore, we
only consider drug-related toxicities in our methodology and not disease-related toxicity, or the problem
of toxicity misattribution [11]. However, as mentioned in Section 1, both drugs will have been studied
separately in single-agent phase I trials, so misattributing disease-related toxicity to drugs and vice versa
is less likely than in monotherapy trials.

A further consideration is the choice of model for modelling the dose-toxicity surface. As stated previ-
ously, the choice of model used in this research was made because of its parsimony and also its ability to
satisfy all of the aforementioned assumptions in Section 3, as well as its ability to model different forms
of interactive behaviour. It does not serve as a formal recommendation for this particular model, and other
binary regression models are available for use in dual-agent phase I dose-escalation trials [12]. Before
deciding how to model the dose-toxicity surface, investigators and statisticians should discuss the various
aspects of a proposed trial in order to consider all possible options for the trial conduct. It may be the case
that other dose-toxicity models proposed in the literature, novel extensions of these or indeed entirely
new methodology developed specifically for a particular trial will serve as the best method [17]. Further,
to the research shown here, we also considered setting P

(
Yi = 2|aj, bk, tB,𝝍

)
= (1−𝜆)𝜋T

(
aj, bk,𝜽

)
and

expressing the probability of DLT as P
(
Yi = 1|aj, tB,𝝍

)
+ P

(
Yi = 2|aj, bk, tB,𝝍

)
, then assessing how

end-of-trial MTD recommendations differed; there was very little difference between those shown under
the proposed model in equations 3, 4 and 5.

One key point of discussion is the assumption that 𝜋tB

(
aj;𝝍

)
= 𝜆𝜋T

(
aj, 0;𝜽

)
. This assumes that the

probability of DLT in the time interval
[
0, tB

)
is linearly proportional to the probability of DLT in the

time interval [0,T] at dose combination (aj, 0). This is a rather neat and simple assumption regarding the
nature of the dose-toxicity relationship between the two drugs. The sensitivity analysis in Subsection 5.3
investigated model performance when this assumption was not true for one scenario and found that the
SA approach was better than the NA approach at correctly identifying MTD combinations and selecting

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016
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doses near the MTD, but the NA approach was slightly better with regard to experimentation. Perhaps a
more advanced idea would be that the time to a DLT occurring is based on some exponential distribution,
dependent on the type and number of drugs given. One may instead assume 𝜋tB

∝ e(𝜋T ) that is 𝜋tB
is

proportional to some other function e of 𝜋T that may not be linear. Alternatively, 𝜋tB
may not be related

to 𝜋T at all, requiring two different probability functions to be chosen for 𝜋tB
and 𝜋T . However, because

dose-escalation decisions are made based on function 𝜋T alone, this would require some modification to
the function that determines which dose combination to give to the next cohort, and indeed to recommend
at the end of the trial. As it stands, the current simplifying assumption of 𝜋tB

(
aj;𝝍

)
= 𝜆𝜋T

(
aj, 0;𝜽

)
seems sensible and reduces the complexity of this dose-escalation approach. With respect to accuracy of
dose-toxicity modelling, it may be the case that the choice of probability function 𝜋T has a far bigger role
to play in dose-toxicity modelling than the linking postulation of the relationship between probability
functions 𝜋tB

and 𝜋T .
Based on the work conducted in this paper, the incorporation of methodology relating to SA toxicity

may be applied to dual-agent trials that incorporate non-concurrent drug administration but tailored to the
specific trial. If information relating to non-overlapping toxicities is known, or if the clinician can distin-
guish drug-related toxicity from disease-related toxicity, then the dose-toxicity model may be modified
so that such information can be used to guide dose-escalation/de-escalation. Furthermore, if pharamcoki-
netic/pharmacodynamic data can be used to help predict the probability of DLT occurring over a particular
interval, and inform the potential for carry-over effects both at the point of administering drug B and
even between cycles, then this could be incorporated to make dose-escalation methods more advanced
and realistic. The work presented here marks a novel and firm starting point for considering individual
trial aspects to tailor advanced Bayesian methodology to a clinical research question of interest.

Considering the results obtained and the limitations identified, further areas of research can be
explored. Aside from modifications already addressed such as model choice, assumptions linking 𝜋tB

and
𝜋T and the inclusion of more than two drugs in the model, it would be particularly interesting to consider
how multiple toxicities and their gradings influence dose-escalation/de-escalation decisions for drugs
administered non-concurrently. An additional point of interest would be to consider the occurrence of
DLTs outside of the first cycle of treatment, where DLT responses are traditionally recorded, particularly
in a dual-agent trial with non-concurrent drug administration. A tougher practical consideration would
be to see if the time of administration of drug B could be adapted during the trial so that more patients
are given the full combination, though still keep the sequential administration structure.
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